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ABSTRACT

IP forwarding anomalies, triggered by equipment failures, imple-
mentation bugs, or configuration errors, can significantly disrupt
and degrade network service. Robust and reliable detection of such
anomalies is essential to rapid problem diagnosis, problem miti-
gation, and repair. We propose a simple, robust method that inte-
grates routing and traffic data streams to reliably detect forwarding
anomalies, and report on the evaluation of the method in a tier-1 ISP
backbone. First, we transform each data stream separately, to pro-
duce informative alarm indicators. A forwarding anomaly is then
signaled only if the indicators for both streams indicate anomalous
behavior concurrently. The overall method is scalable, automated
and self-training. We find this technique effectively identifies for-
warding anomalies, while avoiding the high false alarms rate that
would otherwise result if either stream were used unilaterally.

1. INTRODUCTION

Anomaly detection is useful in network management for a range
of applications, from detecting security threats (e.g. denial of ser-
vice attacks), to detecting vendor implementation bugs, network
misconfigurations or faults. One wishes to detect times where the
network is behaving abnormally, as action may then be required
to correct a problem. Anomaly detection can be particularly use-
ful in the context of reliability. Reliability is a critical objective in
large IP networks, but many factors (for instance code bugs) are
outside of an operator’s ability to control. An alternative to pre-
venting outages is to rapidly recover from these — for instance see
the arguments presented in [1, 2]. In order to recover quickly, one
must detect and localize a problem quickly.

However, while detection and alarming on real problems is im-
portant, it is equally important to keep the rate of false alarms low.
A high false alarm rate results in genuine events being lost in the
“snow” of false events. Statistical anomaly detection tests are run
often (e.g., every five minutes), on large networks (with ten’s of
thousands of links), and so even a seemingly low false alarm rate
may result in enough false alarms to overwhelm network operations
staff. In the worst case, false alarms undermine anomaly detection,
as operations staff tire of reacting to false alarms, and ignore or turn
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the system off entirely.

IP forwarding anomalies represent a large class of network anoma-
lies, that relate to problems in forwarding packets to their destina-
tions. More precisely, a forwarding anomaly is a period during
which a significant number of packets fail to successfully exit the
network at an appropriate point. Network component failures (line
card, optical amplifier, or router outages, and fiber cuts) are not
usually within the class of such anomalies. During such events, IP
traffic is rerouted along alternate paths, resulting in at most a short
transient anomaly while the routing protocols reconverge. Also,
such failures are typically isolated, and easily detectable via other
means, e.g. the Simple Network Management Protocol (SNMP).
However, as we note below, component failures may trigger some
larger network error, or occur simultaneously.

Forwarding anomalies can be the result of several problems:

e Bugs: Bugs in router software may cause forwarding problems
that do not register via any hardware alerts, or may further be
related to bugs in the instrumentation itself.

e Misconfigurations: The IP control plane — the distributed pro-
tocols that coordinate the building of forwarding tables through-
out the network — is very complex. In such systems it is hard
for an operator to understand the state of the system, and there-
fore the possible impacts of their actions [2]. The result is that
routers may be configured in such a way that packets do not
reach their destinations, even though the network may appear
to be working normally. The distributed nature of the Inter-
net means that such misconfigurations are not entirely under the
control of a single operator. BGP allows network operators to
misconfigure their systems in a way that may impact another
network. For instance, injecting all of a providers internal routes
into eBGP could result in large increase in the BGP table size
across the whole Internet, potentially overloading router mem-
ory (at least on older routers), and causing router crashes across
the Internet. Another example occurs if a customer that is multi-
homed to two large ISPs (A and B), mistakenly advertises BGP
routes learned from A to B. In this case, if B does not have ade-
quate filtering (which can be tricky to implement) it may end up
routing its traffic to A across completely inadequate customer
links rather than large peering links (in general customer links
are preferred to peering links because they generate revenue).
This type of anomaly is tricky because in principle the traffic
can still make it to its destination — all the routes exist — but
performance will be terrible. Note that in [3] the authors found
that operator errors in the form of misconfiguration was the ma-
jor cause of service affecting outages, and BGP in particular has
been seen to be hard to administer, so we may expect occur-
rences such as this to be a major form of forwarding anomaly.



e Cascading network failures: In a cascading network failure, a
simple failure (such as that of a line card) results in widespread
disruption of the network. Although, the possibility of such a
collapse is not anticipated in the Internet, such failures are dif-
ficult to predict, or control, and certainly have been observed
in other network systems, for instance the power grid in North
America in August 2003, and in the telephone network [4].

e Latenterrors: Itis possible to have latent errors: problems that
are not significant until another error triggers them. A simple
example might be a backup path that has been misconfigured,
so that it does not work. Without careful testing such a problem
might not come to light until after failure of the primary link.
The failure of the primary link would be dealt with using normal
procedures for detection and re-mediation, but without anyone
realizing that the backup path was also failed, they might not
give this task the priority it requires.

e Exogenous factors: It seems very unlikely that exogenous en-
vironmental effects can cause large scale failures. Networking
equipment is generally held in tightly controlled environments,
with redundant power supplies, and A/C. However, in rare cases,
for instance the Sept 11 attack on the World Trade Center, the
scale of external factors was large enough to effect a large part of
the network. Although critical locations often have connections
to multiple grids, and backup power supplies, very large scale
power outages (such as the North-Eastern American blackout
of August 2003) might also impact services in some networks
if they do not have sufficient redundant power provisions for a
long-term, large-scale outage. Obviously, detection of such im-
pacts will be secondary to the event in question, but may none-
the-less be useful in order to quickly assess the scale of the im-
pact.

e Simultaneous failures: Most networks plan for single com-
ponent failures, for instance, by providing pairs of redundant
links. Given independent failures (consideration must be given
to shared risk link groups when making such assumptions [5])
simultaneous failures should be unlikely. However, occasion-
ally failures occur simultaneously. For example in May 2000
Optus (a major provider in Australia) had simultaneous, inde-
pendent failures of the two redundant links between a pair of
major cities [6].

