
Reval: A Tool for Real-time Evaluation of DDoS Mitigation Strategies

Rangarajan Vasudevan, Z. Morley Mao
University of Michigan

Oliver Spatscheck, Jacobus van der Merwe
AT&T Labs — Research

Abstract

There is a growing number of DDoS attacks on the In-
ternet, resulting in significant impact on users. Network
operators today have little access to scientific means to
effectively deal with these attacks in real time. The
need of the hour is a tool to accurately assess the im-
pact of attacks and more importantly identify feasible
mitigation responses enabling real-time decisionmaking.
We designed and implemented Reval, a tool that reports
DDoS attack impact in real time, scaling to large net-
works. This is achieved by modeling resource constraints
of network elements and incorporating routing informa-
tion. We demonstrate the usefulness of the tool on two
real network topologies using empirical traffic data and
examining real attack scenarios. Using data from a tier-1
ISP network (core, access and customer router network)
of size in excess of 60000 nodes, Reval models network
conditions with close to 0.4 million traffic flows in about
11 seconds, and evaluates a given mitigation deployment
chosen from a sample set in about 35 seconds. Besides
real-time decision support, we show how the simulator
can also be used in longer term network planning to iden-
tify where and how to upgrade the network to improve
network resilience. The tool is applicable for networks
of any size and can be used to analyze other network
anomalies like flash crowds.

1 Introduction

Denial of Service (DoS) and Distributed Denial of Ser-
vice (DDoS) attacks are on the increase in today’s Inter-
net [1]. They have morphed into extortion tools to attack
both small and large businesses alike [2]. Since a large
number of customers share the same network infrastruc-
ture, attack traffic traversing an ISP network causes ser-
vice loss not only to the targets of the attacks but also
to other customers. Therefore it is important for net-
work operators to mitigate the impact of DDoS attacks

to continue providing guaranteed service. For this, net-
work operators first need to understand the resilience of
their networks to attacks, and secondly require a method
of determining the best mitigation strategies to follow.
Both of these need to be performed in real time to be of
benefit to the customers. As soon as an attack occurs, at-
tack impact analysis is required to provide real-time net-
work information in terms of which links are overloaded,
which customers are affected etc. This in turn guides net-
work operators in real-time decision making to evaluate
and choose the best combination of mitigation responses
from the set of mechanisms available in the network.
To perform attack impact analysis in real time, mea-
surement studies on attacks — either direct [3, 4, 5, 6]
or indirect [7] — can be conducted. To obtain a com-
plete network-wide view, it would require instrument-
ing each router in the network with a measurement setup
to collect relevant data resulting in excessive overhead
and cost. Even if such measurements are instrumented
network-wide, there is still a need to aggregate data to
generate the combined report for network operators, re-
quiring prohibitive communication overhead and exces-
sive delay. Furthermore, measurement data alone do not
provide information on how to mitigate against attacks
as defense options still need to be evaluated and ranked.
Our pragmatic approach is to use simulations com-
bined with partial measurement data collected from the
network without requiring complete network link-level
measurement instrumentation. Simulations coupled with
routing analysis provide a holistic view identifying at-
tack impact on the entire network. To meet real-time re-
quirements, we have realized informed optimizations to
the common-case tasks such as route computation in our
tool, and choose the right granularity to provide attack
impact information on the fly.
Deciding the best attack mitigation strategies by trial-
and-error through actual network deployment is too
costly and time consuming to carry out in real networks.
To avoid this expense, we argue again that simulation

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 157

is a preferred avenue of pursuit, as it allows low-cost,
fast analysis of various attack scenarios and network con-
ditions without actually deploying them on the physical
network. In short, our simulator provides both real-time
decision support as well as long-term network design
analysis capabilities for operators of even large-scale IP
networks involving tens of thousands of network ele-
ments with an order of a million traffic flows traversing
the network simultaneously.
The rest of the paper is organized as follows. We first
describe our tool Reval in Section 2. A few simulation
scenarios along with their results for the Abilene network
are presented in section 3. Then, our experience using the
tool in evaluating defense mechanisms for a large ISP
network is presented in Section 4. Finally, we discuss
related work in Section 5 and conclude.

2 Reval Description

In estimating the impact of attacks in real time, today’s
network operator has to consider data of many different
types like network topology, routing, traffic matrices etc.
To obtain the right mitigation for an attack, she has to
use her experience and intuition in arriving at an optimal
answer from multiple impact estimations. Drawing from
our experiences with a large tier-1 ISP, we find that this
process is currently manual and very complex to realize
in real time. The simple solution of static deployment
of defense mechanisms does not work in practice as we
demonstrate in Section 4. Therefore, we require a tool
that automates the process of impact analysis and evalu-
ates desired mitigation scenarios tailor-made to an attack
handling the complexity of the whole task as a routine.
Using this tool, the network operator needs only inter-
vene in specifying the mitigation mechanism to evaluate.
Then, once the tool finishes execution, the network oper-
ator can choose the mitigation deployment scenario that
offers the desired defense for her network. We provide
Reval as the tool to fulfill this role in any network where
mitigation deployment is not immediately obvious.
The goals of an attack analysis tool are to: (i) Evalu-
ate attack impact on a given network; (ii) Evaluate dif-
ferent defense mechanisms; (iii) Emulate real conditions
as close as possible (routing algorithms, best practices,
network element behavior); (iv) Be configurable, user-
friendly, and extensible; (v) Be scalable and efficient,
providing real-time feedback; (vi) Execute on off-the-
shelf workstations with modest resources. No existing
tools/simulators achieve all the above goals in a satis-
factory manner, as we discuss in Section 5. The over-
all design of Reval is depicted in Figure 1. In brief, it
takes as input the topology of the network under anal-
ysis, background traffic (not malicious or bad) informa-
tion, attack traffic information, attack mitigation policy

configuration, and other preferences for generating vari-
ous attack impact metrics. The tool provides capabilities
for what-if analyses to understand how well suggested
mitigation responses work, and also supports long-term
network planning.

2.1 Design Space

Before studying the impact of an attack on a network,
we first state the type of attacks we consider and how
we calculate their impact. We intended Reval to work
with any DDoS attacks that cause impact at the network
level — either to access links or core links. DoS attacks
like SYN floods and ICMP floods exploit protocol be-
havior and send large traffic volumes destined towards
an end-user or a small set of end-users. If these attacks
are not large enough to overload any part of the ISP net-
work, then they are not considered in our tool. Hav-
ing said that, we can use Reval in numerous scenarios
including network management scenarios like capacity
planning, overprovisioning; other impact scenarios like
flash crowds; analyzing target(s)-specific attack impact
and defense mitigation. In this paper, we outline one par-
ticular use of Reval while its design readily lends itself to
any situation where network-level analysis is required.
Given that ISP networks are set up for profits which
predominantly comes from customers who pay to use the
network, a reasonable way of defining impact is to relate
it with the degree to which customers can communicate
without noticing any abnormal performance. We chose
to capture this way of calculating impact in our tool at a
per-customer flow level. That is, network impact of an
attack is directly related to the number of customer flows
impacted due to performance degradation. By computing
attack impact at the flow-level, we avoid the need to carry
out time-wise expensive packet-level simulations. Also,
we omit the notion of a simulation clock in Reval. The
main drawback of these modeling decisions is that the
tool is unable to provide time-based fine-grained statis-
tics such as percentage of packets dropped, duration of
link and router overloads etc. However, as we show in
Sections 3 and 4, these statistics are not always required
for assessing attack impact.
The data flow of Reval is depicted in Figure 1. Note
that the input required for simulation is data that is typi-
cally collected by network operators in day-to-day opera-
tions. Network topology information is directly extracted
from router configuration files; traffic information is di-
rectly obtained from Netflow data typically generated by
routers in the network. Similarly, the availability of com-
mercial DDoS detection systems [8, 9] allow operators to
collect attack traffic information. For example, the tier-1
ISP that we studied has a DDoS detection system de-
ployed at key locations, which, together with Netflow
and routing data allows us to construct attack flows for

2
Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association158

Attack impact: e.g.,
threshold-based overloaded links,
Mitigation response suggestions,
Network planning suggestions

Topology
Info

Link

Capacity

Link weight

RouterType

Linecard configs

Resource limits

Network topology input

Routing policy

REVAL NETWORK ATTACK SIMULATOR

Attack impact assessment

Short-term attack mitigation analysis
(traffic blackholing, filtering, scrubbing, intelligent routing,

capability-based routing, etc.)

