TCP Revisited: A Fresh Look at TCP in the Wild

Feng Qian

University of Michigan

Subhabrata Sen
AT&T Labs Research

ABSTRACT

Since the last in-depth studies of measured TCP traffic some 6
8 years ago, the Internet has experienced significant ckamge
cluding the rapid deployment of backbone links with 1-2 esde
of magnitude more capacity, the emergence of bandwidtmnsive
streaming applications, and the massive penetration of T€éR®
variants. These and other changes beg the question whéther t
characteristics of measured TCP traffic in today’s Intenediect
these changes or have largely remained the same. To answer th
question, we collected and analyzed packet traces from deuof
Internet backbone and access links, focused on the “heigey*h
flows responsible for the majority of traffic. Next we analgtizbeir
within-flow packet dynamics, and observed the followingdees:

(1) in one of our datasets, up to 15.8% of flows have an initalc
gestion window (ICW) size larger than the upper bound spetifi
by RFC 3390. (2) Among flows that encounter retransmissitasra
of more than 10%, 5% of them exhibit irregular retransmissie-
havior where the sender does not slow down its sending raiegiu
retransmissions. (3) TCP flow clockingd(, regular spacing be-

Alexandre Gerber
AT&T Labs Research

Oliver Spatscheck
AT&T Labs Research

Z. Morley Mao

University of Michigan

Walter Willinger
AT&T Labs Research

1. INTRODUCTION

IP networks today carry traffic from a diverse set of applmad
ranging from non-real-time email and bulk data transfee [KTP
to applications with much more stringent real-time perfanoe
and reliability requirements as Voice over IP (VoIP), Imietr tele-
vision (IPTV), Internet games and critical business tratieas.
A number of intertwined factors have contributed to this enia
shift in the application mix from even a few years ago whert-bes
effort non-real-time applications like email, FTP and Wednd
inated. These factors include the rapid deployment of bawckb
links with 1-2 orders of magnitude more capacity, the insiieg
reach of broadband access networks, the emergence of kidthewi
intensive streaming applications, and a steady relerglessomic-
technological move towards transitioning even missidtieal ap-
plications from dedicated networks to the Internet usinghiec-
tures like Virtual Private Networks (VPN).

Interestingly, even though the applications and their ireqoents
have multiplied, the Transmission Control Protocol (TC8)Has
remained the dominant transport-layer protocol in IP nekaobe-

tween flights of packets) can be caused by both RTT and non-RTT ing widely adopted by many of these new applications. Todap T

factors such as application or link layer, and 60% of flowsistu
ied show no pronounced flow clocking. To arrive at these figslin
we developed novel techniques for analyzing unidirectiar@P
flows, including a technique for inferring ICW size, a mettfod
detecting irregular retransmissions, and a new approachdcu-
rately extracting flow clocks.

Categories and Subject Descriptors

C.2.2 [Computer Communication Networks]: Network Proto-
cols

General Terms
Measurement, Algorithms

Keywords

Network measurement, TCP

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquiees prior specific
permission and/or a fee.

IMC’09, November 4-6, 2009, Chicago, lllinois, USA.

Copyright 2009 ACM 978-1-60558-770-7/09/11 ...$10.00.

accounts for majority of the traffic on the Internet. This Hep-
pened even though TCP was originally designed to suppott-a re
able, in-order delivery of a byte-stream between two enidtpan
a bandwidth friendly manner, and is not the ideal transpatqzol
for applications with real-time constraints. Practicahsiolerations
that favored TCP includé) TCP is deployed almost everywhere
(ii) using TCP helps offload many low-level transport detailg tha
an application developer would otherwise have to conterld,\and
(i) ease of maintaining reachability across firewalls whichrate
tinely configured to allow TCP packets through but block A&@P
flows. Fueled by the need to support more stringent perfocean
requirements of emerging applications, the past few years hlso
witnessed the massive penetration of new TCP variants or new
TCP congestion control algorithms like FAST [34], HSTCP][15
and CUBIC [16], and vendors promoting acceleration boxes th
offer proprietary optimizations to TCP. However, these atiter
changes beg the question of whether, and more importaraly, h
they impacted the characteristics of TCP traffic in todagteinet,
or if the behavior has largely remained the same as found tigea
in-depth studies of measured TCP traffic, the latest of whiate
to some 6-8 years ago [35, 10]. Given the continuing domiaanc
of TCP, and its central role in preventing congestion caléain the
Internet, understanding its behavior is vital for the prop@nage-
ment, provisioning and capacity planning of these netwarigfor
developing insights to guide protocol design.

In this paper we undertake a detailed exploration of TCP Weha
ior from multiple vantage points in a large tier-1 ISP. We ase
predominantlypassive measuremeapproach using actual traffic

traces for our analysis for reasons of scale, coverage amdsitiy.
Compared tactive probing the passive approach is non-intrusive
and more scalable requiring no additional coordinatiostrimmen-
tation or deployment of end host measurement points. We ttan u
lize in-network passive trace collection capabilitiest ta parts of
existing deployed infrastructure. Our trace collectiortasefully
designed to get a diversity of network traffic mixes incluglback-
bone links, broadband access and enterprise traffic. Thaveas
measurement approach allows us to capture the entire apeofr
TCP activity, in the relative proportions it is actually dsewith-
out any distortion or artificial biases, over the obsenmferiod.
Given the existence of many TCP variants, some with multipte
sions, and multiple parameters, and the lack of understanai
either the relative distribution of these settings or hoeytimpact
behavior, it would be very hard for a purely active probingegach

to cover all these possibilities or to focus on the (unknowmtgr-
esting ones.

Along with its advantages, an in-network passive measunéme
approach has its own challenges. For instance, accessitedid
tional traces is required by traditional techniques forlgziag cer-
tain types of TCP behavioe(g.,tracking the congestion window).
However, due to the prevalence of asymmetric routing, stardes
are difficult to obtain in practice, especially for backbdim&s. As
one contribution of this paper, we develop new analysisrtiggles
that are suitable for unidirectional flows. Passive measerg also
lacks a powerful aspect of active probing — with the lattss pos-
sible to tailor the probing activity carefully to force theopocol
to reveal more details about its actions under differenhades.
We therefore augment our passive measurements with tdrgete
tive probes as needed. In particular, we utilize active plfor
validation, where we gather the RTT, loss rate, frequen@rad+
teristics,etc. as ground truth by controlling the active probes.

1.1 Contributions

Using existing techniques where applicable and developmg
propriate new methodologies where required, we explorefdhe
lowing main dimensions.

Have TCP flow sizes, durations and rates changed signifi-
cantly compared to those 6-8 years ago™ patrticular, what are
the corresponding distributions of “heavy-hitter” flowsl[3] i.e.,
flows with exceptionally large size, long duration, fastegppend
strong burstiness compared to the earlier studies? Heiteysh
contribute to significant traffic volumes and understandingir

greater than

min(4 * MSS, max(2 « MSS,4380)), the upper size mandated
by the specifications [5]. We also observed ICWs as large & 9K
in our datasets.

When encountering losses, do senders slow down appropri-
ately as mandated by TCP?This is a fundamental requirement
for all TCP implementations and its adherence is criticahvoid
congestion collapse in the network. The existing approathbe
measuring this behavior either use active probing [26], s& hi-
directional flows to precisely track the congestion windasing a
FSM [17]. We develop a passive-measurement based statisfic
proach to identify situations where the sender does not dimmn
its transmission rate when the retransmission rate inegea®ur
approach requires only unidirectional flows and is indeeenadf
the particular variant of TCP, unlike the existing schem&ur
findings indicate that in most cases, the sender does slowm dow
its sending rate when retransmission rate increases. Arfiong
with retransmission rates higher than 10%, we do find 2.5%840 5
of the flows exhibit irregular retransmission behavior. thar in-
vestigations revealed that these cases could be attributadtwo
main causegi) abnormal retransmission not conforming to RFC-
compliant TCP specifications.g. retransmitting packets that were
not lost); and(ii) under-utilization of the congestion window.

What is the distribution of the TCP flow clock and what is its
origin? We define the TCP flow clock to be the regular spacing that
may exist between flights of packets. The traditional view lba@en
that the RTT dominates the origin of flow clocks for most floessd
existing RTT estimation algorithms [33, 36] implicitly uB8 T as
the flow clock. However, if the flow clock is not generated bg th
transport layer, these algorithms will have poor accur&aye rea-
son this can happen is when applications like streaming areel-
form their own rate control and packet pacing on top of TCP. We
develop a novel frequency domain analysis technique tctifgen
the flow clock independent of its origin. Our analysis indésathat
less than 50% flows have distinguishable flow clocks, andateve
that in practice RTT is not the main determinant of flow clogks
many cases. Among our flows with a measurable flow clock, up to
60% have clocks originated by non-RTT factors such as softwa
clocks of applications, periodical OS evenésg(, keyboard scan-
ning), and “retiming” effects [35] of a bottleneck link.

2. RELATED WORK

We describe two areas of related work to our study.

behavior is vital to many aspects of network management such Characterization of Internet Flows: Researchers started to inves-

as effective traffic measurement [13], scalable load seasibut-
ing [31], network anomaly detection [22] and usage-basérny
and accounting [12]. We compare our results with two presiou
studies [35, 10] and pinpoint the evolution of Internet fldvarac-
teristics that we observe.