A consistent property in the above problems is that the standard
methods for detecting network problems, for instance SNMP traps,
syslog messages, etc., either do not detect such events, or are not
likely to see the true extent of the problem. Understanding the ex-
tent of a problem quickly is important in order to prioritize the event
appropriately.

Forwarding anomalies (by definition) have severe or network-
wide impact, resulting in dropping large quantities of packets. For
instance, on October 3rd 2002, a forwarding anomaly resulting
from a router software bug caused a major tier-1 provider to loose a
large volume of traffic [7], network-wide, over several hours. Dur-
ing this period, there were large drops in traffic on peering links
(as measured by SNMP) and noticeable effects on Border Gateway
Protocol (BGP) routing (as seen, for example, from customer and
public viewpoints, such as Routeviews [8]). While this problem is
near the extreme end of the spectrum there have been other, smaller
scale forwarding problems in many ISPs (see, for example, email
archives posted to the North American Network Operators’ Group,
NANOG, ht t p: / / www. nanog. or g). The problem in [7] mo-
tivated this work, in particular, the data sets used here — the event

showed up particularly clearly in both SNMP measures of traffic,
and BGP data, hence our use of these two data sources here.

We investigate an approach for reliable detection with a low false
alarm rate, which integrates multiple data sources. Specifically, this
paper presents an analysis of using SNMP usage data, in conjunc-
tion with BGP dynamic update data to detect and localize a class
of network anomalies in a large tier-1 ISP environment. Each data
source provides a different view of such anomalies. The SNMP
data provides traffic volumes, while the BGP data concerns routing
between autonomous systems. Both individual data sources have
problems in data quality and in missing causality information that
lead naturally to false alarms. On the other hand, if such problems
are suitably uncorrelated in two data sources, then the false alarm
rate can effectively be diminished by alarming only if both data
sources indicate the anomaly concurrently. This is precisely the
intuition behind our choice of data sources and our method.

First, we transform each data set individually to create useful
anomaly metrics. Though SNMP usage data is relatively simple —
the number of packets or bytes that traverse an interface between
successive polling intervals — operational measurements for large
networks can be relatively complex and noisy. We use two methods
to extract the anomaly indicators from this data: a standard tech-
nique called Holt-Winters, and a second novel method based on a
decomposition of the traffic, in a similar vein to Holt-Winters but
exploiting a reasonable traffic model to improve results. BGP dy-
namic updates, on the other hand, provide a rich, high-dimensional
data source, with considerable volatility. Here, to extract a useful
anomaly indicator, we transform the raw data to simulate and track
BGP tables at locations throughout the network. We then form the
dynamic count of the number of routes in these tables satisfying a
given predicate, and use a modified exponentially weighted mov-
ing average technique to signal anomalies. Last, we correlate the
SNMP and BGP anomaly indicators in time to produce a combined
indicator.

In this investigation we have principally looked for rapid de-
tection and diagnosis of larger scale events — that is, those that
concern more than one router or link. Single router, or single
link events can be reliably detected using other mechanisms (e.g.
SNMP traps), and are not a significant problem because typical
provider networks are designed to re-route traffic under such fail-
ures, and to have redundant capacity sufficient for this purpose.
Problems involving more than one router, may result in loads in ex-
cess of the available redundant capacity. In this case, network oper-
ators need to rapidly identify the problem as a forwarding anomaly
(as opposed to, for example, a large facilities outage) and localize
the problem. We note that forwarding anomalies sometimes self-
repair relatively quickly, so that no remedial action is possible or
necessary. However, these anomalies can still cause transient dis-
ruptions and degradations of service quality for sensitive applica-
tions, such as \oice over IP or interactive gaming. Reliable detec-
tion is still important for tuning network protocols and processes to
track and reduce the occurrences of the transients.

The novel results contained here are, firstly a new algorithm for
finding anomalies in SNMP traffic data with better performance
than Holt-Winters; secondly, a method for extracting anomalies
from BGP data; and thirdly, and most importantly, we find that
that using traffic and routing data together significantly reduces the
false alarm rates for forwarding anomaly detection. The reason is
that during a forwarding anomaly, traffic fails to reach its correct
exit point from the network. A large part of the traffic on a major
ISP exits the ISP at its peering points, and so a major forwarding
anomaly will be noted by a change in traffic along this edge of the
network. Similarly, the routing to peers is controlled via BGP, and



so large scale forwarding anomalies will appear in this data source
as well. With these two sources, we focus on detection of forward-
ing anomalies, however, the principle could be extended to other
routing data (for instance, obtained from internal routing protocols
such as OSPF or IS-IS), performance measurements from active
probes, or more detailed traffic measurements such as Cisco Net-
flow data.

1.1 Reéated work

Previous work on network anomaly detection has primarily fo-
cused on security tasks (detecting DoS attacks, worms, or other
intrusions) and has often been signature based. We seek to find
anomalies which may never have occurred previously, and so do
not have a known signature. In many cases providers use very sim-
ple techniques for anomaly detection, such as fixed thresholds, but
such techniques are quite limited (as described below). There has
however been some more sophisticated work in the detection and
analysis of network anomalies. Instances are [9, 10, 11, 12, 13,
14]. Of these, the most directly relevant to this paper is [12] which
tests the use of the Holt-Winters forecasting technique for for net-
work anomaly detection. Also of note is [13] which proposes a
wavelet based method with great potential, but is most noteworthy
because it has the strongest set of data used for testing these algo-
rithms. [13] contains one of the first large scale, quantitative tests
of algorithms for network anomaly detection. It may be that such
testing has occurred in other cases, but network faults are consid-
ered highly sensitive data, because of their potential impact on cus-
tomers, and so such data can rarely be released. However, note that
the data used in [13] was drawn from a university network, which
might have quite different characteristics to those of the tier-1 ISP
considered in this paper.

In addition to the papers describe above, there are quite a few
works on correlating alarms or various sorts via various means, for
instance see [15, 16, 9, 10]. Such work is relevant here in the sense
that we are performing a type of alarm correlation, although the
method we use here is very simple, despite its good performance.
One might apply techniques such as those suggested in these papers
to improve performance in the future.