Long-term network planning
what-if analysis

(link upgrades and placement, scrubber placement,etc.)

Reval output:

Other preferences: e.g., threshold for link overload

Network
Operator

Experience
Intuition

Bitrate

Packetrate

Attack history

Src-Dst

Attack
Traffic
Info

Routing state

Attack info input

Background info input

Background
Traffic Info

Src-Dst

Bit rate

Packet rate

Routing state

Preference of mitigation responses,
attack mitigation capability of routers,
location of scrubber boxes, etc.

Attack mitigation policy input

Figure 1: Reval architecture.

the whole network. All this data can be collected from
the network and processed in real time while information
that changes infrequently, like the network topology, can
be updated as required.

2.2 Implementation

In this section, we describe how we build our tool to re-
alize the above goals and capture attack impact at the
flow-level. First, we highlight the core functionality of
Reval and then discuss various features of the simulator
that make Reval an attractive tool for network operators.

2.2.1 Core functionality

We now describe how the information in Figure 1 is
used within Reval. The simulator reads in the topol-
ogy information in terms of links and routers and con-
structs a graph in the Stanford GraphBase [10] format
that provides an efficient and well-abstracted representa-
tion. We store all additional information of network ele-
ments where appropriate by suitably adding to the SGB
library data structure. Router types and line card configu-
rations are stored at a per-vertex level while link informa-
tion of capacity and link weights are stored at a per-arc
level. For each network element, resource limits are also
stored if applicable.
The attack information shown in Figure 1 comprise
of multiple traffic flows which together form the ingress-
router-interface to egress-router-interface attack traffic
matrix. The following procedure is then used in setting
up each traffic flow in the matrix: (a) The vertices in the
graph corresponding to the ingress and egress routers of a
flow are identified; (b) Using the link-state shortest path
routing, e.g., as in the OSPF protocol, the shortest path

between the source and destination vertices is found. We
have implemented the industry best-practice of splitting
traffic flows across equal-cost paths as well; (c) The flow
is set up along the shortest path(s) updating the state in-
formation of each link carrying the flow. This includes
properties such as link utilization, amount of traffic car-
ried, and number of flows carried.
As depicted in Figure 1, the background traffic in-

formation is also specified as a collection of flows spec-
ified at a per-router interface level. These traffic flows
together form the background traffic matrix. The proce-
dure for setting up background traffic flows is executed
once all attack flows are setup and is similar to that out-
lined above. At every network element where statistics
are updated while setting up a flow, we check whether
any limits are violated. If so, the element is said to be
overloaded and the background traffic flow currently be-
ing set up is said to be impacted. The user of the simu-
lator can specify a threshold of when a network element
is considered overloaded. Here, a network element could
be something as specific as a line card in a router or a
backbone link in the core network.

Other input information required is related to the
particular use of the simulator like evaluating attack miti-
gation policies under certain network conditions, and as-
signing values for parameters of the simulation based on
the experimental scenarios desired.

2.2.2 Peripheral functionalities

Routing algorithm support: The default routing algo-
rithm is the shortest path routing which is widely de-
ployed in most IP networks. We also provide implemen-
tations of two other routing algorithms that examples of
dynamic routing — namely, the max-flow routing algo-

3
Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 159

rithm (using ideas from [11]) and a custom load-sensitive
routing algorithm.

Defense mechanisms support: We support multiple
defense mechanisms that can be enabled via a config-
urable file-based interface to the simulator. A modified
version of the pushback algorithm [12] is supported. In
addition, we also provide means of enabling packet fil-
ters with varying capabilities across any set of routers.
Though we do not simulate traffic flows at the packet-
level, this feature is nevertheless useful as it abstracts the
inner workings of the filter while maintaining its effect.
As we describe in Section 3, we use this filtering abil-
ity to realize selective blackholing of traffic, in which a
subset of routers drop traffic to a particular destination.
Selective blackholing is done local to each router.
A third defense feature which we implement is traf-
fic scrubbing. Scrubbers are “boxes” deployed in the
network that take in traffic and scrub the “bad” traffic
from the “good” traffic [13]. Again, rather than concern-
ing ourselves with the algorithms used for scrubbing, we
abstract the effect of these scrubbers. Scrubbers can be
enabled at multiple network locations in the simulator.
Since scrubbers are physical boxes, there are only a few
scrubbers that are deployed in a real network due to cost
considerations. An intelligent routing platform such as
RCP [14] could be used to realize both the above de-
fenses in a real network.
Reval also provides the right framework and exten-
sibility to evaluate defense mechanisms not yet com-
mon in today’s networks. For example, it can calculate
the amount of bandwidth required for control traffic in
a capability-based DoS defense mechanism [15]. To-
wards end-host protection from DoS attacks, [16] sug-
gest changes to the Internet architecture. However, the
effect of some of these changes might be overridden by
security policies of ISP core networks. Reval helps quan-
tify the effects of core network security policies.

Analysis support: One of the useful analysis support
functions that Reval provides is the simulation of the hy-
pothetical case when the particular attack under consid-
eration had been larger in terms of volume rate. This is
achieved by multiplying the traffic volume by a constant
factor called the “scaling factor” and then simulating us-
ing this scaled-up attack. In the future, we intend to scale
other attack properties to obtain a more comprehensive
picture. In our simulations described later, we are partic-
ularly interested in computing the greatest scaling factor
(GSF) by which an attack can be scaled before overload-
ing a core or access link.

Granularity of Simulations for Impact Assessment:
Simulation granularity affects the quality of results. As
simulations become more fine-grained, one would ex-
pect the accuracy of results obtained to improve and, in
the limit model the real network exactly. The trade-off

Large Tier-1 ISP
> 60000 nodes, 0.4 million flows

Real-time 11 secs, 50 MB
w/o Vertex Hash Table 400 secs, 49 MB

w/o Dynamic Programming 900 secs, 45 MB
w/o Graph Reduction > 4 GB
w/o Functional Reuse 11×5=55 secs, 50 MB
(for 5 iterations) (versus 4.5+(11-4.5)×5=37 secs)

Table 1: CPU time and memory utilization: demonstrating
performance impact of each optimization.

is higher complexity of simulations. We have explored
alternative levels of granularity of simulations, one of
which simulates the packet-rate limits of network ele-
ments. Routers typically have limitations not only in
terms of the volume of traffic they can handle but also
in the number of packets serviced owing to a fixed num-
ber of packet buffers [17]. In fact, operational experi-
ence suggests that the number of packets serviced de-
creases as more advanced security features are enabled
in a router (since more work is required in processing
each packet). From an offline study using this simulator,
we found that typical attacks impact networks not only
via their bit rate but also sometimes due to their packet
rate. For the example network in the Section 3, we carry
out capacity-based simulations only because details re-
garding the routers used in that network (and associated
packet limits) are not publicly available. However, our
simulator has the capability to carry out simulations at
more than one granularity level and can be extended to
other dimensions of granularity as well.