What is the initial congestion window (ICW) distribution?
A larger ICW allows a flow to be more aggressive by sending a
larger burst of data at the beginning of the flow without anypth
tling. A large proportion of flows today are short and end befo
exiting TCP slow start. While such flows can benefit indivitiua
from using an inappropriately large ICW size, the widesgrase
of large ICWs will introduce large traffic bursts and may achety
affect the network performance and is therefore not desifte
existing approach for ICW estimation [26] involves activelging,
and therefore, we develop a new passive measurement badéd IC
estimation scheme that uses only the timestamp informé&ticine
first few packets in the connection of a unidirectional datevfilWe
find that while most flows comply with TCP specifications [6, 5]
up to 15.8% of senders in our data have initial congestiordain

tigate characteristics of TCP connections more than 10syago,
by passively measuring traffic patterns [32] or activelylpng end-
to-end packet dynamics [29]. For more detailed characgaa,
the T-RAT study [35] considers the distribution of flow ratesd
further analyzes the origins of different rates such as estign
limited and transport limited. A more recent study [10] exaes
characteristics of “heavy-hitter” TCP flows [12] in four démsions,
namely size, duration, rate, and burstiness, along with thoere-
lations in detail. There has also been work investigatintjq@dar
application types of flows such as streaming [11], VoIP [23} a
gaming [9] flows. Compared to this, our study serves as a reex-
amination of observed TCP behavior, motivated by the sicgnifi
changes experienced by the Internet as mentioned in 81. Wive co
pare our results with two most recent previous studies [8%td
pinpoint the evolution of Internet flow characteristicstthge ob-
serve.

Inferring TCP Behaviors: TCP is a complex protocol with vari-
ous implementation variants and tunable parameters. Réwzra
have developed many techniques to infer TCP behaviors iyesct

probing hosts or passively analyzing packet traces. Fomeagtob-

ing tools, TBIT [26] strategically drops incoming packetslaends
fabricated packets over raw socket to infer Web servers’ DEP
havior. TBIT also uses known techniques [14] to identify THeP
flavor (Tahoe, Reno and New Reno) based on sender’s respmnse t
packet losses. A previous study [24] used TBIT to study the im
pact of “middleboxes” (NATs, proxiestc) on TCP. Tools like
Nmap [2] and pOf [3] take another approach by using a sigeatur
database to fingerprint the OS version of the target hostefitie
indirectly inferring the corresponding TCP implementatio

A wide range of passive analysis techniques also exist. ¥or e
ample tcpanaly[27] infers TCP implementation from packet traces
based on observed differences among 8 TCP implementations.
tcpflows[17] keeps track of the sender’s congestion window based
on predefined finite state machine of TCP Tahoe, Reno and New
Reno. Work by Lu and Li [21] statistically infers the corresp
dency between the arrived ACK packet and the data packets sen
from packet traces using maximume-likelihood criterionR7AT [35]
also focuses on unidirectional packet traces, separatieagrace
into flights, then inferring the TCP state of each flightg(, slow
start or congestion avoidance).

Compared to these previous studies, our work develops rdetho
ologies requiring minimum information from the trace whiate
unidirectional traces containing only timestamp, seqaenanber,
acknowledgement number, packet size and TCP flags. Further-
more, we address a new problem that has not been well explored
i.e., accurately extracting flow clocks originated from eitherlRT
or other factors.

3. DATA CHARACTERIZATION

We describe the data used in our study and perform basic char-
acterization of the data set.

3.1 Datasets Used

As summarized in Table 1, we use seven quite diverse dataset
named BU, BS1 to BS4, VPN and DSL in this study. BU (Back-
bone Unsampled) is a 30-minute unsampled TCP trace cdllecte
from a 10Gbps backbone link of a Tier-1 ISP on June 17, 2008.

BS1 to BS4 (Backbone Sampled) are sampled TCP traces from the

same link collected on June 26, 2008. The duration of eacsdat

is approximately 1 hour. Sampling was performed on a per-flow
basis with a sampling rate of 50% (one in two flows), so that all
packets from a sampled flow were captured. The VPN dataset is
an unsampled bidirectional trace collected from all thenksl of

a VPN provider edge router (PE) on January 5, 2009. The DSL
dataset, also bidirectional and unsampled, was collectzd &
BRAS (Broadband Remote Access Servers; an aggregation poin
for approximately 20,000 DSL lines) on January 9, 2009. fahe
packet, we record the following fields of IP and TCP headdus, @
64-bit timestamp: source and destination IP, source artthdésn

port number, packet length, IPID, IP fragment flag/offsetjueence
number, acknowledgment number, receiver's window sizePTC
payload length, TCP flags, and TCP options. From each dataset
we extract flows based on a 5-tuple of src/dst IP, src/dstmort-
bers, and protocol (always TCP). Following previous stsid&b,

10], we use a threshold of 60 seconds to decide that a flow has
terminated.

We discuss two limitations of our datasets. First, simitapte-
vious measurements using passive traces (datasets in B&] w
30min to 2hours, plus a 1-day sampled trace; two datasetin [
were 20min and 2hours), our finite sampling durations (30tin
2h46min) may influence the distribution of flow charactécist
Another limitation is that our datasets only contain TCHfica

while both [35] and [10] use a mixture of TCP and UDP traffic.
However, basic statistics of VPN datdsshows that UDP con-
tributes only 7.8% of the traffic, comparable with the fracs

in [10] (4% and 15%). We believe the above limitations (finite
dataset length and a lack of non-TCP traffic) do not qualifi
affect our comparison with [35] and [10].

3.2 Flow Characteristics

We analyze four basic flow characteristics: size, duratiate,
and burstiness. Size is simply defined as the total numbeytetb
in the flow including headers; and duration is the time spawéen
first and last packet of the flow. Flow rate is computed by dingd
flow size by flow duration. Similar to previous work [35, 10]ew
focus on longer-lived flows by ignoring flows with duratiorfdess
than 100ms when computing the flow rate. We give the definition
of burstiness later. We first characterize the distribigiof size,
duration, and rate odll flows before focusing on “heavy-hitter”
flows [31, 7]i.e.,flows with exceptionally large size, long duration,
high speed, and strong burstiness. Understanding the ioelodv
heavy-hitter flows are useful for various applications [33, 22,
12], as described in §1. Due to the well-known heavy-tailsd d
tribution of Internet flows, the number of such flows is veryadim
They however may contribute to significant traffic volume.

Figure 1 plots the complementary cumulative distributio€DF)
of flow size, duration, and rate across 7 datasets (shownidhk th
lines), compared with the T-RAT study which is a most receDPT
study similar to ours on understanding the origin of Intérfayv
rates conducted in 2001 [35], whose eight datasets are shewn
thin lines. For flow size and duration, no qualitative difference
exists in log-log plot. We do observe much higher flow rate in
our dataset. For instance, in their datasets, only 4% to 16%sfl
are faster than 100kbps; the percentage increases to atllE4s
in ours. This is mostly explained by higher speed backbamiesli
and increasingly popular broadband Internet access. Suorel-

singly, high-speed TCP variations were deployed accomniglat

faster link speed. For instance, BIT-TCP was used as thaililefa
TCP implementation since Linux 2.6.8 in 2004 [16]. BIT-TCP
makes the congestion window grow faster by modifying thedin
growth function for existing congestion avoidance, thusigat-
ing the under-utilization problem for high speed and lonsatce
paths.

Note that the higher rate is observed by ignoring considerab
number of flows with duration less than 100ms. We will see almuc
more significant increase of flow rate by looking at a smallenn
ber of “heavy hitter” flows later.

Given the significant similarities across our seven dascaetv-
idenced by closely placed thick lines representing thenigoie 1,
we attempt to quantify the similarity between two datasetsié-
tecting flows with the same unordered pair (IP1/24, 1P2/24)
only preserving 24-bit prefix. In particular, we define thengar-
ity Index (Sl) between datasef andY asSIixy = |Q(X) N
Q(Y)|/ max{|Q(X)|, |2(Y)]|}, whereQ(X) denotes the set con-
taining unordered (IP1/24, IP2/24) pairs of all flowsXn We find
that the similarity index for any pair of datasets is lesqntB38%,
therefore we claim that our datasets are reasonably heteeogs.

Next we examine heavy-hitter flows and compare our results
with a most recent study analyzing traces of a regional netand
Abilene OC48 backbone link collected in April 2003 and Augus
2002 respectively focusing on heavy-hitter flows [10]. Téiigdy

We only have simple statistics of UDP traffic for VPN dataset.
2For both Figures 1 and 2, to ensure effective comparison,uwne s
perimposed our data onto figures obtained from the originpeps
preserving their scale.

Table 1: Basic statistics of datasets used

[Name] Date | Length | # Packets] Volume | Bidir | Sampled | # Flows | Description
BU Jun 17,2008 30min 643 M 377G No No 32.6 M | Unsampled unidirectional backbone link trace
BS1 | Jun 26,2008 62min 635 M 371G No | lin2flows| 30.6 M Sampled unidirectional backbone link trace
BS2 | Jun 26,2008 59min 637 M 424G No | 1in2flows| 30.0M Sampled unidirectional backbone link trace
BS3 | Jun 26, 2008 58min 636 M 346G No | 1in2flows| 29.6 M Sampled unidirectional backbone link trace
BS4 | Jun 26, 2008 47min 633 M 360G No | lin2flows| 24.0M Sampled unidirectional backbone link trace
VPN | Jan 05, 2009] 2h46min| 522 M 245G Yes No 29.6 M Unsampled bidirectional VPN link trace
DSL | Jan 09, 2009 2h18min| 745M 496G Yes No 25.3 M Unsampled bidirectional DSL link trace

1 T T T 1 1

—— BU, BS1-BS4 ——— BU, BS1-BS4 ——— BU, BS1-BS4

0.1 | e

0.1 F 0.1

0.01 | 0.01
Accessia
Access1b
Accessi1c
Access2

Accessia
Access1b
Accessi1c

Access2

Access1a
Access1b
Accessic -
Access2

0.001 0.001 [0.001

Peeringt ------ Peering1 Peeringl -——---
Regionalia ----- Regionalia ----- Regionalia
Regionallb -~ Regionalib Regional1b (C)

AT
MRREVIR OO
1000 10000 100000 1e+06 1e+07 1e+08
Flow Rate (bits/sec)

Regional2 - 3\ ¥ Regional2

100

Regional2

:
. 0.0001
1000 10000 100000 1

0.0001

0.000
1000 10000 100000 1e+06 1e+07 1e+08 0.001 0.01 10 100

Flow Size (bytes)

0.1 1 10 100
Flow Duration (sec)

10

Figure 1: Complementary distribution of flow size, duration and rate (comparing with the T-RAT study in 2001). When compuing

the flow rate, we only examine flows with durations of 100ms ordnger.

