
Freenet� A Distributed Anonymous Information Storage and

Retrieval System

Ian Clarke

���C Lyham Road� Clapham Park

London SW� �QA

United Kingdom

i�clarke�dynamicblue�com

Oskar Sandberg

M�orbydalen ��

�	��� Stockholm

Sweden

md
	�osa�nada�kth�se

Brandon Wiley

��� Rio Grande St�

Austin� TX �	��

USA

blanu�uts�cc�utexas�edu

Theodore W� Hong �

Department of Computing

Imperial College of Science� Technology and Medicine

�	 Queen�s Gate� London SW� �BZ

United Kingdom

t�hong�doc�ic�ac�uk

July �� �

Abstract

We describe Freenet� a peer�to�peer network application that permits the publication�

replication� and retrieval of data while protecting the anonymity of both authors and readers�

Freenet operates as a network of identical nodes that collectively pool their storage space

to store data �les� and cooperate to route requests to the most likely physical location of

data� No broadcast search or centralized location index is employed� Files are referred to in

a location�independent manner� and are dynamically replicated in locations near requestors

and deleted from locations where there is no interest� It is infeasible to discover the true

origin or destination of a �le passing through the network� and di�cult for a node operator

to determine or be held responsible for the actual physical contents of her own node�

� Introduction

Computer networks are rapidly growing in importance as a medium for the storage and exchange
of information� However� current systems a�ord little privacy to their users� and typically store
any given data item in only one or a few �xed places� creating a central point of failure� Because
of a continued desire among individuals to protect the privacy of their authorship or readership
of various types of sensitive information����� and the undesirability of central points of failure

�Supported by grants from the Marshall Aid Commemoration Commission and the National Science Founda�

tion�

	



which can be attacked by opponents wishing to remove data from the system�	
� ��� or simply
overloaded by too much interest�	�� systems o�ering greater security and reliability are needed�

We are developing Freenet� a distributed information storage and retrieval system designed to
address these concerns of privacy and availability� The system operates as a location�independent
distributed �le system across many individual computers that allows �les to be inserted� stored�
and requested anonymously� There are �ve main design goals

� Anonymity for both producers and consumers of information

� Deniability for storers of information

� Resistance to attempts by third parties to deny access to information

� E�cient dynamic storage and routing of information

� Decentralization of all network functions

The system is designed to respond adaptively to usage patterns� transparently moving� repli�
cating� and deleting �les as necessary to provide e�cient service without resorting to broadcast
searches or centralized location indexes� It is not intended to guarantee permanent �le storage�
although it is hoped that enough nodes will join with enough storage capacity that most �les
will be able to remain inde�nitely� In addition� the system operates at the application layer and
assumes the existence of a secure transport layer� although it is transport�independent� It does
not seek to provide anonymity for general network usage� only for Freenet �le transactions�

Freenet is currently being developed as a free software project on Sourceforge� and a prelim�
inary implementation can be downloaded from http���freenet�sourceforge�net�� It grew
out of work originally done by the �rst author at the University of Edinburgh�		��

� Related work

Several strands of related work in this area can be distinguished� Anonymous point�to�point
channels based on Chaum�s mix�net scheme��� have been implemented for email by the Mix�
master remailer�	�� and for general TCP�IP tra�c by onion routing�	�� and Freedom����� Such
channels are not in themselves easily suited to one�to�many publication� however� and are best
viewed as a complement to Freenet since they do not provide �le access and storage�

Anonymity for consumers of information in the web context is provided by browser proxy
services such as the Anonymizer���� although they provide no protection for producers of in�
formation and do not protect consumers against logs kept by the services themselves� Private
information retrieval schemes��� provide much stronger guarantees for information consumers�
but only to the extent of hiding which piece of information was retrieved from a particular
server� In most cases� the fact of contacting a particular server in itself reveals much about
the information retrieved� which can only be counteracted by having each server hold all in�
formation �naturally this scales poorly�� The closest work to our own is Reiter and Rubin�s
Crowds system��	�� which uses a similar method of proxying requests for consumers� although
Crowds does not itself store information and does not protect information producers� Berthold

�



et al� propose Web Mixes���� a stronger system which uses message padding and reordering and
dummy messages to increase security� but again does not protect information producers�

The Rewebber���� provides a measure of anonymity for producers of web information by
means of an encrypted URL service which is essentially the inverse of an anonymizing browser
proxy� but has the same di�culty of providing no protection against the operator of the service
itself� TAZ�	�� extends this idea by using chains of nested encrypted URLs which successively
point to di�erent rewebber servers to be contacted� although this is vulnerable to tra�c analysis
using replay� Both rely on a single server as the ultimate source of information� Publius����
enhances availability by distributing �les as redundant shares among n webservers� only k of
which are needed to reconstruct a �le� however� since the identity of the servers themselves is
not anonymized� an attacker might remove information by forcing the closure of n�k�	 servers�
The Eternity proposal��� seeks to archive information permanently and anonymously� although
it lacks speci�cs on how to e�ciently locate stored �les� making it more akin to an anonymous
backup service� Free Haven�	�� is an interesting anonymous publication system which uses a trust
network and �le trading mechanism to provide greater server accountability while maintaining
anonymity�

distributed�net�	�� demonstrated the concept of pooling computer resources among mul�
tiple users on a large scale for CPU cycles� other systems which do the same for disk space are
Napster��
� and Gnutella�	��� although the former relies on a central server to locate �les and
the latter employs an ine�cient broadcast search� Neither one replicates �les� Intermemory���
and India�	�� are cooperative distributed �leserver systems intended for long�term archival stor�
age along the lines of Eternity� in which �les are split into redundant shares and distributed
among many participants� Akamai��� provides a service which replicates �les at locations near
information consumers� but is not suitable for producers who are individuals �as opposed to
corporations�� None of these systems attempt to provide anonymity�

� Architecture

Freenet is implemented as a peer�to�peer network of nodes that query one another to store and
retrieve data �les� which are named by location�independent keys� Each node maintains its own
local datastore which it makes available to the network for reading and writing� as well as a
dynamic routing table containing addresses of other nodes and the keys that they are thought
to hold� It is intended that most users of the system will run nodes� both to provide security
guarantees against inadvertently using a hostile foreign node and to increase the storage capacity
available to the network as a whole�

The system can be regarded as a cooperative distributed �lesystem incorporating location
independence and transparent lazy replication� Just as systems such as distributed�net�	��
enable ordinary users to share unused CPU cycles on their machines� Freenet enables users to
share unused disk space� However� where distributed�net uses those CPU cycles for its own
purposes� Freenet is directly useful to users themselves� acting as an extension to their own hard
drives�

The basic model is that queries are passed along from node to node in a chain of proxy
requests� with each node making a local routing decision in the style of IP routing about where

�



to send the query next �this varies from query to query�� Nodes know only their immediate
upstream and downstream neighbors in the chain� Each query is given a �hops�to�live� count
which is decremented at each node to prevent in�nite chains �analogous to IP�s time�to�live��
Each query is also assigned a pseudo�unique random identi�er� so that nodes can prevent loops
by rejecting queries they have seen before� When this happens� the immediately preceding node
simply chooses a di�erent node to forward to� This process continues until the query is either
satis�ed or exceeds its hops�to�live limit� Then� the success or failure result is passed back up
the chain to the sending node�

No node is privileged over any other node� so no hierarchy or central point of failure exists�
Joining the network is simply a matter of discovering the address of one or more existing nodes
through out�of�band means� then starting to send messages� Files are immutable at present�
although �le updatability is on the agenda for future releases� In addition� the namespace is
currently �at� consisting of the space of 	�
 bit SHA�	��� hashes of descriptive text strings�
although support for a richer namespace is a priority for development� See section � for further
discussion of updating and naming�

��� Retrieving data

To retrieve data� a user hashes a short descriptive string �for example� text�philosophy�

sun�tzu�art�of�war� to obtain a �le key� �See section � for details on how descriptive strings
corresponding to �les can be discovered�� She then sends a request message to her own node
specifying that key and a hops�to�live value� When a node receives a request� it �rst checks its
own store for the data and returns it if found� together with a note saying it was the source
of the data� If not found� it looks up the nearest key in its routing table to the key requested
and forwards the request to the corresponding node� If that request is ultimately successful and
returns with the data� the node will pass the data back to the upstream requestor� cache the �le
in its own datastore� and create a new entry in its routing table associating the actual data source
with the requested key� A subsequent request for the same key will be immediately satis�ed
from the local cache� a request for a �similar� key �determined by lexicographic distance� will be
forwarded to the previously successful data source� Because maintaining a table of data sources
is a potential security concern� any node along the way can unilaterally decide to change the
reply message to claim itself or another arbitrarily�chosen node as the data source�

If a node cannot forward a request to its preferred downstream node because the target is
down or a loop would be created� the node having the second�nearest key will be tried� then the
third�nearest� and so on� If a node runs out of candidates to try� it reports failure back to its
upstream neighbor� which will then try its second choice� etc� In this way� a request operates as
a steepest�ascent hill�climbing search with backtracking� If the hops�to�live count is exceeded� a
failure result is propagated back to the original requestor without any further nodes being tried�
Nodes may unilaterally curtail excessive hops�to�live values to reduce network load� They may
also forget about pending requests after a period of time to keep message memory free�

Figure 	 depicts a typical sequence of request messages� The user initiates a request at node
a� Node a forwards the request to node b� which forwards it to node c� Node c is unable to
contact any other nodes and returns a backtracking �request failed� message to b� Node b then
tries its second choice� e� which forwards the request to f� Node f forwards the request to b�

�



= Data Request

= Data Reply

= Request Failed

start

data

2
3

5

8

9

10

4

1

11

12

6 7

This request failed

because a node will

refuse a Data Request

that it has already

seen

a b

c

d

e

f

Figure 	 A typical request sequence�

which detects the loop and returns a backtracking failure message� Node f is unable to contact
any other nodes and backtracks one step further back to e� Node e forwards the request to its
second choice� d� which has the data� The data is returned from d via e and b back to a� which
sends it back to the user� The data is also cached on e� b� and a�

This mechanism has a number of e�ects� Most importantly� we hypothesize that the quality
of the routing should improve over time� for two reasons� First� nodes should come to specialize
in locating sets of similar keys� If a node is listed in routing tables under a particular key� it
will tend to receive mostly requests for keys similar to that key� It is therefore likely to gain
more �experience� in answering those queries and become better informed in its routing tables
about which other nodes carry those keys� Second� nodes should become similarly specialized in
storing clusters of �les having similar keys� Because forwarding a request successfully will result
in the node itself gaining a copy of the requested �le� and most requests will be for similar keys�
the node will mostly acquire �les with similar keys� Taken together� these two e�ects should
improve the e�ciency of future requests in a self�reinforcing cycle� as nodes build up routing
tables and datastores focusing on particular sets of keys� which will be precisely those keys that
they are asked about�

In addition� the request mechanism will cause popular data to be transparently replicated
by the system and mirrored closer to requestors� For example� if a �le that is originally located
in London is requested in Berkeley� it will become cached locally and provide faster response
to subsequent Berkeley requests� It also becomes copied onto each computer along the way�
providing redundancy if the London node fails or is shut down� �Note that �along the way� is
determined by key closeness and does not necessarily have geographical relevance��

Finally� as nodes process requests� they create new routing table entries for previously�
unknown nodes that supply �les� increasing connectivity� This helps new nodes to discover more
of the network �although it does not help the rest of the network to discover them� for that�
performing inserts is necessary�� Note that direct links are created� bypassing the intermediate
nodes used� Thus� nodes that successfully supply data will gain routing table entries and be
contacted more often than nodes that do not�

Because hashes are used as keys� lexicographic closeness of keys does not imply any closeness
of the original descriptive strings and presumably� no closeness of subject matter of the �les�

�



This lack of semantic closeness is not important� however� as the routing algorithm is based
on knowing where keys are located� not where subjects are located� That is� supposing text�

philosophy�sun�tzu�art�of�war hashes to AH�JK�� requests for this �le can be routed more
e�ectively by creating clusters containing AH�JK�� AH�JK�� and AH�JK�� not by creating clusters
for works of philosophy� Indeed� the use of a hash is desirable precisely because philosophical
works will be scattered across the network� lessening the chances that failure of a single node
will make all philosophy unavailable�

��� Storing data

Inserts follow a parallel strategy to requests� To insert data� a user picks an appropriate de�
scriptive text string and hashes it to create a �le key� She then sends an insert message to her
own node specifying the proposed key and a hops�to�live value �this will determine the number
of nodes to store it on�� When a node receives an insert proposal� it �rst checks its own store
to see if the key is already taken� If the key is found� the node returns the pre�existing �le as if
a request had been made for it� The user will thus know that a collision was encountered and
can try again using a di�erent key� i�e� di�erent descriptive text� �Although potentially the use
of a hash might cause extra collisions� in practice a high�quality hash of su�cient length should
only cause collisions if the same initial descriptive text was chosen�� If the key is not found� the
node looks up the nearest key in its routing table to the key proposed and forwards the insert
to the corresponding node� If that insert causes a collision and returns with the data� the node
will pass the data back to the upstream inserter and again behave as if a request had been made
�i�e� cache the �le locally and create a routing table entry for the data source��

If the hops�to�live limit is reached without a key collision being detected� an �all clear� result
will be propagated back to the original inserter� Note that for inserts� this is a successful result�
in contrast to the request case� The user then sends the data to insert� which will be propagated
along the path established by the initial query and stored in each node along the way� Each node
will also create an entry in its routing table associating the inserter �as the data source� with
the new key� To avoid the obvious security problem� any node along the way can unilaterally
decide to change the insert message to claim itself or another arbitrarily�chosen node as the data
source�

If a node cannot forward an insert to its preferred downstream node because the target is
down or a loop would be created� the insert backtracks to the second�nearest key� then the
third�nearest� and so on in the same way as for requests� If the backtracking returns all the way
back to the original inserter� it indicates that fewer nodes than asked for could be contacted�
As with requests� nodes may curtail excessive hops�to�live values and�or forget about pending
inserts after a period of time�

This mechanism has three e�ects� First� newly inserted �les are selectively placed on nodes
already possessing �les with similar keys� This reinforces the clustering of keys set up by the
request mechanism� Second� new nodes can tell the rest of the network of their existence by
inserting data� Third� an attempt by an attacker to supplant an existing �le by deliberate insert
collision �e�g�� by inserting a corrupted or empty �le under the same key� is likely to simply
spread the real �le further� since the original �le is propagated back on collision� �The use of a
content�hash key� described in section �� makes such an attack infeasible altogether��

�



��� Managing data

All information storage systems must deal with the problem of �nite storage capacity� Individual
Freenet node operators can con�gure the amount of storage to dedicate to their datastores� Node
storage is managed as an LRU �Least Recently Used� cache����� with data items kept sorted in
decreasing order by time of most recent request �or time of insert� if an item has never been
requested�� When a new �le arrives �from either a new insert or a successful request� which
would cause the datastore to exceed the designated size� the least recently used �les are evicted
in order until there is room� The impact on availability is mitigated somewhat by the fact
that the routing table entries created when the evicted �les �rst arrived will remain for a time�
potentially allowing the node to later get new copies from the original data sources� �Routing
table entries are also eventually deleted in a similar fashion as the table �lls up� although they
will be retained longer since they are smaller��

Strictly speaking� the datastore is not a cache� since the set of datastores is all the storage
that there is� i�e� there is no �permanent� copy which is being duplicated� Once all the nodes
have decided� collectively speaking� to drop a particular �le� it will no longer be available to
the network� In this respect� Freenet di�ers from the Eternity service� which seeks to provide
guarantees of �le lifetime�

This mechanism has an advantageous side� however� since it allows outdated documents to
fade away after being superseded by newer documents� thus alleviating some of the problem
of immutable �les� If an outdated document is still used and considered valuable for historical
reasons� it will stay alive precisely as long as it continues to be requested�

For political or legal reasons� it may be desirable for node operators not to explicitly know
the contents of their datastores� Therefore� it is recommended that all inserted �les be encrypted
by their original unhashed descriptive text strings in order to obscure their contents� Of course�
this does not secure the �le�that would be impossible since a requestor �potentially anyone�
must be capable of decrypting the �le once retrieved� Rather� the objective is that the node
operator can plausibly deny any knowledge of the contents of her datastore� since all she knows a
priori is the hashed key and its associated encrypted �le� The hash cannot feasibly be reversed
to reveal the unhashed description and decrypt the �le� With e�ort� of course� a dictionary
attack will reveal which keys are present�as it must in order for requests to work at all�

� Protocol details

The Freenet protocol is packet�oriented and uses self�contained messages� Each message includes
a transaction ID so that nodes can track the state of inserts and requests� This design is
intended to permit �exibility in the choice of transport mechanisms for messages� whether they
be TCP� UDP� or other technologies such as packet radio� For e�ciency� nodes are also able to
send multiple messages over a persistent channel such as a TCP connection� if available� Node
addresses consist of a transport method plus a transport�speci�c identi�er �such as an IP address
and port number�� e�g� tcp��	���
�������	����

A Freenet transaction begins with a Request�Handshake message from one node to another�

�



specifying the desired return address of the sending� node� �The return address may be impossi�
ble to determine from the transport layer alone� or may use a di�erent transport from that used
to send the message�� If the remote node is active and responding to requests� it will reply with
a Reply�Handshake specifying the protocol version number that it understands� Handshakes are
remembered for a few hours� and subsequent transactions between the same nodes during this
time may omit this step�

All messages contain a randomly�generated ���bit transaction ID� a hops�to�live counter�
and a depth counter� Although the ID cannot be guaranteed to be unique� the likelihood of a
collision occurring during the transaction lifetime among the limited set of nodes that it sees is
extremely low� Hops�to�live is set by the originator of a message and is decremented at each hop
to prevent messages being forwarded inde�nitely� To reduce the information that an attacker
can obtain from the hops�to�live value� messages do not automatically terminate after hops�to�
live reaches 	 but are forwarded on with �nite probability �with hops�to�live again 	�� Depth is
incremented at each hop and is used by a replying node to set hops�to�live high enough to reach
a requestor� Requestors should initialize it to a small random value to obscure their location�
As with hops�to�live� a depth of 	 is not automatically incremented but is passed unchanged
with �nite probability�

To request data� the sending node sends a Request�Data message specifying a transaction
ID� initial hops�to�live and depth� and a search key� The remote node will check its datastore for
the key and if not found� will forward the request to another node as described in section ��	�
Using the chosen hops�to�live count� the sending node starts a timer for the expected amount
of time it should take to contact that many nodes� after which it will assume failure� While the
request is being processed� the remote node may periodically send back Reply�Restart messages
indicating that messages were stalled waiting on network timeouts� so that the sending node
knows to extend its timer�

If the request is ultimately successful� the remote node will reply with a Send�Data message
containing the data requested and the address of the node which supplied it �possibly faked�� If
the request is ultimately unsuccessful and its hops�to�live are completely used up trying to satisfy
it� the remote node will reply with a Reply�NotFound� The sending node will then decrement
the hops�to�live of the Send�Data �or Reply�NotFound� and pass it along upstream� unless it
is the actual originator of the request� Both of these messages terminate the transaction and
release any resources held� However� if there are still hops�to�live remaining� usually because
the request ran into a dead end where no viable non�looping paths could be found� the remote
node will reply with a Request�Continue giving the number of hops�to�live left� The sending
node will then try to contact the next�most likely node from its routing table� It will also send
a Reply�Restart upstream�

To insert data� the sending node sends a Request�Insert message specifying a randomly�
generated transaction ID� an initial hops�to�live and depth� and a proposed key� The remote
node will check its datastore for the key and if not found� forward the insert to another node as
described in section ���� Timers and Reply�Restart messages are also used in the same way as
for requests�

If the insert ultimately results in a key collision� the remote node will reply with either

�Note that the sending node may not be the original requestor�

�



a Send�Data message containing the existing data or a Reply�NotFound �if existing data was
not actually found� but routing table references to it were�� If the insert does not encounter a
collision� yet runs out of nodes with nonzero hops�to�live remaining� the remote node will reply
with a Request�Continue� In this case� Request�Continue is a failure result meaning that not as
many nodes could be contacted as asked for� These messages will be passed along upstream as
in the request case� Both messages terminate the transaction and release any resources held�
However� if the insert expires without encountering a collision� the remote node will reply with
a Reply�Insert� indicating that the insert can go ahead� The sending node will pass along the
Reply�Insert upstream and wait for its predecessor to send a Send�Insert containing the data�
When it receives the data� it will store it locally and forward the Send�Insert downstream�
concluding the transaction�

� Naming� searching� and updating

Freenet�s basic �at namespace has obvious disadvantages in terms of discovering documents�
name collisions� etc� Several mechanisms of providing more structure within the current scheme
are possible� For example� directory�like documents containing hypertext pointers to other �les
could be created� A directory �le under the key text�philosophy could contain a list of keys
such as text�philosophy�sun�tzu�art�of�war� text�philosophy�confucius�analects� and
text�philosophy�nozick�anarchy�state�utopia� using appropriate syntax interpretable by
a client� The di�culty� however� is in deciding how to permit changes to the directory to up�
date entries� while preventing the directory from being corrupted or spammed� An alternative
mechanism is to encourage individuals to maintain and share their own compilations of keys�
subjective bookmark lists� rather than authoritative directories� This is the approach in common
use on the world�wide web�

Name collisions are still a problem with both bookmark lists and directories� One way of
addressing collisions is to introduce a two�level structure similar to that used by most traditional
�le systems� Real �les could be stored under a pseudo�unique binary key� such as a hash of the
�les� contents �a content�hash key�� Users would access these �les by �rst retrieving an indirect
�le stored under a semantically meaningful name� The indirect �le would consist solely of a list of
binary keys corresponding to that name �possibly only one�� along with other information useful
for di�erentiating among the possible choices� such as author� creation time� and endorsements
by other users� Content�hash keys would also protect against �les being maliciously tampered
with or replaced� However� indirect �les are essentially like low�level directories� and share the
same problem of managing updates� Another approach is to skip the indirect �les altogether
and have bookmark lists pointing to content�hash keys� rather than names�

Introducing a search capability in conjunction with binary keys o�ers a way to side�step the
need to maintain directories� The most straightforward way to add search is to run a hypertext
spider such as those used to search the web� While an attractive solution in many ways� this
con�icts with the design goal of avoiding centralization� A possible alternative is to create a
special class of lightweight indirect �les� When a real �le is inserted� the author could also insert
a number of indirect �les containing a single pointer to the real �le� named according to search
keywords chosen by her� These indirect �les would di�er from normal �les in that collisions

�



would be permitted on insert� and requests for an indirect �le key �i�e� a keyword� would keep
going until a speci�ed number of indirect �les �i�e� search results� were accumulated� Managing
the likely large volume of these indirect �les is an open problem�

Updates by a single user can be handled in a reasonably straightforward manner by using a
variation on indirection� When an author inserts a �le which she later intends to update� she
�rst generates a public�private key pair and signs the �le with the private key� The �le is inserted
under a binary key� but instead of using the hash of the �le�s contents� the literal public key
itself is used �a signature�verifying key�� As with inserting under a content�hash key� inserting
under a signature�verifying key provides a pseudo�unique binary key for a �le� which can also
be used to verify that the �le�s contents have not been tampered with� To update the �le� the
new version is signed by the private key and inserted under the public signature�verifying key�
When the insert reaches a node which possesses the old version� a key collision will occur� The
node will check the signature on the new version� verify that it is both valid and more recent�
and replace the old version�

In order to allow old versions of �les to remain in existence for historical reasons and to
prevent the possibility of authors being compelled to �update� their own �les out of existence�
an additional level of indirection can be used� In this scheme� the real �le is inserted under
its content�hash key� Then� an indirect �le containing a pointer to that content�hash key is
created� but inserted under a signature�verifying key� This signature�verifying key is given out
as the binary key for the �le and entered� for example� in directories and bookmark lists �making
them double indirect �les�� When the author creates a new version� it is inserted under its own
content�hash key� distinct from the old version�s key� The signature�veri�ed indirect �le is then
updated to point to the new version �or possibly to keep pointers to all versions�� Thus the
signature�verifying key will always lead to the most recent version of the �le� while old versions
can continue to be accessed by content�hash key if desired� �If not requested� however� these old
versions will eventually disappear like any other unused �le��

For large �les� splitting �les into multiple parts is desirable because of storage and bandwidth
limitations� Splitting even medium �les into standard�sized parts �e�g� 	� kilobytes� also has
advantages in combating tra�c analysis� This is easily accomplished by inserting each part
separately under a content�hash key� and including pointers to the other parts�

Combining all these ideas together� a user might look through a bookmark list or perform
a search on a keyword to get a list of signature�verifying binary keys for �les dealing with a
particular topic� Retrieving one of these keys gives an indirect �le containing a set of content�
hash keys corresponding to di�erent versions� ordered by date� Retrieving the most recent
content�hash key gives the �rst part of a multipart �le� together with pointers to two other
content�hash keys� Finally� retrieving those last two content�hash keys and concatenating the
three parts together yields the desired �le�

� Performance simulation

Simulations were carried out on an early version of this system to give some indications about
its performance� Here we summarize the most important results� for full details� see �		��

The scenario for these simulations was a network with between �

 and �

 nodes� Each

	




0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400

R
eq

ue
st

s

Queries

500
600
700
800
900

Figure � Percentage of successful requests over time�

node had a datastore size of �
 items and a routing table size of �
 addresses �relatively low�
because of limitations on available hardware�� and was given 	
 unique items to store locally�
The network was initially connected in a linear fashion� where each node started with routing
references to one node on either side�

��� Retrieval success rate

Queries for random keys were sent to random nodes in the network� in batches of �
 parallel
queries at a time� and the percentage of successful requests recorded over time� Figure � shows
the percentage of successful requests versus the total number of queries since initialization� for
several network sizes� We can see that the initially low success rate rises rapidly until over ���
of requests are successful� The number of queries until network convergence is approximately
half the total size of the network�

��� Retrieval time

Queries for random keys were sent to random nodes in the network� in batches of �
 parallel
queries at a time� and the average number of hops needed for a successful request recorded
over time� Figure � shows the number of request hops versus the total number of queries since
initialization� for several network sizes� We can see that the initially high number of hops

		



0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400

R
eq

ue
st

s

Queries

500
600
700
800
900

Figure � Number of hops per request over time�

required drops until it stabilizes at approximately 	
 hops� This value changes remarkably little
with network size� suggesting that the time required for requests should scale quite well� The
number of queries until network convergence is approximately equal to the total size of the
network�

� Security

The primary goal for Freenet security is protecting the anonymity of requestors and inserters of
�les� It is also important to protect the identity of storers of �les� Although trivially anyone can
turn a node into a storer by requesting a �le through it� thus �identifying� it as a storer� what
is important is that there remain other� unidenti�ed� holders of the �le so that an adversary
cannot remove a �le by attacking all of the nodes that hold it� Files must be protected against
malicious modi�cation� and �nally� the system must be resistant to denial�of�service attacks�

Reiter and Rubin��	� present a useful taxonomy of anonymous communication properties on
three axes� The �rst axis is the type of anonymity sender anonymity or receiver anonymity�
which mean respectively that an adversary cannot determine either who originated a message�
or to whom it was sent� The second axis is the adversary in question a local eavesdropper� a
malicious node or collaboration of malicious nodes� or a web server �not applicable to Freenet��
The third axis is the degree of anonymity� which ranges from absolute privacy �the presence of

	�



System Attacker Sender anonymity Key anonymity

Basic Freenet local eavesdropper exposed exposed
collaborating nodes beyond suspicion exposed

Freenet � pre�routing local eavesdropper exposed beyond suspicion
collaborating nodes beyond suspicion exposed

Table 	 Anonymity properties of Freenet�

communication cannot be perceived� to beyond suspicion �the sender appears no more likely to
have originated the message than any other potential sender�� probable innocence �the sender is
no more likely to be the originator than not�� possible innocence� exposed� and provably exposed
�the adversary can prove to others who the sender was��

As Freenet communication is not directed towards speci�c receivers� receiver anonymity is
more accurately viewed as key anonymity� that is� hiding the key which is being requested or
inserted� Unfortunately� since routing depends on knowledge of the key� key anonymity is not
possible in the basic Freenet scheme �but see the discussion of �pre�routing� below�� The use
of hashes as keys provides a measure of obscurity against casual eavesdropping� but is of course
vulnerable to a dictionary attack since unhashed keys must be widely known in order to be
useful�

Freenet�s anonymity properties under this taxonomy are shown in Table 	� Against a col�
laboration of malicious nodes� sender anonymity is preserved beyond suspicion since a node in
a request path cannot tell whether its predecessor in the path initiated the request or is merely
forwarding it� ��	� describes a probabilistic attack which might compromise sender anonymity�
using a statistical analysis of the probability that a request arriving at a node a is forwarded
on or handled directly� and the probability that a chooses a particular node b to forward to�
This analysis is not immediately applicable to Freenet� however� since request paths are not
constructed probabilistically� Forwarding depends on whether or not a has the requested data
in its datastore� rather than chance� If a request is forwarded� the routing tables determine
where it is sent to� and could be such that a forwards every request to b� or never forwards
any requests to b� or anywhere in between� Nevertheless� the depth value may provide some
indication as to how many hops away the originator was� although this is obscured by the ran�
dom selection of an initial depth and the probabilistic means of incrementing it �see section ���
Similar considerations apply to hops�to�live� Further investigation is required to clarify these
issues�

Against a local eavesdropper there is no protection on messages between the user and the �rst
node contacted� Since the �rst node contacted can act as a local eavesdropper� it is recommended
that the user only use a node on her own machine as the �rst point of entry into the Freenet
network� Messages between nodes are encrypted against local eavesdropping� although tra�c
analysis may still be performed �e�g� an eavesdropper may observe a message going out without
a previous message coming in and conclude that the target originated it��

Key anonymity and stronger sender anonymity can be achieved by adding mix�style �pre�
routing� of messages� In this scheme� basic Freenet messages are encrypted by a succession of
public keys which determine the route that the encrypted message will follow �overriding the

	�



normal routing mechanism�� Nodes along this portion of the route are unable to determine
either the originator of the message or its contents �including the request key�� as per the mix�
net anonymity properties� When the message reaches the endpoint of the pre�routing phase� it
will be injected into the normal Freenet network and behave as though the endpoint were the
originator of the message�

Protection for data sources is provided by the occasional resetting of the data source �eld in
replies� The fact that a node is listed as the data source for a particular key does not necessarily
imply that it actually supplied that data� or was even contacted in the course of the request� It
is not possible to tell whether the downstream node provided the �le or was merely forwarding
a reply sent by someone else� In fact� the very act of successfully requesting a �le places it on
the downstream node if it was not already there� so a subsequent examination of that node on
suspicion reveals nothing about the prior state of a�airs� and provides a plausible legal ground
that the data was not there until the act of investigation placed it there� Requesting a particular
�le with a hops�to�live of 	 does not directly reveal whether or not the node was previously storing
the �le in question� since nodes continue to forward messages having hops�to�live of 	 with �nite
probability� The success of a large number of requests for related �les� however� may provide
grounds for suspicion that those �les were being stored there previously�

Modi�cation or outright replacement of �les by a hostile node is an important threat� and
not only because of the corruption of the �le itself� Since routing tables are based on replies to
requests� a node might attempt to steer tra�c towards itself by pretending to have �les when
it does not and simply returning �ctitious data� For data stored under content�hash keys or
signature�verifying keys� this is not feasible since inauthentic data can be detected unless a node
�nds a hash collision or successfully forges a cryptographic signature� Data stored under ordinary
descriptive text keys� however� is vulnerable� Some protection is a�orded by the expectation
that �les will be encrypted by the descriptive text� since the node must respond to a hashed key
request with data encrypted by the original text key� but a dictionary attack is possible using a
table of text keys and their hashes� Even partial dictionaries cause problems since the node can
behave normally when an unknown key is requested and forge data when the key is known�

Finally� a number of denial�of�service attacks can be envisioned� The most signi�cant threat
is that an attacker will attempt to �ll all of the network�s storage capacity by inserting a large
number of garbage �les� An interesting possibility for countering this attack is the Hash Cash
scheme�	��� Essentially� the scheme requires the inserter to perform a lengthy computation as
�payment� before an insert is accepted� thus slowing down an attack� Another alternative is to
divide the datastore into two sections� one for new inserts and one for �established� �les �de�ned
as �les having received at least a certain number of requests�� New inserts can only displace
other new inserts� not established �les� In this way a �ood of garbage inserts might temporarily
paralyze insert operations but would not displace existing �les� It is di�cult for an attacker to
arti�cially legitimize her own �garbage� �les by requesting them many times since her requests
will be satis�ed by the �rst node to hold the data and not proceed any further� She cannot
send requests directly to the other downstream nodes holding her �les since their identities are
hidden from her� However� adopting this scheme may make it di�cult for genuine new inserts
to survive long enough to be requested by others and become established�

Attackers may attempt to replace existing �les by inserting alternate versions under the same
keys� Such an attack is not possible against a content�hash key or signature�verifying key� since

	�



it requires �nding a hash collision or successfully forging a cryptographic signature� An attack
against a descriptive text key� on the other hand� may result in both versions coexisting in the
network� The way in which nodes react to insert collisions �detailed in section ���� is intended
to make such attacks more di�cult� The success of a replacement attack can be measured by
the ratio of corrupt versus genuine versions resulting in the system� However� the more corrupt
copies the attacker attempts to circulate �by setting a higher hops�to�live on insert�� the greater
the chance that an insert collision will be encountered� which would cause an increase in the
number of genuine copies�

	 Conclusions

The Freenet network provides an e�ective means of anonymous information storage and retrieval�
By using cooperating nodes spread over many computers in conjunction with an e�cient routing
algorithm� it keeps information anonymous and available while remaining highly scalable� Initial
deployment of a test version is underway� and is so far proving successful� with over 	��


 copies
downloaded and many interesting �les in circulation� Because of the nature of the system� it is
impossible to tell exactly how many users there are or how well the insert and request mechanisms
are working� but anecdotal evidence is so far positive� We are working on implementing a
simulation and visualization suite which will enable more rigorous tests of the protocol and
routing algorithm� More realistic simulation is necessary which models the e�ects of inserts
taking place alongside requests� nodes joining and leaving� variation in node capacity� and larger
network sizes�


 Acknowledgements

Portions of this material are based upon work supported under a National Science Foundation
Graduate Research Fellowship�

References

�	� S� Adler� �The Slashdot e�ect an analysis of three Internet publications��
http���ssadler�phy�bnl�gov�adler�SDE�SlashDotEffect�html ��


��

��� Akamai� http���www�akamai�com� ��


��

��� American National Standards Institute� Draft American National Standard X���
�	��X
Public�Key Cryptography Using Irreversible Algorithms for the Financial Services Industry�

Part �� The Digital Signature Algorithm �DSA�� American Bankers Association �	�����

��� R�J� Anderson� �The Eternity service�� in Proceedings of the �st International Conference on
the Theory and Applications of Cryptology �PRAGOCRYPT ��	�� Prague� Czech Republic
�	�����

��� Anonymizer� http���www�anonymizer�com� ��


��

	�



��� O� Berthold� H� Federrath� and M� K ohntopp� �Project !Anonymity and unobservability in
the Internet��� in Computers Freedom and Privacy Conference 
��� �CFP 
���� Workshop

on Freedom and Privacy by Design �to appear��

��� D�L� Chaum� �Untraceable electronic mail� return addresses� and digital pseudonyms��
Communications of the ACM ������ ����� �	��	��

��� Y� Chen� J� Edler� A� Goldberg� A� Gottlieb� S� Sobti� and P� Yianilos� �A prototype
implementation of archival intermemory�� in Proceedings of the Fourth ACM Conference

on Digital Libraries �DL ����� Berkeley� CA� USA� ACM Press New York �	�����

��� B� Chor� O� Goldreich� E� Kushilevitz� and M� Sudan� �Private information retrieval��
Journal of the ACM ������ ������� �	�����

�	
� Church of Spiritual Technology �Scientology� v� Dataweb et al�� Cause No� ���	
��� District
Court of the Hague� The Netherlands �	�����

�		� I� Clarke� �A distributed decentralised information storage and retrieval system�� un�
published report� Division of Informatics� University of Edinburgh �	����� Available at
http���freenet�sourceforge�net� ��


��

�	�� R�R� Dingledine� �The Free Haven Project Design and Deployment of an Anony�
mous Secure Data Haven�� M�Eng� thesis� Department of Electrical Engineering
and Computer Science� Massachusetts Institute of Technology ��


�� Available at
http���www�freehaven�net� ��


��

�	�� Distributed�net� http���www�distributed�net� ��


��

�	�� D�J� Ellard� J�M� Megquier� and L� Park� �The INDIA protocol��
http���www�eecs�harvard�edu�ellard�India�WWW� ��


��

�	�� Gnutella� http���gnutella�wego�com� ��


��

�	�� I� Goldberg and D� Wagner� �TAZ servers and the rewebber network enabling anonymous
publishing on the world wide web�� http���www�cs�berkeley�edu�daw�classes�cs�
��
taz�www�rewebber�html ��


��

�	�� D� Goldschlag� M� Reed� and P� Syverson� �Onion routing for anonymous and private
Internet connections�� Communications of the ACM ������ ����	 �	�����

�	�� Hash Cash� http���www�cypherspace�org�adam�hashcash� ��


��

�	�� Mixmaster� http���www�obscura�com�loki�remailer�mixmaster�faq�html ��


��

��
� Napster� http���www�napster�com� ��


��

��	� M�K� Reiter and A�D� Rubin� �Anonymous web transactions with Crowds�� Communica�
tions of the ACM ������ ����� �	�����

���� The Rewebber� http���www�rewebber�de� ��


��

	�



���� M� Richtel and S� Robinson� �Several web sites are attacked on day after assault shut
Yahoo�� The New York Times� February �� �


�

���� J� Rosen� �The eroded self�� The New York Times� April �
� �


�

���� A�S� Tanenbaum� Modern Operating Systems� Prentice�Hall Upper Saddle River� NJ� USA
�	�����

���� M� Waldman� A�D� Rubin� and L�F� Cranor� �Publius A robust� tamper�evident�
censorship�resistant and source�anonymous web publishing system�� in Ninth USENIX Se�

curity Symposium� Denver� CO� USA �to appear��

���� Zero�Knowledge Systems� http���www�zks�net� ��


��

	�


