
Botnet Spam Campaigns Can Be Long Lasting:
Evidence, Implications, and Analysis

Abhinav Pathak1, Feng Qian2, Y. Charlie Hu1, Z. Morley Mao2, and Supranamaya Ranjan3

1Purdue University, West Lafayette, IN 47907
2University of Michigan, Ann Arbor, MI 48109

3Narus Inc., Mountain View, CA 94043

ABSTRACT
Accurately identifying spam campaigns launched by a large num-
ber of bots in a botnet allows for accurate spam campaign signa-
ture generation and hence is critical to defeating spamming botnets.
The straight-forward approach of clustering all spam containing the
same label such as an URL into a campaign can be easily defeated
by techniques such as simple obfuscations of URLs. In this pa-
per, we perform a comprehensive study of content-agnostic char-
acteristics of spam campaigns, e.g., duration and source-network
distribution of spammers, in order to ascertain whether and how
they can assist the simple label-based clustering methods in identi-
fying campaigns and generating campaign signatures. In particular,
from a five-month trace collected by a relay sinkhole, we manually
identified and then analyzed seven URL-based botnet spam cam-
paigns consisting of 52 million spam messages sent over 2.09 mil-
lion SMTP connections originated from over 150,000 non-proxy
spamming hosts and destined to about 200,000 end domains. Our
analysis shows that the spam campaigns, when observed from large
destination domains, exhibit durations far longer than the five-day
period as reported in a recent study. We analyze the implications
of this finding on spam campaign signature generation. We further
study other characteristics of these long-lasting campaigns. Our
analysis reveals several new findings regarding workload distribu-
tion, sending patterns, and coordination among the spamming ma-
chines.
Categories and Subject Descriptors: C.2.3 Computer Communi-
cation Networks: Network Operations–network management; C.2.0
Computer Communication Networks: General–security and pro-
tection
General Terms: Measurement, Security
Keywords: Spam campaign, botnet, burstiness, distributedness,
open relay

1. INTRODUCTION
Ever since spam first became a major problem, spamming tech-

niques have escalated in complexity in response to the increasing
sophistication of spam filtering techniques. Due to the fundamental
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weakness of content-based spam filtering techniques, i.e., there are
simply too many ways to obfuscate the content, researchers have
developed IP-address-based techniques. Such techniques maintain
a blacklist of IP addresses that are known to have originated spam
in the past, and offer a simple interface such as DNS for convenient
and efficient lookups by mail servers in the future. In reaction to
DNS blacklisting, spammers resorted to employing botnets, each
of which consists of a large number of compromised machines,
typically operated under a central Command-and-Control (CnC) to
originate spam. The low volume of spam originated from each indi-
vidual bot significantly adds to the difficulty of accurate and timely
blacklisting of these bot machines. Because of the sheer size of
botnets, spam due to bots amount to a major percentage of the total
spam worldwide [24, 20].

The difficulty with identifying individual bots due to their stealthy
spamming behavior suggests that an effective approach to identify-
ing and defeating botnets has to resort to identifying the collective
behavior, i.e., the spam campaign that the bots in a botnet launch
collectively for pushing the same spam (including all of its obfus-
cated forms) to millions of mailboxes. Under such an approach, the
new challenge in the battle against botnet spam is shifted to the abil-
ity to accurately cluster spam belonging to the same campaign and
generate signatures characterizing a campaign immediately upon
its onset. Such spam campaign signatures can then be used to iden-
tify and filter future spam belonging to the same campaign.

A key observation about spam campaigns is that spam belong-
ing to the same campaign typically share the same spam label,
such as a URL or a phone number, which is needed to carry out
the spamming purpose, for example, to tell the recipients how to
buy the medication advertised in the spam. However, clustering
spam into campaigns solely based on the labels embedded in the
message such as URLs is insufficient as it is easily defeated by
techniques such as simple obfuscations of URLs, using HTTP fea-
tures such as URL redirection, and including additional legitimate
URLs in the mail body. A natural question then is whether the
label-based spam campaign clustering approach can benefit from
exploiting some defining content-agnostic characteristics inherent
in a campaign?

In this paper, we perform a trace-driven analysis that searches for
such definitive characteristics of spam campaigns. In particular, we
focus on characterizing the burstiness, i.e., how long a spam cam-
paign lasts, and distributedness, i.e., how widespread the sources
of a spam campaign are. To facilitate our investigation, we lever-
age the technique previously developed for peeking into spammers’
behavior from relay sinkholes [15] which provides the unique and
broad view of numerous, possibly concurrent, spam campaigns hit-
ting many diverse end domains (including spam to major domains
such as Hotmail, Yahoo! mail, Gmail). In particular, from a five-



month trace collected by a relay sinkhole, we manually identified
seven URL-based botnet spam campaigns which consist of 52 mil-
lion spam messages sent over 2.09 million SMTP connections orig-
inated from over 150,000 non-relay, non-proxy IP addresses and
destined to about 200,000 end domains.

We observe that nearly all spam campaigns, when observed from
large destination domains, exhibit a burst duration far longer than
the five-day period used as the campaign burstiness threshold in
a recent study [22]. One immediate implication of this finding is
that one can not simply cluster all the spam from a large number
of spamming sources that contain similar URLs and the delivery
of which is finished within a short period of time as a single spam
campaign, as burstiness is not a definitive characteristic for many
spam campaigns. In other words, while burstiness plus distributed-
ness may be a sufficient condition for identifying a spam campaign,
it is not a necessary condition. Hence, using it as the definitive
characteristic can result in a high false negative ratio. Our analysis
shows that the complete URL signatures generated using a five-day
burstiness cutoff and a 20-AS distributedness cutoff on our seven
spam campaign trace result in a false negative ratio of 98.21% (con-
sidering only the spam that satisfy the 20-AS distributedness cut-
off). In contrast, the study in [22] never reported false negative
results while evaluating their spam campaign signature generation
technique.

A second important contribution of the paper is an in-depth anal-
ysis of these long-duration botnet spam campaigns identified in our
trace. Unlike previous analysis of spam campaigns [22, 23], the
unique vantage point of our relay sinkhole allows us to study the
spamming patterns of individual spammers to multiple destination
domains, as well as the coordination of the sending patterns of indi-
vidual spammers on behalf of different spam campaigns. Overall,
the major findings of our study include:

• Many spam campaigns are not bursty in nature, whether ob-
served from the relay’s point of view or from an end domain’s
point of view; they continue on for months.

• Though a spam campaign as a whole may not be bursty in
nature, the bots carrying out the work can in fact be bursty
and stealthy within the campaign. In many cases, bots com-
plete their entire workload for a particular spam campaign
within the first one hour of their arrival into the campaign, as
observed by the relay.

