
1Mao F04

CDNs and Peer-to-Peer

EECS 489 Computer Networks
http://www.eecs.umich.edu/~zmao/eecs489

Z. Morley Mao
Tuesday Nov 9, 2004

Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica

2Mao F04

This Lecture

§ This will be a “why” lecture, not a “how to” one

§ Emphasis is on why these developments are
important, and where the fit into the broader
picture

§ TAs will fill in the technical details

3Mao F04

Outline

§ Motivation: information sharing
- what’s the role of peer-to-peer (P2P)?

§ Centralized P2P networks
- Napster

§ Decentralized but unstructured P2P networks
- Gnutella

§ Decentralized but structured P2P networks
- Distributed Hash Tables

§ Implications for the Internet (speculative)

4Mao F04

Information Sharing in the Internet

§ The Internet contains a vast collection of
information (documents, web pages, media, etc.)

§ One goal of the Internet is to make it easy to
share this information

§ There are many different ways this can be
done...

5Mao F04

In the beginning...

§ ...there was FTP

§ People put files on a server and allowed
anonymous FTP
- does anyone here remember anonymous FTP?

§ Only people who were explicitly told about the
file would know to retrieve it

§ But it was a painful, command-line interface

6Mao F04

The Early Web

§ The early web was essentially a GUI for anon ftp
- URLs were easily distributed pointers to files
- Browsers allowed one to easily retrieve files

§ Web pages could contain pointers to other files
- not all downloads were result of being explicitly told

§ But information sharing was still mostly explicitly
arranged
- someone sent you a URL
- and you bookmarked it

7Mao F04

The Current Web

§ Search engines changed the web
- long before your time....

§ Now one can proactively find the desired
information, not just wait for someone to tell you
about it

§ In the process, it became less important who
was hosting the information (because they don’t
need to tell you)
- the nature of the content is all that matters now

8Mao F04

Two Transitions

§ From push to pull:
- old: people would tell others about information (push)
- new: people can find information via google (pull)

§ From hosts to servers
- anonymous ftp could run on anyone’s desktop
- then migrated to specialized servers
- the web almost exclusively uses servers
- popular sites have to use big server farms

§ What about “pull” with “hosts”?
- that’s peer-to-peer networking!

9Mao F04

Why Is Pull/Host Relevant?

§ There are many pieces of content that:
- are already widely replicated on many machines
- people want, but don’t know where it is

§ Setting up a web site for all such content would:
- attract huge amount of traffic
- require sizable investment in server farm and

bandwidth

§ If we could harness the hosts that already have
the content, we wouldn’t need a server farm!

§ But how do users know which host to contact?

10Mao F04

Peer-to-Peer (P2P) Networking

§ Aims to use the bandwidth and storage of the
many hosts
- sum of access line speeds and disk space

§ But to use this collection of machines effectively
requires coordination on a massive scale
- key challenge: who has the content you are looking

for?

§ Moreover, the hosts are very flaky
- behind slow links
- often connected only a few minutes
- so system must be very robust

11Mao F04

Napster

§ Centralized search engine:
- all hosts with songs register them with central site
- users do keyword search on site to find desired song
- site then lists the hosts that have the song
- user then downloads content

§ What makes this work?
- central site only has to handle searches: little bandwidth
- vast collection of hosts can supply huge aggregate

bandwidth
- system is self-scaling: more users means more resources

12Mao F04

What Happened to Napster?

§ Fastest growing Internet application ever
- P2P traffic became, and remains, one of the biggest

sources of traffic on the Internet!

§ But legal issues shut site down

§ Centralized system was vulnerable to legal
attacks, and system couldn’t function without
central site

§ Can one still do “pull” without central site?
- that’s the hard question in peer-to-peer networking!