Table 2: Contribution of heavy-hitter flows in flow count and

volume

| Our datasets | Elephant] Tortoise | Cheetah| Porcupine]

Flows | 0.09% 0.52% 0.60% 0.26%

BU Vol. | 49.4% | 37.3% | 23.8% | 0.83%

BS1 (Similar | Flows 0.08% 0.24% 0.60% 0.15%

to BS2-BS4) | \Vol. 55.8% 38.7% 22.0% 1.35%

Flows 6e-3% 0.42% 1.15% 0.04%

VPN Vol. | 55.3% | 50.4% | 49.7% | 0.24%

DSL Flows 0.06% 0.34% 1.51% 0.12%

\ol. 58.9% 48.7% 35.0% 1.07%

[Twodatasets in [10] | Elephant| Tortoise | Cheetah| Porcupine)|
LosAngeles | Flows 1% 4% 2% 0.9%
Regional'03 \ol. 71% 43% 16% 39%

Abilene OC48| Flows 4% 4% 2% 1%
Aug 2002 \ol. 82% 45% 36% 40%

by Lanet al. finds strong correlations among some combinations of
size, rate and burstiness, explained using transport gulctagpon-
level protocol mechanisms. Four types of heavy-hitter flanes
coined in that work: elephant, tortoise, cheetah, and gney cor-
responding to flows with size, duration, rate, and burstrgeater
than the mean plus three standard deviation of the respetida-
surement. In particular, theurstinessof a flow is calculated by
multiplying the average burst rate by the average intestdiime,
where aburstconsists of a train of packets whose inter-arrival time
are less than 1ms. Only bursts with more than one packet are co
sidered. As shown in Table 2, although the number of heattgshi
flows is very small (except for porcupine flows), they conitibto
significant traffic volume.

Figure 2 illustrates distributions of size, rate, and hnesgts for
four types of heavy-hitter flows in the BU trace (thick curveish
labels). We did not present the duration distribution duehi®
bias introduced by limited duration of the BU trace (30m&2hr).
Measurements from Lan’s study [10] are also kept for congpari
We observe qualitatively similar distributions comparedother

datasets and highlight key observations below.

As illustrated in Figure 2(a), the sizes of elephant, cheedaad
tortoise flows increase by about an order of magnitude. Simast
are HTTP data flows with the source port 80, such increaskslyli
due tofile size increase on Web servers and the trend of usifigPH
to transfer large multimedia data. The growth in file size athb
local and network file systems are well documented by previou
measurements [4, 20]. The decrease in flow size for the dveral
dataset is caused by the 30min duration of our trace compared
the 2hr duration of data used in Lan’s study.

As depicted in Figure 2(b), the rate of elephant flows that con
tribute to at least half of the traffic volume along with théttor-
toise flows increases by one magnitude compared to Lan’g §10§
most likely accounted for by the tremendous growth in linkexh
within both the core and edge networks. In Lan’s study [100¢ t
authors explain the rate increase of tortoise flows with bséav-
ior (e.g.,one types a character every 30 seconds), as only 6% of
tortoises are flows with size greater than 100KB. While in i@ir
sults, we observe a trend in more long-lived flows (about 16% o
them) are likely multimedia streaming or gaming as verifisthg
the IP addresses and port numbers.

The most striking difference is the burstiness. First, assh
in Table 2, the very small number of porcupines contributkets
than 1.5% of the traffic volume, providing a sharp contragfij.
Second, as shown in Figure 2(a)(b), the size and rate of poreu
flows differ significantly from previous study: there is artiease
in rate, but decrease in size. Finally, in Figure 2(c), thestoness of
heavy-hitter flows also deviate much from Lan’s study, daser
further investigation we plan to conduct as future work.

Similar to [35] and [10], we also observe correlation betwee
duration, rate and size. For each datagklyS, logR) has corre-
lation coefficient between.54 and0.57, smaller than the values
observed in [35] and [10]; whil¢logR,logD) shows a stronger
negative correlation between0.69 and —0.60. (logsS, logD) are
slightly positively correlated with correlation coefficiebetween
0.21 and0.40.

To summarize our major findings, we observe significant iasee

T T 1 T T T
elephant
(a) (b) tortoise -------
E -4 0.8 | cheetah -------- / 1
porcupine S
= all == //
Eg 1 406 ! B
!U
- 404 F -
elephant elephant
tortoise ------- tortoise ------- @
cheetah -------- b cheetah -------- 102F s 1
porcupine orcupine 5
all —--- P pa”,,,, 3 (C)
0 L 1 oL I 1 0 L
7

4 2 3

log(Size) (KB)

log(Rate) (KB/second)

3 4
log(burstiness) (KB)

4

Figure 2: Distributions of size, duration, rate and burstiness for four types of heavy-hitter flows in BU. The base of logéhm is 10.

of average flow rate. In particular, the rate of elephant flaws
creases by a factor of 10, comparing with that of 6 years adgn,A
the sizes of elephant, cheetah, and tortoise flows increasmb
order of magnitude. Our observations indicate the trencpgfad-
ing Internet infrastructure at core and edge, the deployroknew
TCP variants, and the trend of using TCP to transfer largetesd
such as video streaming and long-time online gaming.

4. NEW METHODS FOR FLOW ANALYSIS

In this section, we present three new algorithms for anatyzi
unidirectional TCP flows. As discussed before, we focus og{o
lived flows which contribute much more traffic volume comphre
to short-lived ones. An inherent challenge in analyzingdirec-
tional flows is a general lack of information to reconstrue TCP
states at both the sender and receiver side. For examplherd ts
no pronounced flow clock or the flow clock does not originaterfr
the transport layer (RTT), it is challenging to accurateffirmate
RTT. To overcome this difficulty, in 84.2 and 84.3, we adoptist
tical approaches that require observing enough packetgendger-
tain properties with sufficient accuracy and high confiderf@ach
approaches are fundamentally different from existing iheitgistic
approaches [28, 18] that precisely track the TCP statendii-
rectional trace. We validate the accuracy of our approath§&s.

4.1 Inferring Initial Congestion Window Size
Inferring the initial congestion window (ICW) size helpstelet
aggressive TCP flows that send a larger burst of data at thia-beg

ning of the connection without any throttling. The value 6G\W

ets;(iii) the only factor that prevents the sender from sending more
data should be reaching the congestion window. This is edsoy
requiring that the first — 1 packets have same sizez(, equal to

the maximum segment sizZ¢ S.S), thereforec x M SS is the in-
ferred ICW (Line 6 to 7){iv) if flight-based IAT is too small€.g.,
RTT < 2ms) or packet-based IAT is too large, then the large gap
will be blurred. Note that the active probing technique fderring
ICW described in the TBIT work [26] also requires that coratis
(i),(ii) ,(iii) hold. The accuracy (higher than 98%) of our method is
evaluated in § 5.1.

Algorithm 1 Infer the Initial Congestion Window Size

Require: Packet trace starts with SYN-ACK packet
Require: There are no retransmissions in fikst- 1 packets
1: ¢ « null; Calculate inter-arrival timés, ..., I,

for 7 =2tok do

if 1,/ 3% _, I > 6then ¢ — j — 1; exit for; endif
end for
if ¢ = null then ¢ <« argmax{I;} — 1, endif

2<j<k

if firstc — 1 packets have the same packet siZ&5'S then

return ¢ x M SSS; else return unknown ICW;endif

2:
3:
4.
5:
6:
7.

4.2 Detecting Irregular Retransmission

Slowing down during retransmission (especially duringiqes
with many retransmissions) is one of the fundamental requénts
for all RFC-compliant TCP implementations [8], since ragmis-
sions indicate packet loss as inferred by the TCP sender [4/€]
denote a TCP flow that does not slow down its sending rate glurin

is the number of bytes a TCP sender can send immediately afterretransmission as a flow wiilregular retransmission

establishing the connection, before receiving any ACKsfithe
receiver. We devise the following algorithm shown as Algomn 1
to measure ICW given a unidirectional flow trace. The key task
of this algorithm is to examine the normalized inter-arritienes
(IAT) between the firs& + 1 data packets. The first “large” gap
(i.e.,larger thard, a threshold of normalized IAT as shown in Al-
gorithm 1) indicates that the sender has reached its cangesin-
dow and is waiting for ACKs from the receiver. If such a gap is
not detected, we pick the maximum gap amongkdlRTs. Note
that in Algorithm 1,75, the IAT between the SYN-ACK packet and
the first data packet usually includes the extra delay cabgebe
server OS and is therefore discarded. As a result, Algorittonly
examinesls, ..., I,. Based on our empirical findings in 85.1, we
choosek = 8 andf = 0.2.

There are several limitations in Algorithm Xi) Our approach
only works for server-to-client data flows€., the trace starts with
a SYN-ACK packet) due to lack of sufficient data from client to
server;(ii) there must be no retransmissions in the first 1 pack-

We devised a new tool called thiRate Tracking GrapHRTG),
based on a statistical algorithm for detecting irreguldarargsmis-
sion behavior. The basic idea behind RTG is an intuitive nlase
tion that holds for all known TCP implementations: whenagas-
mission rate increases, the sender should decreasgtee bound
of its sending rate by reducing the congestion window [8]isTim-
plies a negative correlation between the retransmissienarad the
sending ratel.e., a positive correlation between the retransmission
rater and the timet required to successfully transfer a fixed size
of data €.9.,50 KB). RTG samples all pairs d@f,) by sliding a
tracking windowlV along the flow to test whetherandr exhibit
any strong positive correlation.

