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Abstract—The ongoing move to chip multiprocessors (CMPs)
permits greater sharing of last-level cache by processor cores
but this sharing aggravates the cache contention problem,
potentially undermining performance improvements. Accurately
modeling the impact of inter-process cache contention on per-
formance and power consumption is required for optimized
process assignment. However, techniques based on exhaus-
tive consideration of process-to-processor mappings and cycle-
accurate simulation are inefficient or intractable for CMPs,
which often permit a large number of potential assignments.
This paper proposes CAMP, a fast and accurate shared cache
aware performance model for multi-core processors. CAMP
estimates the performance degradation due to cache contention
of processes running on CMPs. It uses reuse distance his-
tograms, cache access frequencies, and the relationship between
the throughput and cache miss rate of each process to predict
its effective cache size when running concurrently and sharing
cache with other processes, allowing instruction throughput
estimation. We also provide an automated way to obtain process-
dependent characteristics, such as reuse distance histograms,
without offline simulation, operating system (OS) modification,
or additional hardware. We tested the accuracy of CAMP using
55 different combinations of 10 SPEC CPU2000 benchmarks on
a dual-core CMP machine. The average throughput prediction
error was 1.57%.

I. INTRODUCTION

In recent chip multiprocessor (CMP) architectures, last-
level caches are often shared among cores. This can improve
performance by supporting on-chip inter-process communi-
cation and allowing heterogeneous allocation of cache to
processes running on different cores. However, a process may
cause the eviction of data belonging to other processes with
which it shares cache space. This contention for shared cache
space can cause simultaneously running processes to influ-
ence each other’s performance. Moreover, the performance
impact is non-uniform: it depends on the memory access
behaviors of all processes with which it shares cache space.

The importance of inter-process cache contention for
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CMPs has been recognized in prior work [1], [2], [3]. How-
ever, the problem of predicting the impact of cache sharing on
application performance during process assignment has been
considered by only a few researchers [4], [5]. Knowing the
performance implications of alternative assignment decisions
can improve their quality. We therefore seek to build a cache
contention model that permits fast and accurate performance
prediction of processes on CMPs.

The construction of such a model should be easy and
automatic; it should not require modifications to existing
operating systems (OS) or hardware. Exhaustive offline simu-
lation of process combinations is computationally intractable
and should therefore be avoided. Moreover, prior work does
not permit accurate prediction of the steady-state cache
partition among arbitrary combinations of processes, which
is a prerequisite for accurate performance prediction during
assignment.

The paper describes a fast and accurate shared cache
aware performance model for multi-core processors (called
CAMP). This model uses non-linear equilibrium equations in
a least-recently-used (LRU) or pseudo-LRU last-level cache,
taking into account process reuse distance histograms, cache
access frequencies, and miss rate aware performance degra-
dation. CAMP models both cache miss rate and performance
degradation as functions of process effective cache size,
which in turn is a function of the memory access behavior
of other processes sharing the cache. CAMP can be used
to accurately predict the effective cache sizes of processes
running simultaneously on CMPs, allowing performance
prediction with an average error of only 1.57%. We also
propose an easy-to-implement method of obtaining the reuse
distance histogram of a process without offline simulation
or modification to commodity hardware or OS. In contrast
with existing techniques, the proposed technique uses only
commonly available hardware performance counters. Finally,
we evaluate the generality of CAMP by profiling processes on
one CMP and using the resulting models to accurately predict
process performance when run on two other CMPs having
different cache sizes. All the measurements are performed
on real processors.



The rest of this paper is organized as follows. Section II
presents related work. Sections III and IV motivate and
describe CAMP. Section V introduces an automated way
to characterize process memory access behavior to permit
later prediction of cache contention. Section VI presents and
discusses the experimental validation process and results.
Finally, Section VII summarizes our work.

II. RELATED WORK

Past work [6], [7], [8], [9] has considered the problem
of adjusting cache partitioning during run time after process
assignment decisions have already been made. In contrast,
the goal of our work is to predict the performance impli-
cations of process assignment decisions before execution.
Other researchers have developed performance prediction
models to guide process assignment. However, most [10],
[11] addressed cache contention only for uniprocessors on
which only a single process may run at a time. The move
to CMPs will aggravate the cache contention problem since
multiple processes can run on different cores simultaneously.

Resource contention models for simultaneous multithread-
ing (SMT) uniprocessors should be applicable to CMP sys-
tems due to the similarity in inter-process resource con-
tention. However, existing work on resource contention mod-
eling for SMT processors either suffers from large perfor-
mance prediction error (20% of the predicted instruction
throughput deviates by more than 20% from the actual
instruction throughput) [12] or requires modifications to the
underlying hardware [13]. To the best of our knowledge,
existing performance models for SMT processors do not
support accurate runtime performance prediction. Although
the similarity of cache effects for CMPs and SMT processors
suggests that the modeling technique described in this paper
might also be accurate for SMT processors, we have not yet
experimentally tested this hypothesis.

Researchers have also considered addressing the perfor-
mance prediction problem using offline simulation [14] or
modifications to the existing hardware or operating sys-
tem [15]. For example, Suh et al. [8] proposed to add
a hardware counter to each cache way and use them to
determine the reuse distance histogram. Our goal in this work
is runtime prediction of the performance of a process con-
currently running on a shared-cache CMP, without requiring
prior characterization.