2. BACKGROUND
2.1 The Network

An IP network is made up of IP routers and IP adjacencies be-
tween those routers, within a single Autonomous System (AS) or
administrative domain. It is natural to think of the network as a set
of nodes and links, associated with the routers and adjacencies, as
illustrated in Figure 1. We refer to nodes and links that are wholly
internal to the network as backbone nodes and links, and refer to
the others as edge nodes and links.

In addition, it is helpful to further classify the edge for IP net-
works managed by Internet Service Providers (ISPs), such as the
tier-1 ISP backbone investigated here. As shown in the figure, in
general the network will connect to other autonomous systems and
customers via edge links. We refer to the links to customers as
access links, and to the links to other (non-customer) autonomous
systems as peering links. A significant fraction of the traffic in an
ISP network is inter-domain and is exchanged between peer net-
works over peering links.

One can also group the nodes/routers into geographic groups:
Points of Presence (PoPs), which are generally a group of routers
within one building. Only some subset of PoPs will contain peering
links, and it is those that we concentrate on in this paper, though the
methodology is applicable in other cases with minor modifications.

Peers

Peering Links

IP Network Backbone

Access Links

Customers

Figure 1: IP network components and terminology
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The methods we apply are critically dependent on the data on
which they are built. In this paper, we analyze Simple Network
Management Protocol (SNMP) traffic data extracted from an archive
that includes more than 1 year’s worth of data collected from a large
tier-1 ISP’s backbone network. SNMP is unique in that it is sup-
ported by essentially every device in an IP network. The SNMP
data that is available on a device is defined in a abstract data struc-
ture known as a Management Information Base (MIB). An SNMP
poller periodically requests the appropriate SNMP MIB data from
a router (or other device). Since every router maintains a cyclic
counter of the number of bytes transmitted and received on each
of its interfaces, we can obtain basic traffic statistics for the entire
network with little additional infrastructure.

Unfortunately, as a practical matter, SNMP data has many lim-
itations — for instance missing data (it may be missing because
SNMP uses UDP transport, or it may be lost while copying to our
research archive), incorrect data (through poor router vendor imple-
mentations), and a coarse sampling interval (typically five minutes,
though one could easily collect data at somewhat finer intervals,
say one minute), due to the collection mechanism (polling from a
small set of pollers) the sample times of the data are jittered both
between successive measurements, and between measurements on
different network components. A further limitation is that SNMP
only provides aggregate link statistics — we cannot determine any-
thing about the type of traffic using the link, nor its source or desti-
nation.

These limitations make algorithmic analysis such as time series
analysis difficult on this data. As a simple example, consider com-
puting the sum of traffic across the network edge. If only 1% of the
data were missing (at random), then at any time, the sum (which
includes many more than a hundred links), would on average be
missing at least one data point. As the traffic between links varies,
this would introduce apparent variations in the total traffic that are
purely artifacts of the missing data.

In the network in question we have more than one year’s SNMP
data, gathered at five minute intervals. The data contains the MIB-
Il counters, which include the number of bytes in and out for each
interface in the network, and this is the data we shall examine here.
We first aggregate the data onto one hour intervals, using nearest
neighbor interpolation of the samples. This transforms the prob-
lems of missing data and sample jitter into a small amount of noise
in the measurements. We then aggregate this data to examine the
total traffic along the peering edge at each Point-of-Presence (PoP)
at which there are inter-peer connections.
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The Border Gateway Protocol (BGP) is the only interdomain
routing protocol on the Internet today. It has a very important role
as it is responsible for exchanging the reachability information be-
tween the Autonomous Systems or ASes. BGP is a path vector
protocol. Each route to a prefix contains the entire AS path which
is a sequence or collection of ASes to reach the destination. BGP
is policy-based, i.e., routing across Autonomous Systems does not
use shortest path. Routing policies can override distance based met-
rics. There are no uniform routing policies across ASes, as they are
determined by commercial relationships. BGP is incremental; thus,
in steady state, no routing messages are exchanged between BGP
speaking border routers across ASes. BGP updates dynamically
announce and withdraw routes.

Monitoring BGP updates can reveal all the changes in the best
route used by a given router and can in turn indicate routing prob-
lems in the network. Route monitors, supporting passive BGP peer-
ing sessions, can be set up to receive all the routing changes. Such
route monitors archive all the update messages and regularly dump
all the routes in the BGP table. The Oregon Routeviews [8] project
and the RIPE NCC RIS project [17] have both set up such routing
sessions with numerous ISPs all over the world to obtain the latest
information of the best routes used by these networks.

Inside a service provider’s backbone network, it is also very
valuable to monitor the best routes used by various routers at dif-
ferent locations to study potential network problems. Such data
along with the data from RIPE and Routeviews allow one to poten-
tially differentiate the problems within one’s network from those in
neighboring networks. In our experiments, we make use of mea-
surements from route monitoring sessions to route reflectors in all
major PoPs of the backbone. The data include all the BGP updates,
i.e., the routing changes, as well as daily table dumps of all the
best routes used. The monitoring sessions advertise all the avail-
able routes. Given a BGP table which contains all the best routes
used, one can apply the updates to obtain the best routes at any
given time.

BGP updates comprise an extremely rich, high dimensional, and
relatively volatile data source. The volatility arises from the fact
that BGP sees routing changes over a large segment of the total
Internet. The challenge is to define metrics that allow for rapid cal-
culation and prediction of forwarding anomalies. In general, we
have found metrics that count the number of routes that satisfy a
given predicate to be very useful in detecting and explaining rout-
ing phenomena and various forwarding anomalies. In the particular
case here, we shall focus on the distribution of routes via different
egress points. A router typically has several choices of where to
send traffic for most of the prefixes in the table. A sudden shift in
the distribution of routes give good indication that the egress point
that is less preferred may experience some network outages. In this
paper, we will investigate metrics that track for each route reflector
under observation, the number of routes that exit a given PoP. These
metrics are easily calculated by combining BGP updates with con-
figuration data that maps BGP next hops to BGP routers.