• There exist many common spamming IPs across multiple
spam campaigns.

• The bots that appear in multiple spam campaigns typically
spam for different campaigns in close-by time instances. Fur-
ther, they appear to spam nearly the same workload (number
of spam emails) but to distinct recipients across the multiple
campaigns.

• An individual spamming host’s involvement in a campaign is
related to its upload link bandwidth. The higher the upload
bandwidth, the more spam was observed to originate from it.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 briefly reviews the methodology and advan-
tages of using relay sinkholes to collect spam. In Section 4, we dis-
cuss the challenges with spam campaign identification and how we
identified seven URL-based spam campaigns manually. We charac-
terize the burstiness and distributedness of botnet spam campaigns
in Section 5, and perform an in-depth analysis of individual spam-
mer behavior and the coordination among spammers in Sections 6
and 7. Finally, we conclude in Section 8.

2. RELATED WORK
The major shift of spammers from using high-volume spam-

ming hosts to low-volume but coordinated bots has significantly in-
creased the difficulty in identifying individual spamming sources.
In reaction, a number of recent studies [2, 23, 10, 22, 11] have
focused on learning and identifying bots’ collective behavior, i.e.,
the spam campaign they launched, with the goal of deriving spam
campaign signatures which can then be used to filter future spam.

One approach is to perform string extraction on the entire mail
content in order to identify common “shingles” that characterize a
campaign. For example, Zhuang et al. [23] applied the shingling
algorithm [4] to spam mail bodies to separate different spam cam-
paigns in spam traces collected from Hotmail.

A less resource-intensive approach than string extraction from
the email body is to look for labels that characterize the intention
behind the message, e.g., the advertised URLs. For instance, An-
derson et al. [2] used spam traces collected from a top-level four-
letter domain to study the spam infrastructure. They used the sim-
ple notion of a spam campaign to consist of all emails that contain
the same URL (after all redirections). However, as exhibited by our
trace, it is possible for two URLs that do not render the same page
to belong to the same campaign. One way to work around this is to
compare the page displayed for different URLs as images [2] and
cluster them based on similarity of the rendered pages using image-
shingling. However, this method can be quite resource-intensive.

In contrast, in this paper we take a different approach by first
manually identifying spam campaigns and then analyzing content-
agnostic characteristics of a campaign that can assist with cam-
paign identification. In this regard, similar to our approach, Konte
et al. [11] also first manually identified campaigns and classified
spam in their trace containing URLs belonging to 3,360 domain
names into 21 distinct campaigns. However, their goals are differ-
ent than ours in that they focus on how fast-flux service networks
are used to host the online scams advertised by the spam messages.

Most recently, Xie et al. [22] proposed to use burstiness and dis-
tributedness as two definitive characteristics of botnet spam cam-
paigns to assist in identifying URL-based botnet spam campaigns.
In particular, in extracting clusters of same-URL-containing spam
from an email trace sampled at 1:25,000 from a large mail service
provider, the authors exercised a burstiness filter of active period
less than five days, and a distributedness filter of spammers orig-
inating from over 20 ASes. The URLs contained in such clusters
are then used in a regular-expression-based automated campaign
signature generation process for URL-based spam campaigns.

Related to spam campaign analysis, Kanich et al. [10] studied the
conversion rate of spam – the probability that an unsolicited mail
will ultimately elicit a sale – by infiltrating CnC channels of “The
Storm” botnet and injecting three spam campaigns that spammed
500 million recipients.

Finally, several studies have focused on analyzing the network-
level properties of spammers. As an example, Ramachandran and
Feamster [17] analyzed the network-level behavior of spam orig-
inating from botnets and discovered a new spamming technique,
called BGP spectrum agility, that uses hijacked prefixes to send
spam. Ramachandran et al. [18] focuses on analyzing the simi-
larity in the sending patterns of individual spammers such as the
temporal and spatial locality (e.g., in destination domains) in the
spam they generated. They used email traces from 115 domains to
develop a behavioral blacklist based on the sending behavior (the
set of target domains that a particular IP address sends spam to) of
spammers rather than a fixed identity such as an IP address. Such
an approach requires sharing of spam collected from across multi-
ple end domains.



3. METHODOLOGY
In our study, we used the methodology described in [15] for col-

lecting a large spam trace from the unique vantage point of an open
relay sinkhole. Such a unique vantage point provides a snapshot
view of many spam campaigns involving a large number of coor-
dinated hosts and many destination domains. In the following, we
briefly review the methodology and discuss its advantages and lim-
itations, and summarize the trace we collected.

3.1 Spam Collection using an Open Relay
Open relay sinkhole. An open relay is an MTA (Mail Transfer
Agent) that forwards emails from any client to any destination. In
general, spamming through an open relay is lucrative for a spam-
mer since they can go undetected, as the final mail receiver sees
only the mail relay as the spamming source. While the bots in a
botnet generally send spam in low volume and hence are less likely
to be detected, using a relay whenever possible remains lucrative
as long as the relay is not blacklisted.

Spammers use relay testing software [19] to scan the Internet
for open relays that could be exploited by them for spamming. To
detect open relays, they first scan the hosts that have mail servers
running on port 25 (SMTP). The hosts that are detected to accept
port 25 connections are then checked if they also relay. A spam-
mer tries to relay a test email to its own email address through the
detected host. Typically, the subject or the body of such an email
contains the IP address of the host being tested. Once the test email
is successfully received, the IP address of the host is extracted from
the body and the host is confirmed to relay emails.

Once an open relay is detected, the spamming hosts start exploit-
ing the host to relay spam. The relay testers periodically (about
once a week as observed by the relay) check whether the host is
still relaying the email using the technique above. We observed
that if the host stops responding to relay testers at any time, spam-
ming through the relay is stopped within a few days.