Tam et al. [16] previously developed a technique to pre-
dict miss rate as a function of cache size by using built-
in hardware performance counters, with a primary goal of
supporting on-line optimization of cache partitioning among
processes. They do not explain how to use miss rate curves
to predict instruction throughputs for processes sharing cache
space. Their approach relies on performance counters peculiar
to the POWER5 architecture.

Chandra et al. [5] proposed three analytical models to
predict miss rates for processes sharing the same cache. Their
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Figure 1. Impact of stressmark on performance of processes sharing case
with it.

models use the reuse distances and/or circular sequence pro-
files for each thread to predict inter-thread cache contention.
These models require knowledge of the steady-state L2 cache
access frequency of a process when concurrently running
with other processes. In reality, obtaining this information
without running or simulating all potential combinations of
concurrent cache-sharing processes is impractical.

Chen et al. [4] proposed a two-phase approach for perfor-
mance prediction. In the first phase, the access frequency of a
process running alone is used to estimate performance. In the
second phase, the performance estimates from the first phase
are refined to consider the implications of cache contention.
The models proposed in each paper require processing cir-
cular memory access sequences, which must be obtained by
tracing execution with an instruction-set simulator or non-
standard detailed access tracing hardware.

III. MOTIVATION

Cache sharing among processes running on different cores
of a CMP can hide inter-process communication latency and
improve cache utilization. This improvement is undermined
by cache contention among concurrently running processes.
To illustrate this effect, we wrote a synthetic stressmark that
accesses the last-level cache very frequently. The stressmark
is intentionally designed to exhibit extreme memory access
behavior, for use in characterization. The stressmark is run
concurrently with the process under evaluation, on another
core sharing the same cache. By varying the memory access
behavior of the stressmark, we can change the number of last-
level cache misses per cache access (MPA) for the stressmark,
thereby controlling and measuring the performance impact on
the other concurrently running process.

Figure 1 illustrates the relationship between the execution
time, normalized to that when running the process alone,
and MPA of the stressmark when it is run concurrently with
each of 10 SPEC CPU2000 benchmarks. The relationship
between MPA and execution time depends on the application.
For example, with an MPA value of 0.35, the normalized
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Figure 2. Cache line reuse distance histogram for mcf application.

execution time of art increased by 120% while that of
mesa only increased by 1.5%. This demonstrates that the
impact of cache contention on performance is application-
dependent. Accurately predicting the performance and power
consumption implications of assigning a particular set of
processes to a CMP therefore requires a model that captures
the variation in cache access and contention behavior among
processes.

IV. ANALYTICAL MODEL

This section describes the main components in CAMP,
namely its performance model, effective cache size estimation
technique, and steady-state condition estimator.

IV.A. Background
In this section, we define some basic terms that will be

used throughout this paper. Our study will consider a N -
core processor with an L2 last-level on-chip cache. In the
rest of paper, we refer to “L2 cache” as “cache”. An set-
associate cache is broken into sets, each of which has space
for multiple lines, i.e., the minimal unit of data fetched by
or evicted from a cache. The number of lines per set is the
caches associativity, i.e., its number of ways. A line at a
particular location in memory is associated with a set, and
may be fetched into any line in the set.

Effective Cache Size: When multiple processes share
a cache, they compete for limited space. The division of
cache space among processes is influenced by characteristics
of the concurrently running processes such as cache access
frequency and sequential data access patterns. We define
effective cache size of process i to be the average number
of ways occupied by the process in a set, denoted as Si.
Therefore,

N∑
i=1

Si = A, (1)

where N is the total number of processes sharing the cache
and A is the number of ways in the cache. Note that Si is
a real value in our model because it represents the average
number of ways process i occupies in a set during prolonged
execution. If the cache access behavior of all processes is
static, then Si will be stable. We define this as the steady-
state condition.

Reuse Distance: We define the reuse distance, Rj , of
cache line j to be the number of distinct cache lines within
the same set accessed between two consecutive accesses to
line j. A reuse distance histogram represents the distribution
of cache line reuse distances for an entire shared cache.
Given an A-way set-associative cache, Figure 2 shows a reuse
distance histogram for the mcf application (see Section VI).
The x-axis shows the reuse distance and the y-axis shows
the normalized frequencies of the associated reuse distances.
The first bar in the histogram, i.e., hist1, gives the probability
that a most-recently-used line will be accessed again, while
the last bar, i.e., hist13+, gives the probability that the data
for the next cache access does not exist in the most-recently-
used 12 lines, which can be denoted as

∑∞
k=13 histk. Hist∞

is the probability that the data in the line is never accessed
again. Note that hist∞ can be very large for some streaming
applications. For process i with an effective cache size of Si,
all accesses to the cache lines with a reuse distance larger
than Si result in cache misses. Hence, the probability of a
cache access resulting in a miss for process i with an effective
cache size of Si, can be expressed as follows.

MPAi(Si) =

∫ ∞
Si

histi(x) dx. (2)

Note that histi(x) is a continuous function derived using
linear interpolation of the discrete histogram to support
estimation for non-integer average reuse distances.

IV.B. Problem Formulation and Assumptions
The cache contention prediction problem can be formu-

lated as follows: given N processes assigned to cores sharing
the same A-way set-associative last-level cache, predict the
steady-state cache size occupied by each process during
concurrent execution. Note that the steady-state cache size
can be directly translated to performance, as illustrated by
Equation 2. Solving this problem is helpful for process
assignment and migration in a CMP environment because
it allows one to predict the consequences of tentative process
assignment and migration decisions. However, accurate pre-
diction of process performance is challenging because there
are many combinations of processes that may share the same
cache.