For each PoP we shall store a time series constructed from the
number of best routes seen exiting the PoP by the local route reflec-
tor. We further aggregate this data into time bins so that we store
the minimum and maximum number of routes seen during each
bin. For the purpose of this study we use one hour bins, though this
number is arbitrary, and can easily be reduced to bins as small as a
minute with very little additional computational load.

This data can contain artifacts as a result of resetting the BGP
session between the route reflector and the route monitor. These
artifacts have been removed using data archived at the BGP moni-

tor, but other artifacts may persist.

3. ANOMALY DETECTION

Anomaly detection can be thought of as an attempt to detect data
that shows evidence of emerging from a different process or mecha-
nism than typical data. There are far too many possible approaches
to anomaly detection to list here. We shall take the approach of
using several very simple, but reasonable detectors for individual
data sets, and rely on the combination of data sets to provide good
performance. One could obviously improve the quality of the de-
tectors on individual data sets using more sophisticated algorithms,
but this paper shows that such an approach is not needed, given
the correct combination of data sets. Furthermore, the false alarm
rate for any one data set will be intrinsically limited by that data
set, and so one must use some combination of data in order to get
useful performance.

An often used approach in detecting network anomalies in traffic
data is to set arbitrary thresholds, based on experience, or engineer-
ing guidelines. These methods are greatly limited by the rapidly
changing nature of the Internet, the inability to scale such methods
to large networks where many different threshold might be appro-
priate, and the non-stationarity of Internet traffic (a spike in traffic
would not be detected by such a threshold if it occurred during the
early morning when traffic is very low).

Generalizing somewhat, while maintaining simplicity, another
approach to anomaly detection is outlier detection — detecting ob-
servations that differ by a large amount from other observations.
The method by which you measure the normal behavior of the ob-
servations is still of interest. There are a number of alternatives
available, depending on the properties of the data in question. Two
traditional examples are

e EWMA: The Exponentially Weighted Moving Average (EWMA)
chart is a text-book method applied in quality processes (for in-
stance see [18]). The method is broadly applicable to data with a
stable, stationary mean, and independent observations. We will
adapt this approach for use on the BGP data analyzed here. The
modifications are required because BGP data does not quite sat-
isfy the above requirements, but we can nevertheless create an
effective anomaly detector with minimal modifications. Expo-
nential smoothing is a method for computing a prediction of the
value of some measured quantity, where the measurements in-
clude noise. Given the prediction, we can assess how far the
next measured value is from its prediction, and thus decide if
the measurement is an outlier. One assumes that the process can
change (slowly) over time, and so more recent measurements
are more relevant, but may be overridden by the body of preced-
ing data. The EWMA prediction is given by

Jt+1 = ayr + (1 — @), 1

where « is a parameter that determines the weight given to the
current measurement compared with previous measurements.
One can similarly estimate the variance of the noise using

oii1 = aei + (1 - a)o}, )

where e; is the one step prediction error e; = y: — 3. Given
these estimates one can declare an observation an outlier if it lies
more that § standard deviations from the predicted value, i.e. if
Yt+1 lies outside the interval (/gt-kl — 50’t+1, Y1 + 60’t+1)-

An example in this vein is the TCP Retransmission Timeout
computation [19], which uses exponential smoothing of round-
trip times to estimate how long to wait for an ACK before de-
ciding that a packet as been lost.



e Holt-Winters: The Holt-Winters method is designed for data
which shows both periodic variations (both in mean, and vari-
ance), and long term trends, in addition to stochastic variations.
The method, is described in more detail below where we apply
it to the SNMP data. Holt-winters has been perhaps the most
commonly tested algorithm in the context of Internet anomaly
detection [12, 14, 13] because of the fact that while not opti-
mal, it does not require extensive modeling assumptions and is
therefore quite robust.

The Holt-Winters (see [12, 20] for more details) method gen-
eralizes the above EWMA, by allowing the estimating seasonal,
and trend components. One disadvantage is that it requires more
parameter settings than EWMA, but there are typical ways for
setting these (see also [12]).

In addition to Holt-Winters we apply a novel method (described
below) using a model developed in the context of backbone In-
ternet traffic. The advantage of the EWMA and Holt-Winters al-
gorithms are that they are incremental, one-pass algorithms, with
minimal storage and computation requirements. Thus they can be
easily applied on-line as data is collected. The disadvantage of
these methods is that they include the detected outliers in future
measurements. That is, should we see a large spike in our traf-
fic measurements, then this will be included in future predictions
via equation (1), and will effect the estimated variance likewise.
EWMA can be adapted to be less sensitive in this regard, which
is the main modification we make to EWMA in our BGP anomaly
detection. However, in the case of SNMP data we also test a model-
based two-pass algorithm. This latter approach has many similar-
ities (in its basic assumptions) to Holt-Winters, but proceeds by
decomposition of the traffic into components, including a compo-
nent describing anomalies, which may then be discarded before ap-
plying a second pass. This type of approach is also common in
the time-series literature, with the exception that the model applied
here is chosen specifically because of its better representation of
traffic data. While this approach is not as appealing in the real-
time context, note that the data which we are dealing with (SNMP
for instance) are unlikely to be gathered more frequently than once
per minute, and therefore our computational budget is not too tight.
Further, the method described is not particularly onerous, having
computational complexity of O(V) for data sequence of length V.

In addition to the methods described here there are many al-
ternatives. For instance, the wavelet techniques explored in [13]
are particularly appealing. Other methods include ARIMA model-
ing, as used in [14], or Bayesian techniques, for instance see [9].
These methods might allow for improvements in false-alarm rates
in themselves. However, the properties of the data itself suggest
that there will always be false alarms for any detector of the re-
quired sensitivity.

3.1 SNMP

Internet traffic shows strong non-stationarity both in the mean,
and the variance [12]. This non-stationarity has two major compo-
nents — a long term trend, and a periodic, or seasonal component.
What’s more, as noted in [12] the periodic component can gradu-
ally evolve, for instance, as the number of evening daylight hours
changes from summer to winter.