To sustain spam collection through the relay without actually
compromising it, i.e., the relay being blacklisted by DNSBLs, the
open relay is carefully configured to forward only the emails that
are involved in relay testing. In this way, the relay testers are given
continuous false assurance that the relay continues to forward all
emails whereas in reality only the testing emails are relayed and all
others are stored (and not forwarded). An important step here is to
identify which emails are for testing the relays. Most of the relay
testers could be trivially identified as they contain the IP address
(in plain text/hex) of the relay server in either the mail body or in
the subject lines. Some of them also contain words like “relay”,
“test”, “successful”, etc. So any email that contains either the re-
lay’s IP address or these keywords are let through. An important
point to note here is that relay testing is also done by DNSBL(s)
for purposes of blacklisting and these test emails also contain the
IP address of the relay in the mail body. Hence, any email that
contains words like “dnsbl”, “ordb”, “sorbs”, etc., are denied from
passing through to prevent our relay from being blacklisted. We
note that this relay testing behavior is based on observations from
our relay and hence the mechanism for detecting relay testers may
not necessarily be general.
Advantages and Limitations of a Relay Sinkhole Trace. Upon
being recruited by spammers to relay spam, an open relay provides
a unique vantage point for observing Internet spam traffic. Since
spammers typically spam mailboxes in many organizational do-
mains, a conventional sinkhole which pretends to be a normal mail
server at an organization only observes the spam traffic to that sin-
gle organizational domain. Such a sinkhole therefore only observes
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Figure 1: Number of emails supposed to be relayed, number of incom-
ing connections and number of unique spammer IPs per day.

a portion of the spam originated from the spammers. In contrast,
a spam sinkhole that masquerades as a normal open relay on one
side sees a plethora of origin spammers that attempt to relay spam
through it, and on the other side sees all the final destinations of
the spam. Such a broader view point of the spam traffic potentially
reveals the global behavior of spammers. In particular, it poten-
tially captures snapshots of many spam campaigns, each of which
targeting many destination domains.

In principle, trace collection at a single domain can potentially
cover 100% of all the spam destined to that domain. In practice,
however, due to the sheer volume of spam at such domains, stud-
ies using them typically use sampling techniques. For example,
in [22], the trace used by the authors are sampled at the ratio of
1:25,000. The spam trace collected at the relay sinkhole can also
be viewed as a form of sampling, i.e., of the spam campaigns going
to each destination domain. Since the uniformity of this sampling
of our relay trace is arguable, i.e., the trace may not see all the
spammers that are part of a campaign, in this paper, we will only
extract properties of spam campaigns that are lower-bounded by
what is seen in the trace. For example, if the duration of a spam
campaign seen in the trace is X days, then we know the actual du-
ration can only be longer, but not shorter. In other words, we will
analyze the trace in a way that avoids its limitation.

3.2 Trace Statistics
Using an open relay, we collected a spam trace for a period of

five months from September 30, 2007 to February 28, 2008. Fig-
ure 1 plots the number of emails that our relay was asked to relay
per day and the number of unique IPs that generated these requests
per day. We observe that the spam through the relay was initially
low in volume but ramped up to one million per day in the sec-
ond month until mid-January. From mid-January we observe an
even higher volume of about 10 million spam per day. Except for
the first month, the spam each day originated from about 10,000
spamming hosts. We observe that spam through the relay drops to
zero in two time periods (in early October and early November).
These two drops were not a result of data collection issues, thus
we surmise that they were likely due to a modified decision at the
spamming sources with respect to our relay.

Table 1 summarizes the statistics of the collected spam. In total,
on the source side, over half a million unique IP addresses origi-
nated about 11 million SMTP connections to the relay. These IP
addresses are spread across 2,243 ASes and 168 countries as de-
termined by consulting the routing table database published by the
RouteViews project [1]1. On the destination side, our relay was
1Routeviews publishes routing table updates every 15 minutes. An
IP is resolved to the AS that announced the longest prefix covering
the IP.



Table 1: Statistics of the whole trace, collected at a relay sinkhole from
Sep. 30, 2007 to Feb. 28, 2008.

Source side statistics
# incoming SMTP conn.: 11,269,081
# unique IP addresses: 543,828
Avg. # recipients per conn.: 25.32
# network prefixes: 9,222
# ASes: 2,243
# spam originating countries: 168

Destination side statistics
# mails to be delivered: 285,422,502
# unique recipients: 53,950,777
# destination domains: 628,092
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Figure 2: Emails received per destination domain.

asked to relay about 285 million messages in the five month period
to about 54 million unique mailboxes distributed across 628,092
end domains. We found that about 75% of the hosts were already
blacklisted in at least one of the five DNSBLs [5, 21, 9, 8, 3]
which were queried by the relay at the time of receiving the spam.
Figure 2 shows the number of emails that were destined to each
domain, where the domains are sorted by the number of emails.
We observe that a few providers, e.g., Yahoo!, Gmail, Hotmail
and Hinet, are the target of a lot of spam (89.39% of 285 mil-
lion spam), indicating that the stakes are higher for them in the
arms race against spam. These large end domains could also serve
as a good spam information source for potentially helping others
via a coordinated spam sharing mechanism (in a similar manner
as Google’s safe browsing API). We also observe in our trace that
spam sources that generate high volumes, spam almost all domains,
and conversely, domains that receive the most spam, receive from
nearly all the spamming hosts.

In the rest the paper, we focus on the number of SMTP con-
nections as opposed to the total number of spam messages to be
received by all the destination mailboxes, for the following two
reasons. First, in a single SMTP connection, a spamming source
typically delivers the same spam message to multiple destination
mailboxes in the same destination domain. This is achieved by
transferring one spam message body and multiple destination mail-
boxes to the receiving mail server. Hence the number of SMTP
connections is a more relevant metric for measuring the workload
executed (as opposed to assigned) by a spammer, compared to the
total number of spam messages finally delivered (e.g., by the re-
ceiving mail servers) to all the destination mailboxes. Second, an
SMTP connection carries the spamming source information and the
time when the spam was delivered from the source, and hence is
more specific than the multiple mailboxes being spammed in that
connection when we analyze the duration and distributedness of
spam campaigns.

Table 2: Breakdown of the 11 million connections by spam label type.
SC Label Type % of Spam # of distinct spam labels
URLs 58.63a 2,501

(6.50 million)
Phone Number 15.02 10
Skype ID 9.45 2
Mail ID 1.43 1
No Subject/Body 5.31 1
Others 9.90 -

aWe removed 0.26% of the connections which contain
invalid URLs or URLs of the form www.dom.tld/
location-OOOO where OOOO denotes per-connection ob-
fuscated string as each such URL appears in spam sent in only
one connection.

4. SPAM CAMPAIGN IDENTIFICATION
In this section, we formally define spam campaigns (SCs), and

discuss challenges with identifying URL-based SCs and how we
manually identified seven URL-based SCs accounting for 52 mil-
lion spam messages and over 2 million connections in our trace.

4.1 Definitions
We formally define a spam campaign to be the set of email spam

that are meant to achieve the same spamming purpose, for example,
in trying to sell a certain medication. To evade the increasingly so-
phisticated content-based spam filters, the content of a spam cam-
paign is typically obfuscated (in more and more sophisticated man-
ners). However, no matter how much the content is obfuscated,
spam belonging to the same campaign have to contain the same
underlying “contact information” to execute the purpose, e.g., to
“sell the medication.” Such “contact information” comes in vari-
ous forms. The first and still most widely used format is a URL
that points to the web page that in turn contains detailed informa-
tion for executing the spamming purpose. More recent “contact
information” types include phone numbers and Skype IDs.

