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ABSTRACT
Security on the Internet today is treated mostly as a data

plane problem. IDS’s, firewalls, and spam filters all op-
erate on the simple principle of detecting malicious data
plane behavior and erecting data plane filters. In this pa-
per we explore how breaking down the barrier between the
control and data plane can significantly enhance our under-
standing of how to detect and filter Internet threats like
worms and botnets. Our investigation is guided by two spe-
cific goals: using information and anomalies detected on the
data plane to inform control plane decision support and us-
ing anomalies detected on the control plane to inform data
plane filtering. We begin by analyzing the source of persis-
tent worms and other persistent malicious and misconfigured
data plane traffic to understand the scope of this behavior
on the control plane. We then analyze how anomalies on
the control plane associated with poorly managed networks
correlate with the sources of malicious and misconfigured
traffic detected on the data plane. Our results show that
malicious and misconfigured data plane behavior is widely
spread across the control plane suggesting that constructing
only a few control plane filters to block the most infected
organizations is ineffective. We demonstrate that networks
with data plane anomalies tend to exhibit more routing mis-
configurations. Finally, we discuss how these correlations
could be used to reject or filter routes and help stop recur-
ring threats like persistent worms.

Categories and Subject Descriptors: C.2.0
COMPUTER-COMMUNICATION NETWORKS: Se-
curity and protection

General Terms: Management, Reliability, Security

Keywords: network security, BGP, routing anomaly, com-
puter worms, Internet Motion Sensor

1. INTRODUCTION
The Internet routing infrastructure today places no dis-

tinction between the delivery of malicious traffic designed
to disrupt or compromise systems and the delivery of le-
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gitimate traffic. While the separation between routing and
packet delivery has important benefits, it has also limited
the ability of operators to filter malicious packets and con-
tributed to many of the serious security problems facing the
Internet today.

Most systems and methods designed to detect and mit-
igate critical security problems like Internet worms, bots,
and spam ignore the control plane (routing data), and fo-
cus on the Internet data plane (packet headers and pay-
loads). Internet security systems typically operate on the
simple principle of detecting malicious data plane behavior
and erecting data plane filters. For example, most firewalls,
intrusion detection systems (IDS’s), and spam filters operate
independently of the inter and intra-domain routing infras-
tructure.

In this paper we explore how breaking down the barrier
between the control and data plane can significantly en-
hance our understanding of how to detect and filter Internet
threats like worms and botnets. Our investigation is guided
by two specific goals: using information and anomalies de-
tected on the data plane to inform control plane decision
support and using anomalies detected on the control plane
to inform data plane filtering.

• Using data plane intelligence to inform con-
trol plane security: Anomalies detected on the data
plane can be used to identify the organizations, au-
tonomous systems (ASes), and advertised prefixes on
the control plane that are associated with malicious or
misconfigured behavior. This information can be used
to deploy control plane filters or inform other control
plane decisions such as route selection.

• Using Control Plane intelligence to inform data
plane security: Anomalies detected on the control
plane can be used to detect and mitigate threats on
the data plane. For example, a recent study [1] found
that control plane attacks (e.g., IP hijacking) may be
exploited for malicious data plane activities such as
sending spam. If we could identify abnormal control
plane behavior then we might be able to deploy data
plane filtering rules to more strictly detect and block
persistent infections, spam, and other unwanted traffic
from certain prefixes or autonomous systems (ASes).

To date, cross-layer analysis of control and data plane de-
tection and mitigation approaches have been limited to a
small set of specific applications. For example, iBGP routes
are used to off-ramp traffic destined to certain addresses.
Our goal in this paper is to take a broader approach and an-
swer more fundamental questions about the utility of cross-
layer information sharing.



All All Darknet Darknet Darknet
Prefixes ASes Prefixes ASes Distinct /24s

193838 36982 63772 11686 418482

Table 1: Overall Statistics for All and Darknet

We begin by analyzing the source of persistent worms
and other persistent malicious and misconfigured data plane
traffic to understand the scope of this behavior on the con-
trol plane. Second, we separate out four specific classes of
misconfigured behavior and analyze how widespread each
behavior is on the control plane. Finally, we analyze anoma-
lies on the control plane associated with poorly managed
networks and attempt to correlate these anomalies with the
sources of malicious and misconfigured traffic detected on
the data plane.

We use Border Gateway Protocol (BGP) data as a source
of the control plane information, and darknet data as a
source of the data plane information. BGP is the inter-
domain routing protocol on the Internet today. We use
data from a /8 (16 million IP address) darknet or unused
prefix. Darknet data provides an excellent source of data
plane anomalies because every packet detected in the dark-
net is anomalous [2, 3] due to misconfiguration or malicious
activities.

Our results show that malicious and misconfigured data
plane behavior is widespread across the control plane. We
observe 31% of ASes sending at least one packet to the dark-
net over a week long period though 80% of the traffic is sent
from 20% of ASes. Interestingly, we find that most of the
ASes sending traffic to the darknet announce smaller pre-
fixes. It indicates that the source of persistent malicious
and misconfigured behavior originates from many advertised
prefixes and organizations. This suggests that constructing
a few control plane filters to block the most infected orga-
nizations will not have significant impact. Finally, we also
find that even when isolating specific behaviors the sources
are still widespread and so targeted filtering may not be ef-
fective. We observe stability in the darknet data from two
time periods: March 2006 and July 2006. For example, 30%
top 30 /24s sorted by packet counts are the same while 90%
top 30 ASes sorted by packet counts are the same.

Finally, we discuss both the implications of the collected
data and further explore how correlating Internet control
plane anomalies with data plane anomalies can be used to
detect and mitigate Internet threats. From the evaluation of
filtering, we find that a significant fraction of darknet traf-
fic can be filtered with a few false positives using control
plane intelligence. Filtering top 20 ASes sorted by prob-
ing duration help reduce 51% of darknet traffic while only
affecting 4.5% legitimate traffic. We propose a hybrid ap-
proach by using anomalies detected on the control plane to
classify packets as suspicious based on their source address
to decrease false positives and increase performance of data
plane filtering systems.

2. CONTROL PLANE CHARACTERIZA-
TION OF DARKNET DATA

One of the most important problems facing the Internet
is the persistently infected computers. A recent report by
Microsoft characterizing the malicious software removed by
their anti-malware tool found that the 10th most prevalent
malware removed from Windows computers between Jan-
uary 2005 and March 2006 was the Blaster worm [4]. The
Blaster was originally released in 2003 and yet in 2006 it
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Figure 1: Distribution of packets received/source
/24 in each prefix and AS
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Figure 2: Origin AS grouping in darknet

still the 10th most removed pieces of malware [5]. In fact,
half of the top 10 malware families removed by the tool were
originally detected during 2003 or earlier.

Recurring malcode is an Internet-wide problem and in
this section we explore how analyzing the source of persis-
tent worms and other persistent malicious and misconfigured
traffic detected on the data plane can help us understand the
scope of infected behavior on the control plane. We first in-
vestigate the number and diversity of persistently infected
organizations and compare their behavior to the overall con-
trol plane behavior of all organizations on the Internet. We
then analyze the stability of this behavior.

The data plane darknet data were collected over a con-
tiguous five day period from March 1 to March 5 2006 and
also a contiguous seven day period from July 9 to July 15
2006. The BGP data was gathered from the Oregon Route-
Views project [6] and from RIPE NCC [7]. We also use
additional BGP data of longer time periods as history infor-
mation. The darknet data was collected at a /8 (16 million
IP address) darknet that is part of the Internet Motion Sen-
sor project [8]. To reduce the impact of spoofing we removed
all TCP or UDP backscatter including TCP SYN-ACK and
ICMP port-unreachable packets [9]. We discuss the impact
of spoofing later.

2.1 Source analysis
The number of ASes and advertised prefixes observed in

BGP data and observed as the source of packets detected in
the darknet are shown in Table 1. We observe at least one
packet from 32% of all the prefixes advertised through BGP.
These prefixes are located in 11686 different ASes represent-
ing 31% of the all ASes observed in BGP data. Interestingly,
we never observe a packet from 69% of ASes suggesting that
a large number of ASes are not persistently infected or are
not leaking infections onto the wider Internet.



ASN Packets Received Distinct /24 AS Name Tier Primary Country

4131 24624262(6.3%) 144(0.04%) CHINANET-BACKBONE No.31,Jin-rong Street 2 China
4837 14441537(3.67%) 87(0.03%) CHINA169-BACKBONE CNCGROUP China169 Backbone 3 China
22909 3527351(0.89%) 16(0.004%) DNEO-OSP1 - Comcast Cable Communications, Inc. 4 United States
22773 3442703(0.87%) 31(0.007%) CCINET-2 - Cox Communications Inc. 2 United States
11486 2752848(0.69%) 2(0.0005%) WAN - Worldcom Advance Networks 3 United States
3320 2747187(0.69%) 82(0.019%) DTAG Deutsche Telekom AG 1 Germany
36193 2151384(0.54%) 1(0.0002%) FASTCOLOCATION - FAST COLOCATION SERVICES 5 United States
20115 2062938(0.52%) 29(0.007%) CHARTER-NET-HKY-NC - Charter Communications 3 United States
17506 1869566(0.47%) 3(0.0007%) JPNIC-JP-ASN-BLOCK Japan Network Information Center 3 Japan
6478 1679491(0.43%) 28(0.007%) ATT-INTERNET3 - AT&T WorldNet Services 3 United States

Table 2: Amount of packets received from darknet in the top 10 ASes

ASN Prefixes Prefixes in Avg. Mask Avg. Update Avg. Update Interval
Announced Darknet Length Count Duration (sec)

4131 995 633 19 5417 2547
4837 257 170 19 489 828
22909 441 306 20 973 876
22773 677 432 21 4677 2564
11486 277 44 23 295 932
3320 279 59 22 1405 1616
36193 1 1 22 69 785
20115 661 507 20 7834 933
17506 28 16 17 63 4915
6478 501 341 20 1047 869

Table 3: Routing statistics in the top 10 ASes sorted by received packets

To analyze the contribution of each prefix and AS we plot-
ted the fraction of packets observed at the darknet from each
prefix and from each AS. Figure 1(a) shows that more than
80% of the packets are from 20% of all the distinct origin
ASes. Similarly, Figure 1(b) shows that 80% of packets are
from 20% of prefixes. We also analyzed the number of dis-
tinct source /24 networks (i.e., unique based on the first
three octets of the IP address) that were the source of at
least one packet detected in the darknet. The results show
that of 70% distinct source /24s are within 20% prefixes and
that 80% of distinct source /24s are located in 18% ASes.
Thus, a small fraction of prefixes and ASes contribute to
most of the packets we observe in the darknet.

The next step was to take a closer look at the top sources
of malicious and misconfigured traffic detected in the dark-
net. We found that nearly 9% of probing packets originated
from IP addresses in just two ASes, both of which where
from China. The top 10 ASes as shown in Table 2 are re-
sponsible for 10% of the received packets. Among the top
10 ASes, 6 ASes are primarily based in the United States
and half of them are tier-3 ASes [10]1.

We then analyzed business types of the ASes detected in
the darknet and in BGP data. We used keywords in the AS
names of each AS to get a rough classification of educational
networks, broadband and cable modem networks, corpora-
tion networks, other Internet communication provider net-
works and country classifications. The results are shown in
Figure 2 and indicate that the sources of the traffic observed
in the darknet cover a broad range of organizations.

Besides AS business types, the average size of the ad-
vertised prefixes can be another indication of AS size. We
measured the average size of advertising prefixes by the av-
erage mask length of all prefixes announced by a given AS.
Figure 3 shows that most of the prefixes associated with the
darknet are small prefixes with mask length less than 19.
Among all the darknet prefixes, 74.5% have mask length
longer than 19.

1Lower tier or edge networks have larger tier or rank num-
ber. The top tier providers are tier-1 or tier-2 ISPs.
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2.2 Stability analysis
So far we have shown that the source of persistent mali-

cious and misconfigured activity on the data plane is spread
over a broad range of network prefixes and organizations.



Interestingly, we also found that the prefixes advertised by
these organizations cover less address space than other ad-
vertised prefixes on the Internet. These results are only for
one week of data in March 2006. We now analyze the stabil-
ity of our observations by examining another data set from
seven days in July 2006.

We now compare the number of overlapping distinct /24s,
prefixes, and ASes between these two data sets. We find al-
most 30% of the top 30 IPs are the same sorted by packet
counts, as shown in Figure 4. Comparing the observed ASes,
we observe more overlap: almost 98% top 30 ASes sorted by
packet counts are the same. The analysis shows persistent
properties in darknet data across time. Moreover, we ana-
lyze the network characteristics of the second data set and
confirm the conclusions drawn previously.