The approach described below is to model the traffic using a
semi-standard time series model, and to then decompose the traffic
directly into a non-stationary (but regular and predictable) compo-
nent, a normal stochastic component, and a set of anomalies. This
approach has the advantage of being simple, intuitive, and well-
matched to existing traffic measurements (for backbone networks).

Figure 2 (a) shows the traffic along a backbone link over 4 weeks.
The most noticeable trait of this traffic is a strong periodic compo-
nent with a period of a day, and a slightly less obvious weekly cycle.
On top of the periodic components there is some random variation,
and when one observes Internet traffic over longer intervals, one
sees long-term trends.

The typical time-series approach to modeling such series is to
model the observed process as a combination of several compo-
nents, in our case the following:

1. Seasonal/Periodic Component: S;

2. Long Term Trend: T;

3. Normal Stochastic Component: W;

4. Anomalies, modeled as impulse functions: I.

This set of components lies at the base of the Holt-Winters tech-
nique as well. In that method (as is typical in time series) the
components are simply added together (one can also build multi-
plicative models which become simple additive models in the log
domain). However, for backbone Internet traffic there is a more ap-
propriate method of combining these components which takes into
account the way traffic multiplexes together. The basic assump-
tion is that traffic increases, not because a fixed number of sources
increase their volume, but rather because the number of sources in-
creases. One can think of exceptions to this, but in the backbone
S0 many sources are aggregated that it is a reasonable model in the
majority of cases [21]. The combination method that satisfies mul-
tiplexing requirements is given by

xe = my + Jam Wy + I,

where x: is the traffic rate at time ¢, a is the peakedness parameter,
and m is the regular, predictable, but variable mean, which is given

by
me = StTt.

A simple method to decompose the first three components, given
the model above, is given in [22]. The starting point is a Moving
Average (MA), which is simply a convolution of the time series
with a low-pass filter. We use only centered rectangular windows
in this work. Thus the MA of width 2n + 1 applied to time series
¢ IS

. 1 n
T, = ——— ;. 3
¢ 2n+1 i;nxtﬂ @

If the filter has length greater than the period P of the seasonal
component (1 week) then the MA acts to remove the periodic, and
stochastic variations. Therefore n = P/2 yields an estimate of the
trend, i.e., we estimate the trend using a MA with width ~1 Wgek.
Once estimated we can form a detrended data set by y; = ¢ /T%.

The standard method in time series analysis used to estimate the
seasonal component exploits the periodicity by using a Seasonal
Moving Average (SMA) where we take a MA over a series of data
points separated by the period, so as to estimate the periodic com-
ponent at those time points [20]. In our analysis, we perform our
average over the whole data set, i.e.

N¢—1

A 1
= Ty 4
St Nt;yt-FT (4)

where ¢t € [0,T), and N, is the largest integer such that ¢ + (N; —
1)T < N, where N is the length of the data. We refer to this as the

Seasonal Average (SA). We may estimate the mean by r; = S;T;.
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Figure 2: An example showing SNMP traffic data, decomposed into the regular component m. and the stochastic component.

Once we understand the periodic and trend components of the
traffic, the next thing to capture is the random variation around the
mean. We have estimated i, and so can estimate the stochastic
components, by

2 = (It - mt)/\/m_t

However, note that this includes both the normal stochastic com-
ponent (W) and anomalies (;). We must therefore separate these.
In this paper we use simple outlier detection, but one could apply
a number of anomaly detection techniques to this sequence, be-
cause it is now approximately stationary. Even where we do sim-
ple outlier detection, based on the variance of z:, an advantage of
this approach, as compared to Holt-Winters, is that one now has a
long series of data points on which to estimate a variance, whereas
Holt-Winters must estimate individual variances at each point in
the period (for instance at each time-of-day), from much shorter se-
quences of data. Given five minute SNMP data, and a daily period,
this represents a 288 fold increase in the number of data points that
can be used at each time point for estimating the variance. Thus we
can form a more accurate estimate of the variance.

The outlier detection applied here involves simply measuring
the standard deviation o of the marginal distribution of z;, and
choosing outliers to be those events further than No away from
the mean of z;. This has a simple interpretation in the event that
the marginal distribution of the stochastic process 1, has a simple
known form, for instance, if W, is Gaussian, then +1.96¢ are the
95% confidence intervals of the distribution, and so one would ex-
pect that data from W; would fall outside these bounds 5% of the
time. Choosing N is therefore easy in the Gaussian case, as we can
choose it so as to fix our false alarm rate at some value. In real-
ity the marginal distribution of W, is unknown, but the data seems

to support a Gaussian model to some extent. Figure 3 shows two
representative histograms of the marginal distributions of z; for the
traffic of two PoPs traffic. The figure also shows corresponding
qg-plots of the data — if the data were Gaussian, all of the points
would lie on the diagonal line. We can see that over a range (of
roughly two standard deviations) that the data does fit this line, but
that the tails of the distribution are somewhat heavier than Gaus-
sian. We shall, in this paper, use the assumption of Gaussianity to
choose the threshold level V, but note that the Gaussianity assump-
tion is not needed, but only applied as a guide to obtain a specific
false alarm rate.

Now that we have applied our outlier detection we may segregate
the time interval ¢ € [0, 7] into parts which represent anomalies,
and otherwise. In the case that there is an anomaly we know that
the model above does not hold (by definition), and so it is possi-
ble that the measurements x, from those times bias our estimates
of S, Ty, and W,. To explain more simply, a single anomalous
measurement, may take a value many times larger than the typi-
cal measurement (at that time of day), and might therefore, unduly
increase the expected value of the traffic at that time of day.

The standard approach to circumvent this problem is to rerun the
decomposition, but this time exclude measurements from time in-
tervals at which the algorithm had detected anomalies. Note that all
of the above decomposition was designed to work even with miss-
ing values, and so it can proceed with no difficulty, unless a great
deal of data does not fit the model. One may consider rerunning the
decomposition in this fashion a number of times, but we do so only
once here.