Impact metrics: A sizable number of impact metrics
can be enabled at the time of execution of the simula-
tor. Metrics range from network properties like network
core link utilization, the GSF, network-geographic distri-
bution of traffic, network throughput etc.

Miscellany: The tool is modular, extensible, config-
urable and robust to input data errors. The simulator also
handles network data as input feeds and executes on an
automated basis within the tier-1 ISP.

2.3 Simulator optimizations

Below we enumerate the design optimizations of our
simulator. Note that the main goal of these optimizations
is to reduce simulator runtime. Table 1 presents a sum-
mary of the CPU resource utilization for the real-time
version of the simulator (highlighted in bold) where one
iteration of the core functionality is executed (except for
the last entry). The table also highlights the contributions
provided by the various optimizations. For our simula-
tions, we used a machine with 2 Intel R© XeonTMCPU of
3.60 GHz processor speed each sharing an overall RAM
of 4 GB running on the RHEL OS with Linux kernel ver-

4
Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association160

sion 2.4.21. Program code, written in C, was compiled
using gcc (version 3.2.3) and the “-O 4” flag.

Hash Table of Vertices: Network elements are eas-
ily accessed in constant time using indices to the vertex
array while network input data like Netflow records typ-
ically use names to refer to network elements. To avoid
converting retrieval into an O(|Vertices|) operation, we
construct a hash table where each element is hashed us-
ing its name as the key while the hash value stored is its
array index in the graph. The cost of constructing the
hash table is amortized over the simulations.
For our implementation of the hash table, we directly
adopt the hash algorithm and implementation provided
by [18]. In our use of the hash table, we store the number
of the vertex with its name as the hashing key. From
Table 1, we see that using this hash table has sacrificed
a small amount of memory in return for two orders of
magnitude improvement in time.

Pre-computation of Shortest Paths: ISP network
topologies do change but typically not over short time
scales (unless there are failures). Most changes hap-
pen to customer connectivity to the access network while
the core and access networks themselves change infre-
quently. Also, ISP networks are hierarchically orga-
nized: customers connect to access networks which fun-
nel data towards a hub or a backbone router before enter-
ing the core network. This hierarchy invariably creates
multiple equal-cost paths across access router interfaces
but the multiplicity is inherent in the ISP network only
and is independent of the customers.
Both the above observations led us to take the ap-
proach of pre-computing shortest paths across routers
within the ISP network. When a particular traffic flow
needs to be set up between customers, we first determine
the respective access routers these customers connect to.
In our data structure for the network, this takes a single
lookup only, since customers are modeled as connecting
to a single access router in the ISP network (we model
each access interface as connecting to a unique customer
of the ISP network; this does not however reduce the ac-
curacy of simulation since the effects of multi-homing
would be reflected in the traffic matrices input to the sim-
ulator). The pre-computed shortest path(s) between the
routers is then used to set up the flow. This way, we
can avoid repeated shortest path computations. A useful
side effect of pre-computation is that we can accurately
model equal-cost paths by splitting traffic at each router
according to the number of equal-cost paths available at
that router. This is in relation to the shortest paths com-
putation natively available in the SGB library.

Dynamic Programming to Compute Equal-Cost
Paths: The above description shows the benefits of
pre-computing shortest paths. However, the process of
computing all equal-cost shortest paths between each

node pair within the ISP network can itself be time-
consuming. This is especially true as the typical size of
an ISP can be on the order of at least several thousand
nodes. So, we adapt the dynamic programming-based
all-pairs shortest paths algorithm described in [19]. In
particular, we modify it to incorporate the computation
of all equal-cost shortest paths of a select set of nodes
which we discuss in the next bullet point.
Table 1 illustrates the benefit of dynamic programming
over the shortest paths computation native to the SGB
software code. We observe significant improvement in
run-time in return for a modest 5 MB increase in storage.

Graph Reduction: As stated earlier, we assume that
every customer connects to a single access router. So,
customer traffic at the time of entering and exiting the
network has a single choice of next-hop. Hence, for path
computation, it is enough if we consider the core and ac-
cess network of the ISP alone leaving the customers out
of the calculations. This reduces the size of the graph we
have to consider for our path computation by two orders
— from in excess of 60000 nodes (core, access and cus-
tomer routers) to little more than 600 nodes. The entry
in Table 1 pertaining to this optimization illustrates why,
more than just a desired optimization, this is required to
execute the simulator on off-the-shelf workstations.

Functionality Re-use: Often the same input data is
used in multiple runs of a common piece of simulator
code while varying just the parameters fed to the sim-
ulations. This could either be within a single scenario
or across multiple scenarios. In either case, much time
is saved by reusing functionality that is required but re-
mains the same across different iterations. For example,
one very useful feature to have is to read in the network
topology once only while resetting the network state at
each network element every time attack impact needs
to be computed given a parameter change only (with-
out changes in network topology). The cost savings in
not having to re-read the topology more than offsets the
cost involved in visiting every vertex and reinitializing
its property variables. Furthermore, storing such data in
memory does not make the memory usage prohibitive as
is evident from Table 1.
An example where the benefit of functional reuse can
be observed is the scenario of computing the GSF value
before core network overload. This computation requires
changing the scaling factor and re-executing the core
functionality code of the simulator. The entry in Ta-
ble 1 provides the expressions which captures the time
required in the two cases when this optimization is and
is not enabled (at 5 iterations). For a typical attack on
a large tier-1 ISP network, the average value of itera-
tions is 5 which results in an execution time of 37 sec-
onds with optimization and 55 seconds without. Note
that in the real-world where topologies change by small

5
Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 161

amounts across consecutive days, we can reuse already
initialized topology information across multiple simula-
tion runs and simulation scenarios thus amortizing fur-
ther the one-time computational overhead of 4.5 seconds.

Choice of Data Representation: The Stanford
GraphBase (SGB) model [10] provides a useful abstrac-
tion of network data where each vertex abstracts a net-
work element and each arc a network link. It also
provides a convenient mechanism for storing arbitrarily
complex data structures required to maintain state local
to each vertex and arc. Moreover, the memory usage is
optimum owing to a byte array storage of data. We base
our implementation ideas on the GT-ITM project [20] in
its use of the SGB model for topology modeling.

Others: Apart from the above techniques, we also
tried memory mapping the files comprising the attack
and background traffic matrices using the mmap com-
mand. The reasoning behind this was that a typical traf-
fic matrix file comprises of close to tens of MBs of traffic
flows and disk I/O was thought to be a bottleneck in mak-
ing the simulator run in real time. However, as it turned
out, memorymapping proved time-wise slightly more in-
efficient than the simple read/write functions. This was
probably because of a Linux-specific implementation de-
sign which rendered read/write operations faster when
the file was read sequentially.

