How to debug, protect and improve Internet routing?

Z. Morley Mao

Can our routing protocols survive the future?

- Growing number of routing and data plane attacks
- More multi-homed customers
- Increasing edge-based load-balancing
- Overlay networks
- Increasing complexity, e.g., MPLS
- Higher demands for scalability
 - E.g., IPv6

How to debug the routing system?

- Build routing assertions
 - What’s expected? Nothing fails silently
- Cooperation among ISPs
 - Traffic engineering
 - Predictability, debugging
- Public distributed measurement and measurement calibrations
 - Establish guidelines to interpret the measurement data

How to debug the routing system?

- Internet-wide emulation for network configurations
 - Is the network configuration on the verge of instability?
- Understanding routing protocol interactions and implementation variants
 - Tradeoff of increased communication between protocols
- Get application-layer view
 - Impact of packet filters, router filters

How to improve application performance?

- Correlate routing with forwarding plane
- Evaluate using application performance metrics
 - Delay, loss rate, jitter, reordering, etc.
- Stop treating Internet as a black box

How to protect the routing system?

- Understanding vendor implementations
 - Impact of “default” configurations
 - Deviations from specs
- Understanding vulnerability points on the Internet
- Understanding interaction with transport protocols
- Higher priority for routing traffic
- Automated dynamic installation of packet and route filters
 - Coordination across networks
Routing system is inherently NOT end-to-end!

- Destination-based, hop-by-hop, best-effort, multiple autonomous networks
- Consequences:
 - Who is to blame when things go wrong?
 - No accountability, predictability
 - Where is the problem? Edge vs. core
 - What is the problem? Routing vs. data plane vs. application
 - No guaranteed support for real-time applications
 - Online gaming, voice over IP, video conferencing
 - Transient routing problems abundant

How do we deal with it today?

- Routing system is mostly treated as a black box
- Applications do their best to adapt independent of ISPs
 - Application:
 - Time out to infer failures
 - Buffering, error-correction codes
 - Overlay networks
 - Multi-homing, edge-based load-balancing
 - Still limited in number of providers
 - When to choose what provider?

Desirable properties

- Predictability, constancy
- Metrics:
 - Delay, loss rate, jitter, reordering
 - Resilience to traffic variations, routing configuration changes
 - Accountability, visibility when things break!
 - Low convergence delay
 - Not complete picture
 - What about forwarding loops? Dropped packets?

Application is the king

- Need to evaluate routing protocols in the context of applications
- Should there be more control at the end users?
- What is the right interface for users?
- Lack of incentive to provide QoS?
- One idea: auction-based scheme for QoS-sensitive applications
 - Multiple ISPs bid for providing guaranteed service quality, users pick.
 - At TCP connection level
 - Dynamic peering relationships

How content are the packets?

Randy Bush
Christophe Diot
Olaf Maennel
Morley Mao
What is end-to-end routing?
- Internet routing is not end-to-end
 - Destination-based, hop-by-hop, multiple networks
- Our definition
 - How inter- and intra-domain routing protocols affect the data plane
 - End-to-end application performance – happy packets

How to measure happy packets?
- We have well-developed metrics
 - IPPM: IP Performance Metrics Working Group
 - Connectivity
 - One-way delay and loss
 - Round-trip delay and loss
 - Delay variation
 - Loss patterns
 - Packet reordering
 - Bulk transport capacity
 - Link bandwidth capacity

Why are packets unhappy?
- Possible causes:
 - Protocol designs, unexpected protocol interaction, misconfigurations, congestion, worms, attacks
- Areas of study:
 - Protocol issues
 - Vendor implementation
 - Router configuration
 - External events

What to measure to test our conjecture?
- Data plane measurements
 - Continuous monitoring of large interesting sites
 - E.g., RIPE’s Test Traffic measurement, PACTUM
- Device level testing
 - Box level router testing
 - E.g., switch-over time: how long FIB is updated given a routing change

Food for thought...
- What measurement data are ISPs willing to provide?
 - Each ISP monitoring its own network
 - Inter-ISP routing data exchange
 - Where can we place measurement probes?
 - Planetlab as a measurement platform