Quality of Service (QoS)

- The Internet’s most contentious subject
- The Internet’s most embarrassing failure
 - almost nothing was accomplished
- The textbook’s worst chapter
 - a rosy description of bad work

Today’s Lecture

- Will be about what “could be”, not what is
 - today’s Internet does not have, nor will soon have, a reasonable QoS solution
- Focus will be on what one could accomplish with simple (and not-so-simple) mechanisms
 - you will only be expected to know basic concepts
- I will not discuss current deployed mechanisms
 - an ugly hodge-podge of hacks

What’s the Problem?

- Internet gives all flows the same “best effort” service
 - no promises about when or whether packets will be delivered
- Not all traffic is created equal
 - different “owners”, different application requirements
 - some applications require service “assurances”
- How can we give traffic different “quality of service”? (This begins the problem of QoS)

Three Basic Problems

- Want to control how a link is shared:
 - Link sharing
- Want to give some traffic better service
 - Differentiated service
- Want to give some flows “assured” service
 - Integrated service (and perhaps differentiated service)

A Different Taxonomy

- Giving better service can differ along three dimensions:
 - relative versus absolute
 - dropping versus delay
 - flows versus aggregates
- Each of these choices requires a different set of mechanisms
 - router scheduling and dropping decisions
 - signaling protocols
Three Basic Questions

- How does a router service this packet?
 - scheduling (various forms of priority and RR)
 - dropping (fancy versions of RED)

- How did the router know what to do with this packet?
 - bits in packet header or explicit signaling

- How can one control the level of traffic?
 - service level agreements (SLAs) or admission control

Link Sharing

- Two organizations share an access link and want to share it equally
- One approach: partition the link
- Second approach: use FQ, with one queue for each organization’s packets
- Which is better?

Differentiated Services

- Some traffic should get better treatment
 - application requirements: interactive vs bulk transfer
 - economic arrangements: first-class versus coach
- What kind of better service could you give?
 - measured by drops, or delay (and drops)
- How do you know which packets to give better service to?
 - bits in packet header

Traffic Limitations

- Can’t give all traffic better service!
- Must limit the amount of traffic that gets better service
- Service Level Agreements (SLA)
 - source agrees to limit amount of traffic in given class
 - network agrees to give that traffic “better” service
 - for a price!
 - economics play an important (fatal?) role in QoS

DiffServ “Code Points”

- Use six of the ToS bits in IP packet header
- Define various “code points”
- Each code point defines a desired per-hop behavior
 - a description of the service the packet should get
 - not a description of the router implementation of that service
“Expedited Forwarding”

- Give packet minimal delay and loss service
 - e.g., put EF packets in high priority queue
- To make this a true “absolute” service,
 - all SLAs must sum to less than the link speed
 - unlikely
- More likely, a way to assure relatively low delay

Is Delay the Problem?

- With RED, most queues are small
- Packets are dropped when queue starts to grow
- Thus, delays are mostly speed-of-light latency
- Service quality is mostly expressed by drop-rate
- Want to give traffic different levels of dropping

“Assured Forwarding”

- Packets are all serviced in order
 - makes TCP implementations perform well
- But some packets can be marked as low-drop
 - think of it as priority levels for dropping
- Can be implemented using variations of RED
 - different drop probabilities for different classes

Example

- 10% premium traffic, 90% ordinary traffic
- Overall drop rate is 5%
- Can give premium traffic 0% drops, and ordinary traffic a 5.55% drop rate
- Can get a large improvement in service for the small class of traffic without imposing much of a penalty on the other traffic
 - count on SLAs to control premium traffic

Advantages of DiffServ

- Very simple to implement
- Can be applied to different granularities
 - flows
 - institutions
 - traffic types
- Marking can be done at edges or by hosts
- Allows easy peering (bilateral SLAs)

DiffServ Peering

- Ingress routers
 - Police/shape traffic
 - Set Differentiated Service Code Point (DSCP) in DiffServ (DS) field
- Core routers
 - Implement Per Hop Behavior (PHB) for each DSCP
 - Process packets based on DSCP
Disadvantages of DiffServ
- Service is still “best effort”, just a better class of best effort
 - except for EF, which has terrible efficiency
 - all traffic accepted (within SLAs)
- Some applications need better than this
 - certainly some apps need better service than today’s Internet delivers
 - but perhaps if DiffServ were widely deployed premium traffic would get great service (recall example)
 - nonetheless, let’s plunge ahead....