2.3 Signature analysis
The analysis thus far has characterized the control plane

properties of all traffic observed in the darknet however,
darknet traffic contains a broad range of behaviors [3] and
certain malicious or misconfigured behaviors can signifi-
cantly bias the results. To explore how the results might
be impacted we now characterize the sources of four specific
behaviors detected in the darknet. We analyze two types of
malicious behavior and two types of misconfigured behavior:

• DNS Misconfiguration: isolate all packets destined
to UDP port 53. A UDP packet designated to UDP
port 53 in unused IP address space typically indicates
an attempt to perform DNS lookup to a server that
doesn’t exist.

• P2P Misconfiguration: isolate all UDP packets con-
taining the string “LIME”. This signatures typically
indicates a misconfigured request from a LimeWire
peer-to-peer client for a file with a specific hash.

• PopUp Spam: isolate all UDP packets containing
the string “ALERT”. This signatures typically indi-
cates an attempt to cause a Windows popup message
to appear which is a type of spam as described in [3].
Note that this is a single packet attack thus the source
could be spoofed.

• MyDoom Backdoor: isolate all packets destined to
TCP port 3127. The MyDoom worm leaves a backdoor
which enables a remote attacker to execute arbitrary
code. Packets destined to this port typically indicate
an attempt by other worms or bots to infect the target
with more malware.

The overall number of prefixes and ASes of each type of
darknet traffic is shown in Table 4. We find that the source
addresses in P2P type to be distributed more widely com-
pared to other three types. The malicious probing MyDoom
backdoor concentrates within a smaller number of ASes but
located in a large number of distinct /24s within these pre-
fixes. As compared to the aggregate darknet traffic, the
number of ASes and prefixes is significantly smaller but is
still quite large in absolute terms. For example, the sources
of the MyDoom behavior covered only 2.7% of ASes however
this represents 991 total ASes, still very large.

Figure 5 shows the relative number of packets from each
prefix that is the source of one of the four behaviors. The
distribution for each of the four behaviors is similar to the
aggregate darknet traffic,i.e., there are some prefixes that
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Figure 5: Distribution of packets received/source
IPs in each prefix

contribute significantly more traffic. There some differences
between the different types, only 60% of the MyDoom pack-
ets are from the top 20% prefixes while in P2P more than
80% of the packet are from the same fraction of prefixes.

We also find similar distributions between the specific be-
havior and the aggregate traffic when looking at routing
update counts and inter-arrival time. There is no significant
difference in the distribution of both the number of updates
and update inter-arrival time among these four types.

We do however find some differences when we look at the
types of source networks. Table 5 shows the top three ASes
for each type of traffic. We find that the MyDoom back-
door is mostly from one country and small networks with
lower tiers while the P2P misconfigurations come mostly
from higher tier big networks.

In summary, we found that the two types of misconfigu-
ration and two types of malicious behavior spanned a large
number of different ASes and prefixes and had similar con-
trol plane behavior compared to the aggregate darknet traf-
fic. While certain behaviors (such as the outbreak of a new
worm) may have significantly different behavior, these re-
sults suggest persistent threats are widespread and any con-
trol plane mitigation must be broadly scoped. We discuss
the implications further in Section 4.

3. JOINT ANALYSIS OF ROUTING
ANOMALIES AND DARKNET TRAFFIC

In this section, we analyze anomalies on the control plane
and identify correlation between networks experiencing con-
trol plane anomalies and networks sending traffic to the
darknet. Control plane or routing anomalies can be broadly
defined as unexpected behavior on the control plane, includ-
ing network failures, routing misconfigurations, and security
attacks targeted at routing protocols. In this work we focus
on anomalies in the BGP protocol, as they can be more eas-
ily monitored using publicly available BGP feeds and BGP
is the critical routing protocol directly affecting the global
Internet. We suspect that networks that send traffic to dark-
net are likely to contain compromised hosts which scan other
networks for vulnerable hosts to spread malware. Thus, such
networks are “mismanaged”, as they do not readily correct
compromised hosts and are conjectured to be more likely to
experience routing anomalies. One reason is that networks
with host mismanagement are likely to also have improper
configuration of network elements such as routers, poten-
tially causing routing anomalies. Another reason is that



Type DNS P2P MyDoom PopUps

Prefix 2200(3.4%) 21569(33.8%) 2121(3.3%) 2765(4.3%)
AS 557(1.5%) 3497(9.4%) 991(2.7%) 652(1.8%)
Packets 2038308(0.5%) 1488402(0.38%) 2198838(0.56%) 13029763(3.3%)
Distinct /24 23229(5.6%) 49324(11.7%) 27446(6.6%) 62777(15%)

