CDNs and Peer-to-Peer

EECS 489 Computer Networks

Z. Morley Mao
Tuesday Nov 9, 2004

Acknowledgement: Some slides taken from Kurose&Ross and Katz& Stoica Mao FO4 1

This Lecture

= This will be a “why” lecture, not a “how to” one

Emphasis is on why these developments are

Important, and where the fit into the broader
picture

= TAs will fill in the technical detalls

Mao FO4

Outline

« Motivation: information sharing
- what'’s the role of peer-to-peer (P2P)?

Centralized P2P networks
- Napster

Decentralized but unstructured P2P networks
- Gnutella

Decentralized but structured P2P networks
- Distributed Hash Tables

Implications for the Internet (speculative)
Mao FO4

Information Sharing in the Internet

» The Internet contains a vast collection of
Information (documents, web pages, media, etc.)

« One goal of the Internet is to make it easy to
share this information

« There are many different ways this can be
done...

Mao FO4

In the beginning...

= ...there was FTP

« People put files on a server and allowed
anonymous FTP
- does anyone here remember anonymous FTP?

= Only people who were explicitly told about the
file would know to retrieve it

= But it was a painful, command-line interface

Mao FO4

The Early Web

The early web was essentially a GUI for anon ftp
- URLs were easily distributed pointers to files
- Browsers allowed one to easily retrieve files

Web pages could contain pointers to other files
- not all downloads were result of being explicitly told

But information sharing was still mostly explicitly
arranged

- someone sent you a URL
- and you bookmarked it

Mao FO4

The Current Web

« Search engines changed the web
- long before your time....

= Now one can proactively find the desired
Information, not just wait for someone to tell you
about it

= In the process, it became less important who
was hosting the information (because they don't
need to tell you)

- the nature of the content is all that matters now

Mao FO4

Two Transitions

= From push to pull:
- old: people would tell others about information (push)
- new: people can find information via google (pull)

« From hosts to servers

anonymous ftp could run on anyone’s desktop
then migrated to specialized servers

the web almost exclusively uses servers
popular sites have to use big server farms

« What about “pull” with “hosts”?
- that’s peer-to-peer networking!

Mao FO4

Why Is Pull/Host Relevant?

There are many pieces of content that:

- are already widely replicated on many machines
- people want, but don’t know where it is

Setting up a web site for all such content would:
- attract huge amount of traffic

- require sizable investment in server farm and
bandwidth

If we could harness the hosts that already have
the content, we wouldn’t need a server farm!

But how do users know which host to contah%;?m

Peer-to-Peer (P2P) Networking

Aims to use the bandwidth and storage of the
many hosts

- sum of access line speeds and disk space

But to use this collection of machines effectively
requires coordination on a massive scale

- key challenge: who has the content you are looking
for?

Moreover, the hosts are very flaky
- behind slow links
- often connected only a few minutes

- S0 system must be very robust
Mao FO4

10

Napster

« Centralized search engine:

all hosts with songs register them with central site
users do keyword search on site to find desired song
site then lists the hosts that have the song

user then downloads content

= \What makes this work?

central site only has to handle searches: little bandwidth

vast collection of hosts can supply huge aggregate
bandwidth

system is self-scaling: more users means more resources

Mao F04 11

What Happened to Napster?

Fastest growing Internet application ever

- P2P traffic became, and remains, one of the biggest
sources of traffic on the Internet!

But legal issues shut site down

Centralized system was vulnerable to legal
attacks, and system couldn’t function without
central site

Can one still do “pull” without central site?
- that’s the hard guestion in peer-to-peer networking!