Integrated Services
- An attempt to integrate service for “real-time” applications into the Internet
- Known as IntServ
- A total, massive, and humiliating failure
 - 1000s of papers
 - IETF standards
 - and no deployment....

Key Differences
- All assurances on per-flow basis
- Traffic can be turned away
- Note:
 - all this co-exists with best-effort service
 - similar mechanisms proposed for ATM but
 - QoS central in ATM, best-effort an afterthought
 - Best-effort central in Internet, QoS an afterthought

Example: Video
Simplify by assuming that Camera sends at a fixed rate

Circuit-Switched Networks
- Each packet experiences exactly the same delay
- Packet data is displayed as soon as it arrives
- Signal at receiving end is faithful representation

Internet
- Individual packets experience different delays
- Can’t treat network as “wire”
- Application must adapt to network service
Router Effect on Delay

Prob

Delay variation or Jitter

Min

e.g. 100ms

Delay/latency

99%

Router Effects on Traffic

Cumulative Bits

Source

Router 1

Bits in the network

Delay's do not build up independently in each router

Svc function at router 1 is arrival function at router 2

Router n

Network Effects on Traffic

Cumulative Bits

Source

Router 1

Bits in the network

Delay's do not build up independently in each router

Svc function at router 1 is arrival function at router 2

Router n

Network Effect on Delay

Prob

Delay variation or Jitter

Min

e.g. 200ms

Delay/latency

99%

Nick McKeown
Choices

- Play back data upon arrival
 - distorted signal
- Buffer data for a while (playback buffer)
 - extra delay, less distortion
- Tradeoff depends on application (and use)
 - noninteractive: absorb delay, eliminate all distortion
 - interactive: absorb only a little delay, eliminate some distortion

Playback Buffer

- Play back data a fixed time interval after it was sent

Playback Point

- Can move playback point as delays vary
 - Moving playback point:
 - increases distortion
 - but allows lower delays

Application Taxonomy (Oversimplified and Fanciful)

- Elastic versus “real-time”
 - traditional data apps are elastic
 - streaming media are real-time
- RT intolerant versus RT tolerant
 - intolerant applications need all data
- Tolerant nonadaptive versus tolerant adaptive
 - not clear why any tolerant app couldn’t adapt
- Rate-adaptive versus delay-adaptive (or both)

Key Points

- Some apps don’t need to know maximal delay, just need it to be controlled
 - tolerant, delay-adaptive applications will move playback point to reduce delay
 - can absorb occasional outliers
- Some apps need to know maximal delay
 - can’t tolerate loss or distortion
 - need to fix playback point and so need a priori knowledge of delay bound
 - bound is typically much worse than actual delays
Two Service Classes

- Controlled Load
 - keep delays under control, but no bound
- Guaranteed Service
 - explicit delay bound

Process

- Flow requests service from network
 - service request specification (RSpec)
 - controlled load: nothing
 - guaranteed: service rate (can calculate delay)
 - traffic specification (TSpec) (next slide)
- Routers decide if they can support request
 - admission control
- If so, traffic is classified and scheduled at routers based on per-flow information

Problem

- How do you describe bursty traffic?
- Network needs some description of traffic
- But video source is bursty (due to coding)
 - can't predict in advance the exact behavior
- Describe "envelope" of traffic: rate and burstiness
- Bits sent between times s and t: \(A(s,t) = \sigma + \rho(t-s) \)

TSpec: The Token Bucket

- \(\rho \): average rate
- \(\sigma \): burstiness
- Tokens at rate, \(\rho \)
- Token bucket size, \(\sigma \)
- Packet buffer
- One byte (or packet) per token

Required Elements

- Reservation Protocol
 - how service request gets from host to network
- Admission control algorithm
 - how network decides if it can accept flow
- Packet scheduling algorithms (next lecture)
 - so routers can deliver service