Table 4: Overall statistics for four types of darknet traffic

Type Top Three AS Tier Primary
ASNs Names Level Country

DNS 2856 BT-UK-AS BTnet UK Regional network 3 United Kingdom
29075 IELO-AS Ielo Network Operator. 5 United States
4837 CHINA169-BACKBONE CNCGROUP China169 Backbone 3 China

P2P 7132 SBIS-AS - SBC Internet Services 2 United States
19262 VZGNI-TRANSIT - Verizon Internet Services Inc. 2 United States
5089 NTL NTL Group Limited 2 United Kingdom

MyDoom 17633 CHINATELECOM-SD-AS-AP ASN for Shandong Provincial Net of CT 4 China
17964 16.125 DXTNET Beijing Dian-Xin-Tong Network Technologies Co., Ltd. 4 China
9394 CRNET CHINA RAILWAY Internet(CRNET) 5 China

PopUps 3462 HINET Data Communication Business Group 3 Taiwan
1668 AOL-ATDN - AOL Transit Data Network 2 United States
19262 VZGNI-TRANSIT - Verizon Internet Services Inc. 2 United States

Table 5: Organization statistics of four types of darknet traffic

control plane attacks are often used to launch data plane
attacks. For example, IP address hijacking is exploited by
attackers to steal IP address blocks which are subsequently
used to perform malicious activities such as sending spam
or launching DDoS attacks to thwart trace back.

Our main finding is that networks associated with darknet
traffic tend to exhibit more routing misconfiguration behav-
ior in the following dimensions. There is slightly more rout-
ing instability associated with address prefixes observed in
darknet data than other prefixes, as evidenced in the slightly
larger number of routing updates for darknet prefixes. Ex-
amining evidence of routing misconfigurations in the form of
private AS numbers in AS paths and bogon prefixes in ad-
vertised routes again indicate that networks sending traffic
to darknet tend to have more mismanaged routers. Finally,
we find preliminary evidence that routing updates associated
with darknet educational networks are more likely to have
MOAS conflicts indicating potential IP hijacking attacks.

3.1 Routing anomaly classification and detec-
tion

We broadly define two classes of routing anomalies. The
first is associated with anomalies due to network mismanage-
ment resulting in misconfigurations or routing instabilities.
Routing misconfigurations, studied previously in measure-
ment studies such as [11], include events such as leaking
network’s internal address blocks, i.e., deaggregation and
announcing routes violating AS relationships causing traffic
blackholes. Routing instabilities are usually a consequence
of physical network failures or improper network configura-
tions. Both misconfiguration and persistent instability are
likely caused by unintentional improper management of net-
works. The second class of routing anomalies directly results
from malicious intent and include attacks such as IP address
hijacking or propagating incorrect routing information to
blackhole traffic. We summarize these two classes and their
basic detection techniques below.

• Network mismanagement:

– Routing instabilities: networks experience sig-
nificant instability on the control plane can be
characterized by the number of routing updates
and their interarrival times.

– AS path loops: updates containing AS path
loops directly violate the loop-free routing pro-
tocol semantics and can be easily detected.

– Deaggregation: improper configuration of route
filters may cause internal prefixes often of longer
mask length to be leaked to external networks.
This may increase routing table sizes, causing
router memory exhaustion. It can be detected
by updates of small prefixes covered by currently
available routes.

– Incorrect routing information: routing an-
nouncements containing semantically incorrect
information such as private or unallocated AS
numbers or bogon prefixes (prefixes that are
known to belong to the private or unallocated
IP space) are often a result of route filter mis-
configurations. Such private information is used
internally and should not be globally advertised.

• Routing protocol attacks:
We focus on the IP address hijacking attack only, as
it has been known to be used by attackers to conduct
malicious data plane activities such as spam [1]. This
attack occurs when attackers intentionally announce
routes to prefixes that they do not own. Networks
receiving such routing updates subsequently may be
mislead into using them as their best routes and send
traffic destined using these stolen prefixes towards the
networks controlled by attackers.

Detecting such attacks often relies on identifying con-
flicting origin ASes in routing updates or MOAS (Mul-
tiple Origin AS) conflicts [12] as well as short-lived na-
ture of such updates [13]. However, legitimate reasons
for MOAS conflicts also exist due to multi-homing,
thus significant false positives may result using such
simple heuristics. Correlation with data plane anoma-
lies can improve detection accuracies.