We denote such “contact information” as the spam label, as in
principle each of them uniquely identifies the spam that belong to
a campaign. In practice, realizing that the static “contact informa-
tion” contained in the messages for a campaign can be used by a
content-based spam filter to detect spam, the spammers try to ob-
fuscate the “contact information” to the extent they can. For exam-
ple, this is easy to do for URLs by using standard features of HTTP
protocols such as redirection (using simple HTTP or javascript).

We denote different types of “contact information” as different
spam label types. Table 2 gives a breakdown of the 11 million
connections in our spam trace according to different label types.
We observe that 58.63% of the connections are for spam contain-
ing URLs (6.50 million connections), 15% contain phone num-
bers, 9.45% contain Skype IDs, 1.43% contain Mail IDs (email
addresses in spam messages for recipients to contact the spam orig-
inators) as the “contact information”. We denote the above label
types as simple label types. Interestingly, 5.31% of the connections
have completely empty subject field and mail body. The purpose
of such spam remains unclear and we suspect they could be due
to bugs in the spam template of the spammers. Finally, 9.9% of
the connections do not belong to any of the above simple signature
types. They do not contain URLs or specific contact information.
These spam emails seek to influence the behavior of the recipient
without listing a means for contacting the spam originator. Pump
and Dump stock spams have these characteristics though there are
several other kinds in our trace.



Table 3: Example URLs belonging to the same spam campaign.
URL Spam Campaign

http://dhnaXXXX/hljtehnahaj SC-Software1
http://dhnaXXXX/paepyhaeot SC-Software1
http://dhnaXXXX/654j6d4jj SC-Adult2
http://dhnaXXXX/gfjxh985034 SC-Adult2
http://dhnaXXXX/tgg3w3rq4324ty345 SC-Adult2
http://www.988.idv.XXX SC-Book
http://www.ohinet.net/XXX/magic/ SC-Book
http://www.myweb-gmail.com/XX/composition_phrase/ SC-Book

4.2 Challenges
Since different label types are simply alternate ways of providing

the “contact information”, there is little incentive to provide redun-
dant “contact information”, as confirmed by examining our spam
trace. For spam containing label types of phone numbers, Skype
IDs, or Mail IDs, we observe that each of them contains only a
single occurrence of a single label type, i.e., it contains either a
single phone number, a single mail ID, or a single SkypeID. Fur-
ther, labels of these types are never obfuscated. The situation with
clustering spam containing URLs as the spam labels is much more
complicated, as URLs can be easily obfuscated. Hence, we focus
on URL-based spam in the rest of the paper. The most common
type of URL obfuscation we observed was HTTP redirection using
standard redirectors such as those provided by Yahoo! and AOL.
It is straight-forward to extract final URLs from these redirectors
(almost all spam filters extract the final URL before generating a
spam score).

Automatically identifying spam campaigns purely based on ex-
amining the URLs contained in the message poses several chal-
lenges. First, spam containing URLs that share the same domain
name can belong to different spam campaigns. An example of this
is given by the first and second groups of spam in Table 3. Second,
conversely, spam containing URLs that differ in the domain name
can belong to the same spam campaign. An example of this is given
by the third group of spam in Table 3. Third, spammers can insert
legitimate URLs along with the spam URLs into the message to
confuse URL-based identification schemes.

4.3 Manual Identification of URL-based Spam
Campaigns

In light of the above challenges in automated identification of
spam campaigns, to enable our characterization study of spam cam-
paigns, we manually classify the 6.50 million connections (52 mil-
lion spam) into seven major botnet initiated campaigns as follows.
First, we grouped all spam that have in common the same URL
into a separate cluster. Note that a spam email containing multi-
ple URLs will appear in multiple clusters. There are 2,501 distinct
URLs in total, and we end up with 2,501 clusters. Second, we
randomly pick one spam from each cluster, and gave the result-
ing spam to a human who manually clustered 2,042 of these 2,501
URLs into seven distinct spam campaigns, corresponding to 4.21
million connections. Finally, we removed connections from open
proxies and open relays. Spammers use several indirect sources
such as open relays and open proxies to relay their spam emails in
order to hide the infected machines. In fact, spam emails that are
to be forwarded through our relay make one such example. Since
our goal is to study spam originated from individual bots, ideally
we would like to replace such open proxies and open relays in our
trace with the bots behind them. However, it is actually non-trivial
to determine the actual source behind a proxy that originated the
spam. Instead, we simply drop all spam sources that are listed as
open proxies or open relays in the Spamhaus policy blacklist [16]

which was recently integrated with NJABL [14]. We note that this
is effectively a sampling of our trace. This sampling does not affect
our analysis, however, as long as we only extract properties of spam
campaigns that are lower-bounded by what is seen in the (sampled)
trace. After removing spam due to about 40,000 different open
proxies and relays, we obtained the same number of URLs, 2,042
while the number of connections was reduced in half, from 4.21
million to 2.09 million. In the rest of the paper, we study these 2.09
million connections containing 2,042 URLs belonging to the seven
manually identified spam campaigns.

We note that in sharp contrast to past reports that the amount
of spam originating from open proxies/relays has reduced substan-
tially, we found evidence to the contrary - about half of the 4.21
million connections for the seven manually classified URL-based
spam campaigns are for such emails. This is indicative of open
proxies and open relays being used as the “front line” by spammers
to hide their bots.

Table 4 summarizes the nature and statistics of the seven ma-
jor SCs identified. Each of the seven campaigns is identified by
a set of URLs that were contained in the spam in that campaign.
For example, SC-Book corresponds to a set of 1,567 URLs, all of
which are related to selling books and ultimately pointed to an on-
line bookstore. Note that each campaign exhibits diversity in terms
of multiple distinct URLs and in five out of the seven campaigns,
even the URL domain names are different. This underscores the
difficulty in obtaining spam campaign signatures in an automated
fashion. In the rest of the paper, we study various content-agnostic
characteristics of campaigns to explore whether they can assist with
automated campaign identification.

5. SPAM CAMPAIGN CHARACTERISTICS
In this section, we characterize the duration and distributedness

of the seven major URL-based spam campaigns identified from our
relay trace. We further study the implications of these characteri-
zations on the automated campaign signature generation technique
proposed in [22].

5.1 Campaign Duration and Distributedness
We first analyze the duration of the spam campaigns in our relay

trace. Table 4 shows that the seven URL-based spam campaigns
identified in our trace have duration between 1 to 99 days, and the
spam sources originate from 8 to 1,173 ASes.