We make the following assumptions.
1) For each process, we assume that data accesses are

uniformly distributed across all cache sets. The tempo-
ral cache access behaviors such as number of cache
accesses per second (APS) and the reuse distance
histogram (see Section IV-A) are assumed to be station-
ary. In the case of multiple non-repeating phases with
distinct memory access patterns [17], non-repeating
phases should be modeled separately.

2) We assume no hardware prefetching. Hardware
prefetching complicates the model by predictively
fetching cache lines based on access patterns. The
model might therefore be inaccurate for systems using



prefetching. However, we argue that prefetching is of
limited value on CMPs with constrained processor–
memory bandwidth. For the 10 benchmarks used in
this work, the average improvement was 3.25%, and
only equake benefitted significantly.

3) We do not explicitly model the effect of kernel thread
and instruction accesses on cache contention, but note
that the resulting technique remains accurate in the
presence of these accesses.

4) The cache uses an LRU replacement policy. Although
most modern caches use pseudo-LRU policies, assum-
ing LRU still permits high prediction accuracy.

Although these assumptions simplify the explanation of
our analysis, we do not rely on them but instead “close the
loop” by evaluating the resulting prediction technique on
systems for which the assumptions may not hold. Finally,
we consider a multi-programmed environment and therefore
neglect communication among processes. Our analysis will
hold for applications in which there is little communication
among processes assigned to separate cores.

IV.C. Performance Model
The average number of cache accesses per second (APS)

reflects how aggressively a process competes for cache space.
All other things being equal, a process with high APS will
generally take up more space in a shared cache than a process
with low APS.

APS =
API
SPI

, (3)

where API is the number of cache accesses per instruction
and SPI is the number of seconds per instruction. API is a
process property: given the same input data, the API of a
process is fixed. On the other hand, SPI is largely affected
by the number of cache misses per second (MPS). The
latency per instruction, i.e., seconds per instruction, can be
decomposed into two parts: on-chip latency due to computa-
tion and off-chip latency caused by main memory and disk
accesses. When the CPU frequency remains constant, the on-
chip latencies per instruction are approximately constant for a
process. As shown in Figure 1 we experimentally determined
that SPI can be expressed as a linear function of MPA.

SPI = α ·MPA + β, (4)

where α and β are parameters that can be obtained during
offline characterization.

IV.D. Estimate Effective Cache Size After n Accesses
In this section, we use the reuse distance histogram of

a process to derive its effective cache size. Consider the
number of the distinct cache lines, s, (i.e., the effective
cache size of the process) after n accesses in one set. Note
that s is essentially effective cache size, Si, as defined in
Section IV-A. Given that Ps,n is the probability of having s
distinct cache lines after n consecutive cache accesses, Phit,s

is the probability that a cache access will result in a cache

hit when the process already has s cache lines, and Pmiss,s is
the probability that a cache access will result in a miss when
the process has s cache lines, noting s can never be greater
than n, the following recursive equation can be derived:

Ps,n = Ps,n−1·Phit,s+Ps−1,n−1·Pmiss,s−1, 1 < s ≤ n. (5)

This can be explained as follows. The fact that n cache
accesses result in an effective cache size of s can only be
the result of one of the following scenarios.

1) In scenario A, the first n− 1 cache accesses led to an
effective cache size of s and the nth access resulted
in a cache hit. Since the nth access did not lead to an
increase in the effective cache size, it remains s. The
probability of this scenario, P (A), is Ps,n−1 · Phit,s.

2) In scenario B, the first n− 1 cache accesses lead to an
effective cache size of s− 1 and the nth access causes
a cache miss. In this case, the effective cache size is
increased by one, relative to the s − 1 lines resulting
from the first n− 1 accesses. Thus, the effective cache
size will be s after n cache accesses. The probability
of this scenario, P (B), is Ps−1,n−1 · Pmiss,s−1.

Noting that Ps,n = P (A)+P (B), we can derive Equation 5.
Given that MPA(s) is the probability of a cache access

missing, given an effective cache size of s, Equation 5 can
be written as

Ps,n = Ps,n−1 · (1−MPA(s))+Ps−1,n−1 ·MPA(s−1). (6)

Note that P1,1 = 1 because the first cache access always
uses a cache line and 1 < s ≤ n. Assuming the process
reaches steady state after n accesses, and given that Gi(n)
is the effective cache size for process i after n accesses, we
have

Gi(n) =

n∑
s=1

(Ps,n · s). (7)

Note that Gi(n) is a monotonically increasing function of n.
Therefore, given the effective cache size of process i, Si, we
can deduce the number of cache accesses n needed for the
process to reach steady state using the inverse function of
Gi(n), i.e., n = G−1i (Si).

