Internet Routing Security Issues

Z. Morley Mao
Lecture 3
Jan 13, 2005

Lecture outline

- Recap of last lecture, any questions?
- Existing routing security mechanisms
 - SBGP
- General threats to routing protocols
 - BGP vulnerability testing
 - Path validation in BGP

Previous lecture:
Effect of MinRouteAdver Timer

A function of
- topology, observation point, and a location that originates the change.
- M_u: optimal MRAI, beyond which total updates is stable
- M_t: optimal MRAI to minimize convergence time
- There is no single optimal value!

Recap of previous lecture

- Internet routing is still not well-understood
 - For example, difficult to interpret BGP update messages
 - Holy grail: root cause analysis of BGP updates, need to correlate intradomain and interdomain changes
 - Measurement is useful for understanding routing stability
- Effect of congestion on routing protocols
 - Is TCP the right transport for BGP?
 - How should router treat routing messages differently?
- Future research direction in BGP
 - Protocol characterization, data plane correlation
 - Better interpretation of BGP updates
 - BGP monitoring
 - Correlation with IGP
 - Protocol improvement: better convergence delay
 - Protocol analysis: modeling, formal analysis

Why do we care about Internet routing security?

- BGP ties the Internet together
 - Critical communication infrastructure
- BGP is vulnerable to configuration and routing attacks
- Example routing attacks
 - Fraudulent origination
 - Fraudulent modification
 - Overloading router CPU
- Configuration errors are common
- Impact
 - Traffic black hole
 - Destinations unreachable — “dark” address space
 - Traffic intercepted, modified

Current proposals and solutions

- SBGP: Secure BGP
 - Routing origination digitally signed
 - BGP updates digitally signed
 - Address-based PKI to validate signatures
- SO-BGP: Secure Origin BGP
 - Guards against origination fraud
 - No protection against mid-path disruptions
- Current adhoc solutions
 - TCP MD5 (RFC 2385) protects a single hop
 - Inbound filters, route limits, martian checks, BTSH (ttl hack)
 - Neither guarantees that routes are actually usable
 - Provides accountability
Details of SBGP

- Uses PKI
- Signing party certifies the next hop and propagates it throughout the net
- Use optional, transitive BGP attributes to encode signatures
- Optimization:
 - Predistribute most certificates to each BGP speaker
 - Offload certificate verification
 - Lazy validation of routes
 - Cache signed routes and originations

Why is SBGP not here today?

- Expensive to deploy:
 - Steady state overhead is 1.4 Kbps
 - Consumes a lot of CPU – need hardware support
 - Need more memory on routers
- PKI has to be set up
 - Complex
- Requires router upgrade
- Do not deal with route withdrawals
- Perhaps an intermediate solution can be used
 - PKI among tier-1 ISPs

Generic Threats to Routing Protocols [Barbir, Murphy, Yang2003]

- Provides a framework for discussion of
 - Routing attacks
 - Defense and detection mechanisms
- Classification of vulnerability:
 - Design: inherent choice in protocol spec
 - Important to discover
 - Implementation: bug based on coding error
 - Should eventually get fixed
 - Misconfiguration: weak passwords, failure to use security features, block admin ports
 - More prevalent today and need better tools for configuration

Background

- Scope: all routing protocols
- Routing functions:
 - Transport subsystems: e.g., IP or TCP
 - Neighbor state maintenance
 - Configuration of neighbors: e.g., HELLO, KeepAlive
 - Database maintenance: routing state
- Threat sources: outsider or insider
 - Insider: transmit bogus messages
 - Outsider: subvert unprotected transport
 - Read, insert, reply, modify
 - Outsider is more difficult?

Threat consequences

- Network as a whole
 - Network congestion
 - Routing loops
 - Routing information disclosure
 - Arguable less true for Internet interdomain routing
 - Routing instability, churn
 - Routing blackholes
 - Network partition
 - Router overload
- Individual prefixes
 - Starvation or blackhole
 - Eavesdrop
 - Cut: external reachability attacked
 - Delay or performance degradation, loops

Threat consequence and actions

- Threat consequence zone
 - The area within which threat actions are affected
- Threat consequence periods
 - Duration: long lived?
 - Does the protocol itself have a way to limit duration?
 - E.g., route refreshes
- Threat actions
 - Some actions can be prevented e.g., authorization policies with strong authentication
 - Some actions can be detected: auditing and logging
 - Tradeoff between security and performance
 - “Complexity if the enemy of security” – smb
- My comment: after detection what is required to revert to the normal state?
 - An important operational issue
BGP Vulnerability Testing
[Nanog28: Convery&Franz]