13Mao F04

Gnutella

§ An example of an unstructured, decentralized
P2P system

§ Context:
- many hosts join a system
- each offers to share its own content
- in return, each can make queries for others content

§ Goal:
- enable users to find desired content on other hosts

14Mao F04

“Basic” Gnutella

§ Step one: form an overlay network
- each host, when it joins, “connects” to several existing

Gnutella members
- an “overlay” link is merely the fact that the nodes know

each other’s IP address, and thus can send each other
packets

15Mao F04

“Unstructured” Overlay

Gnutella is unstructured in two senses:
§ Links between nodes are essentially random
§ The content of each node is random (at least

from the perspective of Gnutella)

Implications:
§ Can’t route on Gnutella
§ Wouldn’t know where to route even if could

16Mao F04

Querying in Gnutella

§ Queries are typically keyword searches

§ Each query is flooded within some scope
- TTL is used to limit scope of flood
- flooding means you don’t need any routing

infrastructure

§ All responses to queries are forwarded back
along path query came from
- path marked with breadcrumbs
- gives a degree of privacy to requester

17Mao F04

Gnutella Performance

§ Tradeoff:
- if TTL is small, then searches won’t find desired

content
- if TTL is large, network will get overloaded

§ Either Gnutella overloads network, or doesn’t
provide good search results

18Mao F04

Gnutella Enhancements

§ Supernodes:
- normal nodes attach to supernodes, who search for them
- only flood among well-connected supernodes

§ Random-walk rather than flooding
- provides correct TTL automatically

§ Proactive replication
- replicate content that is frequently queried, to make it easier

to find

19Mao F04

In Reality

§ Gnutella++ works well enough
- KaZaA, etc.

§ Why?
- enhancements (supernodes)
- query distribution

§ Most downloads are for widely-replicated content
- Gnutella is good at finding the “hay”
- But how would you find “needles”?

20Mao F04

Finding Objects by Name

§ Assume you know the “name” of an object
- song title, file name, etc.

§ Assume that there is one copy of this object in
the system

§ Is there a way to store this object so that anyone
can find it merely by knowing its name?

§ Sound familiar? Hash tables

21Mao F04

Distributed Hash Tables (DHTs)

§ Hash Table
- data structure that maps “keys” to “values”
- essential building block in software systems

§ Distributed Hash Table (DHT)
- similar, but spread across the Internet

§ Interface
- insert(key, value)
- lookup(key)

22Mao F04

Usage

§ key = hash(name)
- hash function is a deterministic function that is quasi-

random
- gives uniform distribution of keys

§ Store by key

§ Retrieve by key

23Mao F04

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

24Mao F04

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

25Mao F04

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

Operation: take key as input; route messages to node holding key

26Mao F04

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

insert(K1,V1)

Operation: take key as input; route messages to node holding key

27Mao F04

insert(K1,V1)

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

Operation: take key as input; route messages to node holding key

28Mao F04

(K1,V1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

Operation: take key as input; route messages to node holding key

29Mao F04

retrieve (K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

Operation: take key as input; route messages to node holding key

30Mao F04

DHT Designs

§ There are many DHT designs
- invented in 2000, so they are quite new

§ I will present CAN, readings present others
- details will be gone over by your TAs

§ But don’t worry about the details, focus on the
general idea

§ In what follows, id or identifier is a key

31Mao F04

General Approach to DHT Routing

§ Pick an identifier space
- ring, tree, hypercube, d-dimensional torus, etc.