IV.E. Steady-State Conditions
Given a cache with an LRU-like replacement policy, it is

reasonable to assume that at time t, we can always find a
duration T such that data accessed before time t − T have
been evicted and data accessed during [t−T , t] are presently
in the cache. To determine the effective cache size, we are
only interested in data accessed during [t−T , t]. Since none
of these accesses will evict any data lines accessed during
[t−T , t], it is as if the data were written to an empty cache
with no cache misses during [t − T , t], thus Equations 6
and 7 hold. Note that these accesses may still evict cache
lines accessed before t− T . We assume the partition among
processes resulting from data accesses from all co-running
processes within [t − T , t] is the same as that when all the



processes reach steady state. By computing the cache size of
each process resulting from data accesses within [t − T , t],
we can determine process effective cache sizes. Hence, the
effective cache size of process i, denoted as Si, corresponds
to the expected cache size determined by the most recent
APS · T cache accesses for process i. Thus, the effective
cache Si is written as Gi(APSi · T ). Conversely, APSi can
be expressed as G−1i (Si)/T . From Equation 3 and 4, we can
derive the following equation:

APSi =
G−1i (Si)

T
=

APIi
αi ·MPAi(Si) + βi

. (8)

Therefore,

T =
G−1i (Si) · (αi ·MPAi(Si) + βi)

APIi
. (9)

Note that Equation 9 holds for any process i, where i ∈
{1, 2, · · · , N}, given that N is the total number of processes.
Combined with Equation 1, we have

G−11 (S1)

G−1j (Sj)
− API1 · (αjMPAj(Sj) + βj)

APIj · (α1MPA1(S1) + β1)
= 0,∀Nj=1, (10)

and
N∑
i=1

Si −A = 0, (11)

where G−1i (Si) and MPAi(Si) are application-dependent
non-linear functions of Si. We solve Equation 10 using
Newton–Raphson iteration, a standard numerical method for
finding the roots of non-linear equations. Note that the
number of ways in a cache (A) and number of cores (N ) are
each fewer than 10. G−1i (Si) and MPAi(Si) are monotonic
functions of Si, so we can solve Si for process i accurately
within several iterations, where i ranges from 1 to N . The
initial guess also affects the computational cost. In our
experiments, we find that initially guessing that the effective
cache size of a process i is proportional to its APS allows
quick convergence to an accurate solution.

V. AUTOMATED PROFILING

In this section, we first explain how to obtain the reuse
distance histogram of a process. We then describe how to
derive other parameters such as API and MPA. After that, we
give details about the automated profiling process. Finally, we
indicate possible sources of prediction error.

V.A. Reuse Distance Profiling
Process reuse distance histograms play a central role in

the proposed performance modeling technique. It would be
possible to extract the reuse distance histograms of processes
via simulation, and CAMP would dramatically improve
estimation speed even if simulation were used for initial
characterization; however, there is a faster alternative.

Most modern processors have built-in hardware perfor-
mance counters (HPCs) that record information about archi-
tectural events such as the number of instructions retired,

number of last-level cache accesses, and number of last-
level cache misses [18]. Therefore, we can gather information
about parameters such as SPI and MPA accurately. How-
ever, existing hardware or software resources do not directly
provide reuse histogram data. We now explain the process
of deriving reuse histogram data from directly monitored
parameters.

Consider two processes running on separate cores sharing
an A-way last-level cache. We assume if one process occupies
l ways in a cache set, the concurrently running process will
occupy A−l ways. Based on Equation 2, we can compute the
effective cache size of a stressmark with a controlled MPA
and a known reuse distance histogram. We obtain the reuse
distance histogram of a process (denoted as B) as follows.
Run the stressmark along with B multiple times. In the lth
run, we tune the parameters in the stressmark to change the
effective cache size, denoted as Sstress,l. Record B’s MPA
in each run, denoted as MPAB,l, where l ∈ {1, 2, · · · , A}.
Given that SB,l is process B’s effective cache size in the lth
run, and considering the lth and the l + 1st runs, we have

MPAB,l+1 =

∫ ∞
SB,l+1

histB(x)dx and

MPAB,l =

∫ ∞
SB,l

histB(x)dx. (12)

See the discussion after Equation 2 for the definition of
hist(x). Hence, we can estimate the probability of process
B having an effective cache size of SB,l as

histB(SB,l) ≈MPAB,l+1 −MPAB,l. (13)

By varying SB,l from 1 to A, we can estimate the probability
at each effective cache size, thus allowing us to construct
the reuse distance histogram. Since we can not control SB,l

directly, in practice we adaptively tune the effective cache
size of the stressmark from run to run. SB,l + Sstress,l = A.
Therefore, varying Sstress,l changes SB,l.

As indicated above, the stressmark should have the follow-
ing properties.

1) High cache access frequency, i.e., high API. API is
related to the degree to which a process competes
for cache space. In order to estimate the probability
of a process having a small effective cache size, the
concurrently running stressmark should occupy a large
portion of the cache with few cache misses.

2) A uniform reuse distance histogram, i.e., the probability
is the same across all possible reuse distances. This
makes it easy to compute the effective cache size given
an MPA value. In addition, given a pseudo-LRU cache
replacement policy, cache lines other than the least
recently used will sometimes be evicted. Having a
uniform reuse distance histogram minimizes the impact
of this potential problem because the replacement noise
will affect cache lines with all reuse distances equally.



Algorithm 1 Stressmark with k-Way Occupation
1: Set is the number of cache sets.
2: Step is the number of integers per cache line.
3: S[Set · Step·k] is an array of integers.
4: Index ← {s1, s2, · · · , sn}
5: The following loop loads a predefined random sequence

into Index.
6: for j = 0 : n− 1 do
7: flag ← Index [j]
8: T ← &S[flag · Set · Step]
9: for i = 0 : Set − 1 do

10: read T [i · Step]
11: end for
12: end for

The pseudo-code of the stressmark is shown in Algo-
rithm 1, where Set is the number of sets in the cache, Step
is the number of integers per cache line. Index[n] is an
integer array whose elements are uniformly distributed from
[1, k], which contains a random access location sequence.
In order to maintain high cache access frequency for the
stressmark, we pre-generate these arrays. Note that in Line
10 in Algorithm 1, two consecutive reads are Step elements
apart to ensure an 100% L1 cache miss rate. Since the
stressmark randomly accesses k cache lines within a cache
set, the effective cache size of the stressmark is expected to
be k. However, this may not be very accurate due to conflict
misses between the stressmark and the process of interest. In
reality, we use Equation 2 to estimate the effective cache size
of the stressmark, i.e., Sstress = MPA−1(MPAstress), where
MPAstress is the MPA of the stressmark and MPA−1() is the
inverse function for MPA in Equation 2 that converts MPA
to an effective cache size, i.e., MPA−1(MPA(x)) = x.

V.B. Automated Parameter Estimation

In this section, we describe how we calculate parameters
such as API and SPI for a process. Given an A-way associa-
tive cache, in order to get the reuse distance histogram for a
process, we run the stressmark concurrently with the process
A times. In the lth run, we set k to l for the stressmark in
Algorithm 1. Since API is fixed for a process with the same
input data, given that API l is the process’s API in the lth
run, the average API of the process can be estimated as

API =
∑A

l=1 API l

A
. (14)

Similarly, we can get A pairs of a process’s MPA and SPI
values from the A runs. Given that MPAl and SPIl are the
average MPA and SPI of the process in the lth run, the α and
β in Equation 4 can be determined using linear regression,
i.e.,

α =
A · (

∑A
l=1 MPAl · SPI l)− (

∑A
l=1 MPAl)(

∑A
l=1 SPI l)

A · (
∑A

l=1 MPAl
2)− (

∑A
l=1 MPAl)2

(15)

and β =
(
∑A

l=1 SPI l)− α · (
∑A

l=1 MPAl)

A
. (16)

Note that most programs have repeating phases with periods
ranging from 200 ms to 2,000 ms [17]. Numerous work
exists on phase detection, i.e., finding the time at which the
process switches from one phase to another. Since the process
behavior is by definition similar within a phase, one set of
parameters per phase is sufficient. In the rest of the paper, we
will treat processes as having a single phase each to simplify
explanation. Note that the proposed technique is also suitable
for multi-phase processes, for which each phase may have a
different set of extracted parameters.

Process characterization can be automated as follows. First,
run the stressmark along with the process A times, varying
the effective cache size. After A runs, API, α, β, and the reuse
distance histogram can be estimated using Equations 13–16.
These four parameters form the feature vector of a process.
Given the feature vectors of two processes, we can predict
their effective cache sizes when sharing cache, which in
turn can be translated to SPI values using Equations 2 and
4. Note that the SPIs for the two processes are predicted
without actually running them concurrently. Hence, given N
processes for assignment to N cores, only N feature vectors
are needed (O (N) complexity). These vectors can be used
to predict the performance of any subset of the N processes
during assignment (2N−1 combinations). Thus, the proposed
technique is dramatically more efficient than one requiring
simulation or execution of 2N−1 combinations of processes.

V.C. Potential Sources of Error

There are two primary sources of error in the proposed
technique: error in histogram estimation and error in linear
regression analysis. We will explain these error sources now,
but note that even with these error sources, the proposed
technique is highly accurate (see Section VI).

When estimating the reuse distance histogram for a pro-
cess, it is very difficult to capture the probability correspond-
ing to a reuse distance close to 0 because the concurrently
running stressmark cannot consume all of the cache space.
Similarly, the estimation for a reuse distance close to A
may also have some error. In practice, we assume a uniform
distribution for reuse distances close to 0 or A. Linear
interpolation, given an assumed miss rate of 1 at an effective
cache size of zero, is used for very small effective cache sizes.
In addition, the probability of reuse distances larger than A
cannot be captured by our technique. Hence, we extrapolate
this probability based on the derivative of the probability
density function at a sample point close to A.

Error may also be introduced due to noise in sample
parameters. When the <MPA, SPI> pairs gathered during
profiling are clustered within a small region, linear regression
may lead to inaccurate estimation of coefficients due to noise.
We addressed this problem by bounding the step size during



TABLE I
INTEL P8600 SPECIFICATION

Item Specification
Number of chips 1
Number of cores per chip 2
Frequency 2.40 GHz
L1 ICache (Private) 32 KB, 64 B line, 8-way associative
L1 DCache (Private) 32 KB, 64 B line, 8-way associative
L2 Cache (Shared) 3 MB, 64 B line, 12-way associative

Newton–Raphson iteration when solving for the effective
cache size (see Equation 10), permitting convergence.

VI. EVALUATION METHODOLOGY AND RESULTS

In this section, we first describe our experimental setup. We
then present the experimental results for model validation. We
contrast the proposed technique with other potential methods
of predicting CMP cache contention among processes and
indicate which features of the proposed approach permit high
prediction accuracy.