The final result is a decomposition into the four components de-
scribed above. The decomposition gives the first two components
values for all time intervals, the third component for those time in-
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Figure 3: On the Gaussianity of the marginal distribution of 2, for two example datasets.

tervals at which anomalies do not occur, and the times at which
anomalous measurements are observed. Figure 2 show an example
of the decomposition of a set of traffic (over four weeks), into its
regular component m; (the combination of the trend and seasonal
component), and the estimated stochastic component (denoted in
the graph by z:). Note that in this data set, no significant anoma-
lies are observed, so Z; is an estimate of W;. We will refer to this
method for anomaly detection as the decomposition technique.

32 BGP

As with the SNMP data, the BGP data is non-stationary. It ex-
hibits trend over long time intervals (typically the number of routes
in the Internet has grown over time), and also dramatic changes
where changes in routing policy (for instance introduction of prefix
aggregation) have resulted in shifts of a large number of routes. A
good example of the latter can be seen in the relatively recent ab-
sorption of Genuity’s traffic into Level 3. All of the Genuity routes
shifted to Level 3 over a relatively short interval of time (less than a
day around May 7th 2003). BGP data is, as noted above, relatively
volatile. However our metric — the number of routes matching a

given predicate — shows good stationary properties over moderate
time scales (days), and little periodic time-of-day, or day-of-week
variation. Hence EWMA seems applicable. In the algorithms here
we use as our observations the minimum number of routes in any
time interval, which provides a faster method of alerting to a drop
in the number of routes.

Figure 4 shows an example of the minimum number of best
routes from a single PoP (for each one hour time bin), as seen
by that PoP’s route reflector, both over the whole year from July
2002 to June 2003, and just for the month of February. One can
see a broad trend, and at least one large, sudden transition in the
graph, as well as many short, but dramatic drops. However, note
that over moderate periods of time (days to weeks), the number of
routes appears to be well modeled by a stationary process (with low
variance) with much larger anomalous points.

The relative simplicity of the observed data suggests EWMA as
a good method to apply here, however, this does not have good be-
havior in the presence of a sudden level shift — it would signal a
fault for an extended period of time, much longer than might be
justified by the shift itself. Further, in this paper we assume that
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Figure 4: The number BGP routes from a major PoP.

the models used must self-train without the benefit of clean train-
ing data. To be more precise, the parameters of the model used for
outlier detection must be estimated from the data, without the ben-
efit of knowing a-priori which data points are outliers. However,
when a fault occurs this results in a large transient outlier, which
would disturb future predictions. Hence, we must also incorporate
a method to exclude such outliers from use in training the model.

The method used here is to estimate the mean of the normal num-
ber of BGP routes using the EWMA. However, if the value falls
outside our the threshold around the predicted value, indicating a
failure, we shall not use it to update the EWMA. If we were to dis-
count such outliers entirely, we would loose track of the process
at any large step. We would mark the first point of the step as an
outlier, and so discount it, and therefore the estimated mean would
remain unchanged, causing us to mark the next and all future points
as outliers. To avoid this pitfall, we allow a maximum gap in the
data — if outliers persist for longer than this gap then we reset the
value of the EWMA.

To be precise about the exact algorithm used we provide MAT-
LAB code implementing the simple algorithm below.

gamma = 0. 05;

thresh = 0. 2;
mex_gap = 30;
gap = O;

exp_av(1l) = data(l);

anomal y(1) = 0;

for i=2:1ength(data)

if (data(i) > exp_av(i-1)*(1-thresh) & ...
data(i) < exp_av(i-1)*(1+thresh))
anomal y(i) = O;
exp_av(i) = gamma*data(i) + ...
(1-gamm) *exp_av(i-1);

gap = 0;
el se
anomal y(i) = 1;
exp_av(i) = exp_av(i-1);

gap = gap + 1;
if (gap >= max_gap)
gap = 0;

exp_av(i) = data(i);
end
end
end

Note that exp_av (i) represents the EWMA prediction at time
interval 4 (the order of computations is slightly different from equa-
tion (1) above to make the test before the update algorithm, so we
can exclude outliers from the updates), the threshold used is 20%,
and the anomalies are signified by setting anomal y(i ) to one at
the relevant time interval. The maximum gap allowed was chosen
by examining the length of a large number of anomalous events,
and determining a value large enough to encompass all such events.
Note that to adapt this algorithm to shorter time interval data (from
the one hour data currently considered) one need only multiply the
ganma and max_gap parameters by the appropriate factors. We
will denote this algorithm EWMA-2 below.

3.3 Correlatingresults

To correlate the results from the anomaly detectors formed from
the SNMP and BGP data streams, we shall use arguably the sim-
plest approach possible: for any one PoP if both BGP AND SNMP
anomaly indicators report anomalies, we shall generate an alarm.
This simple correlation allows us to focus on the hypothesis that
the power of the approach derives principally from combining in-
dicators whose false alarms will be uncorrelated, as the false alarms
relate to independent glitches in data collection or natural variations
of the individual data streams. The vast literature on pattern recog-
nition provides more sophisticated correlation approaches, which
remain open for improving the results — for instance the authors
of [9] propose the use of Bayesian inference networks to combine
multiple features. However, note that the following tests demon-
strate that the very simple approach used here produces results of
practical quality, though they might be improved.

4. RESULTS

To evaluate the anomaly detection method, we use three sets of
data:

e A long set of SNMP/BGP data covering eight large PoPs in



the tier-1 ISP backbone IP network spanning an interval of
more than one year.

e A second shorter set of data from February to May 2003, in-
clusive, consisting of detailed fault tickets from the network.
Fault, or trouble tickets are the representation of a network
problem in the database system used by operators to track a
problem from detection to re-mediation. These tickets con-
tain data on the start, and end time of a fault, and its root
cause. However, this data is primarily text, entered by opera-
tors as they discover, and analyse a problem. Hence the times
are often not precise, and the records must be processed la-
boriously by hand to obtain the relevant data. For instance,
see [3] for more discussion of this type of data source.

o A list of the events that were considered by the IP operations
group to be of the type that we wished to detect (using the
methods above). This list is very short, as such events are
rare, but they are of such scale that it is still important to
detect them, even if they occur less than once a year.

The results given here are broken into two sections. First we
shall consider two illustrative examples to see how the algorithm
works. We shall then undertake a more systematic examination of
the algorithm’s performance.