We further analyze the duration of these spam campaigns when
observed from top four destination domains in our trace, Yahoo!,
Gmail, Hotmail, and Hinet. The duration of these campaigns again
last between 1 to 99 days. As discussed in Section 3.2, since our
relay trace may not capture all the spam belonging to these seven
campaigns headed to those individual destination domains, the ac-
tual duration and distributedness of the spam campaigns may be
even longer and wider.

5.2 Per-URL Duration and Distributedness
Since the spam campaign signature generation scheme in [22]

starts by identifying clusters of spam containing the same URL
that satisfy the burstiness and distributedness criteria, we also an-
alyze the duration and distributedness of such individual clusters
in our trace. As explained before, the seven manually identified
campaigns contain 2,042 unique URLs. Since our five-month trace
collection could potentially start from and end in the middle of the
campaign containing a particular URL, we removed all the spam
containing an URL that ends in the first month or starts in the last
month of the five-month period. The resulting trace contains 1,774
URLs and 1.3 million connections. This filtering also removed SC-



Table 4: Summary of the seven manually identified major URL-based spam campaigns.
SC Name Ad Type Distinct Distinct # of # of # of # of Duration Start

URLs URL Source IPs Source SMTP Destination of SC Date
Domains ASes Connections Domains (Days)

Book Book Store 1,567 31 8,555 8 287,705 94,466 71 Dec 19
Adult1 Adult Drug 38 12 92,441 1,173 720,076 80,034 92 Nov 28
Adult2 Adult Site 306 12 62,117 1,055 419,750 54,622 99 Nov 19
Adult3 Adult Tool 24 1 228 80 4,611 143 1 Jan 28

Shopping Shopping 5 1 20,375 592 107,934 26,917 36 Nov 28
Software1 Software 54 4 28,502 702 265,476 45,308 12 Feb 12
Software2 Software 48 3 36,178 856 279,799 44,472 63 Dec 22

Table 5: Distribution of URLs and SMTP connections in the six cam-
paigns over varying burstiness and distributedness ranges – all spam
(1,774 URLs and 1.3 million connections).

Distributedness (# of ASes)
Duration
(days)

1-10 10-20 20-100 100-500 ≥ 500 Total

0-5 3.66 0.96 0.00 0.45 0.00 5.07
(6.32) (0.02) (0.00) (0.96) (0.00) (7.30)

6-10 1.58 0.00 0.00 1.52 0.00 3.1
(6.04) (0.00) (0.00) (1.26) (0.00) (7.30)

11-20 1.52 0.00 0.00 5.13 0.00 6.65
(10.74) (0.00) (0.00) (19.40) (0.00) (30.14)

21-40 2.76 0.00 0.00 1.80 0.00 4.56
(17.89) (0.00) (0.00) (17.70) (0.00) (35.59)

>40 79.71 0.00 0.28 0.00 0.06 80.05
(40.03) (0.00) (0.07) (0.00) (10.67) (50.77)

Total 89.23 0.96 0.28 8.90 0.06
(81.02) (0.02) (0.07) (39.32) (10.67)

Software1, all URLs for which started in the last month of the five-
month period. A breakdown analysis of distributedness and bursti-
ness of the 1,774 URLs for the remaining six campaigns is given
in Tables 5, 6 and 7. Each cell in the tables provides two numbers,
the percentage of URLs and the percentage of connections that are
characterized by a certain range of distributedness and burstiness.
Note that the percent values for URLs across a row or column in the
tables add up to 100% but this may not be true for percent values
for connections. This is because a spam message may contain mul-
tiple URLs where each URL may be characterized differently, i.e.,
in different cells in the table. Hence, an SMTP connection that sent
such a message would get counted multiple times, once for each of
the URLs that it corresponds to.

Table 5 shows the distribution of these 1,774 URLs (1.3 mil-
lion connections) in the six campaigns over varying burstiness and
distributedness ranges. We observe that only 0.45% of the URLs
(0.96% of SMTP connections) have duration of five days or shorter
and are distributed over more than 20 ASes. If we ignore distribut-
edness, relatively few connections (7.30%) and URLs (5.07%) oc-
cur over short duration (five or fewer days) whereas a majority of
the connections (50.77%) and URLs (80.05%) advertise URLs that
lasted a long duration (more than 40 days). If we ignore dura-
tion, a majority of connections (81.02%) and URLs (89.23%) orig-
inate from a small number of ASes (10 or fewer) while a relatively
smaller number (49.99% connections and 8.96% URLs) originate
from a larger number of ASes (100 or more).

We further analyze whether the above distribution will change
significantly when a campaign is viewed from an individual desti-
nation domain. Such an analysis is useful as spam filtering tech-
niques are often deployed at individual domains. Table 6 shows the
distribution of the 1,774 URLs corresponding to over 0.9 million
connections in the six campaigns that were destined to Yahoo! only.
We chose Yahoo! as the destination domain in this analysis as about
70% of the spam in the six campaigns were destined to it. We ob-
serve the distributions are very similar to those in Table 5; a sig-

Table 6: Distribution of URLs and connections in the six campaigns
over varying burstiness and distributedness ranges - only spam des-
tined to the Yahoo! domain (1,774 URLs and 0.9 million connections).

Distributedness (# of ASes)
Duration
(days)

1-10 10-20 20-100 100-500 ≥ 500 Total

0-5 3.72 0.90 0.06 0.45 0.00 5.13
(7.53) (0.03) (0.04) (1.00) (0.00) (8.6)

6-10 1.80 0.00 0.00 1.52 0.00 3.32
(5.93) (0.00) (0.00) (1.24) (0.00) (7.17)

11-20 1.30 0.00 0.00 5.13 0.00 6.43
(8.52) (0.00) (0.00) (21.27) (0.00) (29.79)

21-40 2.82 0.00 0.00 1.80 0.00 4.62
(16.14) (0.00) (0.00) (17.96) (0.00) (34.1)

>40 79.59 0.23 0.00 0.00 0.06 79.88
(37.94) (0.03) (0.00) (0.00) (10.80) (48.77)

Total 89.23 1.13 0.06 8.90 0.06
(76.06) (0.06) (0.04) (41.47) (10.80)

Table 7: Distribution of URLs and connections in the six campaigns
over varying burstiness and distributedness ranges – only spam from
non-blacklisted IPs and destined to the Yahoo! domain (1,748 URLs
and 200,000 connections).