VI.A. Experimental Setup
We evaluated our technique on a computer equipped with

an Intel Core 2 Duo P8600 processor and the Mac OS X 10.5
operating system. The system parameters are listed in Table I.
We used Shark, a built-in profiling tool, to sample perfor-
mance counters at a period of 2 ms. The samples are used
for calculating parameters (e.g., API, MPA, and SPI) on each
core. We used the SPEC CPU2000 benchmark suite, which
contains 26 benchmarks. Since validating all 351 pairwise
combinations would be costly, we instead selected a subset
containing five CPU-intensive and five memory-intensive
benchmarks, and considered all pairwise combinations of
these ten. We recorded the program phase information for
each benchmark during pre-characterization. Experimental
results indicate that all but two benchmarks have only one
significant phase, as defined by our parameters of interest.
The longest phases in art and mcf were used. We can thus
address the prediction problem one phase at a time using
phase detection algorithms, as described in Section V-B.

VI.B. Pre-Characterization
As indicated in Section V-B, we first run the stressmark

concurrently with each benchmark on two different cores
12 times to derive various parameters such as API, MPA,
and SPI. Each run lasts 10 s, which has proven sufficient
for characterizing these parameters. Note that the working
data set size of the stressmark is incremented by 1 way after
each run to construct the reuse distance histogram for each
benchmark, as described in Section V-A.

Analyzing API, α, and β: Hardware performance counter
readings are analyzed to determine API, α, and β in Equa-
tions 3 and 4. Table II shows the value for each benchmark.
API indicates an application’s capability to compete for cache
space. It also indicates whether an application is memory-
intensive because higher API is usually associated with more
misses per instruction, resulting in more off-chip memory

transactions. As indicated in Table II, benchmarks such as art,
mcf, vpr, swim, and ammp are memory-intensive. Their APIs
are significantly higher than those of the other benchmarks. α
indicates sensitivity to cache misses in terms of performance.
Equation 4 implies that for the same amount of change in
MPA, a larger α indicates a larger change in SPI. As shown
in Table II, the performance of memory-intensive applications
tends to be more sensitive to cache misses than that of CPU-
intensive applications, with art being the most cache-miss
sensitive benchmark and mgrid being the least cache-miss
sensitive benchmark. Note that α is negative for swim. This
is because cache contention has little impact on this bench-
mark’s MPA value, resulting in inaccurate estimation during
linear regression when building the SPI model. However, this
introduces little error in performance estimation because, as
we show later in Figure 3, both MPA and SPI are insensitive
to effective cache size for this benchmark.

Analyzing Cache Miss Rate: We use the approach
explained in Section V-A to build the reuse distance his-
togram for each benchmark, which is then used to predict
its cache miss rate as a function of effective cache size.
Figure 3 illustrates the relationship between cache miss rate
and effective cache size for each benchmark. The cache miss
rate curves for benchmarks bzip2 and equake are not shown
because they are similar to that of mgrid. The results, from
execution on hardware, are consistent with those obtained
from simulation [19]. Note that linear approximation is used
for leftmost segment of each miss rate curve, for the reasons
given in Section V-C. However, for the benchmarks with high
APIs such as swim and applu, the solutions of Equation 10
always lie outside this linear region. Therefore, we do not
consider this region when analyzing the sensitivities of the
cache miss rate curves for any benchmarks. As indicated
in Figure 3, the cache miss rates of benchmarks such as
swim and applu are insensitive to their effective cache sizes
in the effective range. Therefore, their performance is only
slightly affected when run together with other benchmarks.
However, cache miss rates of benchmarks such as art and vpr
are very sensitive to their effective cache sizes. Therefore,
their performances will be significantly affected by cache
contention, although the impact on their performances highly
depends on the memory access patterns of the processes run-
ning concurrently with them. This indicates the importance of
considering application behavior and cache contention during
performance prediction on CMPs.

VI.C. Model Validation
In this section, we validate our technique by using the

feature vector, i.e., <API, α, β>, and reuse distance his-
togram of a benchmark to predict the performance when
run concurrently with another benchmark. Note that feature
vectors are determined during pre-characterization. We com-
pare the performances of the two benchmarks during the
evaluation period to the predicted performances using the
feature vectors of the benchmarks. Note that the approach



TABLE II
API, α, AND β FOR DIFFERENT BENCHMARKS

Benchmark art mcf bzip2 swim equake mesa vpr ammp mgrid applu
API 0.0225 0.0733 0.0044 0.0116 0.0074 0.0013 0.0102 0.0092 0.0018 0.0018

α (×10−9) 446 134 99.9 -99.6 60.5 30.7 306 243 0.609 3.12
β (×10−7) 1.34 5.86 1.50 1.97 2.28 1.55 1.65 1.83 1.28 1.15
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Figure 3. Profiled cache miss rate corresponding to effective cache size.

proposed by Chandra et al. [5] requires the steady-state cache
access frequency of a process to be known a priori. We see
no practical way to accurately predetermine this value for
concurrently running processes. In contrast, our technique
determines the steady-state cache access frequency using
analysis of performance counter readings, i.e., the proposed
technique works correctly using only inputs that are readily
available in real systems.

In addition to the proposed technique, we considered
and evaluated two alternatives. The first, called Accesses
Based (AB), assumes the effective cache size of a process
is proportional to APS. Given two processes running on two
cores with effective cache sizes of S1 and S2, the formula to
determine effective cache sizes can be written as

APS1

APS2
=
S1

S2
=

API1 · (α2MPA2(S2) + β2)

API2 · (α1MPA1(S1) + β1)
. (17)

Note that this model only considers APS. It may be inaccurate
if the concurrently running processes have different MPAs or
reuse frequencies. The second model, known as Misses Based
(MB), assumes that Si is proportional to MPS. Therefore, the
equation used to determine S1 and S2 is

MPS1

MPS2
=

MPA1(S1) · API1 · (α2MPA2(S2) + β2)

MPA2(S2) · API2 · (α1MPA1(S1) + β1)
. (18)

The model only considers MPS. Thus it may be also inac-
curate if the concurrently running processes have different
reuse distance profiles.