4.1 Examples

We start by considering two illustrative examples of the algo-
rithm in practice. The example shown in Figure 5 covers the fail-
ure of a major network peer. During this failure, the peer dropped
traffic along its peering links in a number of locations. In the Fig-
ure, we focus on a PoP where nearly half of the traffic (and corre-
sponding routes) arose from that peer, and so the failure stands out
clearly. However, the failure was also detected in a number of other
locations.

While this example would not lead to a particular remedial ac-
tion on the part of ISP, some operational actions may be called for
to mitigate the impact of the outage. Moreover, the example is
highly illustrative for two reasons. Firstly, it shows the close match
between the estimated model m, and the real traffic for SNMP (ex-
cept during the anomaly), and the simple and effective nature of the
BGP time series used for anomaly detection. Secondly, it clearly
shows the large deviations from the model during the outage.

A third feature to note in the Figure are the presence of two false
alarms in the BGP data — dips that do not correspond to noticeable
traffic changes.

The second example, in Figure 6, shows an example of what we
see when a router with many peering links has an outage (in this
case a planned outage). We can see early in the morning, local time
(the date ticks occur at 00:00 GMT), a dip in both BGP, and SNMP.
The plot should reinforce those points above, with the addition that
we see a false alarm (near 00:00 5/15)) in the SNMP due to missing
data. Note that such a large drop in traffic should be detected by
any anomaly detection algorithm one might build. However, it is
an artifact in the SNMP data. The presence of such artifacts is a
key reason why correlation between data sources is needed. The
data sources are generated by completely different processes, and
so artifacts are unlikely to occur in two data sets at the same time.

4.2 Statistical analysis

In this section we shall conduct a more systematic examination
of the data. The first task is to determine the sensitivity, or detec-
tion probability — the probability that an anomaly is detected. For
this we use the short list of known events, and the SNMP/BGP data

set over the enclosing time interval. The algorithms above (Holt-
Winters or the Decomposition technique applied to SNMP data,
and EWMA-2 applied to the BGP data) performed perfectly on
this list, and further, indicated the location of the problem (where
relevant). Of course, with a small set of event data it is hard to de-
termine precisely the detection probability, but it is reasonable to
assume that high detection probabilities are easily achievable be-
cause the events we wish to detect are relatively large scale, with a
relatively large impact on measurements.

The second, and more difficult task is to determine the selectiv-
ity, or false alarm rate. To assess the false alarm rate we take each
detected event from the period of February to May 2003, and ex-
amine the detailed fault tickets to determine it’s root cause. To give
one an indication of how often major events occur, none from our
list occur in this time interval. The results of this investigation are
shown in Table 1 — note we cannot report the actual number of
events because these numbers are considered sensitive data, how-
ever the numbers are quite small.

percentage | Holt-Winters
root cause of events events
edge node/link outage 67% 55%
simultaneous outages 11% 18%
unknown cause 22% 18%
error 0% 9%

Table 1: Root cause analysis of the detected events. The table
shows the proportion of different root causes for the decompo-
sition and Holt-Winters approaches.

The majority of events detected by either technique turn out to
be caused by simple router or link outages on the peering edge of
the network, such as shown in Figure 6 (both methods detect ex-
actly the same set of such events). For instance, if a router with
many peering linkages is taken out of service, then the routes that
would normally exit the network at this point will be rerouted to
alternative points, resulting in changes in the SNMP traffic, and
BGP routes. The majority of such events are part of planned main-
tenance (for instance for software updates), and occur during the
maintenance window early in the morning when not much traffic
will be effected, if there is any impact at all. By correlation with
operational work flow information, such false alarms may be fil-
tered out. In addition, the vast majority of such events occur in iso-
lation, and are easily detected through standard mechanisms such
as SNMP traps/polls of the routers, and so, they are not actually of
great interest here. Note also that we do not detect all such events,
because in many cases the actual change in traffic volumes, and/or
BGP routes may not be that significant (for instance the failure of a
peering link to a small peer).

In the process of analyzing the above events we found a small
percentage which were the result of simultaneous link/node out-
ages. Such simultaneous outages might be more serious than single
outages because the network is designed to deal with single com-
ponent failures. Some scenarios involving multiple points failing
simultaneously might result in excess loads being placed in parts
of the network as traffic is rerouted. The cause of the simultaneous
events is unknown, but could be an unplanned outage occurring
concurrently with a planned outage. Such outages are worth de-
tecting, so that operations staff can defer planned operations to a
time when the network has no unplanned outages. Note that once
again, both Holt-Winters and the decomposition techniques came
up with the same list of simultaneous outages.

Finally, we also found a small proportion of events that had no
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apparent cause in the trouble ticket data. The cause of these events
remains a mystery, but they appear to be genuine results (they are
not the result of missing, or obviously erroneous data). Such events
could have two causes: problems in the network that are not de-
tected via other means, or with more likelihood network problems
on adjacent peers. In either case the events are interesting to net-
work operations. In the former, it would allow better network man-
agement, in the latter case it gives us a window onto the behavior
of the greater Internet. Holt-Winters detected only half of these
events, and in addition detected a small number of events that seem
to be artifacts of the detection mechanism, and are not readily ap-
parent in the data at all.

Given the above (the fact that the majority of events correspond
to causes that we don’t need to detect here), the false alarm prob-
ability drawn from this table seems quite large (64-67%), but note
that the frequency or rate of events is very low even so. A false
alarm rate of at most a couple of events detected per month is quite
acceptable.

Now compare these result with the false alarm rates for the in-
dividual data sources. Table 2 shows these results, based on the
more than one years worth of data we have available. Because we
don’t have fault tickets for this entire period, we infer a false alarm
from the fact that both data sources do not signal alarms. This is
clearly only an upper bound on the false alarm rate, as some of
these alarms may fall into the categories above (i.e., single edge
node failures), but the vast majority of such events are false alarms
(tested on a sizable sample of these events). We compute these
false alarm rates based both on the proportion that happen per PoP
per hour over all the eight PoPs considered here. We examine these
false alarm rates for the two SNMP detection algorithms, and for
the EWMA-2 algorithm on the BGP data. Note that the latter al-
gorithm has the lowest false alarm rate. Holt-Winters has a slightly
higher false-alarm rate than the decomposition technique.

false | expected false
data set | algorithm alarm rate | alarms per day
SNMP | Decomposition 3.4% 78
SNMP | Holt-Winters 4.3% 99
BGP EWMA-2 0.5% 12

Table 2: False alarm rates for individual data sources.