3 Case Study: Abilene

The primary use of our tool has been on a large tier-1 ISP
but due to the proprietary nature of the data, we cannot
reveal detailed results of our experience using the tool.
Instead, we discuss at a high-level results from the tier-1
ISP network in Section 4. Here we present a case study
use of our real-time simulator on an example network,
the Abilene network using publicly available data.
Based on our experience, network operators facing an
attack typically choose a particular mitigation strategy
without evaluating all available defense options due to
lack of time. With Reval, we provide network operators
with a systematic way of evaluating available defense op-
tions in a real-time manner. We illustrate this point in this
case study by considering two real-time attack mitigation
mechanisms: traffic scrubbing and selective blackholing
(described in Section 2).
The Abilene Network is an education backbone net-
work part of the Internet2 initiative [21]. The core of
the network is depicted in Figure 2, and comprises of 11
routers located in various cities across the United States
and is believed to be carrying about 1% of all traffic in
North America [22]. For our simulation scenarios, we
consider the immediate access network of Abilene as
well (not depicted in Figure 2). This gives a total of 11
core and 60 access routers. We use the traffic matrices

Figure 2: Core of the Abilene Network. The ingress and
egress PoPs along with traffic flow rates (in kbps) for attacks
used in the case study are also depicted. AttackOne sends traf-
fic from 3 access routers in Seattle, 2 in Kansas City and 3 in
Chicago to 1 target access router in Atlanta. AttackTwo sends
traffic from 3 access routers in Seattle and 3 access routers in
LA to 1 target each in Atlanta and Indianapolis.

generated using the generalized gravity and simple grav-
ity methods discussed in [23, 24]. Since we require traf-
fic matrices at a per access router level, we use the gravity
model to interpolate from the PoP-level TMs [23].
In what follows, we first qualitatively analyze the bot-
tleneck points in the Abilene Network. This helps us ob-
tain an understanding on the likely points of attack im-
pact. We then use this information to manually design
simulation scenarios to illustrate the use of our tool for
evaluating attack mitigation strategies. This is done by
designing targeted attacks and tracking the points of at-
tack impact in the network as we incrementally deploy
mitigation schemes. The goal here is to illustrate that
the Abilene core network is substantially oversubscribed,
similar to other IP networks.

3.1 Oversubscription Factor

We seek to study the survivability of the Abilene network
to both random and targeted network attacks by calculat-
ing the Oversubscription Factor. To calculate this factor:
for every core router, first add up the capacities of all
access router links to this core router to obtain the “max-
imum incoming flow” value. Then, add up the capaci-
ties of all core links from this core router to obtain the
“maximum outgoing flow” value. The Oversubscription
Factor is then given as: OversubscriptionFactor =
Max Incoming Flow
Max Outgoing F low

. For a PoP, an Oversubscription Fac-
tor > 1.0 implies that more traffic could be sent via the
access links of the PoP than be accommodated by the
core links in the PoP. The numbers for the Abilene net-
work are provided in Table 2. From the table, we see that
the New York PoP is the most oversubscribed. If each

6
Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association162

PoP-location Oversubscription Factor
New York City 1.833
Chicago 1.803
Washington D.C. 1.779
Los Angeles 1.508
Seattle 1.5
Rest <0.5

Table 2: Oversubscription factor values for Abilene.

link from the access routers to the New York backbone
router is only 100/1.833 (≈ 54.55) % utilized by an at-
tack, at least one core link out of NewYork is overloaded.

To corroborate the qualitative understanding just ob-
tained, we simulate attacks considering just the top 2
oversubscribed PoPs in New York and Chicago. For our
simulations, for each of the 2 PoPs, we consider a set of
100 artificially generated, random-target attacks where
in each attack: every access router of a PoP sends traffic
to occupy 1% of its link capacity to targets chosen ran-
domly from among all access routers outside the current
PoP so that every flow traverses at least one core link.
From Figure 3, for the New York PoP, we see that the
maximum GSF value required across all 100 attacks is
about 50. The utilization given this GSF value is 50%
which is clearly less than the expected value of 54.55%
calculated from the Oversubscription Factor. This cor-
roborates our earlier understanding. Observe that the
same is the case with the Chicago PoP. From the starting
value of both plots, we gather that there are attacks orig-
inating from the New York and Chicago PoP that require
to be scaled in volume by only 27 and 15 respectively to
overload at least one core link. These minima points cor-
respond to attacks whose targets are such that all attack
flows traverse a single core link.

3.2 Mitigation Evaluation

In the previous subsection we performed an analysis of
the critical points in the Abilene network. As we saw,
carefully targeted attacks overload the core at fairly low
scaling factor values, meaning that only a part of access
link capacity is required for this. Network operators need
to employ mitigation mechanisms to lessen or even elim-
inate attack impact on the core. To this end, we now con-
sider a sample real-time attack mitigation policy used by
ISPs today. Our main thesis is not that this sample policy
is the panacea to the attack mitigation problem but that
our tool offers a convenient framework to test a desired
real-time mitigation policy.

15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

Greatest Scaling Factor Value

C
D

F

CDF of the Greatest Scaling Factor before at least one core link is overloaded
for a class of 100 random−target attacks originating from PoPs in the Abilene Network

100 Attacks from New York PoP
100 Attacks from Chicago PoP

Figure 3: Understanding the strength of an attack originating
from the New York and Chicago PoPs required to overload at
least one of the respective oversubscribed core links.

3.2.1 A Sample Mitigation Policy

The sample mitigation policy we consider involves a
combination of traffic scrubbing and selective blackhol-
ing to realize incremental attack mitigation. We aim
to answer the following two important questions: given
an attack, what is the minimum amount of mitigation
required, using a combination of traffic scrubbing and
blackholing to:
• avoid overloading network core?
• avoid overloading the target(s) of the attack?
A flowchart of the policy implementation is shown in
Figure 4. A detailed explanation follows. Note that in
practice, the steps in the policy are executed until the de-
sired level of mitigation is reached. In addition to the
policy, we also consider the mitigation offered by selec-
tive blackholing without traffic scrubbing for compari-
son purposes. In this case study, we perform deployment
evaluation since we consider particular scrubber deploy-
ment scenarios and evaluate this restricted set of options.
However, the simulator has the capability of choosing
various deployments by itself, in a brute-force manner,
and evaluating mitigation options offered in each case.
Step 1 - Ordering attack links: The intuition is that
mitigating traffic from links considered in descending or-
der of bit rate offers the best possibility for significant
reduction of attack impact.
Step 2 - Traffic Scrubbing: Traffic scrubbers are typ-
ically deployed at select locations in the network only.
This is because firstly these boxes are expensive, and sec-
ondly, their false positive rate is low for large traffic vol-
umes. Scrubbers in general seldom affect genuine traffic
resulting in little, if any, collateral damage. At the same
time, to realize the same scope of mitigation as blackhol-
ing we would need to deploy scrubbers at every router
which is expensive. (Henceforth, we refer to “link con-
sidered for scrubbing” as “scrubbed link”.)

7
Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 163

List acess links in descending
order of attack bitrate

Remove top link.
Scrub traffic in top link

destined to attack targets

Links remaining?

Remove top link
Blackhole traffic in top link
destined to attack targets.

(Remaining links are scrubbed)

Start

Stop

Links remaining?

No

Desired Mitigation
Achieved?

Desired Mitigation
Achieved?

No

No

No

Yes

Yes

Yes

Yes

Figure 4: Flowchart of the implementation of our sample mit-
igation policy involving traffic scrubbing and selective black-
holing.