Analysis of Results: We examined all 55 possible pairwise
combinations of 10 benchmarks: each benchmark is paired
with every other benchmark (including another instance of
itself) and assigned to the two cache-sharing cores. The mea-
sured performance data are then compared to those predicted

by AB, MB, and CAMP. AB and MB are not past work.
They are in fact alternative prediction models we considered.

Table III presents the average prediction error in cache
miss rate and performance for each benchmark when run
simultaneously with each of the 10 benchmarks. The first
column lists the benchmarks. Columns 2, 6, and 10 show the
average magnitudes of cache miss estimation error for CAMP,
AB, and MB. Columns 3, 7, and 11 show the percentage of
test cases with a cache miss estimation error larger than 5%
among all 10 test cases. Similarly, Columns 4, 8, and 12
indicate the average relative estimation error in performance
for the three techniques, while columns 5, 9, and 13 indicate
the percentage of test cases with a relative performance
estimation error larger than 5% among all 10 test cases for
the three techniques. The last two rows correspond to the
results for the 5 most memory-intensive benchmarks and all
10 benchmarks, respectively.

As indicated in Table III, CAMP has an average of
1.57% performance estimation error over all 10 benchmarks,
compared to 3.07% for AB and 4.89% for MB. In addition,
only 8% of the cases for CAMP have estimation errors
greater than 5%, compared to 21% for AB and 33% for
MB. Note that all three models have average performance
estimation errors below 5%. This is mainly because all the
three models are based on predicting the effective cache size
of each benchmark when subject to cache sharing. If one
of the two co-running benchmarks are CPU-intensive, e.g.,
mesa, applu, or mgrid, at least one of the two following
conditions holds: (1) its cache miss rate is insensitive to its
effective cache size or (2) its performance is insensitive to its
cache miss rate. Therefore, the large cache miss estimation
error may not be reflected in performance estimation error.



TABLE III
PREDICTION ACCURACY FOR CACHE MISSES AND PERFORMANCE DEGRADATION

CAMP AB MB
MPA SPI MPA SPI MPA SPI

Benchmark Error >5% Error >5% Error >5% Error >5% Error >5% Error >5%
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

art 1.61 0 3.68 40 4.60 50 10.26 80 5.88 70 18.09 90
vpr 0.88 0 1.48 0 4.70 40 7.67 60 5.89 30 9.24 50
mcf 2.10 10 3.70 20 2.82 10 3.97 40 6.79 40 7.72 70
ammp 2.82 20 3.04 20 4.03 30 4.16 30 5.89 60 6.78 90
bzip2 1.86 10 1.17 0 3.17 20 1.89 0 6.09 60 3.63 30
mesa 4.23 50 0.83 0 4.90 30 0.94 0 7.77 50 1.55 0
swim 0.28 0 0.86 0 0.23 0 0.81 0 0.27 0 0.78 0
equake 0.70 0 0.38 0 0.92 0 0.41 0 1.43 0 0.45 0
applu 1.13 0 0.32 0 0.86 0 0.31 0 1.79 10 0.33 0
mgrid 2.79 10 0.28 0 3.35 20 0.28 0 6.00 40 0.30 0
top 5 average 1.86 8 2.61 16 3.86 30 5.59 42 6.11 52 9.09 66
average 1.86 4 1.57 8 2.94 20 3.07 21 4.78 36 4.89 33

This also explains why memory-intensive benchmarks have
larger estimation error than CPU-intensive benchmarks. In
Table III, the bottom 5 benchmarks are either CPU-intensive
applications or streaming applications with constant high
miss rates, e.g., swim. Their performance estimation errors are
below 1% for all three models. We thus also list the average
performance estimation error for the top 5 benchmarks, which
are relatively sensitive to the cache misses. CAMP has an
average of 2.61% performance prediction error, compared to
5.59% for AB and 9.09% for MB.

Analyzing One Benchmark–Art: We now examine the
accuracy of the three models when a specific benchmark,
namely art, runs simultaneously with other benchmarks.
Table IV presents the estimation error for MPA and SPI using
CAMP, AB, and MB when art runs concurrently with each
of the 10 benchmarks. The first column lists the benchmarks.
Columns 2 and 3 present the increase in MPA and in SPI of
each of the 10 benchmarks due to cache contention, compared
to those when it runs alone. Column 4 shows the number
of iterations required to solve for the effective cache size.
Columns 5, 7, and 9 show the prediction errors for MPA for
each of the three models. Columns 6, 8, and 10 show the
prediction errors for SPI for each of the three models. The
errors relative to measurements are reported. A positive error
indicates an over-prediction and a negative error indicates an
under-prediction. The last row shows the average results for
all 10 cases.

Table IV indicates that CAMP outperforms AB and MB in
terms of both MPA estimation error and SPI prediction error.
AB over-predicts the effective cache size of art, resulting
all 10 under-predictions of cache miss rate and 9 over-
predictions of SPI. It achieves an average SPI prediction
error of 10.26% and a maximum error of 17.47%. MB under-
predicts the effective cache size of art, resulting in 8 over-
predictions of MPS. It achieves an average SPI estimation
error of 18.48%. and a maximum error of 41.06%. In contrast,
CAMP achieves an average estimation error of 3.68% and
a maximum error of 7.15%. Note that the computation
overhead of CAMP is also lower than that of AB and MB

because it uses monotonic non-linear functions. This might
significantly reduce computational cost when the number of
cores is large. In addition, since the three models are based
on estimating the effective cache sizes of two processes, they
give the same results when two instances of art are running
together, as indicated in the first row of Table IV.