The details of our RTG tool are described in Algorithm 2. The
input is a unidirectional TCP flow trace (server to clientjiwiigh
retransmission ratee(g., >10%). This is because RTG requires
sufficient number of sample point$,) to generate statistically
confident results. A lower threshold of retransmission raéy de-
tect more irregular retransmissions, but the confidenceafiracy

decreases as well.

Algorithm 2 first identifies retransmitted bytes by examie-
peated sequence numbers (Line 1 to 4). Subsequently, gfixeda
tracking window sizélV/, it samples all pairs oft,) by sliding
the window of varying lengtht along the flow, wheré is deter-
mined by the requirement that there &Fenon-retransmitted bytes
in the window, and whereis the retransmission rate of the window
(i.e.,retransmitted bytes in the window divided B). In the case
of regular retransmissions illustrated in Figure 5@@ndr have
strong positive correlation. We are interested in RTGs wittall
positive or negative correlation coefficients, as illusthwith the
example shown in Figure 5(b).

Itis important to point out cases where a well-behaved floasdo
not exhibit a strongly positive correlation coefficient. tiife flow
rate is not limited by the congestion window, it is not neeegs
for the sender to slow down its rate, even if the congestioraiv
is reduced. In fact, in our scenario with high retransmisgsiate,
the rate limiting factor can also be [38) the server application (it
does not generate data fast enoudii);the server’s sending buffer
in OS kernel;(iii) the receiver's windowf(iv) the bottleneck link.
In particular, cas€i) accounts for 30% to 50% irregular retrans-
missions in our datasets, and will be discussed in detaibi@.§

There exist other factors that may affect the correlatioefftco
cient of RTG. First, the tracking windoW’ should be large enough
to include more than one RTT, and be small enough so thanglidi
the tracking window covers various retransmission rates. efvi-
pirically choose 4 tracking window sizes: 50KB, 100KB, 2@K
and 400KB, and conservatively claim an irregular transiois#
all tracking windows yield correlation coefficients lessath0.1.
Second, at the sender’s side, there may be pauses thateetlarg
For interactive Web applicationg,g.,the server may be idle for
seconds, with no data to send. We deviseEatropy-based cut-
ting algorithmthat removes large gaps by separating the flow into
segments. We then generate RTGs for each sufficiently lage s
ment .e.,greater than 1MB) whose IATs are less intermittent than
those of the original flow. A flow's IAT-Entropy is defined asth

following (P; denotes theé'" packet):
log <zat(PZ-7 Pi+1))

vat(Py, P;
Brar=— Yy Wl :
Py, Py

whered is the flow duration. The algorithm iteratively cuts a seg-
ment S into S; and S, as long asmax{E;ar(S1), Erar(S2)}

> Erar(S). Here, an increase in entropy indicates that the IATs in
the newly generated segments are more homogeneous. licpract
such entropy-based cutting requires no tuning parametetsac-
ceeds in removing large gaps. The remaining small gaps may ad
“noise” to the RTG, but usually they do not significantly charthe
correlation coefficients. The third factor concerns dramgtianges

in the sending rate, as illustrated with an example in Fidu@).
Given the rare occurrence of this case in our datasets, Wweleal
with this as future work.

4.3 Flow Clock Extraction

We define thelT CP flow clocko correspond to the regular spac-
ing between flights of packets. The most commonly accepteskca
of TCP flow clocking is RTT-based and hence inherently linted
the transport layer [33, 36]. By devising a methodology focwa
rately extracting TCP flow clock information from unidirémtal
packet traces and applying it to actual data, we observeTiG&t
flow clocking can also originate from the application layeegen
the link layer. Understanding the different root causesfoP flow
clocks has far-reaching implications. For one, if the floao#l is
not generated by the transport layer, existing algorith88 B6]

Algorithm 2 Rate Tracking Graph

Input: Unidirectional Packet Trac&, Window sizelV/

Output: Rate Tracking Graph

Require: T has significant retransmissions (10%)
1. for all byteb € T do

2: if Ibyted’ : (b'.seq = b.seq) A (b'.ts > b.ts) then
3: b.Ibl — 0; elseb.lbl — 1; endif
4: end for
5. head «— 0; tail — 1
6: while tail < T.len do
7. head «— head + 1
tail
8. while (tail < T.len) A(> byte(i).lbl < W) do
i=head
9: tail « tail + 1
10: end while
11: if tail < T.lenthen
12: r = tail — head + 1 — W; t = byte(tail).ts — byte(h).ts
13: Plot (¢, r) on Rate Tracking Graph
14. endif
15: end while

that implicitly associate RTT with flow clock will suffer fra low
accuracy. Second, we find that flows with large non-RTT based
flow clock tend to have more consistent flight size. Also, ¢hes
flows are more likely to transfer data with an inappropriatarge
congestion window, due to a larger timeout value not conmglyi
with RFC [5], as illustrated in §6.3. Third, we envision ttitaw
clocks can serve as a new feature for traffic classificati@hreat-
work anomaly detection.

The main idea behind our method for accurately extractig th
dominant flow clock (if it exists) is as follows. We view a patk
trace as a sequence of pulse signals in temporal domain. vixext
transform the signal into the frequency domain via Fouriems-
form. In the frequency domain, we design an algorithm that-co
bines pattern recognition techniques with our empiricadedge
about TCP clocking to detect peaks (spikes) within relevest
quency bands. Lastly, the flow clock is defined to beftimelamen-
tal frequency i.e.the lowest frequency in a harmonic series [25].

Our detailed implementation of this flow clock extractiogal
rithm consists of 6 steps(i) Given a unidirectional packet trace
T, the algorithm discretizes timestampsBfinto a binary array
B using a sampling frequency of 500HB,(i) = 1 if and only if
there is at least one packet that arrived between thasd2i + 2
msec. (i) We use the Discrete Fourier Transform (DFT) to trans-

form B into the frequency domainf = DFT(B,2'09? "1y,
then downsamplég” to 1,000 points (resolution of each point is
0.25Hz). (iii) Detect the local maxima (candidate peaks) by slid-
ing a window of sizew and sensitivitys along the spectrum, and
mark points whose amplitude is larger thant so as candidate
peaks [i: meano: standard deviation of the points within the win-
dow). In our implementation, we apply 3 pairs(af, s) to discover
both narrow and wide peaksy = 4,8,16 ands = 8,16, 32.
(iv) Cluster consecutive candidate peaks (distance of less&han
points) into a single peak; remove peaks whose amplitudess |
than o + 300 (uo: mean,oo: standard deviation of all 1,000
points). (v) For each peak with frequency, test whetherf is a
fundamental frequency: fdr = 2, 3, 4, if there exists a peak with
frequencyf’ € (kf — 4, kf + §) where the tolerance parameter
is set to thre (vi) Return the minimum fundamental frequency if
found.

In the above approach, after downsampling the spectrun®@®1i,

3In our implementation, for a fundamental frequency, we aely
quire 2 out of 3 values of correspond to peaks to increase robust-
ness to errors.

points, the resolution of each point is 0.25Hz. Therefor dk-
tracted fundamental frequency may be inaccurate when the flo
clock is large. We solve this problem by performing additibn
postprocessing if the fundamental frequency is less than Bhist,

we separate the flow into flights based on the rough estimation
flow clock using the algorithm introduced in 84.1 of [35], ept
that here we rely on an estimation of the flow clock instead of
using blind search as it is in [35]. Next, the refined flow clock
is calculated as the average time difference between thim-beg
ning of consecutive flights after removing outliers fallingtside

(1 — 30,1+ 30).

We tuned the above parameters based on the empirical findings
described in 85.3. In rare cases, a flow may possess two or more
fundamental frequenciesg.,both RTT-based clocks and application-
based clocks are observable in the flow. We find that the small-
est fundamental frequency usually obscures the detecfitanger
ones, so that discovering a second or third fundamentaliéecjes
may not be accurate or informative in practice. We intenduicpe
this issue in future work.

5. METHODOLOGY VALIDATION

We systematically evaluate our algorithms introduced in\§é
first validate the ICW estimation algorithm by comparingwétc-
tive probing in the TBIT approach [26], followed by an anadysf
false positives in RTGs by triggering retransmissions uigio in-
jected packet losses to thousands of HTTP downloadingesessi
and finally validate flow clock detection by comparing wittoegnd
truths obtained from flow traces of different types.