- Is BGP really vulnerable?
 - Answer the question based on testing 7 vendor implementations
- TCP connection establishment tests:
 - Varies from "silent reject" to "full 3-way handshake"
 - BGP RST or NOTIFICATION
 - Timeout varies from none to 1-3 minutes before next attack attempt
 - No BGP session established:
 - TCP spoofing is required to inject data

TCP reset and BGP route insertion

- Blind TCP sequence number guessing operationally impossible
 - Pseudo-random ISN
 - Requires some guessing work
- Routers can notice
 - Based on large packet volume
- Assume one can guess TCP seq no.
 - Routes can be inserted
 - ACK with overlapping seq no. will detect it
 - May impact the FIB and takes some time to flush bad route

BGP/TCP implementation recommendations

- Extensive, configurable logging of connection failures
- Aggressive rejection of TCP connections from non-configured peers and aggressive timeouts
 - To minimize TCP resource exhaustion attacks
- Source port randomization
- Length BGP session timeouts
 - To minimize message flooding attacks
- BGP TTL Hack

Effect of TCP resource exhaustion on BGP

- Goal: prevent new BGP sessions from being established or impact existing sessions
- Methods: SYN, ESTABLISHED, FIN-WAIT1 flooding.
- Result:
 - Up to 5-6 minutes delay in BGP session establishment
 - Moderate increase in CPU utilization and latency
 - No impact on existing sessions
- For significant impact, attacker needs to break the current session and SYN flood both peers
- ACL can help reduce impact on CPU

BGP peer hijack using ARP spoofing

- Arpspoof allows an attacker to poison the Arp table of a BGP peer on a LAN
- Session is terminated and reestablished with the attacker
- Defense mechanisms:
 - Static Arp for ethernet peering
 - Static CAM entries and port security for ethernet switches
- Detection: duplicate Arp replies

Best common practice

- A compromised router is the most valuable asset to an attacker
 - Non BGP specific
 - Router hardening
- Packet filtering to stop spoofed BGP messages at the edge prevents almost all TCP based attacks
Routing Protocol Framework - Information Model

RIB vs. FIB

- RIB: Routing Information Base
 - holds all routing information received from routing peers
 - Adj-RIB-In, the Loc-RIB, and the Adj-RIB-Out
 - routes that will be used by the local BGP speaker must be present in the Loc-RIB
 - routes that are received from other BGP speakers are present in the Adj-RIB-In

- FIB: Forwarding Information Base
 - minimum amount of information necessary to make a forwarding decision on a particular packet
 - Typically: network prefix and next hop information
 - Contains unique paths, no secondary paths
 - Size of the FIB influences the speed of forwarding due to longest prefix lookup

Considerations in validating the path in routing protocols
draft-white-pathconsiderations-00.txt

- Path vector protocol participant cannot verify
 - whether the path a packet takes to its destination corresponds to the path advertised by the routing protocol
 - whether the chosen path is in accordance with the policies of other ASes.
- This due to
 - path vector routing protocols abstract information about intra AS routing decisions
 - ASes can remove routes from the routing systems, this may prevent another AS from enforcing its own policy

Validity of a path

1. Does a path from the advertising router to the destination advertised actually exist?
2. Does the path advertised fall within the policies of the route's originator and all intermediate autonomous systems?
3. Is the advertising router authorized to advertise a path to the destination?
- 2 and 3 cannot be verified in a distance or path vector protocol

Example 1
The advertised path may not fall within the policies of the receiver

Some subtleties here

- BGP forwarding information looks like this:
 - Prefix and next hop
 - Next hop is the IP address of the nexthop router for forwarding traffic
 - You must have the IGP route to the nexthop for the route to be usable
- When B forwards traffic, it goes through C to reach E – the nexthop of the path
- C's forwarding table is inconsistent with B
 - It prefers AS path [2 3 5]
Why can this happen?

- Intra-AS configuration of an AS can cause packets to follow a path inconsistent with advertised path
- Internal inconsistency in routing decisions within an AS
 - Path vector routing depends on interior routing protocols
- Other examples: route reflection
- Any lesson here?
 - Guarantee the consistency of routes for all routers within an AS

How can routing information be “deleted”?