Analyzing Three Scenarios: We now explain why AB
usually leads to over-prediction and MB usually leads to
under-prediction of the effective cache size. Figures 4–6 illus-
trate the predicted and measured normalized SPIs. The black
portion shows the SPI when benchmark is run alone. Figure 4
shows the results when benchmarks art and mcf share cache
in a dual-core system, with the left part corresponding to
art and the right part corresponding to mcf. We denote this
scenario as <art, mcf>. Similarly, Figure 5 represents <art,
vpr>, and Figure 6 represents <vpr, mcf>. As indicated in
Figures 4–6, CAMP achieves the best accuracy in all three
cases. We take the left figure as an example to explain the
reason for variation in accuracy. As indicated in Figure 3,
given the same effective cache size, mcf has a higher miss
rate than art, resulting in larger SPI than art. Therefore, the
APS of art is approximately twice that of mcf when they run
concurrently, even though the API of mcf is larger than that of
art. Thus, art has a high APS with low MPS, which indicates
that art can access the cache very frequently with low reuse
distances, resulting in few misses. In this case, MB tends
to over-predict the performance of mcf because it ignores
factors such as APS. On the other hand, AB overestimates
mcf ’s performance due to ignoring its high reuse distances.
Note that when two processes share the cache in a dual-
core system, under-predicting the performance of one leads
to over-predicting the performance of the other. CAMP takes
both APS and MPS into consideration, and therefore is most
accurate.

VI.D. Generality of Predictor For Different Machines
Figure 7 shows the cache miss rate of art correspond-

ing to effective cache size profiled under two other cache
configurations differing from that in Figure 3. CAMP was
also validated on two other Intel Core 2 Duo Processors with



TABLE IV
MPA AND SPI PREDICTION WHEN PROCESSES RUN WITH ART

Benchmark Extra Extra CAMP AB MB
MPA SPI Itera- MPA SPI MPA SPI MPA SPI

tions Error Error Error Error Error Error
(%) (%) (%) (%) (%) (%) (%) (%)

art 17.40 72.01 1 -1.96 +4.89 -1.96 +4.89 -1.96 +4.89
mcf 16.72 72.62 6 -1.52 +2.38 -7.16 +12.44 +13.60 -41.06
bzip2 6.13 31.48 5 +0.52 -0.13 -2.20 +6.82 +5.97 -17.71
swim 16.20 71.12 6 -4.12 +7.15 -9.35 +15.76 +6.58 -17.39
equake 10.92 48.03 8 +0.60 +0.19 -8.03 +17.47 +10.45 -31.18
mesa 2.33 13.93 4 -0.33 +5.60 -2.56 +11.50 -0.17 +5.18
vpr 8.41 42.24 5 +0.03 -0.66 -0.07 -0.41 +6.00 -18.72
ammp 5.42 32.84 5 -2.33 +4.45 -5.54 +11.80 +3.77 -13.48
mgrid 7.76 37.85 4 +2.17 -5.01 -3.29 +8.67 +5.26 -14.73
applu 9.40 44.74 6 +2.48 -6.38 -5.83 +12.79 +6.90 -20.46
average 10.07 46.69 5 1.61 3.68 4.60 10.26 6.07 18.48
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Figure 4. Performance degradation for <art,
mcf> pair.

Figure 5. Performance degradation for <art,
vpr> pair.

Figure 6. Performance degradation for <vpr,
mcf> pair.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  4  8  12  16  20  24

M
is

s
 R

a
te

Effective Cache Size

art

12-way 3M
16-way 4M
24-way 6M

Figure 7. Profiled cache miss rate corresponding to effective cache size for
different cache configurations.

4 MB and 6 MB of L2 unified cache. The three cache miss
rate curves closely match each other, suggesting that process
characterization data derived on one machine might be used
to accurately predict the performance of cache-sharing pro-
cesses on different types of processors with different cache
structures.

VII. CONCLUSION

Cache contention among processes running on differ-
ent CMP cores heavily influences performance. A cache-
contention aware assignment algorithm can help improve
system throughput and reduce power consumption. However,
this requires a model of cache contention behavior that can
quickly and accurately determine the impact of different
assignments on performance. This is challenging due to the
large numbers of potential assignments of processes to CMPs.
We have described CAMP, a predictive model that allows fast
and accurate estimation of system performance degradation
due to cache contention. More specifically, it first deter-
mines a process-dependent feature vector and reuse distance
histogram via (potentially on-line) pre-characterization. The
feature vectors of cache-sharing processes are supplied into a
group of non-linear equations that determine the steady-state
effective cache size and performance of each process. We also
described a method to automate the profiling and performance
prediction process. We evaluated the proposed technique on
55 different combinations of 10 SPEC CPU2000 benchmarks
on a dual-core machine. The average performance prediction
error is 1.57%. We also tested the generality of the proposed
technique by profiling processes on one CMP and using the
profiling information for performance prediction on two other
CMPs with different cache sizes. In contrast with existing
work, the proposed approach requires access only to infor-



mation that is readily available from processor performance
counters.
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