Control Plane versus Data Plane

- Plane as in geometry, not airplane
- Control plane:
 - how information gets to routers
- Data plane:
 - what routers do with that information to data packets
Control Plane: Resource Reservation

Sender

Receiver

Sender sends Tspec

Path established

The receiver signals reservation request

Control Plane: Admission Control

Per-flow state

Per-flow state on all routers in path
Per-flow classification on each router

Per-flow scheduling on each router

Resource Reservation Protocol: RSVP

- Establishes end-to-end reservations over a datagram network
- Designed for multicast (which will be covered later in course).
- Sources: send TSpec
- Receivers: respond with RSpec Network
- Network: responds to reservation requests

PATH and RESV Messages

- Sender sends PATH messages
 - TSPEC: use token bucket
 - Set up the path state on each router including the address of previous hop (route pinning)
 - Collect path information (for guaranteed service)
- Receiver sends RESV message on the reverse path
 - Specify RSpec and TSpec
 - Sets up the reservation state at each router

The Big Picture

Sender
PATH Msg
Receiver
Network

Sender
PATH Msg
Receiver
The Big Picture

- **Sender**
- **PATH Msg**
- **Receiver**
- **RESV Msg**

Soft State

- Per session state has a timer associated with it
 - Path state, reservation state
- State deleted when timer expires
- Sender/Receiver periodically refreshes the state, resends PATH/RESV messages, resets timer
- Advantages:
 - No need to clean up dangling state after failure
 - Can tolerate lost signaling packets
 - Easy to adapt to route changes

Route Pinning

- Problem: asymmetric routes
 - You may reserve resources on R→S3→S5→S4→S1→S, but data travels on S→S1→S2→S3→R!
- Solution: use PATH to remember direct path from S to R, i.e., perform route pinning

Admission Control

- Parameter-based: worst case analysis
 - Guaranteed service
 - Low utilization
- Measurement-based: measure current traffic
 - Controlled load service
 - Higher utilization
- Remember that best-effort service co-exists
 - No need for IntServ traffic to achieve high utilization

IntServ Node Architecture

Advantages of IntServ

- Precise QoS delivered at flow granularities
 - Good service, given exactly to who needs it
- Decisions made by hosts
 - Who know what they need
 - Not by organizations, egress/ingress points, etc.
- Fits multicast and unicast traffic equally well
Disadvantages of IntServ

- Scalability: per-flow state, classification, etc.
 - we goofed, bigtime
 - aggregation/encapsulation techniques can help
 - can overprovision big links, per-flow ok on small links
 - scalability can be fixed, but no second chance

- Economic arrangements:
 - need sophisticated settlements between ISPs
 - right now, settlements are primitive (barter)

- User charging mechanisms: need QoS pricing

What You Need to Know

- Three kinds of QoS approaches
 - Link sharing, DiffServ, IntServ

- Some basic concepts:
 - differentiated dropping versus service priority
 - per-flow QoS (IntServ) versus per-aggregate QoS (DiffServ)
 - Admission control: parameter versus measurement
 - control plane versus data plane
 - controlled load versus guaranteed service
 - codepoints versus explicit signaling

- Various mechanisms:
 - playback points
 - token bucket
 - RSVP PATH/RESV messages

Factors Limiting QoS Deployment

- Prevalence of overprovisioning
 - if all links are only at 40% utilization, why do you need QoS?
 - lore says that inter-ISP links are not overprovisioned

- Primitive inter-ISP financial arrangements
 - QoS requires financial incentives to enforce tradeoffs
 - Current peering arrangements are not able to carry these incentives through in a meaningful way
 - must agree on pricing and service
 - currently agree on neither!

- End-users not used to pricing/performance options

QoS Debates

- Is overprovisioning enough?
 - if so, is this only because access links are slow?
 - what about Korea, Japan, and other countries with fast access links?
 - Disconnect: ISPs overprovision, users get bad service

- Is differentiated services enough?
 - can one really deliver reliable service just using relative priorities?
 - is EF service a viable option?

- It all depends on adaptability of applications