Next, we correlate different types of routing anomalies
with darknet prefixes. We focus on analyzing several types
of routing anomalies: routing instabilities, updates with AS
paths containing private ASes, bogon prefixes, address de-
aggregation, and finally AS path routing loops. Table 6



Anomaly ASes Prefixes % all % Darknet % all Anomalous Packets Distinct /24s Routing
Type Anomalous ASes ASes Prefixes Updates

Bogon IPs 139 474 83.3% 1.2% 15% 98324751(17.8%) 76682(18.3%) 1769 (12%)
Private AS 37 139 46.8% 0.31% 41.9% 147859 (0.02%) 216(0.05%) 420(2.8%)
Deaggregation 104 194 10.4% 0.28% 7.4% 37228709(6.1%) 27843(6.4%) 2240(15.2%)
AS Loop 21 1258 80.7% 0.18% 33.2% 15121202(2.1%) 14225(3.3%) 39(0.26%)

Table 6: Anomalies in the darknet
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Figure 6: Routing update distribution (for one day
of Feb 28th, 2006)

shows the statistics for observed routing anomalies in dark-
net prefixes and ASes. We choose these anomalies because
they are more likely due to mismanagement of networks orig-
inating such anomalies. We also study suspicious IP hijack-
ing attacks to identify possible correlation between control
plane and data plane attacks. The routing anomalies in
network mismanagement class defined before can precede or
follow data plane anomalies. However, the routing proto-
col attacks, e.g., IP address hijacking precede data plane
anomalies. In this case, we can use hijacking anomaly ob-
served in control plane to help filter data plane malicious
traffic, while data plane information can be used to increase
the confidence of routing plane anomaly detection.

3.2 Routing instabilities
A previous study by Rexford et al. [14] shows that popular

prefixes, or destinations that receive a large amount of traffic
tend to have more stable routing, i.e., there are fewer routing
updates associated with these networks compared to less
popular networks. Motivated by this work, here we examine
the routing stability of networks containing darknet traffic
sources as shown in Figure 6 compared with all prefixes.
The cumulative distribution of the total updates for one day
time period of Feb 28th, 2006 (within the 5 day time period
over which the darknet data was collected) indicates that
darknet prefixes have slight more updates. However, most
prefixes are observed to be quite stable: with more than 80%
of darknet prefixes have fewer than 60 updates during the
entire day across many BGP feeds from RouteViews.

3.3 Private AS routing announcements
Private AS numbers according to RFC 1930 in the range

between 64512 through 65535 are often used internally and
should not be advertised externally. Similarly, unallocated
AS numbers should not be externally used. However, mis-
managed networks may use private AS numbers as their own
AS number in announced routes. We found altogether 274
prefixes were announced with private AS numbers as the ori-
gin AS some time in the history data of 3 months. Although
during the examined five day period, these prefixes have

changed the origin ASes to be 88 non-private ASNs, they
may be mismanaged given the history. Based on such intu-
ition, we correlate these 274 prefixes with darknet prefixes
and found that 139 (41.9%) of them are observed in darknet.
These darknet prefixes are announced by a total of 37 ASes
(41.9% of all 88 anomalous ASes) with non-private ASN in
the latest routes. These 37 ASes were possibly misconfigured
to use private ASN some time in the history. Furthermore,
we found that although these networks do not cause much
traffic, they cause relatively many updates, shown in the last
three columns of Table 6.

3.4 Bogon prefix announcements
Bogon prefixes are private (in RFC1918 space) or un-

allocated addresses. We use the bogons list in CIDR re-
ports [15] to identify altogether 168 ASes announcing such
routes within the previous four months from the darknet
data time period. Among these ASes, we found most of
them are observed in darknet: 139 ASes or 83.3% of the 168
ASes, shown in the first and third column in Table 6. These
ASes are the origin ASes of 474 darknet prefixes, shown in
the second column. Although these ASes correspond to a
small portion in all darknet ASes (1.2%), they are respon-
sible to relatively large amount of traffic – 17.8% of total
packets received in darknet. Hence, we conclude that most
of the networks announcing bogon prefixes are observed in
darknet and are also relatively active in sending traffic.