The same dataset for active probing, consisting of 3,131 ¢JRL
each pointing to a file with size greater than 1MB, is used fst fi
two sets of experiments in 85.1 and 85.2. We performed DNS
lookup for the domain part of each URL and replaced it with one
or more IP addresses to eliminate DNS based server loaddalan
ing. This expanded the dataset to 5,844 URLs. We set up &testb
for URL query experiments based on the TBIT [26] tool which
infers TCP behavior of Web servers by active probing. Fonexa

——MSS = 128 Bytes
- = MSS =512 Bytes
- - -MSS = 1460 Bytes

0.5
Normalized IAT

—— [1=IAT(SYN-ACK,P1)
12=IAT(P1,P2)
- = =[3=IAT(P2,P3)
14=IAT(P3,P4)

(

(

(

(

—— I5=IAT(P4,P5)
‘‘‘‘‘ I6=IAT(P5,P6)
—— 17=IAT(P6,P7)
—— I18=IAT(P7,P8)

(b)

0.8

CCDF

0.2

0.4 0.6
Normalized IAT

Figure 3: (a) Distribution of normalized IAT for the first 9
packets (excluding IAT of SYN-ACK and first data packet) (b)
Distribution of normalized IAT for the first 9 packets

Table 3: Compare the ICW algorithm with TBIT

[MSS [1460B | 512B | 128B |
Total URLs 5,844 | 5,844 | 5,844
HTTP errors 1,623 | 1,494 | 1,783
Inconsistent results by TBIT 11 11 6
Inconsistent results by Algorithm 1 9 6 8
Both return inconsistent results 20 8 12
Remaining URLs 4,281 | 4,325 | 4,035
Accuracy 98.4% | 98.8% | 99.2%

ple, TBIT infers ICW by sending an HTTP GET request packet for2 < j < 8 (Figure 3(a)), sincé = 0.2 well separates two fre-

and not acknowledging any further packet. The Web servdr wil
only be able to send packets that fit within its ICW beforeamsr
mitting the first data packet. We added two new tests to TBIT:
| CWPassi ve andRTG. After establishing the connection to the
Web server] CWPassi ve receivesk + 1 packets, closes the con-
nection by sending a TCP RST and estimates ICW passively as
described in 84.1RTGreceives data as a normal TCP receiver but
randomly drops packets at a certain loss rate, then geserai&
based on 84.2 after connection termination. Besides theéwmee-
ment, we also improved TBIT in several other aspeetg,, made
the format conform to Konqueror 3.5.8 for FreeBSD 7.

5.1 Inferring Initial Congestion Window Size

As shown in Table 3, the experiment was performed using 3 dif-
ferent MSS values: 1460B, 512B and 128B. For each MSS, each
URL was probed 5 times. We eliminate cases where probing fail
due to HTTP errors (less than 30%), or either algorithm resior
consistent results in 5 trials (less than 0.7%). For the neimg
URLSs, we regard a probing as accurate if both algorithms yced
the same result. We report the accuracy for MSS=1460B, 512B
and 128B to be 98.4%, 98.8% and 99.2%, respectively. Inseonsi
tent cases are conservatively considered as inaccurate.

Algorithm 1 has two parameteisandé. Fork, we triedk =

quently occurred rangéd$®, 0.1) and(0.4, 0.55), which correspond

to packet-based IAT and flight-based IAT, respectively. Tam-

plementary CDF of normalized IAT including whereI;“”m/ =

I;/ Z§:1 I, for 1 < j < 8is shown in Figure 3(b). In most cases

I, is much larger, due to the extra delay caused by the server OS /
applications, explaining the need for discardihgn Algorithm 1.

Also in Figure 3(b), curves of; andIs depict the typical increase

in congestion window size at the beginning of slow start from
2 MSS to 3 MSS (instead of 4 MSS due to delayed ACKs [6]).

5.2 Rate Tracking Graph

We first validate whether under high retransmission rateGRT
of most flows exhibit positive correlation coefficients. Qestbed
downloaded each URL described previously. During the filerdo
load, the testbed dropped packets at loss rate of 5%, 10%, and
15% respectively, and also generated RTG for the downlgadin

trace. Such approach only introduces random losses nokeseng
tion losses. However, all known TCP implementations do mst d
tinguish them (both are triggered by duplicated ACKs or tim.

Next we show results for the loss rate of 10%. For other losssra
qualitatively similar observations are made.
We successfully downloaded 4,462 out of 5,844 URLs. For each

7,8,9, 10 and finally chosé: = 8 since it results in the highest ac-
curacy for all three MSS. We chogde= 0.2 based on the distribu-
tion of normalized IAT forls, ..., Is wherel*™™ = I,/ S L

*We created a 1Mbps bottleneck link to increase congestissem
In that case, well behaved flows also exhibit strong positee-
lation coefficients when both congestion and random lossss e

——winsize = 50KB
0.8F| = = =winsize = 100KB
“““ winsize = 200KB
0.6 winsize = 400KB
L O
a
o
0.4
0.2
0 i d i
-1 -0.5 0 0.5 1

Correlation Coefficient

Figure 4: Distribution of correlation coefficients of RTGs

N
(&
]
o

B)

Kl
n
=]

b) .

D
o

o

o
H

Retransmitted bytes (KB)
n B
(=] o

Retransmitted bytes (

(4]
i
i

LI

o
o
(=)

0.5 1 1.5 2 0
Time (sec)

Time (sec)

Figure 5: (a) A normal Rate Tracking Graph (window size
W = 50K B, correlation coefficient=0.88) (b) An abnormal
Rate Tracking Graph (window size W = 100K B, correlation
coefficient=-0.04)

downloading trace, four tracking window sizes of 50KB, 18K

x 10°
O DATA Packet

2.4646[| + ACK Packet
s_ +
g g
E 2.4646 g
2
g
& 24846(5 | g

2.4646

2.1
Time (sec)

Figure 6: Irregular retransmission detected by RTG

Table 4: Validation of the flow clock extraction algorithm

Application Flow Clocks Errors
Web/FTP bulk transfer RTT 0/20
Interactive Web session RTT / NoClk 1/20

SSH NonRTT /NoClk | 0/20
Remote Desktop RTT / NoClk 0/20
\oIP (Skype) NonRTT /NoClk | 1/20
Multimedia streaming| RTT/NonRTT | 0/20
Gaming NonRTT /NoClk | 0/20

flow clocks and their origins are known, then compare the igdou
truth with extracted flow clocks. We collected 10 flows forleap-
plication type. By measuring the RTT usipg ng and examining
the frequency spectrum and packet sequence diagram, systea
determine the dominating flow clock and its origin. Similarthe
algorithm described in §84.3, we declare the existence of dloak
by observing at least two human-observable harmonic frecjae

200KB and 400KB are used, generating 17,848 RTGs. Figure 4 among@2fo, 3 fo, 4 fo, wheref, is the human-observable fundamen-

plots the distribution of correlation coefficients for eagindow

size, clearly indicating that in most cases, the sendersshibown

the rate when retransmissions increase. Correlation casffs for
any pair of tracking window size@V,,, W,) are positively corre-
lated between (0.75, 0.92). After entropy-based cuttihg,aver-
age entropy only slightly increases from 6.06 to 6.11 (0.80&)

cause it is unlikely that large gaps occur in these HTTP doaahl
traces. However, for our seven passive collected databetsyer-
age entropy increases by 5% to 9%.

We examine the maximum of correlation coefficients for four
window sizes to discover irregular retransmissions. Allichave
maxz{CCs0,CC100,CC20,CCa00 > 0.3} except for one with
CCs0 = 0.09, CCig0 = 0.08, CC299 = —0.04, andCC4oo =
—0.27 (CCw denotes RTG'’s correlation coefficient for tracking
window sizeW) as shown in Figure 5(b), which provides a con-
trast for a typical RTG with high positive correlation coefint
illustrated in Figure 5(a). From the sequence diagram ofithe
regular flow shown in Figure 6, we observe that in fast retrans
mission, instead of retransmitting the lost packet (intideby the
duplicated ACK), the server retransmits all packets from lthst
packet to the current packet with the maximum sequence numbe
This can be caused by problematic TCP implementation. I fac
the OS fingerprinted by Nmap [2] looks very strangel?* 9100c¢
Di gital Sender nultifunction printer”with confi-
dence of 93%).

5.3 Flow Clock Extraction

To evaluate the flow clock extraction algorithm (84.3), we-ca
ture flows of different applications (listed in Table 4) wadhe

SWe use Nmap 4.85 withO - host - t i meout 600000.

tal frequenc§. We declare that our algorithm correctly extracts the
flow clock if the difference between human judgment (chogsire
local maximum) and algorithm output is less than 10%. Weatecl|
that the clock is originated from transport layer if the difince be-
tween flow clock and RTT is less than 10%. The whole experiment
was conducted twice at one author’s department (optical fibe-
nection for campus network) and home (broadband cable conne
tion). The validation results are reported in Table 4, frohick we
select eight representative cases illustrated in Figuastd (h).
For each plot in Figure 7, the bullets on spikes denote canelid
peaks (after clustering) as described in 84.3 tep the arrows
point to the extracted flow clocks (fundamental frequerciaad
two horizontal lines indicatg and .o + 300 (explained in §4.3
step(iv)).

For Web/FTP bulk transfer, we collected flows downloading or
uploading files larger than 1MB with RTT varying from 20msdFi
ure 7(a)) to 400ms (Figure 7(b)). Clocks of all flows clearty-c
respond to RTT. For interactive Web sessions such as GMEil; R
based clocks in both directions are blurred by user’s ictéva at
varying degrees (Figure 7(c)). For SSH fldwse observed intense
amplitude at 62.5Hz (16ms) from client to server (Figure)y(d
since |ATs of most packets are multiples of the fundament! f
quency at 16ms regardless of RTT. As shown in Figure 7(e)p&ky
flows from caller to callee exhibit dominant frequency clutea
istics at 50Hz (other peaks in Figure 7(e) are not fundanémta
guencies), while we did not observe such behavior for reviiosvs

5We admit that such an approach introduces subjective elismen
however, in most cases, such determination by human igltrivi

"We use SSH Secure Shell version 3.2.9 on Windows XP SP3 as
client; we tried both Solaris 10 and Linux 2.6.20 as server.