In this step of the policy, given information on the lo-
cation of the scrubbers, the traffic on a scrubbed link is
sent to the closest scrubber in terms of minimum cost
paths. This is done by performing a lookup in the pre-
computed shortest paths table (explained earlier in Sec-
tion 2) for each scrubber location and identifying the
scrubber with the smallest path cost. Once traffic is
scrubbed, residual traffic, if any, is then routed to the
original destination. This implementation of scrubbing
is reasonable and employed in networks today. An im-
portant point is that after identifying the attack target(s),
all traffic in the scrubbed links need to be sent to the
scrubber.

Step 3 - Selective Blackholing with Traffic Scrubbing:
Selective blackholing attack traffic provides greater mit-
igation than traffic scrubbing as all traffic to a set of
targets is dropped local to the ingress router without
entering the ISP network. However, unlike traffic
scrubbing, there is no residual traffic after blackholing;
thus the collateral damage is absolute. Hence, a network
operator resorts to blackholing traffic only if required.
Traffic that is not blackholed is scrubbed. (We refer to
“link considered for blackholing” as ”blackholed link”.)
In our policy implementation, once all attack links
are scrubbed, traffic on the attack links destined for the
attack targets are blackholed in the same descending
order as before. Again, we do not distinguish between
good and bad traffic. The higher collateral cost due
to blackholing is confirmed from simulations as is
demonstrated in Figure 7.

3.2.2 Attack Scenarios

Taking cues from the analysis in the previous subsection,
we consider two particular targeted artificial attack sce-
narios, referred to as AttackOne and AttackTwo. Both
attacks have flow rates such that each attack target’s ac-
cess router link is just about 95% utilized. The traf-
fic flow rates (in kbps) and the source and target PoPs
for these attacks are illustrated in Figure 2. Note that
the topology in the figure does not depict access routers
while traffic matrices are at the access router level.
We use AttackOne to mainly illustrate the mitigation
effects using varying number of scrubbers. AttackTwo
on the other hand is a targeted attack aimed at overload-
ing the core links in such a way so that customers on the
West Coast of the USA cannot send traffic to those on
the East Coast. Despite the large impact of this attack,
network cut-off is achieved with a litte more than 30%
utilization of the access router link capacities! The exact
value for the flows are also depicted in Figure 2.
In both attack scenarios, we geographically co-locate
scrubbers with backbone routers and so the cost in reach-
ing them is approximately equal to the cost of reach-
ing the co-located backbone router. Also, we assume a
scrubbing capability of 0.99 meaning that 99% of all at-
tack traffic entering the scrubber is dropped (this value
was chosen from operational experience,and can be ad-
justed as desired). Another assumption we make is that
when a link in the Abilene network (all OC-192s) is 95%
or more utilized, it is said to be overloaded (this value
is again reasonable and tunable). We use the simulator
feature of scaling and analyzing attacks. In particular,
we calculate each time the greatest scaling factor (GSF)
value by which a particular attack should be scaled in
volume such that a core link is overloaded. In cases
where the core cannot be overloaded on scaling, we set
the GSF to a ceiling value (1000 for AttackOne and 50
for AttackTwo). Even though these two scenarios seem
contrived, targeted attacks have the maximum damage
capability (as shown earlier) and use of the tool to ana-
lyze these worst-case attack scenarios is instructive.

3.2.3 Results

Experiment Using AttackOne

We start with the scenario of deploying one scrubber
and progressively add scrubbers at distinct network lo-
cations. We then execute the mitigation mechanism pre-
sented earlier on these scenarios independently. In all
scenarios, we measure the GSF of an attack before over-
loading at least one core or target link as the case may be,
and set it as the Y-axis on the plots. In the simulator, this
value is determined by increasing the GSF starting from
a low initial value until link overload occurs.

8
Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association164

Figure 5: Analysis of effectiveness of mitigation mechanisms
on protecting the core network under AttackOne with scrubber
at New York. The curve of blackholing without scrubbing in
not annotated in the combined plot.

How to interpret the plots? Figure 5 depicts the results
from the experiment when a lone scrubber is deployed
within the New York PoP under AttackOne. Each point
in the plot refers to a particular state of deployment of the
mitigation strategy, and this is indicated in the tick labels
along X-axis. Since the mitigation deployment we con-
sider is incremental, every successive point denotes the
state when one more attack link is scrubbed/blackholed.
In the case of the curve ’Selective Blackholing w/o Traf-
fic Scrubbing’, no link is scrubbed and this is indicated
as a constant zero value in the plots (until the ’Black-
hole top’ labels). At each state of deployment of the
mitigation mechanisms in the network, the plots have
been annotated with the set of core edges that are over-
loaded. So, for instance, at the state when there is no
mitigation mechanism (that is, x=0), the attack has suc-
cessfully overloaded the Ind-Atl link while no other core
link is overloaded. Since the deployment happens in in-
crements, if successive states have the same set of over-
loaded core edges, then only the first state is annotated.
Having explained how to read the plots, we now
present an analysis. In Figure 5, until the state when
the top 3 attack access router links are scrubbed, even
though some traffic is diverted away from the Ind-Atl
core link towards the scrubber in the NewYork PoP, there
is still sufficient attack traffic to overload the core net-
work. Since traffic through the congested core link de-
creases with every attack link scrubbed, we need to scale
the attacks by a little more to still be able to overload the
core. This is indicated by the steady increase in the GSF
value. Then, the scrubbing curve begins to drop off as
we scrub the top 4 attack links. At this stage, the con-
gestion point is transferred to the Kan-Ind core link as
now a large portion of the attack traffic is ferried via the

Figure 6: Same scenario as in Fig 5 but with scrubbers at both
New York and Houston.

Figure 7: Table of costs for the blackholing strategy in terms
of percentage of background traffic dropped under AttackOne.
The columns corresponds the states starting from “Scrub all” to
“Blackhole all” in the above plot.

shortest path from the sources at both Kansas City and
Seattle to the scrubber in New York. Observe the trend
of steady dip in the scrubbing curve of the GSFs. There
is already enough traffic transferred to New York that by
the time we scrub some more traffic, due to aggregation
the core link leading up to the New York router is over-
loaded. This is reflected in the plot by the annotation
of “Chi-NY”. This plot highlights the expected effect of
having a single scrubber which becomes the single point
of congestion in the network.
Once all attack links are scrubbed, the top attack link
is blackholed. Up till when the top 4 attack links are
blackholed, blackholing traffic is not sufficient to shift
the congestion point from the New York core link. This
is indicated by the annotation trend as the GSFs increase.
However, when the top 5 attack links are blackholed, the
number of attack links still sending attack traffic into the
core network is so low that even at full capacity these
links together cannot overload any core link in the net-
work. This is indicated by the plateau at the ceiling value
1000.0 at the tail of the blackholing curve. Note that
the curve for the blackholing without scrubbing mitiga-
tion strategy nearly coincides with the blackholing with
scrubbing curve indicating that in this single scrubber sit-
uation, the effects of scrubbing are negligible compared
to that of blackholing.
Figure 6 shows how the network copes with Attack-
One when there are 2 scrubbers deployed at New York
and Houston respectively. Since the closest scrubber to