Distributedness
Duration
(days)

1-10 10-20 20-100 100-500 ≥ 500 Total

0-5 6.01 0.06 0.46 0.00 0.00 6.53
(27.17) (0.05) (0.93) (0.00) (0.00) (28.15)

6-10 3.38 0.00 1.54 0.00 0.00 4.92
(7.59) (0.00) (0.98) (0.00) (0.00) (8.57)

11-20 4.29 0.00 2.80 2.57 0.00 9.66
(9.43) (0.00) (11.94) (20.80) (0.00) (42.17)

21-40 21.11 0.00 0.00 1.66 0.00 22.77
(22.85) (0.00) (0.00) (14.49) (0.00) (37.34)

>40 53.83 0.00 0.00 0.06 0.00 53.89
(19.01) (0.00) (0.00) (10.91) (0.00) (29.92)

Total 88.62 0.06 4.8 4.29 0.00
(86.05) (0.05) (13.85) (46.2) (0.00)

nificant percentage of spammed URLs exhibit persistence and are
advertised via a small number of ASes.

Finally, we analyze whether the above distribution will change
when the spam trace is examined after filtering out the spam origi-
nated from blacklisted source IPs. We perform this analysis as the
trace in [22] was processed this way and hence it helps us to isolate
factors that potentially contribute to the different observations. Af-
ter removing the spam originated from blacklisted source IPs (over
75% spam sources were blacklisted in at least one of the five black-
lists queried), there are 1,748 URLs and about 200,000 connections
in the six spam campaigns that were destined to Yahoo! only. Ta-
ble 7 shows the distribution of these URLs and connections. Com-
pared to the distribution before removing spam due to blacklisted
IPs, there is a significant reduction in distributedness, but only a
relatively small reduction in duration. In particular, the URLs that
have duration of five days or shorter and distributed over more than



20 ASes remain at 0.46% (and the connections at 0.93%). If we
ignore distributedness, 6.53% of the URLs have duration of five
days or shorter, but the URLs with duration over 40 days remains
substantial, at 53.89%. If we ignore duration, 88.62% of the URLs
orignate from 10 or fewer ASes, while 4.29% of URLs originate
from 100 or more ASes.

The above finding on the duration of per-URL spam clusters
from our trace is in sharp contrast to the previous study in [22]
where the authors observed that the vast majority of URLs are ac-
tively advertised for a short burst of less than five days. This finding
has significant implications on the design of signature extraction al-
gorithms for detecting spam, as we show next.

5.3 Implications on Signature Generation
To estimate the impact of this finding on the efficacy of campaign

signature generation, we re-implemented the spam signature gen-
eration technique proposed in [22]. Specifically, we analyzed the
six manually identified campaigns as observed by Yahoo! after fil-
tering out spam from blacklisted source IPs. The URL/connection
distributions of this trace are in Table 7. We first used the same at-
least-20-ASes cutoff for the “distributedness” property as in [22] to
filter out the spam containing URLs that are not distributed enough.
For the remaining spam, we then used the burstiness duration of
five days as in [22], and generated Complete URL (CU) signatures.
We focused on the CUs as the authors of [22] reported a majority
(70.3-79.6%) of the spam campaigns identified belonged to the CU
category. Using the signatures generated, we calculated the num-
ber of connections that would be blocked by those signatures, as a
percentage of all the spam mails containing all the URLs originated
from 20 or more ASes. This gives us the “false negative ratio” in
using the CU signatures to filter the spam. The false negative ratio
is calculated to be 98.21%. We repeated the scheme using a 20-day
burstiness cutoff, and the false negative ratio is reduced to 79.21%.

To summarize, while the authors in [22] considered burstiness as
a necessary criteria in narrowing down the candidate pool of URLs
on which they apply signature extraction, we argue otherwise. Us-
ing a short duration of five days as the burstiness criteria can lead
to very high false negative ratios. Our empirical observation high-
lights the challenges in accurately extracting spam signatures, since
to reduce false negatives, it would be necessary to apply keyword
extraction and signature generation algorithm across a very large
set of spam that encompass duration as large as several months.
This suggests that relying on burstiness as a criteria for signature
extraction may prove counter-effective as it may be too late to react
and block the spam.

6. INDIVIDUAL SPAMMER BEHAVIOR
In this and the next section, we analyze botnet spam campaigns

in detail to gain insights into the workload distribution and coordi-
nation amongst the members of a botnet that originate a spam cam-
paign. Since we no longer analyze the spam for individual URLs,
we make use of the entire spam trace for all seven manually identi-
fied campaigns of 2.09 million connections and 2,042 URLs. Due
to space restrictions, in this section we focus on three spam cam-
paigns identified in our trace, based on their distinctive features:
SC-Book has a large number of distinct URLs, SC-Adult1 has a
large number of source IPs, and SC-Software1 is relatively short in
duration but is highly distributed in terms of the number of ASes
corresponding to the spam sources. As explained in Section 3.2, we
use the number of SMTP connections to characterize the workload.

Figure 3 shows the number of SMTP connections made per day
to our spam relay and number of unique IP addresses per day that
contact our relay for the three selected spam campaigns. We ob-

serve similarly as in Figure 1, that all three campaigns have a fairly
steady total workload per day over the 2.5-month period. But does
this stability in aggregate behavior for a spam campaign imply uni-
formity in terms of workload per spammer as well? In particular,
we seek to answer the following two questions related to the work-
load distribution amongst the spammers of one campaign:

• Are the spammers belonging to the same campaign assigned
an equal amount of workload, i.e., connections made? If not,
what causes the uneven workload?

• How does each spammer accomplish its workload over time?

6.1 Workload Distribution
Figure 4 shows the workload distribution per spammer IP for the

three spam campaigns. Note that despite the relative stability in
terms of the total number of connections per spam campaign over
time, the workload of each spammer for a given campaign varies
widely from 1 to 1,000 SMTP connections per spammer IP address.

A natural question that arises is whether this uneven workload
distribution is correlated with, and hence explained by, the arrival
time of spammers joining a spam campaign. In other words, do
spammers that join a campaign earlier than others send more spam
for a given campaign, potentially due to their confirmed ability to
deliver spam?

While it is possible that a spammer joined a campaign long be-
fore it initiated its first SMTP session to our relay, there is no easy
way to establish the ground truth about this. Therefore, we use
the time a spammer initiated its first SMTP session for a particular
campaign to our relay as its arrival time for that campaign.

Figure 5 plots the spamming activities of spammers sorted in
increasing order of their arrival time, for the three spam campaigns.
We see a fairly even spread in arrival times for spammers, and a
majority of spammers continue spamming for a campaign for long
periods of time. In particular, for SC-Adult1, a few spammers were
seen to be actively spamming for almost 2.5 months.

Next, Figure 6 plots the number of spam connections per IP ad-
dress for the three campaigns, sorted in increasing order of their
arrival time, as in Figure 5. From Figure 6, it is hard to observe a
trend for SC-Book, SC-Adult1, and SC-Software1. Hence we also
plot a Simple Moving Average (SMA) curve for these campaigns.
For every IP address on the y-axis, we average the values for the
250 IP addresses above it and 250 below it, and join these points
per IP through a curve which we call SMA. Now a trend can be
observed for SC-Book, with the latter arrivals sending less spam
than the earlier arrivals. Interestingly, no such trends are present
for SC-Software1 and SC-Adult1, with each IP address making a
similar 7-10 connections during its lifetime of the campaign.

6.2 Workload Spread Over Time
Next, we study how an individual spammer in a campaign ac-

complishes its workload over time.
Short-duration spammers. Figure 7 depicts a percentage-percentage
plot, where the y-axis is the percentage of spam sources and the x-
axis is the percentage of spam sent by them, during the first 1, 8 and
24 hours of their arrival into the three campaigns, Book, Adult1,
and Software1, as seen by the relay. A point (x, y) on the curve for
t hours for a particular campaign means y% of spam sources spam
at least x% of their workload in the first t hours of their arrival.

For SC-Book, Figure 7(a) shows that 20% of sources complete
their entire workload (100% on the x-axis) within the first hour of
their arrival. However, only 60% of the sources send 10% or more
of their total workload within the first hour of spamming. Further-
more, note that the percentage of spam sent by a spammer during
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Figure 3: Number of mails and number of source IPs per day for SC-Book, SC-Adult1, and SC-Software1.

Figure 4: CDF of workload per source IP for three spam campaigns.

Figure 5: Correlation between spammer IP and its spamming activities, sorted in increasing order of arrival time, for the three spam campaigns.

the first 1, 8 and 24 hours of its arrival in the campaign remains
nearly the same. These facts imply that some spammers (20%) fin-
ish their workload as soon as they first arrive in the campaign, while
others make multiple visits across several days before they deliver
100% of their workload.

For SC-Adult1 and SC-Software1, we see a completely different
trend when compared to SC-Book. We see that these two cam-
paigns observe different workload behavior during the first 1, 8, 24
hours. More than 90% of the spam sources complete all their work
within 8 hours after their arrival, and about 75% complete their en-
tire workload during the first hour.

Bursty spamming behavior. The above analysis of SC-Adult1 and
SC-Software1 indicates the “spam and move on” behavior by indi-
vidual spam sources. We emphasize that this is not to be confused
with the “burstiness” of spam campaigns as defined in Section 5.
SC-Book, on the other hand, shows reuse of a spammer for spam-
ming since a spammer does not complete its workload on the first
day (Figure 7(a)) of its appearance. We next focus on SC-Book to
investigate how often spam sources revisit our relay and the char-
acteristics of their spamming activities such as the number of con-
nections and the duration of spamming at each visit.

We define a “burst” event by a spam source as the time duration
that starts when we observe the first spam from an IP and ends at a
point after which there is no spamming activity from it for at least a
pre-chosen period of time which we denote as the “numb” period.
Within a burst, the time gap between any two consecutive spam
emails would be less than the “numb” period. Using this definition,
the spam history of an IP follows the pattern of oscillating periods
of burst and numb, i.e., burst - numb - burst - numb, and so on.

We select a “numb” period of one hour since Figure 7(a) shows for
SC-Book the spam workload distribution for the first hour nearly
equals the workload distribution for the first 8 and 24 hours.

We now study the burst characteristics for SC-Book. Figure 8
plots the CDF of the number of bursts per IP. We see that 20%
of IP addresses participate in the campaign with only one burst.
The fact that spammers revisit the relay to continue SC-Book is
vindicated by observing that about 18% of spam sources participate
in the campaign for more than 10 bursts. Figure 9 plots the CDF
of the average time duration of a burst per IP address. We see that
more than 80% of IPs have average burst lengths longer than 100
seconds and nearly all of them finish in less than 1,000 seconds.
This indicates the stealthy behavior of spammers where they finish
their workload per burst within 100-1,000 seconds. Figure 10 plots
the CDF of the average workload per burst per IP address. 90%
of the IPs for this campaign have an average workload per burst of
fewer than 10 connections. We also plot the CDF of the spamming
workload per IP address for the first hour. We observe that the first
burst by an IP typically delivers fewer spam emails compared to the
average workload per burst. In summary, SC-Book shows a stealthy
behavior, where spammers visit the relay multiple times, with each
visit of “bursty” short duration on the order of 100-1,000 seconds,
and comprising of a low volume of 10 or fewer connections.

6.3 Workload and Access Link Capacity
We now turn back to the question raised in Section 6.1 regard-

ing the cause for the uneven workload distribution among spam-
mers and examine possible correlation between the workload and
the network access link capacity of different spammers.
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Figure 7: Distribution of workload (in connections) accomplished by spammers in the first 1/8/24 hours for SC-Book, SC-Adult1, and SC-Software1.

Measuring the access link capacity of a link remotely is a diffi-
cult problem [7]. We used the tool proposed in [7] to measure the
access link capacity of a remote spamming host as follows. For
each five-hour duration, we collected all the new IP addresses that
spammed our relay. At the end of it, if there were more than 800 IPs
collected, we randomly sampled 800 of them (otherwise we chose
all of them)2 and fed them to four machines, each of which used the
tool described in [7] to measure the link capacity of 200 hosts. The
cap of 800 was so that the measurement could finish in five hours
using the four machines. We repeated this procedure for about one
month and measured the link capacity for a total of 92,000 spam
sources. Unfortunately, only 2,231 hosts responded to the packet
trains sent by the prober.

Since we had the capacity information for only 2,231 hosts, in-
stead of performing a per spam campaign analysis for them, we per-
formed an aggregate study for these sources. In particular, for each
of these 2,231 IP sources, we found out the average burst workload,
average burst length, and number of bursts across all the campaigns
combined, with the “numb” period being one hour. Figures 11(a)-
(c) show the scatter plots between these metrics for each of these
IPs, versus its upload capacity. We also plot the Simple Moving
Average (SMA) for all three scatter plots by taking an average of
50 points above and 50 below a particular point.

Figure 11(a) shows that the higher the spammer upload capacity,
the larger the workload per burst to the relay from that spammer
(note that the x-axis is in log scale). The SMA of the average burst
workload in fact shows an exponential increase as the upload ca-
pacity increases. Figure 11(b) suggests that the higher the upload
link capacity (of a spamming host), the longer the burst duration.
The SMA of the average burst time increases from about 30 min-
utes for low link capacity spammers to about three hours for high
link capacity spammers. Figure 11(c) shows a similar trend in the
number of bursts from an IP address when compared with its up-
load capacity.