0.2

Amplitude

0.15 '
[0}
T
2
35 0.1
£
<
0.05
. . i ! \ 0
0 50 100 150 200 250 0 50 100 150 200 250 o 50 100 150 200 250

Frequency (Hz)
(b) Bulk HTTP Transfer
Flow Clock: 50Hz (RTT)

S 4

Frequency (Hz)
(a) Bulk HTTP Transfer
Flow Clock: 2.5Hz (RTT)

Frequency (Hz)
(c) Interactive Web Session (GMail)
No Flow Clock

0.014
0.03
0.012
oot 0.08 0.025
:]
g 8 0.06 o 002 I !‘ ‘
%Z'ZZ: j—é‘ %0.015 I HM “ Hlifllr “H"M ’||
£ E oo J H £ H”' } | [
0.01}
o | L
0.002 1,21 ATEA, 0.02 r N 1 \ 0.005
0 L ‘V LA Hll‘l [i ul | fhilla .
0 50 100 150 200 250 00 50 100 150 200 250 00 50 100 150 200 250

Frequency (Hz)

(f) Skype (Callee—> Caller)
No Flow Clock

Frequency (Hz)
(d) SSH (Clinet—>Server)
Flow Clock: 62.5Hz (Application)

Frequency (Hz)

(e) Skype (Caller—> Callee)
Flow Clock: 50Hz (Application)

" 4

0.012

o
o

Amplitude
Amplitude
o o
o o
o o
(=} e}

0.004

0.002 N

0] 50 100 150 200 250 0 50 100 150 200 250
Frequency (Hz) Frequency (Hz)

(g) PPLive Streaming (h) Winamp Radio Streaming
Flow Clock: 5.6Hz (RTT) Flow Clock: 12Hz (Application)

Figure 7: Frequency spectrum and flow clocks for different aplications

6. ANALYSIS OF LONG-LIVED FLOWS

In this section, we apply methodologies introduced in 84 @n o
datasets and present the results. We only examine longflioe's
defined to be with duration of more than 30 sec and size larger
than 1MB (The numbers of such flows are shown in the first row
in Table 6). There are several reasons that we focus on ived-|

(callee to caller, Figure 7(f)). Such small non-RTT basestks
may be caused by software clocks of the user application or OS
For multimedia flows, as examples shown in Figures 7(g){i®irt
clocks can either be RTT-basezlq.,PPLive) or application-based
(e.g.,Winamp Radio).

We investigated the origin of the 16ms-clock for SSH flows. By

hooking the sockesend() API and\WV_KEYDOWN message (a
keyboard event) it8SHCI i ent . exe using Detours [1] (a binary
interception tool for Windows functions), we observe thath

events happen at a granularity of 16ms, indicating that tbekc
is caused by the timing granularity of keyboard scanningheire

Windows XP.

Clearly, Figure 7 only lists several possible but not all fidack
configurations. Flow clocks are affected by multiple fastioclud-
ing link speed, packet loss rate, RTT, applications and inserac-
tion. In 86.3, we present characterizations of flow clocksevbed
in our datasets.

flows. First, they contribute to considerable traffic volyrase for
each dataset, the long-lived flows accounts for at most 0 dfcal
flows, but contributes at least 55% of traffic volume; secdongy-
lived flows provide enough information as required by outista
cal approaches; third, the reduction of the number of flowsii
icantly saves analysis time without losing the global viewtbe
datasets. 86.1, 86.2 and 86.3 discuss the results for IC¥kEinte,
irregular retransmission and flow clocks, respectively.

6.1 Initial Congestion Window Size

All our passively collected datasets exhibit IAT distrilauts very
similar to those of active probing datasets as shown in Ef8(a)(b).
So we choose the same parameters 8 andd = 0.2.

Table 5: Distributions of Initial Congestion Window

[ICW] Total | 1-2] 3 | 4 [571 6 [7]
BU [18234 88.3% | 8.0% | 3.1% | .2% [.3% [.08%
BS1 | 18609 | 86.0% | 10.2% | 3.4% | .1% | .3% | .05%
BS2 | 18342 | 86.2% | 9.2% | 4.1% | .2% | .3% | .02%
BS3 | 18468 | 83.9% | 9.1% | 6.4% | .2% | .3% | .05%
BS4 | 15763 | 85.1% | 8.6% | 5.6% | .3% | .3% | .04%
VPN [2135 | 94.5% | 3.2% | 2.0% | 0% | .4% 0%
DSL | 18004 | 77.2% | 6.9% | 14.2% | .6% | 1.0% | .03%
1.
0.8}
—BU
w 06f ——BS1
5 ——BS2
041 —Bs3
BS4
0.2r == =VPN
——DSL
% 5000 10000 15000

ICW Size (Bytes)

Figure 8: Distribution of ICW Size

RFC 2581 [6] requires that ICW must be less than or equal to

Table 6: Distribution of different types of irregular retra nsmis-
sion
| [BU [BS1 [BS2[BS3[BS4[VPN [DSL |

Long-lived 31K [29K | 29K | 29K | 26K | 4.1K | 33K
High Retran | 977 | 1009 | 908 | 821 | 692 | 16 | 1672
| Breakdown of flows with high retransmission rate |
Non-irregular | 928 | 953 | 847 | 778 | 651 15 | 1622
Irregular 49 56 61 43 41 1 50
| Breakdown of flows with irregular retransmission |
Non-Conform | 16 19 20 12 9 0 16
Sender Limit | 17 18 25 20 16 1 29
Partial Overlap| 5 5 5 3 6 0 0
Gaps/Rate Chgq 2 4 2 3 2 0 3
Unknown 9 10 9 5 8 0 2

—— BU winsize=50KB
= = =BU winsize=100KB
o BU winsize=200KB
+==BU winsize=400KB
— DSL winsize=50KB
- - - DSL winsize=100KB
DSL winsize=200KB
--—-DSL winsize=400KB

0.8

0.6

CDF
CDF

0.4

0.2

0
-1 -0.

5 0 0.5 1
Correlation Coefficient of RTG

1
Retransmission Rate

2*MSS bytes and not exceed 2 segments. RFC 3390 [5] updates

RFC 2581 by changing the upper boundin (4 M S'S, max(2

M SS, 4380 byteg)®. In our measurement results shown in Ta-
ble 5, most flows have ICW of 2 MSS, while we also observe
small fraction of flows (0.4% to 1.63%) whose slow start begin
with ICW of more than 4 MSS. Figure 8 plots the distribution of
ICW size in bytes, where ICWs mainly concentrate in two @t
2520 to 2920 bytes anti60 x 3 = 4380 bytes, corresponding to
2*MSS and the numerical upper bound defined in RFC 3390, re-
spectively. For DSL, about 14% flows form a third cluster ardu
5800 bytes (4*MSS, as shown in Table 5), which is an inappropr

Figure 9: (a) Distribution of packet retransmission rate (b) Dis-
tribution of correlation coefficient of RTG for different wi ndow
sizeW

datasets. The retransmission rate of VPN is lowest on agerag

while DSL has more flows with retransmission rate higher th#n
Next, we pick flows with retransmission rate higher than 10%

and generate their RTGs by applying Algorithm 2 with prepss

ing described in 84.2. Figure 9(b) plots the distributioncof-

ately large ICW. We also observe extreme cases where ICW is asrelation coefficients of all RTGs for BU (lowest on averagajla

large as 9KB. For each dataset, we report the percentagews flo
with ICW greater thamnin(4x M S'S, max(2+ M S'S, 4380 bytes)

as follows. BU: 3.6%, BS1: 3.8%, BS2: 4.6%, BS3: 6.9%, BS4:
6.2% VPN: 2.3%, DSL: 15.8%. OS detection results (Nmap only
fingerprints 24% of servers) show that almost all OS impleiaen
tions of flows with inappropriately large ICWs are Linux X @r
FreeBSD 6/7 (ICW is controlled byysct | _t cp_i wvariable in
Linux kernel).

6.2 Irregular Retransmission

Recall that in §4.2, irregular retransmissions deviatenfrine
usual case where the sender slows down its sending rate Wwhen t
retransmission increases. Rate tracking graph (RTG)sttatily
detects irregular retransmissions for flows with overagthietrans-
mission rate. We first present characterizations of retrégsion
rate and an overview of correlation coefficients of RTGsntapa-
lyze the irregular retransmissions detected by our allorit

Figure 9(a) plots the distribution of retransmission rakéore
than 55% of flows have almost no (less than 0.01%) retrangmiss
At least 80% of flows have retransmission rate of less than 1%.
There exists little diversity in retransmission behaviorass seven

8Some network cards(g.,Intel Pro 1000 NIC) provide a function
called TCP Segmentation Offload (TSO) that allows the ketmel
transmit packets with very large MS$8.¢.,64KB). However, the

NIC will eventually break the data down into proper MTU-size
packets €.9.,1448 bytes).

DSL (highest on average), using tracking window sizes of BOK
100KB, 200KB and 400KB. Clearly, for each window sizé,
majority of flows exhibit strong positive correlation bewvethe
transmission time fobV bytes and the retransmission rate. On the
other hand, we are more interested in understanding thesidppo
part, irregular retransmissions, which are conservatidgfined
here aSTlELX{CCsoKB7 CCio0xB,CC200KB, CC400KB} < 0.1.
As shown in Table 6, those irregular flows account for 2.5%%o 5
of flows with retransmission rate higher than 10%. By catgful
analyzing each irregular flow, we classify them into five gatées.
Category 1. There exists clear indication that the retransmission
behavior does not conform to RFC-compliant TCP specifioatio
In particular, we observe cases whéiethe sender retransmits a
train of packets within one RTTii) the sender retransmits packets
not lost; (iii) the sender injects large duplicated bursts to the link.
Except for VPN, they account for 20% to 50% cases in each eatas
Three examples are shown in Figures 10(a) to (c). In Figu(a)10
att, = 25.54s, the sender retransmits 18 identical packets sent at
to = 25.44s. Note that the interval i$; — t2 = 0.1s, less than
RTT = 0.2s that can be measured from the slow starts observed
in the flow. In Figure 10(b), at = 11.27s, the sender retransmits
received packets (indicated by the ACKSs) sent betweenl 0.58s
tot = 10.81s, resulting in a large number of duplicated ACKs
observed fromt = 11.84s. In Figure 10(b), there is no observed
duplicated ACKs that may trigger retransmission. In Figloéc),
the sender injects two large overlapped bursts of 500KB timo