3.5 Address deaggregation
Deaggregation behavior is defined to be advertising many

small prefixes covered in larger prefixes already present. It
can be caused by misconfiguration, leaking out many sub-
nets from one’s internal network. Routers receiving such
deaggregated announcements may experience resource ex-
haustion in router memory and CPU processing.

Keeping track of the prefixes announced by each AS in
the routing table and all distinct prefixes each AS announces
during all five days, we observe that altogether 1003 ASes
have deaggregation behavior , 104 of which are observed in
darknet. Again, these observed 104 ASes cause relatively
large amount of traffic in darknet. Moreover, they are re-
sponsible for a large fraction of updates. They are possibly
more mismanaged on the control plane.

3.6 AS path loops
It is recommended that routes containing AS loops should

not be used due to possible forwarding loops. Each router
should perform loop detection on received routes and ex-
clude such routing updates. However, in practice we still
observe AS routing loops in advertised routes. These are
likely caused by ASes not performing the loop checking or
incorrectly prepending their own AS numbers in the paths.
Thus, the repeated AS in the AS path is likely responsible.

Since the responsible ASes in the routing loop are more
likely to be mismanaged, we analyze all the AS path loops
within 5 days period. Interestingly, we found that 21 ASes,
80.7% of all the responsible ASes, are observed in Darknet.



Although they are a very small fraction of Darknet ASes,
they are responsible for relatively large amount of traffic.
We further analyze the prefixes announced by these ASes
and observe 33.2% of these prefixes appear in darknet, which
do not cause many updates.

3.7 Suspected IP hijacking attacks
The suspicious MOAS behavior is defined as the prefix an-

nounced as originated by an AS which rarely originates such
a prefix in history. History information helps reduce false
positives. We measure the rareness of one prefix with an
origin AS by the estimated probability, which is defined to
be the fraction of times such a prefix was announced by an
AS compared to all announcements for such prefix in history
data. Instead of analyzing the suspicious MOAS behavior
in all prefixes, we group prefixes by different metrics. Then
we analyze the anomalous fraction of prefixes in both dark-
net and all prefixes under each group. The first grouping
metric is mask length. The intuition is that mismanaged
networks are usually small edge networks compared to large
ISP networks, and announce small prefixes. Mask length
determines network size. Smaller prefixes (e.g., len≥22) are
observed to have a larger fraction of MOAS anomalies in
darknet. We found that a larger fraction of darknet prefixes
are announced by rarely found origin ASes. As shown in
Figure 7, with strict definition of rareness (smaller proba-
bility value), there are more anomalous prefixes in darknet
compared to the general case.

The second grouping metric is AS type. As shown in
Figure 2, ASes can be classified into different geographic lo-
cations and business types. Similar to prefix mask length,
business type also indicates the possibility of mismanage-
ment. For example, Asian ASes, broadband ASes and ed-
ucational ASes are more likely mismanaged. As shown in
Figure 8, we analyze the suspicious MOAS behavior under
different geographic locations and business types. Interest-
ingly, we found that in educational network, darknet always
has more suspicious MOAS incidences compared to the case
for all prefixes.

Previous work [1] has shown that there is a strong correla-
tion between prefixes originating spam activities and short-
lived BGP announcements of such prefixes, an indication of
possible IP hijacking. Besides spamming, other malicious
activities can also be conducted by IP hijacking. In the
following, we correlate darknet traffic with BGP updates.
We identify in darknet data ASes using short-lived BGP an-
nouncement to perform scanning, propagate worm, or other
malicious behavior, and study the duration of such short-
lived BGP announcements.

Similar to [1], we consider routing announcements lasting
less than one hour as short-lived. We define the time period
in which we observe both darknet traffic and short-lived an-
nouncements to be the overlap period. We observe 0.02%
prefixes announced by 183 ASes whose overlap period cov-
ers 80% of the entire period when traffic is sent. 90% of the
short-lived announcements last less than 30 minutes. More-
over, we observe around 20 IPs only send traffic whenever
there is a corresponding short-lived announcement, indicat-
ing possible IP hijacking for performing malicious scanning.

4. MALWARE MITIGATION BASED ON
JOINT DATA AND CONTROL INFOR-
MATION

ISPs control the Internet routing infrastructure and have
traditionally been paid to carry packets regardless of their
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mask lengths
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intent. The major implication of this arrangement is that In-
ternet security is usually performed at the destination rather
than at the source. We thus spend vast amount of resources
to block traffic that attacks us rather than block attacks
before they leave a network. On the other hand, recur-
ring malcode is an Internet-wide problem and one possible
Internet-wide solution is simply to filter all misconfigured
and malicious traffic before it reaches its destination. The
critical problem is how to detect and then mitigate on an
Internet-wide scale. We decompose filtering solutions into
four main categories.