§ Assign node ids randomly in space
- choose a “structured” set of neighbors

§ Assign objects ids (keys) randomly via hash
function in space
- Assign an object to node that is “closest” to it

§ When routing to an id, pick neighbor which is
closest to id
- if neighbor set is wisely chosen, routing will be efficient

32Mao F04

Content Addressable Network
(CAN)

§ Associate to each node and item a unique id in
an d-dimensional space

§ Properties
- Routing table size O(d)
- Guarantees that a file is found in at most d*n1/d steps,

where n is the total number of nodes

33Mao F04

CAN Example: Two Dimensional
Space

§ Space divided between nodes
§ All nodes cover the entire space
§ Each node covers either a square or a

rectangular area of ratios 1:2 or 2:1
§ Example:

- Assume space size (8 x 8)
- Node n1:(1, 2) first node that joins à cover

the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

34Mao F04

CAN Example: Two Dimensional
Space

§ Node n2:(4, 2) joins à space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

35Mao F04

CAN Example: Two Dimensional
Space

§ Node n2:(4, 2) joins à space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3

36Mao F04

CAN Example: Two Dimensional
Space

§ Nodes n4:(5, 5) and n5:(6,6) join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

37Mao F04

CAN Example: Two Dimensional
Space

§ Nodes: n1:(1, 2); n2:(4,2); n3:(3, 5);
n4:(5,5);n5:(6,6)

§ Items: f1:(2,3); f2:(5,1); f3:(2,1);
f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

38Mao F04

CAN Example: Two Dimensional
Space

§ Each item is stored by the node
who owns its mapping in the
space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

39Mao F04

CAN: Query Example

§ Each node knows its neighbors in the d-
space

§ Forward query to the neighbor that is
closest to the query id

§ Example: assume n1 queries f4

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

40Mao F04

Many Other DHT Designs

§ Chord:
- id space is circle
- routing table includes predecessor node and nodes 2-i

away
- routing always halves distance

§ Pastry and Tapestry
- id space is tree
- routing table includes neighboring subtree of varying

heights
- routing always fixes at least one bit on each step

41Mao F04

Chord Routing Table

1/21/4

1/8

1/16
1/32
1/64
1/128

42Mao F04

Performance

§ Routing in the overlay network can be more expensive
than in the underlying network

§ Because usually there is no correlation between node ids
and their locality; a query can repeatedly jump from
Europe to North America, though both the initiator and
the node that store the item are in Europe!

§ Solution: make neighbor relationships depend on link
latency
- Can achieve “stretch” of ~1.3

43Mao F04

Other Issues

§ Data replication

§ Security

§ Resilience to failures, node churn

§ Monitoring

§

44Mao F04

General DHT Properties

§ Fully decentralized: all nodes equivalent

§ Self-organizing: no need to explicitly arrange
routing, algorithm does it automatically

§ Robust: can tolerate node failures

§ Scalable: can grow to immense sizes

§ Flat namespace: does not impose semantics
- as opposed to DNS

45Mao F04

Structured vs Unstructured

§ Unstructured:
- can tolerate churn
- can find hay
- can do searches easily

§ Structured:
- designed for needles
- have trouble with keyword searches
- have some trouble with extreme churn
- have different sharing model

46Mao F04

Other Design Options

§ Centralized?
- single point-of-failure
- requires infrastructure to scale (business model)

§ Hierarchical?
- requires given hierarchical organization
- static hierarchy of servers: not robust or flexible
- dynamic hierarchy of servers: essentially a DHT

47Mao F04

Are DHTs Just for File Sharing?

§ Think of DHTs as a new DNS
- mapping names to identifiers
- identifiers are persistent and general

§ A web based with persistent pointers, not
ephemeral URLs

§ Overlay networks based on persistent keys, not
changeable IP addresses
- send to identifier, translated into current IP address

48Mao F04

More Generally

§ Hash tables are useful data structures for many
programs

§ Distributed hash tables should be generally
useful data structures for distributed programs

§ Examples: file systems, event notification,
application-layer multicast, mail systems,

49Mao F04

Indexing

? ? ?

HASH(xyz.mp3) = K1

A

50Mao F04

? ? ?