Mao FO4

12

Gnutella

An example of an unstructured, decentralized
P2P system

Context:
- many hosts join a system
- each offers to share its own content
- In return, each can make queries for others content

Goal:
- enable users to find desired content on other hosts

Mao FO4

13

“Basic” Gnutella

» Step one: form an overlay network

- each host, when it joins, “connects” to several existing
Gnutella members

- an “overlay” link is merely the fact that the nodes know
each other’s IP address, and thus can send each other
packets

-_— e
_— e
—-
-—

Mao F04 14

“Unstructured” Overlay

Gnutella is unstructured in two senses:
« Links between nodes are essentially random

« The content of each node is random (at least
from the perspective of Gnutella)

Implications:

= Can’t route on Gnutella
= Wouldn't know where to route even if could

Mao FO4

15

Querying In Gnutella

« Queries are typically keyword searches

« Each query is flooded within some scope

- TTL is used to limit scope of flood

- flooding means you don’t need any routing
Infrastructure

» All responses to queries are forwarded back
along path query came from

- path marked with breadcrumbs
- gives a degree of privacy to requester

Mao FO4

16

Gnutella Performance

Tradeoff:

- If TTL i1s small, then searches won't find desired
content

- If TTL is large, network will get overloaded

Either Gnutella overloads network, or doesn’t
provide good search results

Mao FO4

17

Gnutella Enhancements

« Supernodes:

- normal nodes attach to supernodes, who search for them
- only flood among well-connected supernodes

« Random-walk rather than flooding
- provides correct TTL automatically

« Proactive replication

- replicate content that is frequently queried, to make it easier
to find

Mao F04 18

In Reality

« Gnutellat++ works well enough
- KaZaA, etc.

« Why?
- enhancements (supernodes)
- query distribution

» Most downloads are for widely-replicated content
- Gnutella is good at finding the “hay”
- But how would you find “needles™?

Mao F04 19

Finding Objects by Name

« Assume you know the “name” of an object

- song title, file name, etc.

« Assume that there is one copy of this object in

the system

Is there a way to store this object so that anyone
can find it merely by knowing its name?

= Sound familiar? Hash tables

Mao FO4

20

Distributed Hash Tables (DHTSs)

= Hash Table

- data structure that maps “keys” to “values”
- essential building block in software systems

« Distributed Hash Table (DHT)
- similar, but spread across the Internet

» Interface
- insert(key, value)
- lookup(key)

Mao F04 21

Usage

« key = hash(name)

- hash function is a deterministic function that is quasi-
random

- gives uniform distribution of keys

« Store by key

« Retrieve by key

Mao F04 22

K

DHT: basic idea

Mao FO4

23

DHT: basic idea

Mao FO4

24

DHT: basic idea

Operation: take key as input; route messages to node holding key,:

DHT: basic idea

Operation: take key as input; route messages to node holding key,

DHT: basic idea

K V

|| m}
\

K V

||

Operation: take key as input; route messages to node holding key.-

DHT: basic idea

(KyV))

Operation: take key as input; route messages to node holding key,g

DHT: basic idea

K V
K V
-
< i |
L 1
\ v ——
[
—
K V
Ll
—
K V
— I
— g — =5 1) £y
= (T—FK V ,,
—

retrieve (K,)

Operation: take key as input; route messages to node holding key,q

DHT Designs

« There are many DHT designs
- Invented in 2000, so they are quite new

« | will present CAN, readings present others
- details will be gone over by your TAs

« But don’t worry about the details, focus on the
general idea

« In what follows, id or identifier is a key

Mao FO4

30

General Approach to DHT Routing

Pick an identifier space
- ring, tree, hypercube, d-dimensional torus, etc.

Assign node ids randomly in space
- choose a “structured” set of neighbors

Assign objects ids (keys) randomly via hash
function in space
- Assign an object to node that is “closest” to it

When routing to an id, pick neighbor which is
closest to id
- if neighbor set is wisely chosen, routing will be efficient

Mao FO4

31

Content Addressable Network
(CAN)

» Associate to each node and item a unique id in
an d-dimensional space
« Properties
- Routing table size O(d)

- Guarantees that a file is found in at most d*n'/d steps,
where n is the total number of nodes

Mao F04 32

Space

CAN E
Xam :
ple: Two Dimensional
Space divided between nod
es

Example:

I
[} I
[} [} I
] [} [} I
I I [} [} I
| __ I I I I 1 T
- a | | | | i
[T A 1 1 [
| | | i [| |
I 1 I |] ———L__ 1
| ___ I I I I |] —_——— L
—————— I I 1 1 1 1 -——-
I —————— I I 1 1 |
1 1 —_——d— 1 1 1
1 1 1 [P - 1 1
I | |] [I I
1 1 | |] ———r——— I
____ 1 1 I | |] ——————
e I | I | | --
I —————— I I 1 1
1 1 —_———— 1 1 1
1 1 I —————— I 1 1
1 1 1 1 ———— 1 1
I | | I I S
l _____ I 1 | | I I ——————
————— | I | | 1 1 -
I q———— [I 1 1 1
1 I _—q————— | 1 1 1
1 1 I —q———— 1 1 1
1 1 I I —t————— [1
1 1 I I I —r————— 1
||||||| [1 | I I I ——————
———— 1 1 1 1 1 I]
1 _————— 1 | 1 1 1
I I q=———— | 1 1 1
1 I I - I 1
| | | | TTTTT [|
||||||| L 1 I I I l Fe————-]
ﬁ e EEE R L | i | |
1 | q------ | 1 1 1
| | | T IS i |
| I I I i I -T———---- L
- 0 i | '—® | E—
| | - i 1 | |
I 1 I {————--— 1__ 1 1
I I 1 I | o _L__ 1
_ | | | | | R LR
~ . _ | | | |
© 4_ _ | |
™M _
— (q\] —
g °
© (@)
m o
LA
N
o = %)
o © = =
] uo)
o 9 -
=R =
1)n
5 H% < Q@
C = 00 OG
()] .ta N~
o= O
en y— N O
= O O —~
o >9 O 9_%
> o= 4] S
o O® Q —»m
(@) er 0n =
0 dnla) n_.n_rb
o O =2 c cE
S O S O @
S CE g 43¢
Cm < Z2S
= © 9 -
< w?® _
|]

33

Mao F04

CAN Example:

WO

Space

= Node n2:(4, 2) joins - space IS
divided between nl and n2

Dimensional
-——————|———————: —————————————————— 2 —-E- ————————————————————
M o |
0 1 2 3 4 5 6 7

Mao F04 34

CAN Example:

WO

Space

= Node n2:(4, 2) joins = space is

divided between nl and n2

Dimensional
“““““““““ Y
-——————|———————: —————————————————— 2 —-E- ————————————————————
M o |
0 1 2 3 4 5 6 7

Mao F04 35

CAN Example:

WO

Space

= Nodes n4:(5, 5) and n5:(6,6) join

Dimensional
___ 6 ":’“““
___ 5 |
! n% ! n“
-——————|———————: —————————————————— 2 —-E- ————————————————————
M o |
0 1 2 3

Mao F04 36

CAN Example:

WO

Space

n4:(5,5);n5:(6,6)

= ltems: f1:(2,3); f2:(5,1); 13:(2,1);

f4:.(7,5);

= Nodes: nl:(1, 2); n2:(4,2); n3:(3, 5);

v

Dimensional
I D o |
| | nd | O

T o i
-——————|———————i —————————————————— 2 —-E- ————————————————————

" .
<

O | a
B P

0 1 2 3 4 5 6 7

Mao F04 37

CAN Example:

WO

Space

« Each item is stored by the node

who owns its mapping in the
space

Dimensional

————————————————————————————

———————————————————————————

———————————————————————————

Mao F04 38

CAN: Query Example

Each node knows its neighbors in the d-
space

Forward query to the neighbor that is 7
closest to the query id

Example: assume nl queries f4

Mao F04 39

Many Other DHT Designs

= Chord:

Id space is circle

routing table includes predecessor node and nodes 2
away

routing always halves distance

« Pastry and Tapestry

Id space is tree

routing table includes neighboring subtree of varying
heights

routing always fixes at least one bit on each step

Mao FO4

40

Chord Routing Table

Mao F04 41

Performance

« Routing in the overlay network can be more expensive
than in the underlying network

« Because usually there is no correlation between node ids
and their locality; a query can repeatedly jump from
Europe to North America, though both the initiator and
the node that store the item are in Europe!