Filter the data plane using data plane information:
This is the traditional approach used by firewalls, IDS’s,
and other common security systems. This approach is very
effective at filtering malicious and misconfigured behavior
when the behavior can be characterized using static signa-
tures. However, malware activity is constantly changing and
evolving so creating and deploying signatures is sometimes
ineffective, expensive, and requires on-going effort. Further-
more, payload-level analysis is extremely processing inten-
sive and thus expensive on high-speed links.

Filter the control plane using data plane informa-
tion: Another filtering approach is to use information gath-
ered by monitoring the data plane to filter the control plane.
One simple approach is to have ISPs reject routes advertised
by ASes that have been classified as “infected” using data
plane intelligence such as packets captured by a honeypot.
In order for such an approach to be feasible the number of
infected ASes must be few. A more fine-grained approach is
to filter only those prefixes classified as “infected”. However,



we found that approximately 31% of all the ASes and 33%
of all the prefixes are observed to send at least one packet
to the darknet over the 5 days, suggesting that the sources
for worms, bots, spam, and other anomalous data plane pro-
cesses are widespread and cannot be eliminated by filtering
the route advertisements from a few ASes.

Filter the control plane using control plane infor-
mation: A third approach is to again filter the routes in the
control plane but instead use the control plane as the source
of detection data to classify certain routes as “infected”. We
have shown that certain classes of mismanagement on the
control plane are correlated with data plane anomalies. This
is a very important result because the data suggests that
certain classes of data plane anomalies can be predicted by
examining purely control plane information. The challenge
is that filtering only control plane data using control plane
anomaly detection only would again produce very coarse-
grained results as described above. It might be possible
for stopping certain specific types of malicious behavior like
route hijacking [16], however, it would be very difficult to
deploy control plane filters to stop general malicious and
misconfigured behavior.

Filter the data plane using control plane informa-
tion: The final filtering approach is to filter the data plane
based on information collected on the control plane. For
example, if a control plane IDS (CIDS) produced an alert
indicating a specific prefix might be hijacked, a data plane
filtering device could provide little value beyond what a con-
trol plane filter could have accomplished.

Hybrid control plane/data plane filtering: A pow-
erful use of control and data plane information is to combine
them. For example, a CIDS could be used to (1) detect mis-
configured and suspicious prefixes (2) attach a confidence
factor to each Internet address which is then fed to a data
plane filtering device (3) the data plane filtering device then
inspects each incoming packet and only performs more ex-
pensive operations like deep packet inspection on packets
whose source Internet address has a low confidence factor
(i.e., are from a suspicious address block).

There are clearly caveats to this approach including the
need to validate that the source address is not spoofed (to
help avoid this problem one might take the confidence factor
into account only after a TCP session is established) but
there is still significant potential for reducing the load on
expensive inline data plane filtering devices.

We show an example from the perspective of a local ISP
the impact of filtering using joint control and data informa-
tion. We analyze traffic using Netflow data from March 1 to
March 5 collected in our local /16 network. Although pre-
fixes contributing heavily to malicious activities indicated in
darknet data also send significant amount of normal traffic
found in Netflow data, we can still effectively filter darknet
traffic with low false positives using the criteria based on
the cumulative probe duration of traffic sources to the dark-
net. Specifically, filtering top 20 prefixes sorted by the probe
duration helps reduce 12% of the darknet traffic while only
affecting 1.5% of legitimate traffic. Similarly, filtering top
20 ASes sorted by probe duration eliminates 51% of darknet
traffic while only affecting 4.5% of legitimate traffic. This
shows a significant reduction of malicious traffic with low
false positives.

5. CONCLUSION
This paper illustrates how to characterize the control

plane data of anomalies detected in the data plane and

demonstrates how networks that are worm-infected, spam
origins, and the source of other anomalous data plane be-
havior also exhibit more anomalous control plane behavior
compared to other ASes. We use this information to eval-
uate the utility of combined data plane and control plane
approaches to malware mitigation. Finally, we propose a
hybrid approach by using anomalies detected on the control
plane to classify packets as suspicious based on their source
address to decrease false-positives and increase performance
of data plane filtering systems.
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