HASH(xyz.mp3) = K1

A

(xyz.mp3, A)

insert

K1

Indexing

51Mao F04

? ? ?
A

(xyz.mp3, A)
K1

HASH(xyz.mp3) = K1

B

lookup

Indexing

52Mao F04

xyz
A

(xyz.mp3, A)
K1

B
xyz

Indexing

53Mao F04

? ? ?
A

(xyz.mp3, A)
K1

B
? ? ?? ? ?

content could as easily have been a web page, disk block, data object, DNS name, …

Indexing

54Mao F04

A

(xyz.mp3, A)

insert

K1

(xyz.mp3, B)
(xyz.mp3, C)

B C

Anycast Communication

55Mao F04

A

(xyz.mp3, A)
K1

(xyz.mp3, B)
(xyz.mp3, C)

B C

(xyz.mp3, C)

(xyz.mp3, A)

“anycast” lookup; based on a number of metrics

Anycast Communication

56Mao F04

(xyz, 20$)

(abc, 35$)

Database Join

(A, 20$)
(A, 35$)

Join on $-value

57Mao F04

(xyz, 20$)

(abc, 35$)

Database Join

(A, 20$)
(A, 35$)

Join on $-value

HASH(35$) = K2

HASH(20$) = K1

K1

K2

58Mao F04

(xyz, 20$)

(abc, 35$)

Database Join

(A, 20$)
(A, 35$)

Join on $-value

HASH(35$) = K2

HASH(20$) = K1

K1

K2

59Mao F04

(xyz, 20$)

(abc, 35$)

Database Join

(A, 20$)
(A, 35$)

Join on $-value

HASH(35$) = K2

HASH(20$) = K1

K1

K2

(20$, A, xyz)

(35$, A, abc)

Massively parallel, distributed join on Internet scales!

60Mao F04

DHTs: Key Insight

§ Many uses for DHTs
- Indexing
- Multicast, anycast
- Database joins, sort, range search
- Service composition
- Event notification
- …

§ DHT namespace essentially provides a level of
indirection

- “Any computer systems problem can be solved by
adding a level of indirection”

§ How is indirection done today?

61Mao F04

IP

DNS
(by hostname)

Applications

Indirection
services

Connectivity

Chat Blogs

Web
(Client/Server)

Hierarchical name
and service structure

Indirection today

62Mao F04

IP

DNS
(by hostname)

Applications

Indirection
services

Connectivity

Chat Blogs

Web
(Client/Server)

CDNs
(by name)

Ad hoc hacks

Google
(by keyword)

man
ua

l

Hierarchical name
and service structure

Indirection today

63Mao F04

IP

DNS
(by hostname)

Applications

Indirection
services

Connectivity

Chat Blogs

Web
(Client/Server)

CDNs
(by name)

Ad hoc hacks

Google
(by keyword)

man
ua

l

EndSystem
Mcast

KaZaa

Non client-server
applications

Hierarchical name
and service structure

Indirection today

Mobile IP
(by home IP

address)

Home agent

Application
specific

Napster

64Mao F04

Indirection in Today’s Internet

§ No explicit interface that applications can build on
- besides DNS

§ Two options
- Retrofit over the DNS through a variety of creative hacks
- Customized solution designed/implemented anew for each

application

65Mao F04

IP

DHT

SFR
(content)

dGoogle
(by keyword)

DNS
(by location)

CDN-like
(by name)

directory services

pSearch
(by interest)

Client/Server
Web

i3 mcast

commn. services storage services

dhash

File
Systems

(Casper, Past
CFS, OStore)

rv

dEmail

dChat
WbP2P

collaborative apps

CASLIB

A DHT-enabled Internet

content publishing/distribution

ReHash

PHT

compute
services

PIER

Internet distr. systems

Indirection service

blogs

Connectivity

66Mao F04

Another Pipe-Dream?

§ Will DHTs go the way of QoS, Multicast, etc.?

§ Perhaps, but DHTs don’t need the cooperation of
ISPs, so the barriers to adoption are lower

67Mao F04

What You Need to Know

§ Napster
§ Gnutella
§ DHT: basic ideas