30 40 60

Time (sec)

10 20 50

x10° x 10
1.3439 25314
g + ACK 21327
2.5313 o Data o o
o =+ -Hil- =
5 1:3439 5 25313 8 21326
£ [£ :
> 3 25312 4 o z -
% 13438 5 z g 21325
o 1. o)
@ B 25311 ?
(a) j,f (b) 2.1324 (c)
25311
1.3438 4 @ 06 o®@ ©
2.5311 21323 6 0 00 ®
24 26 28 30 10 105 _ 15 12 1 2 3
Time (sec) Time (sec) Time (sec)
9
x10° . x 10° X 10 R
@ 2.001 3.6207 g
8.8 @ %L g
2.001 @g g
.87 @g _ g . 3.6206 ;
Q [} g
-] g £ 2,001 g g
E 86 E g E]
Ehe g e @ 3 3.6206
w85 8 g o 2001 g =
@ @ @ P 36206 ;
84 8 o§ (d) 2.001 8
| : (e) (")
8.3 5 2.001 3.6205@
195 200 205 38 40 42 44 46 48 128 129 130 131
Time (sec) Time (sec) Time (sec)
x 10
pes
1.1311
T ACK O
o Data
1.131
3 5
rel et
€ 1.1309 £
=] =]
=z z
g 1.1308 g
0 %]
1.1307 (g)
1.1306
25

2
Time (sec)

Figure 10: Examples of irregular retransmissions

link att = 2.44s andt = 2.66s. Above behaviors may be caused
by bugs or intentionally aggressive implementation of PCP.

Category 2. Rate limited by senderAs discussed in 84.2, the
sender does not fully utilize the congestion window everhé t
congestion window is reduced due to packet loss, since tiese
does not produce data fast enough. Therefore, when theslokes i
tectable, the sender can possibly keep retransmittinggtaekith-
out slowing down. Two examples are illustrated in Figureg)0
and (e). We identify this category by observi(iythe flow clock
is detected; thus we can separate the flow into flights baséldeon
clock; (ii) the last packet of each flight is not transferred in MSS;
(i) the flow does not fall into Category 1 or 3. This category ac-
counts for 30% to 50% of irregular flows for each dataset eixcep
for VPN.

Note that the congestion window reduction described in RFC
2581 [6] is based ofrlightSize defined as is the amount of out-
standing data on the wire. Even if an application is not fulfjiz-
ing current congestion window, a loss should also causetatieth
in the observed transmission rate. Therefore, we belieattttis

category also corresponds to non-standard TCP impleni@msat

Category 3. Partial Overlap of Sequence Numberbkregular
flows in this category have strong frequency charactesdiased
on which we can separate the flow into flights. The flow exhibits
a strange pattern that the sequence numbers of consecigives fl
partially overlap. For example, in Figure 10(f), each flighhtains
16 < k < 20 packets; after sending flight: [m,m + k), the
sender retransmits packet + k£ — ¢ and the next flight starts from
m+k—c+ 1. We observe 3 to 6 such flows in each unidirectional
dataset.

Category 4. Gaps or Rate change (false positive$he gener-
ated RTG shows a negative correlation due to gaps that were no
removed, or due to a dramatic rate change. An example is shown
in Figure 10(g). Beforeé = 30s, the sending rate and retransmis-
sions are high; both decrease after 30s, causing the undesirable
negative correlation. The overall false positive rate i306.

Category 5. Unknown casedlt includes other cases that do not
fall into the above four categories. We are unable to inferdhuse
of irregular retransmission, especially for unidirec@bmlatasets.
An example is shown in Figure 10(h).

°Nmap shows that flows in Category 1 are mostly generated by
Linux 2.6.x and Windows 2003, while we also observe other OS 6.3 Flow Clocks

versions such as firmware OS for embedded network devegs (
routers). It is difficult for us to reproduce the buggy TCP &ebrs

We make four key observations from our analysis regarding flo

because many servers return HTTP 4xx codes, and the bugs seerglocks. In our datasetg) more than half of our flows do not have

to be triggered nondeterministically.

distinguishable flow clockgji) a significant number of flows have

0.1

0.08

Amplitude

50

100 150
Frequency (Hz)

200 250

Figure 11:
1Mbps

Freg. spectrum of a flow with a bottleneck link of

non-RTT based flow clock around 100m@ij) flows with large
non-RTT based flow clock tend to have more consistent fligtat; si
(iv) flows with non-RTT based clocks are more likely to transfer
data with an inappropriately large congestion window (@iivig
RFC 2581 [6] and RFC 2988 [30]) after a relatively long peradd
idle time.

RTT is a key parameter for understanding the origin of flow
clocks. We tried three ways to estimate RTT: (1) measure ¢teeyd
between SYN-ACK and first data packet; (2) measure the delay b
tween SYN and first ACK packet; (3) measure the delay between
first two flights in slow start. However, none of them yielddsfac-
tory results, since (1) overestimates RTT for most flows dutné
reason explained in 84.1; (2) may overestimate RTT for soovesf|
due to delayed first ACK [19]; and (3) also overestimates RTT i
many cases, compared with (2). Finally we picked the minimum
value of (2) and (3) as an approximation of RTT. Such compsemi
requires bidirectional data, so we did not report RTTs for &udl
BS1 to BS4. We clearly cannot use previous methods [33, 2] th
implicitly assume RTT as flow clocks to calculate RTT.

Table 7: Existence of flow clocks.

[Has Clock] BU | BS1 | BS2 | BS3 [BS4 |
Yes 42.5% 43.3% | 44.7% 46.3% 45.9%
No 57.5% 56.6% | 55.3% 53.6% 54.1%
VPN: No flow clk 68.5% DSL: No flow clk 69.0%
VPN: RTT based clk 2.6% DSL: RTT based clk 8.8%
VPN: non-RTT based cl{ 1.9% | DSL: non-RTT based cl{ 12.7%
VPN: Unknown RTT 27.0% DSL: Unknown RTT 9.5%

0.8

0.6

CDF

0.4

0.2

107
Flow Clock (sec)

0.8

0.6

CDF

0.4 RTT

P ~ 77 based Clk
Non-RTT
based Clk

0.2

0

107" 10

Flow Clock (sec)

Figure 12: (a) Distribution of flow clocks (b) Distribution of

Table 7 shows the existence of flow clocks in our datasets. For RTT based clocks vs. non-RTT based clocks for DSL

unidirectional traces BU and BS1 to BS4, more than half of the
flows do not have distinguishable flow clocks; nearly 69% ofiflo
fall into this category for VPN and DSL. For these latter twdib
rectional datasets, we further classify flow clocks into Riaked
and non-RTT based, using the empirically selected critdvé
|clock — RTT|/RTT < 20%. The ratio of RTT based and non-
RTT based clocks are 1:0.73 and 1:1.44 for VPN and DSL, respec
tively.

Figure 12(a) plots the distribution of flow clocks. For eaclasbet,
among flows with a measurable flow clock, about half of flows
have clocks less than 150ms, while considerable numberws§flo
have larger clocks up to 2000ms. We found a significant nuraber
flows (15% for BU and BS1 to BS4, 10% for DSL) with flow clock
around 100ms (10Hz). Based on Figure 12(b), which plots RTT
and non-RTT based clocks for D&\ these clocks are mostly non-
RTT based. By examining their IP and port numbers, we found
that many of them are flows from video/audio streaming server
such as imeem, Pandora and streamthewhrldFurthermore, in
Figure 12(b), 30% of flows in DSL dataset have non-RTT based
clock around 18ms. They are from a wide range of Web servers

router. As shown in Figure 11, HTTP downloading flows going
through the 1Mbps bottleneck link exhibit flow clock arourghis,
which equals to the inter-packet time regardless of RTTalRinin
Figure 12(b), 7% of flows with clocks larger than 1 second appe
to be video streaming applications sending at constanatst r

Our next observation relates to the consistency of flighe. drze-
call that in 84.3, given that a flow has its clock, we separhge t
flow into flights each of which consists of a train of packets sent
within one clock. We find that, flows with large non-RTT based
flow clock tend to have more consistent flight size. To qugntif
the consistency of flight sizes, we define a flodlight entropy
as:BEp = — Y, Sk log (%) (N: total number of flights N,
the number of flights containing packets). Intuitively, a smaller
Er indicates that the flight sizes are more consistent (in akise
datasets, packet count and flow size are highly correlatddaor-
relation coefficient higher than 0.99). The scatter plotiguire 13
illustrates a trend that the flight entropy tends to decreasgow

and CDN servers. However, we suspect that such non-RTT basedCclock increases, given that the flow clock is greater thamian

flow clock is caused by the link layer, as it is known that if aWf®
rate is limited by its bottleneck link, then the packets Wwal nearly
equally-spaced [35]. In our controlled experiment, we w@daa
bottleneck link of IMbps using a Linksys WRT54GL broadband

0samples in VPN are too few to draw confident conclusion.
11Many IPs are from CDN servers, so we cannot infer their s@urce

each dataset, for flows with clock greater than 100ms, theelzoer
tion coefficients between flow clock and flight entropy lieveeen
-0.5and -0.3, since as flow clock increases, the proportorRTT
based clock increases correspondingly, causing the dexiedhe
average flight entropy.