- Filtering based on prefix length
- Filtering based on the presence of supernets
- Filtering based on receiver
 - Doesn’t want to transit traffic for a peer
- Very prevalent especially between peers or inside Internet core

Comparison

<table>
<thead>
<tr>
<th>Type of protocol</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link-state</td>
<td>Fast convergence, low churn/major event, high visibility</td>
<td>Lack of scalability, isolation</td>
</tr>
<tr>
<td>Distance-vector</td>
<td>Isolation, Scalability, Simplicity</td>
<td>Loops, count to infinity, slow convergence, high visibility, high churn</td>
</tr>
<tr>
<td>Path-vector</td>
<td>No routing loops, no count to infinity, high visibility</td>
<td>No isolation, low convergence, high churn</td>
</tr>
</tbody>
</table>

OSPF

- Link State routing protocol (RFC1583)
- Routers are organized in domains and areas
- Hello message for neighbor acquisition
- Link State information are flooded through the whole area
- A topology database is maintained by every router

Important LSA fields

- Advertising router ID (originator)
- Advertised link or network ID
- Sequence number [0x80000001, 0x7fffffff]
- Age [0, 60 minutes]
When to Originate a LSA?

- Upon link state changes, or
- Upon timer expiration

Questions to Ask:

- How do you know one LSA is fresher than the other?
- An LSA originated by you will be received by every router; will you receive the LSA originated by you?
- Will the sequence number wrap-around cause any problem? (i.e., == 0x7fffffff)
- Age =>> 1 hour

Sequence #: old vs. new LSAs

- 0x80000001
- Next: 0x80000002
- Only accept LSAs with newer/larger Seq#.

Sequence# & Self-Stabilization

1. 0x90001112
2. (1). 0x90001112
3. (2). router crashes.
4. (3). 0x90000001
5. (4). 0x90000002
6. (5). 0x90001112 - an old copy still exists!

Flushing via Premature Aging

Specified behavior when Seq# wraps around: (1),(2),(3)

1. (1) 0x7FFFFFFF
2. 0x7FFFFFFF with MaxSeq#
 with MaxAge to purge this entry.

Attack the Routing Infrastructure (Vicious Advertising Routers)

- Flooding
- Impact varies depending on how critical the link is to the world!
Attack the Routing Infrastructure (Vicious Intermediate Routers)

- Flooding
- All the links can be attacked
- Authentication, please come to the rescue!

Exchanging without LSA Signature?

- If attackers can just change the content of LSAs without being detected, the routers must use all LSAs with care!

Fight-Back - Originator Reaction

- ATM Seq#
- (1) 0x90001112
- (2) 0x90001113 seq++ attack
- (3) 0x90001114 fight-back

Signature - How Critical?

- Observations:
 - Prolonged fight-back will not happen in real attacks
 - What's preventing the attacker from using LS_seq=MaxSeq?
- Can you prevent false LSA without signature?
- Can you determine who did it after you realize that you've been fooled without signature?
- What needs to be signed by whom anyway?

OSPF Security Strength

- In most benign cases, if something goes wrong, the advertising router will detect it and try to correct it by generating new LSAs
- The attackers have to persistently inject bad LSAs in order for it to ‘stick’
- Self-Stabilization Protocols: force the attackers to perform persistent attacks

Detection of Hit-and-Run vs. Persistent Attacks

- Hit-and-Run Attacks: Hard to Detect/Isolate
 - Inject one (or very few) bad packet but cause lasting damaging effect
- Persistent Attacks:
 - Attackers have to continuously inject attack packets in order to inflict significant damages
- OSPF type of Link State protocols are resilient to hit-and-run attacks
Secure Protocol/system Design?

- If we can force the attackers to launch “persistent attacks,” we have a better chance to detect and isolate the attack sources.
- OSPF flooding coupled with periodic LSA does a fairly good job because it is refreshing link state persistently!
- What other implications do ‘flooding’ have on security?

Controlling high volume aggregates using pushback [Bellovin, Paxson, Floyd, Mahajan]

- Core idea:
 - Router signals its upstream peers to restrict a given aggregate to a given transmission rate.
 - Router detects aggregate overwhelming it by using packet drops as samples of the traffic through it (via RED).
 - Aggregate might be coarse (destination prefix 192.0.0.0/12) or fine (src www.victoriasecret.com).
 - Upon receipt of a pushback request, upstream router constructs a pre-queue to rate-limit that traffic.
 - If traffic arrives below rate, no drops.
 - If traffic arrives above rate, dropped down to the rate.

Router based mechanism to protect against DoS attacks

- Router samples that drop process and recursively sends push backs upstream to its peers.
- Pushback potentially propagates all the way to the source.
 - At least to a provider’s edge and can be beyond.

Pushback details

- Pushback requests are topologically validated (TTL=255).
- Upstream routers send reports to the destination summarizing how many packets they have dropped and any narrowing they have done.
- Pushback requests are soft state.
- Congestion router refreshes request periodically or allows it to die out.

Open questions:

- General mechanism for controlling high-bandwidth aggregates, e.g., flash crowds.
- It does not protect against DDoS attacks with diverse sources.
- Trust issues across networks.
- What are the time constants?
- How does it interact with traffic management services?