Note that the rates in Table 2 are different from the percentages
in Table 1. In the previous table we reported the percentage of re-
ported events of each type. In Table 2 we report the proportion of
tests that return a false alarm. That is, around three in one hundred
decomposition test return a false alarm. Assuming only 8 PoPs,
and five minutes measurements (288 per day) one would expect
between 12 and 99 false alarms per day (see Table 2, column 4).
These are supposed to major events, and given high priority treat-
ment, and the amount of work required to determine the cause of
each alarm is large. Such a large number of false alarms is un-
reasonably high, and would result in the anomaly detection being
switched off, or ignored. It would be even worse for a larger scale
network, or tests performed at a finer level of detail. Relative to
the number of tests performed, the percentages in Table 1 would be
very small, producing fewer than an event per week. This demon-
strates this paper’s main point — we can get a very large false alarm
reduction using the combination of data sources. The reduction is
greater than a factor of one hundred times.

4.3 Discussion

The above results suggest that the decomposition technique is
a little better than Holt-Winters, in this context. Both have per-
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fect sensitivity, however, the false alarm rate for the Holt-Winters
technique is slightly higher when we use the SNMP data alone.
Furthermore, although, in Table 1, they appear to have the same
selectivity, notice that in the Holt-Winters test some of the nomi-
nal false alarms are generated by errors, whereas all of those in the
decomposition technique are generated by real data events, even
though some are not interesting. Further note that the decompo-
sition found more of the interesting, unknown events. Hence we
conclude that the decomposition technique is superior to the Holt-
Winters approach in this context, though the improvement is minor
in comparison with the benefit of combining the two data sources.

Holt-Winters could no doubt have its parameters more finely
tuned (it has 5) to get better results, and one could do likewise with
the decomposition method. However, we have relatively few sam-
ples of events to be detected. This means that we can only coarsely
measure the selectivity of the algorithms, and hence such tuning
is a dicy business. Further, such precise tuning would then raise
the point of whether the parameter values should be the same ev-
erywhere, for all tests. It seems likely that the optimal parameter
values would be different on different data sets (e.g. for different
PoPs), and so we now have a complicated process to learn what
parameters work, which must be repeated every time the network
changes. Also, there will always be a trade-off between selectiv-
ity and sensitivity, but we must be somewhat conservative here for
the same reasons. To summarize, although one might improve per-
formance slightly, this would be at the cost of robustness of the
algorithms.

Of course one can consider improving the algorithms used for
detection of both SNMP and BGP events to reduce the false alarm
rate individually. However, there are in general fundamental prob-
lems with this approach. There are artifacts in the data, as well
as genuine anomalies in both data sets that are the result of causes
that we are not interested in detecting. For instance, the SNMP
data may naturally vary for a number of reasons we do not consider
to be network problems, at least in the sense that there is nothing
we can do about them using current IP infrastructure: for instance
traffic may vary from its normal patterns on holidays. Similarly
BGP routes are not all responsible for equal traffic volumes. A
large number of routes may change, but if these routes do not carry
much traffic, there will be little impact on the network. Further-
more, these routes might be changing due to changes in policy out-
side the network’s administrative domain, and therefore once again
there is little action needed from network operators, and little need
to detect this event. An additional concern is problems in the data:
SNMP data can contain erroneous or missing data, which could
appear as untoward spikes, or dips in the data. The BGP data also
contains artifacts — for instance, if a BGP session between peers
is reset, the number of routes from this table drops temporarily to
zero, even if they are quickly replaced, so that the event has only a
small impact on traffic.

By combining multiple sources of data we gain a specific, and
powerful way of detecting forwarding anomalies, which avoids any
of the above pitfalls.

5. CONCLUSION

This paper has described an important class of network anoma-
lies — forwarding anomalies — and specific methods for combin-
ing routing and traffic data to perform accurate forwarding anomaly
detection. The choice of data sets used here was motivated by a spe-
cific example, but we found them to be a good choice — the method
has a perfect detection rate, while dramatically reducing the false
alarm rate. Moreover, the method is automated and self-training
— essential characteristics for deployment in large operational net-



works.

Further, we found several events in the data, using this technique,
that had not been previously detected through any other alarming
mechanism, and are therefore worthy of further study in their own
right. These events may be the result of undiagnosed internal net-
work problems, but with more likelihood are the result of external
network changes, outside the normal view of the single domain un-
der investigation. Thus we may be able to gain a window into major
external Internet changes.

The method is very simple, but this should be seen as an ad-
vantage, as simplicity makes the method more scalable, and more
easily extendible to include additional data sets. For instance, we
might use data gathered from

e OSPF (via a route monitor similar to that used to collect BGP
data [23]),

e Data from other external route monitors such as those of
RIPE or Routeviews [8],

e Data from active network performance probes,
e Router logs, and

e Flow level data, such as that from Netflow, perhaps via an
algorithm such as that proposed in [14].

One could also improve the algorithms applied here to individual
data sets, for instance by applying the wavelet techniques of [13],
and there are also many different ways in which data from these
various sources could be combined. We have used possibly the
simplest method for data fusion available — the AND operation, but
there is a great deal of literature in the areas of pattern recognition,
detection and classification, that is relevant to this task, and many
much more sophisticated methods for connecting these data sets —
for instance in [9] they propose the use of Bayesian networks for
combining features. We have not found such methods to be neces-
sary to build a useful algorithm (we already have practically useful
results), but these methods would most likely improve performance
still further.

Finally, we have considered only one class of network anomalies
here — forwarding anomalies, but it is likely this sort of technique
could be extended to other sorts of anomalies, for instance of ap-
plication in security.
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