9
Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 165

the PoPs on the West Coast is at Houston, traffic from
the sources in Seattle and Kansas City are directed to-
wards Houston reducing the load on the New York core
links. This is directly observable as the lack of the dip in
the scrubbing curve observed in the earlier figure. In this
2-scrubber scenario, the bottleneck links are those along
the path from Seattle to Houston which is reflected in the
annotation in the plot. Similar to the earlier scenario, as
we start blackholing, the only overloaded core link at the
GSF is the Chi-NY core link. Also note that since traf-
fic destined for scrubbing is now distributed between 2
scrubber locations not in close network proximity, attack
traffic is much more diluted through the network core.
So, the attack needs to be scaled up by a higher factor to
overload the core.
The best evidence for the benefits of scrubbing at 2
locations is provided by comparing the two blackholing
curves in Figure 6. At every state of the network (before
x=5), the deployment of 2 scrubbers in addition to black-
holing has bought the network operator nearly twice as
much network capacity than by blackholing only. This
can be seen from the two-fold increase in the GSF values
of the 2 curves. Remember that the blackholing with-
out scrubbing curve nearly coincided with the blackhol-
ing with scrubbing using one scrubber curve. So, these
observations serve to compare indirectly between the 2-
scrubber and 1-scrubber deployment scenarios.
We considered other simulation scenarios using more
scrubbers under the effect of AttackOne. Due to lack of
space, we do not present those plots. In essence, when
an additional scrubber is added to the network, the attack
traffic in the network becomes more diluted. Of course
deploying scrubbers right at the backbone router nearest
to the sources almost completely eliminates attack traf-
fic when traffic scrubbing is performed and so we ana-
lyze only the contrary deployment. In almost all these
simulation scenarios, we observed a similar two-fold im-
provement in effectiveness of using scrubbing along with
blackholing as opposed to using blackholing only.
Using the above, the network operator is able to quan-
tify attack impact of AttackOne as well as mitigation of-
fered by the strategies in the sample policy. Therefore
in answering the first of the two questions posed earlier,
she can for example choose to defend her network by
blackholing the top 4 attack links knowing that the at-
tack now needs to ramp up its volume by more than 200
to be able to still overload the core. Table 7 gives the
costs involved in blackholing background traffic. Note
that these costs are dependent only on the traffic matrices
and are independent of traffic scrubbing. The percentage
of background traffic dropped due to blackholing versus
total background traffic is the measure of cost captured
in the table. Clearly, there is an increase in the cost paid
by the network operator in terms of collateral damage as

Figure 8: Analysis of effectiveness of mitigation mechanisms
on protecting target links under AttackOne.

more access links are considered for blackholing. So,
she needs to base her final mitigation decision on both
the strength of mitigation desired as well as the cost she
is willing to pay.

Figure 8 represents a similar plot as before but with the
focus now on avoiding overloading the target link. Recall
that the attack at scaling factor of 1 just about overloaded
the target access link. The plot depicts the scenario when
a single scrubber is deployed in New York. Under the
other scrubber deployment scenarios considered earlier,
we obtained exactly the same numbers indicating that as
far as protecting the target is concerned, scrubber deploy-
ment location does not matter (as long as the network
core itself is not affected). On comparing the GSFs to
overload the core versus that to overload the target link
for the same network states, we observe that the latter
GSFs are much smaller as expected.

From the curves, it becomes clear that scrubbing is
more effective in protecting the target(s) than protecting
the core. For a combination of blackholing and scrub-
bing under AttackOne, Reval is able to provide two ben-
efits simultaneously. First, multiple deployment options
are provided based on the level of defense desired. Sec-
ondly, for each mitigation option, Reval quantifies the
increased attack capacity that the network can now sus-
tain before again overloading the core. Using scrubbing
alone, at the very best the network operator can hope to
reduce the traffic reaching the target link(s) by a maxi-
mum factor of 1

1−f
where f is the scrubbing accuracy.

In our case, this theoretical maximal defense value is
1

1−0.99
=100. The actual value is dictated by when the

core network is overloaded due to the diversion in traffic.
Reval can provide the network operator with the exact
numbers within this maximal range as just illustrated.

1
Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association166

(a) With scrubber in Seattle (b) With scrubber in LA

Figure 9: Choice of scrubber deployment under AttackTwo.

Experiment Using AttackTwo

AttackTwo as described earlier was designed to com-
pletely cut off coast-to-coast communication requiring
surprisingly small bandwidth to do so. Exploring the full
space of mitigation options is a cumbersome task even
after restricting ourselves to the two strategies of traf-
fic scrubbing and blackholing. Instead, we ask a rather
qualified question: given the availability of one scrubber,
where should it be placed so that traffic scrubbing and, if
necessary, selective blackholing give the network opera-
tor maximum leeway in dealing with the attack?
Since the attack partitions the network into two and
all sources of the attack are on the West Coast, it makes
sense to deploy the scrubbers in one of the West Coast
PoPs. Also, since the sources of attack are at Seattle and
LA, deploying the scrubber at other West Coast nodes
does not buy the network operator much (this is sub-
stantiated by results from the simulator not shown here).
Figure 9 then plots the results of the simulator under
the two scenarios - scrubber deployed in Seattle and LA
respectively. Observe the plots for the GSF values for
corresponding states especially paying attention to the
blackholing with scrubbing curves. Once the top 3 attack
links are considered for blackholing, the effect of scrub-
bing coupled with the choice of the flows to scrub make
LA an attractive choice for scrubber deployment. Also,
notice that to protect the core under this attack, with the
scrubber deployed at LA, it is enough to blackhole traffic
from 4 out of the 6 attack access links while in the case
of the deployment at Seattle all 6 attack links need to
be considered for blackholing. Thus on both counts, we
have LA as the better location for scrubber deployment.
With additional analysis, we discovered the existence
of an interesting phenomenon that is brought out by the
simulator: in our mitigation strategy, we pick the top at-
tack links starting from the highest. However, a tie break-

ing mechanism is required to deterministically decide be-
tween equally voluminous attack links. We see why this
is important now: in AttackTwo since there are 6 attack
traffic flows, 3 each from Seattle and LA, all of the same
attack volume, there is already a tie. To break the tie,
suppose we choose Seattle’s attack links before consid-
ering LA’s attack links, and we consider the deployment
of the scrubber at LA first. As a result, because of the or-
der in which we choose to scrub/blackhole attack traffic,
we only need to blackhole the top 4 attack links. These
correspond to the 3 sources in Seattle (thus relieving the
load on the Kan-Ind core link) and one source in LA. The
remaining 2 sources are in turn considered for scrubbing
performed locally within the LA PoP. On the other hand,
when the scrubber is deployed at Seattle, after blackhol-
ing the top 4 attack links, we need to send all traffic from
2 attack links in LA to Seattle to be scrubbed. This re-
sults in an overload of all core links in the path from LA
to Seattle thus requiring to blackhole all 6 attack links in
order to protect the core.

Note that by using a purely qualitative study based on
the AttackTwo traffic matrix, we are led to believe that
both LA and Seattle are equally significant PoPs and de-
ployment at either location yields the same benefit! Such
an ad-hoc decision does not factor in practical aspects
of mitigation mechanism implementation. This particu-
larly becomes important if the network operator assigns
greater priority to traffic from LA than Seattle owing to
greater profit potential. Even though equal traffic rate at-
tacks are rare in the real world, the qualitative take-away
from this scenario holds. Thus, the network operator
using Reval can gain knowledge of both the effective-
ness and real-world implementation issues of the de-
sired mitigation policy.

1
Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 167

Figure 10: Link Upgrade experiment for a class of 100
random-targeted attacks originating from the Chicago PoP. In
the legend, along with the particular link being upgraded, we
also present the number of attacks out of the set that overload
that link.