« Solution: make neighbor relationships depend on link
latency
- Can achieve “stretch” of ~1.3

Mao F04 42

Other Issues

Data replication

Security

Resilience to failures, node churn

Monitoring

Mao F04 43

General DHT Properties

Fully decentralized: all nodes equivalent

Self-organizing: no need to explicitly arrange
routing, algorithm does it automatically

Robust: can tolerate node failures
Scalable: can grow to immense sizes
Flat namespace: does not impose semantics

- as opposed to DNS

Mao FO4

44

Structured vs Unstructured

= Unstructured:

- can tolerate churn
- can find hay
- can do searches easily

« Structured:
- designed for needles
- have trouble with keyword searches
- have some trouble with extreme churn
- have different sharing model

Mao F04 45

Other Design Options

Centralized?
- single point-of-failure
- requires infrastructure to scale (business model)

Hierarchical?

- requires given hierarchical organization

- static hierarchy of servers: not robust or flexible
- dynamic hierarchy of servers: essentially a DHT

Mao FO4

46

Are DHTs Just for File Sharing?

= Think of DHTs as a new DNS

- mapping names to identifiers
- Identifiers are persistent and general

« A web based with persistent pointers, not
ephemeral URLs

« Overlay networks based on persistent keys, not
changeable IP addresses

- send to identifier, translated into current IP address

Mao FO4

47

More Generally

« Hash tables are useful data structures for many
programs

= Distributed hash tables should be generally
useful data structures for distributed programs

« Examples: file systems, event notification,
application-layer multicast, mail systems,

Mao FO4

48

Indexing

k-
A

HASH (xyz.mp3) = K,
Mao FO4 49

|ndexing

insert

A
HASH (xyz.mp3) = K,
Mao F04 50

|ndexing

HASH (Xyz.mp3) = K,
Mao F04 51

|ndexing

gt

Xyz

Mao F04 52

|ndexing

= =

?2?7?

content could as easily have been a web page, disk block, data objsab FONS n&de, ...

Anycast Communication

insert

Mao F04 54

Anycast Communication

=

Kl
mp3, A
(Senps 8) <00z
~ (Xyz.mpg, C)

2 g

“anycast” lookup; based on a number of metrics o002 55

Database Join

Join on $-value

Mao F04 56

Database Join

Join on $-value

HASH (20%) = K,
HASH (35%) = K,

Mao F04 57

Database Join

Join on $-value

HASH (20%) = K,
HASH (35%) = K,

Mao F04 58

Database Join

(abc, 35%)

Join on $-value

HASH (20%) = K,
HASH (35%) = K,

(A, 209)
(A, 359) <

(35%, A, abc)

K

08, A, xy2) (xyz, 20%

Massively parallel, distributed join on Internet scales!

Mao FO4

59

DHTs: Key Insight

« Many uses for DHTSs

Indexing

Multicast, anycast

Database joins, sort, range search
Service composition

Event notification

« DHT namespace essentially provides a level of
Indirection

- “Any computer systems problem can be solved by
adding a level of indirection”

« How Is indirection done today?

Mao F04 60

Indirection today

Applications
Hierarghical name
and servige structure
| ndirection
Services

Mao F04 61

Indirection today

Applications
Hierarghical name
and servige structure
N -
| ndirection
Services
Connectivity

Mao F04 62

Indirection today

Non client-server

applications Applications

a I

Hierardhical name
and servige structure

| ndirection
services

specific

Connectivity

Mao F04 63

Indirection in Today’s Internet

= No explicit interface that applications can build on
- besides DNS

« Two options
- Retrofit over the DNS through a variety of creative hacks

- Customized solution designed/implemented anew for each
application

Mao F04 64

A DHT-enabled Internet

content publishing/distribution collaborative apps Internet distr. wstems

I I I
4 4 v *

directory services / compute

services

| ndirection service

Connectivity

Mao F04 65

Another Pipe-Dream?

« Will DHTs go the way of QoS, Multicast, etc.?

Perhaps, but DHTs don’t need the cooperation of
ISPs, so the barriers to adoption are lower

Mao F04 66

What You Need to Know

= Napster
= Gnutella
= DHT: basic ideas

Mao F04 67