We further observe that flows with non-RTT based clocks are
more likely to transfer data with an inappropriately largmges-

Flight Entropy

0.5 15
Flow Clock (sec)

Figure 13: Correlation between flow clock and flight entropy
for BU

6.4 Summary of Results
We summarize our findings as follow$i) The majority of the

flows have ICW of 2*MSS. However, from 2.3% to 15.8% flows

in our data have a large ICW violating RFC 3390. Almost all ag-
gressive flows are from two open source OSes: Linux 2.6.x and
FreeBSD 6/7(ii) Among flows with high retransmission rate (higher
than 10%), 5% exhibit irregular retransmission behavidrioh is
observed to have two main causes: abnormal retransmissibn n
conforming to RFC-compliant TCP specifications, and undaization
of the congestion window(iii) Less than half of our flows have
distinguishable flow clocks. Among flows with a measurable/flo
clock, up to 60% have clocks originated by non-RTT factors. |
particular, we observe several clusters of clocks such @m@nd
18ms differing significantly from RTT values. We found that-b
sides RTT, many factors such as user interaction, appicate-

fined software clocks, periodical OS evengsg(, keyboard scan-

+

" *
o
o *1 * :%
2 + ﬁ*w *
+. *
206k “h x*
o8 i S *
< wn «Hj’{ ** * *
5o 04$ * ** * * **
g2 T A o+ . RTT
g it %, * based Clk
C o ogof T *
Chr oy . Non-RTT
t * 4 based Clk
o + E **;é**
0 02 04 06 08 1 12
Flow Clock (sec)

Figure 14: Scatter plot of flow clock and aggressive idle stas

tion window after a long idle period. Based on RFC2581 [6h if
TCP has no transmission for more than one retransmissiaotim
(RTO), it should reduce the congestion window to no more than
restart window, which equals to initial congestion windd&fore
next transmissions. The standard way to compute RTO is dkifine
RFC 2988 [30] aRT O = RT Tean+4x RTTstq, then rounded
up to 1 second if need&d To test whether the idle start behavior of
a flow conforms to [6] and [30], we count the number of aggressi
idle starts {.e., the server does not perform slow start after RTO),
which is then divided by the total number of idle starts oledrin
the flow to get an aggressive ratio.

We selected 288 flows from DSL datasets where there exists at
least 10 idle starts and the RTT can be estimated from TCP-hand
shake. We calculate the aggressive ratio for each flow, baseah
overestimation of RTO asiax{5* RT'T, 1.1sec}. The scatter plot
of flow clocks and aggressive ratios is shown in Figure 14. @& o
hand, flows with non-RTT based clocks are more likely to penfo
aggressive idle start. In particular, among flows with aggiree ra-
tio higher than 0.8, 75% have non-RTT based clocks. On ther oth
hand, non-RTT based clocks with high aggressive ratio argtlgno
large, as 87% have clocks greater than 0.95sec, formingséeclat
upper-right corner of Figure 14. Most flows in the clustegorate
from multimedia streaming servers. For flows with large fORF
based clocks, a clear motivation to use a longer RTO is to Keep
constant sending rate by avoiding slow start. However, hinglo
so, TCP can potentially send a large burst into the netwdst ah
idle period.

1’Based on RFC 2988, exceptional cases include: RTO should be
set to 3 seconds before first RTT is estimated, and RTO must be
doubled when retransmission timer expires due to packst los

ning), or “retiming” effects of a bottleneck link may shapebbur
the flow clock. (iv) Flows with large non-RTT based flow clock
tend to have more consistent flight size. Also, flows with RINF
based clocks are more likely to transfer data with an ingmpately
large congestion window due to a larger RTO. Both obsermatio
are motivated by keeping constant sending rate at the apiolic
layer.

7. CONCLUSION

Given the critical importance of the TCP protocol for shapin
the traffic characteristics on the Internet, our work reeixe®s key
properties of TCP behavior observed on the Internet todsipgu
traces collected at multiple vantage points from a tier-B. 18/e
reveal the evolution of TCP’s characteristics by companivith
two previous studies conducted 6 to 8 years ago. Furthermare
go beyond the basic characterization to study within-flowkpa
dynamics. In particular, we studied three problems: howee d
termine the initial congestion windows of TCP senders; how t
capture sender’'s change in sending rate in response totpacke
transmission; how to accurately obtain TCP flow clocks. Tenar
these questions, we have designed several novel methdeleg-
pecially addressing the challenges of analyzing passiaalgcted
unidirectional TCP flows. By applying our methods on longeti
flows in our datasets, we characterized the popular TCP l@hav
and identified unexpected flows not conforming to TCP spexific
tions as well. Our findings also suggest that the populafilyGP’s
use for streaming and gaming applications would greatlyhgha
the traffic dynamics especially because most flows with n®m-R
based flow clocks are found to belong to this applicationscl@sir
study is an important step towards better understandingrriat
traffic dynamics, ensuring protocol conformance, and ustdeid-
ing the interaction between the transport layer and theiegn
layer.

8. REFERENCES

[1] Detours, Binary Interception of Win32 Functions.
http://research. nmcrosoft.com en-us/
proj ects/ detours/.

[2] Nmap, Free Security Scanner for Network Exploration and
Security Auditsht t p: / / nmap. or g/ .

[3] pOf, a Versatile OS Fingerprinting Tool.
http://Icantuf.coredunp. cx/ pOf.shtmn .

[4] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
Five-Year Study of File-System Metadata.Rroc. of
USENIX Conference on File and Storage Technologies
(FAST) 2007.

[5] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s
Initial Window. RFC 3390, 2002.

[6] M. Allman, V. Paxson, and W. R. Stevens. TCP Congestion
Control. RFC 2581, 1999.

[7] S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft. Rupt
and Access-link-level Traffic Dynamics in a Tier-1 POP. In
Proc. of Internet Measurement Worksh@g01.

[8] V. Cerf, Y. Dalal, and C. Sunshine. Specification of |mietr
Transmission Control Program. RFC 675, 1974.

[9] C. Chambers, W. chang Feng, S. Sahu, and D. Saha.
Measurement-based Characterization of a Collection of
On-line Games. IiProc. of Internet Measurement
Conference (IMC)2005.

[10] K. chan Lan and J. Heidemann. Measurement Study of
Correlations of Internet Flow Characteristi€omputer
Networks 50, 2006.

[11] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroi
Characterizing Residential Broadband NetworksPtac. of
Internet Measurement Conference (IM@DO07.

[12] C. Estan, S. Savage, and G. Varghese. Automatically
Inferring Patterns of Resource Consumption in Network
Traffic. In Proc. of ACM SIGCOMMZ2003.

[13] C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting: Focusing on the Elephants,
Ignoring the Mice. IPACM Transactions on Computer
Systems (TOCS2003.

[14] K. Fall and S. Floyd. Simulation-based Comparisons of
Tahoe, Reno, and SACK TCP. ACM Computer
Communication Revievt996.

[15] S. Floyd. HighSpeed TCP for Large Congestion Windows.
RFC 3649, 2003.

[16] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly
high-speed TCP variant. rroceedings of the third
PFLDNet Workshop2008.

[17] S. JaiswalMeasurements-in-the-Middle: Inferring end-end
path properties and characteristics of TCP connections
through passive measuremerf$\D thesis, 2005.

[18] S. Jaiswal, G. lannaccone, C. Diot, J. Kurose, and
D. Towsley. Inferring TCP Connection Characteristics
through Passive MeasurementsPlioc. of IEEE
INFOCOM, 2004.

[19] H. Jiang and C. Dovrolis. Passive Estimation of TCP
RoundTrip Times. IIACM Computer Communication
Review 2002.

[20] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.
Measurement and Analysis of Large-Scale Network File
System Workloads. IWSENIX Annual Technical
Conference2008.

[21] G. Luand X. Li. On the Correspondency between TCP
Acknowledgment Packet and Data PacketPtoc. of
Internet Measurement Conference (IM@DO03.

[22] R. Mahajan, S. Bellovin, S. Floyd, J. loannidis, V. Paxxs
and S. Shenker. Controlling High Bandwidth Aggregates in
the Network. INPACM Computer Communication Review
2002.

[23] A. P. Markopoulou, F. A. Tobagi, and M. J. Karam.
Assessment of VolP Quality over Internet Backbones. In
Proc. of IEEE INFOCOM2002.

[24] A. Medina, M. Allman, and S. Floyd. Measuring Interacts
Between Transport Protocols and MiddleboxesPtac. of
Internet Measurement Conference (IM@D04.

[25] A. V. Oppenheim, R. W. Schafer, and J. R. Buck.
Discrete-Time Signal Processing (2nd EditioR)entice
Hall, 1999.

[26] J. Padhye and S. Floyd. Identifying the TCP Behavior of
Web Servers. IfProc. of ACM SIGCOMM2001.

[27] V. Paxson. Automated Packet Trace Analysis of TCP
Implementations. IARCM Computer Communication
Review 1997.

[28] V. Paxson. Automated Packet Trace Analysis of TCP
Implementations. IProc. of ACM SIGCOMM1997.

[29] V. Paxson. End-to-end Internet Packet DynamicAQM
Computer Communication Revigt997.

[30] V. Paxson and ark Allman. Computing TCP’s
Retransmission Timer. RFC 2988, 2000.

[31] A. Shaikh, J. Rexford, and K. Shin. Load Sensitive Rogiti
of Long-lived IP Flows. IrProc. of ACM SIGCOMM1999.

[32] K. Thompson, G. J. Miller, and R. Wilder. Wide-area
Internet Traffic Patterns and CharacteristicsiHEE
Network Magazingl997.

[33] B. Veal, K. Li, and D. Lowenthal. New Methods for Passive
Estimation of TCP Round-Trip Times. Proc. of Passive
and Active Measurement conference (PAROOS.

[34] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP:
motivation, architecture, algorithms, performancePhoc.
of IEEE INFOCOM 2004.

[35] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the
Characteristics and Origins of Internet Flow RatesPtac.
of ACM SIGCOMM2002.

[36] Y. Zhang and Z. Lei. Estimate Round-Trip Time of TCP in a
Passive Way. IfProc. of International Conference on Signal
Processing (ICSRR004.