3.3 Long-Term Network Planning:
Capacity Upgrading

In this subsection, we illustrate a use for our tool in
helping a network operator carry out effective long-term
network planning. We specifically use the tool to shed
light on which links in the network require upgrading
to higher capacities. For this, we first choose to up-
grade one at a time only the core links that are impacted
frequently by attacks (and these are oversubscribed core
links). After each link upgrade, all attacks are simulated
again to identify the next most frequently impacted link,
and so on. Secondly, we upgrade, if at all, a link to have
four times its current capacity. This is an industrial prac-
tice that amortizes equipment cost over future demands.
Figure 10 shows the result of the link upgrade experi-
ment carried out using the class of 100 attacks from the
Chicago PoP described earlier in Section 3.1. We only
consider a maximum scaling factor of 100 in the graph
without loss of generality. As expected, the most fre-
quently overloaded link is the core link involving the
Chicago backbone router. It is interesting to note that
on a single link upgrade, nearly 10 attacks out of the
100 required to be scaled by 25 more than before. Also,
even after upgrading all core links, more than 60% of
the attacks have a GSF value smaller than 100. Another
observation is that there is a sizable number of attacks
that manage to overload a core link at low scaling fac-
tors (15% of attacks have GSF ≤ 25). Since these over-
loaded core links do not occur frequently, they are never
upgraded. This illustrates the use of Reval to quantita-
tively assess which points in the network require upgrad-
ing and how much respite from traffic load these link up-
grades provide. The analysis also reflects the choices and
compromises network operators make in choosing to de-
fend against the common case attacks while still being
susceptible to isolated instances.

4 Experience with a Large Tier-1 ISP
Network

In this section we present results from evaluating the mit-
igation strategies of traffic scrubbing and selective black-
holing on real data obtained from a large tier-1 ISP. We
describe our experience of using the tool over a period of
one month. Both background traffic and network topol-
ogy information are obtained in the form of real-time
feeds — the former as Netflow records while the latter
as router configuration files. The attack input data for
the simulator is obtained from alarms provided by the
commercial DDoS detection system. Then these alarms
are used to obtain relevant Netflow traffic records from
a subset of routers producing the attack traffic matrix.
In our network, the commercial detection system can be
configured to provide these statistics in real time. At-
tack information could also be obtained by using real-
time anomaly detection systems like [25]. Flow proper-
ties required for the simulator in terms of source, target,
bit rate etc are directly obtained from Netflow.
As mentioned in Section 2, we have automated the ex-
ecution of our simulator on real data obtained from the
tier-1 ISP. Restating the performance numbers, the exe-
cution of the core functionality of the simulator on the
ISP network of size in excess of 60000 nodes with about
0.4 million traffic flows took 11 seconds approximately.
We considered the simulation scenario of analyzing
the effectiveness of the mitigation policy of the previous
section with a slight modification. We attempt to analyze
the decision a network operator would take in the real
world using results from the simulator. The data for this
simulation scenario comprised of 144 attacks (as classi-
fied by the commercial DDoS detection system) that oc-
curred over the month of September in 2005. For each
attack, we obtained statistics on the GSF value before
overloading the core under the network state at the time
of the attack. This was done for various mitigation de-
ployment states in the two strategies of traffic scrubbing
and selective blackholing with traffic scrubbing.
None of the attacks overloaded any core links in their
original form, and therefore needed to be scaled up.
From preliminary analysis, we found that 77 of the 144
attacks did not have enough volume rate to overload the
core. That is, even with maximum scaling (when all
ingress access links of an attack are used to their full
capacity), these attacks could not individually overload
any core link. Also, about 24 of the attacks pertained to
instances when the network data collected was not reli-
able. For the remaining 43 attacks, we fixed a particular
scaling factor value for which all of these attacks would
overload at least one core link. With this as the base,
we then obtained the best mitigation strategy required to
avoid overloading the core. By “best”, we refer to the

1
Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association168

strategy that required the least amount of blackholing as
opposed to traffic scrubbing since blackholing results in
greater collateral damage.
The number of unique responses offered by the simu-
lator as the best mitigation strategy for these 43 attack in-
stances was 16. Each involved blackholing and/or scrub-
bing at least one unique network ingress link not consid-
ered in any other instance. Thus, Reval revealed that mit-
igation against attacks in the real-world involves a con-
stantly changing region of deployment of the mitigation
mechanisms rather than a fixed deployment. Moreover,
the region of deployment is dictated by the nature of the
particular attack under consideration.
As further analysis, we investigated the usefulness of
the solution by analyzing the scenario of “How much
impact would the core network suffer if the second best
mitigation strategy was chosen instead of the best?” For
these 43 attacks, we found that the second best mitigation
strategy overloaded at least one core link for 30 attacks
and in a couple of instances, the attack managed to over-
load 2 core links while the remaining did not overload
any core links. So not only did Reval provide the mitiga-
tion option that was best in terms of effectiveness but was
also better by a fair margin in a large number of attacks.

5 Related Work

The EMIST project [26], a sister project of the DETER
test bed, aims to provide a framework and methodology
for studying particular classes of network attacks and de-
fense mechanisms. Using a test bed limits the scale of
experimentation. Also, defense mechanisms need to be
deployed on the test bed either by procuring the right
hardware like in the case of traffic scrubbers or imple-
menting functional software. Such test beds are more
useful in understanding network attacks in an off-line set-
ting unlike our tool.

ns2 [27] is a popular network simulator that provides
capabilities for packet-level simulations. However, em-
phasis is on lower-layer simulations rendering it unscal-
able to large networks. Also, neither ns by itself nor
any third-party code address security simulations. Like-
wise, GloMoSim [28] is a discrete-event mobile network
simulator that is currently not used in security research.
SSFNet [29] has a similar scalability to that of ns2 [30].
MicroGrid [31] is a network simulator built to realize
realistic large scale online simulations. An associated
project is the ModelNet network emulator [32] which
also focuses on scalable network simulations. In both
works, the goal of the system is to gauge distributed ap-
plication performance under different network load sce-
narios, and are not suited for network attack impact and
mitigation studies.

There have been studies on building simulators adopt-
ing a particular model of network traffic. However, al-
most all these models assume an underlying working the-
ory on patterns in traffic properties. It is not clear how
these theoretical traffic models apply to network attack
traffic that are inherently non-uniform. Related work
in this regard is the network calculus-based approach to
scalable network simulations [33]. Other work include
the network simulator presented in [34] where a fluid-
based model is used to make packet-level simulations
more scalable. However, this simulator when run on
large IP networks is still far from real time. Moreover
fluid models are not viable for light or sporadic traffic.
Parallel to the research on models for faster simu-
lation, there has been considerable work on providing
techniques that aim to increase speed of execution in a
simulator-independent manner. We mention few of these
techniques here while noting that these techniques are
complimentary to our simulator. A recent approach to
scalable fast large scale simulations is to identify net-
work invariants, preserve them in scaling down simula-
tions and accordingly scaling up the results obtained [35]
thus vastly improving on a full-blown packet-level simu-
lation. Another related approach is in the world of build-
ing a parallel network simulator with the idea of intelli-
gently parallelizing simulations at a part level and then
communicating once in a while to realize system-wide
simulations [36].

6 Conclusion

We have presented the design and implementation of
Reval — an operational support tool that quantifies the
impact of attacks on any-sized networks, analyzes the
effectiveness of mitigation strategies, and provides com-
prehensive answers pertaining to a wide range of miti-
gation deployment scenarios, all in a real-time manner.
Moreover, the use of Reval brings to the attention of
the network operator potential real-world deployment is-
sues of desired mitigation strategies otherwise observ-
able only after practical experience. Using live data from
a tier-1 ISP network of size in excess of 60000 nodes
with close to 0.4 million traffic flows simultaneously,
Reval executes in about 11 seconds. Given a sample mit-
igation policy in this real network, Reval identifies the
most effect mitigation option after evaluating each op-
tion in about 35 seconds.
Though Reval was discussed from the point of view
of network attacks in this paper, it could readily be used
in a host of network scenarios: analyze network anoma-
lies like flash crowds, routing-driven traffic surges, worm
propagation; understand attack impact and mitigation
from perspective of customers of the ISP; strengthen the
network via capacity planning; study network topology

1
Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 169

design using various graph theoretic and other param-
eters; compare and contrast defense mitigation strate-
gies; quantify the conditions for particular network-level
mechanisms like new routing algorithms, defense algo-
rithms etc. to work successfully.
It behooves us to state that the simulator we have built
is by no means complete or exhaustive in terms of func-
tionalities desired by security researchers. We are cur-
rently looking to improve the simulator along a few di-
mensions including support for packet-level simulations,
simulation time, and accurate cost metrics. Reval could
be executed on latest network state by incorporating live
data feeds that relay changes in the network like IGP
changes. Even though Reval evaluates a host of mitiga-
tion strategies, choosing the particular strategy is a man-
ual decision taken after making various trade-offs includ-
ing the level of collateral damage. These trade-offs make
the process of attack defense complicated, and difficult
to eliminate manual intervention. Nevertheless, Reval is
a first step towards its automation.

Acknowledgements

We thank Mukesh Agrawal, Patrick Verkaik, Adrian Ce-
pleanu, the anonymous reviewers and our shepherd Ge-
off Voelker for the many criticisms and suggestions that
have helped shape this paper.

References

[1] R. Richmond, “Firms Join Forces Against Hackers”, Wall Street
Journal, March 28, 2005.

[2] D. Pappalardo and E. Messmer, “Extortion via DDoS on the
Rise”, http://www.networkworld.com/news/2005/051605-ddos-
extortion.html, May 16, 2005.

[3] A. Hussain, J. Heidemann, and C. Papadopoulos, “A Framework
for Classifying Denial of Service Attacks”, in Proc. ACM SIG-
COMM, 2003.

[4] P. Barford, J. Kline, D. Plonka, and A. Ron, “A Signal Anal-
ysis of Network Traffic Anomalies”, in Proc. ACM SIGCOMM
Workshop on Internet Measurement, 2002.

[5] R. Malan, F. Jahanian, J. Arnold, M. Smart, P. How-
ell, R. Dwarshius, J. Ogden, and J. Poland, “Ob-
servations and Experiences Tracking Denial-Of-
Service Attacks Across a Large Regional ISP”,
http://www.arbornetworks.com/downloads/research37/
nanogSlides4.pdf, 2001.

[6] P. Vixie, G. Sneeringer, and M. Schleifer, “Events of 21-Oct-
2002”, http://d.root-servers.org/october21.txt, 2002.

[7] D. Moore, G. Voelker, and S. Savage, “Inferring Internet De-
nial of Service Activity”, in Proc. USENIX Security Symposium,
2001.

[8] “Arbor networks”, http://www.arbornetworks.com/.
[9] “Mazu networks”, http://www.mazunetworks.com/.
[10] D. Knuth, “The Stanford GraphBase: A Platform for Combina-

torial Computing”, Addison-Wesley, 1994.
[11] B. Cherkassky and A. Goldberg, “On Implementing Push-

Relabel Method for Maximum Flow Problem”, Algorithmica,
vol. 19, pp. 390–410, 1997.

[12] R. Mahajan, S. Bellovin, S. Floyd, J. Ionnadis, V. Paxson, and
S. Shenker, “Controlling High Bandwidth Aggregates in the Net-
work”, in ACM CCR, 2002, vol. 32:3, pp. 62–73.

[13] “Cisco Anomaly Guard Module”, http://www.cisco.com/.

[14] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a Routing
Control Platform”, in Proc. NSDI, 2005.

[15] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing internet
denial-of-service with capabilities”, in Proc. Hotnets-II, 2003.

[16] A. Greenhalgh, M. Handley, and F. Huici, “Using Routing and
Tunneling to Combat DoS Attacks”, in Proc. SRUTI, 2005.

[17] “Cisco 12000 Series Internet Router Architecture: Packet
Switching”, http://www.cisco.com/.

[18] B. Jenkins, “A Hash Function for Hash Table Lookup”,
http://burtleburtle.net/bob/hash/doobs.html, 1997.

[19] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, The MIT Press, 2nd edition, 2001.

[20] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an
Internetwork”, in Proc IEEE INFOCOM, 1996.

[21] “Abilene network”, http://www.internet2.edu/abilene.

[22] L. Li, D. Alderson, W. Willinger, and J. Doyle, “A First-
Principles Approach to Understanding the Internet’s Router-level
Topology”, in Proc. ACM SIGCOMM, 2004.

[23] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An
Information-Theoretic Approach to Traffic Matrix Estimation”,
in Proc. ACM SIGCOMM, 2003.

[24] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast
Accurate Computation of Large-Scale IP Traffic Matrices from
Link Loads”, in Proc ACM SIGMETRICS, 2003.

[25] V. Sekar and N. Duffield and J. van der Merwe and O. Spatscheck
and H. Zhang, “LADS: Large-scale Automated DDoS Detection
System”, in Proc. USENIX, 2006.

[26] “Deter/Emist Project”, http://www.isi.edu/deter/projects.html.

[27] “ns-2”, http://www.isi.edu/nsnam/ns/.

[28] “GloMoSim”, http://pcl.cs.ucla.edu/projects/glomosim/.

[29] “SSFNet”, http://www.ssfnet.org.

[30] D. Nicol, “Comparison of Network Simulators Revisited”,
http://www.ssfnet.org/Exchange/gallery/dumbbell/dumbbell-
performance-May02.pdf, 2002.

[31] X. Liu and A. Chien, “Realistic Large Scale Online Network
Simulation”, in Proc. ACM Conf. on High Performance Comput-
ing and Networking, 2004.

[32] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker, “Scalability and Accuracy in a Large-
Scale Network Emulator”, in Proc. OSDI, 2002.

[33] H. Kim and J. Hou, “Network Calculus Based Simulation for
TCP Congestion Control: Theorems, Implementation and Evalu-
ation”, in Proc. IEEE INFOCOM, 2004.

[34] Y. Liu, V. Misra F. Presti, D. Towsley, and Y. Gu, “Fluid Mod-
els and Solutions for Large Scale IP Networks”, in Proc. ACM
SIGMETRICS, 2003.

[35] H. Kim, H. Lim, and J. Hou, “Accelerating Simulation of Large-
Scale IP Networks: A Network Invariant Preserving Approach”,
in Proc. IEEE INFOCOM, 2006.

[36] Y. Liu B. Szymanski, A. Sastry, and K. Madnani, “Real-Time
On-Line Network Simulation”, in Proc. IEEE Intl. Workshop on
Distributed Systems and Real-Time Applications, 2001.

1
Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association170