We conclude from above that the higher a spammer’s capacity
to spam, the heavier workload it tends to deliver. This suggests
that the controllers exploit the upload capacities of their spamming
2We note that an IP address seen by our relay could be a NAT. We
do not make a distinction among spam sources in this regard.

bots. The simplest way to achieve this appears to be one where a
controller divides the workload into equally sized chunks, and as
a bot finishes a piece, it retrieves another. This would enable the
controller to exploit the different capacities of bots, as well as deal
reasonably well with bots that get turned off unexpectedly.

7. COORDINATION AMONGST SPAMMERS
In Section 6, we made the observation that spam campaigns are

fairly stable over time in terms of the number of SMTP connec-
tions and the number of source IPs per campaign (see Figure 3).
We also saw that individual spammers could be bursty, with spam-
mers for an example campaign (SC-Book) sending multiple short
bursts, each lasting 100-1,000 seconds. Finally, we saw that in-
dividual spammers are assigned a diverse workload per campaign
ranging from 1 to 1,000 SMTP connections per campaign (see Fig-
ure 4). That still leaves the following question unanswered: despite
the disparity in workload across spammers, why does the aggregate
behavior of a campaign still appear relatively stable over time? In
this section, we provide a breakdown of a spam campaign in terms
of the geographical distribution of spammers in an attempt to an-
swer this question. Further, we also study the coordination amongst
the spammers that participate in the same campaign and those that
participate across different campaigns. In Sections 7.1 and 7.2, we
use SC-Adult1 which involves over 90,000 spammers from all over
the world.

7.1 Steady Aggregate Behavior of a Campaign
To better understand the disparity between the steady aggregate

behavior of a campaign and the diverse individual behavior of spam-
mers, we break down the spammers belonging to a campaign by
the domains targeted and by the geographic regions from which
the spammers originate. We obtain the geographic region for an IP
using Maxmind [13].

We study one week of spam activity in SC-Adult1 from Febru-
ary 10th to 17th. We start by looking at all the spamming activities
destined to all the domains as seen at the relay. In this one week
period, our relay observed a total of about 0.15 million connec-
tions containing spam messages destined to 90,000 domains. Fig-
ure 12(a) shows the number of SMTP connections per hour made
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Figure 11: Scatter plots of the upload capacity of an IP vs. its burst characteristics (across all campaigns spammed by the IP), (a) average burst
workload, (b) average burst duration, and (c) number of bursts, for 2,231 spamming IPs. Also shown are the SMA (simple moving average) across
100 neighboring IPs.

to our relay over the one week time period. Similar to what was
seen from Figure 3, the aggregate behavior in terms of the number
of connections is stable over time.

Per-day activities to different domains. We next separate spam
for SC-Adult1 by the different domains targeted. We identify that
this campaign targets users in four major domains: Yahoo!, Gmail,
Hotmail, and Hinet. Interestingly, the number of connections made
to our relay for this campaign that is heading to any of these do-
mains is still stable over time (figures not shown).

Per-day activities from different regions. We next separate spam
for SC-Adult1 according to where the spammer is geographically
located: India, Argentina, Brazil, and China, as shown in Fig-
ure 12(b)-(e). Note that the time on the x-axis for all figures is
in EST. Interestingly, the number of connections made from each
geographic region follows a diurnal variation, peaking during the
local timezone’s mid-day. For instance, for sources originating
from India, the leftmost point on the x-axis corresponds to 1:30
pm IST, which is when the peak activity occurs. Similar behavior
is seen for Argentina and Brazil. The number of connections from
China does not exhibit as pronounced diurnal variations and we
suspect this could be due to the country straddling many longitudes
which could contribute to a statistically multiplexed behavior. The
fact that bots from each country seem to generate the maximum
spam during their local mid-day could be explained by previous re-
ports about the working of spam botnets. For instance, the authors
in [12] reported that Storm Bots typically finish majority of their
spam workload within four hours of the machine being booted up.

Interestingly, the geographically distributed nature of botnets com-
bined with the different timezones explains the reason why cam-
paigns such as SC-Adult1 (and all other campaigns observed by
our relay) exhibit a stable behavior over time.

Per-hour activities per region to a domain. Finally, we study the
number of connections made by spammers from different countries
to a single destination domain, Yahoo! mail. The resulting graphs,
not shown due to space limitation, appear very similar to those
in Figure 12(b)-(e). This is because about 60% of the recipients

for SC-Adult1 are in the Yahoo! domain. Plots for other domains
such as Hotmail, Gmail and Hinet also show similar behavior. The
main observation we derive from these results is that there is no
destination-specific scheduling of spam by spammers, with each of
the large domains exhibiting similar per-origin-country pattern as
the aggregate spam campaign.

7.2 Intra-Campaign Coordination
Next, we explore the coordination amongst spammers that par-

ticipate in the same campaign. This coordination is reflected in a
very interesting way in the mailboxes being spammed. First, we
observe that each SMTP connection delivers spam mails to alpha-
betically close recipients (an observation similar to [6, 15]). To
further investigate the workload balancing strategy used across the
spamming sources, we analyze the correlation between the spam
source IPs and the corresponding mailboxes. In Figure 13, we plot
a scatter plot of spam source IPs versus the recipients to whom they
spam in SC-Adult1, where all the recipients in the campaign, i.e.,
the email addresses, are sorted alphabetically, and the spam source
IPs are sorted in increasing order of their arrival time in the cam-
paign. For clarity, we only show a portion of the whole campaign -
10,000 contiguous spam sources labeled from 10,000 to 20,000.

We observe a few “slanted” lines in Figure 13. Based on this we
conjecture that either the Botnet controller or a “job dispatcher” is
maintaining the list of recipients in an alphabetically sorted manner.
Two IPs that contact the controller one after another are given out
recipients from the sorted list in a first-in first-out order, and hence
a slanted line joins two IPs close in time with recipient lists that are
also close in the alphabetical order.

Interestingly, there are several such slanted lines in the figure.
One possible explanation for this could be due to the existence of
multiple “job dispatchers” (which could be located on a single ma-
chine or on several machines in an overlay as observed in the Storm
Botnet [12]), where each dispatcher has a sorted recipient list of its
own. Thus, IPs in a botnet contact their respective job dispatch-
ers, and the parallel slanted lines correspond to jobs obtained from
different dispatchers.
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Figure 12: Connection count per IP per hour for SC-Adult1 according
to all sources, sources from India, Argentina, Brazil and China.

7.3 Cross-Campaign Interactions
Next, we study cross-campaign interactions from the point of

view of spam sources. Specifically, we analyze the overlap between
spammers across different spam campaigns.
Do spam sources participate in different campaigns? We first
find out whether there is an overlap amongst spammer IPs that par-
ticipate in different campaigns. For this purpose, we define a met-
ric, source overlap, to quantify the overlap in terms of spam sources
across two campaigns. If set A and set B contain IP addresses
spamming campaigns A and B respectively, then we define source
overlap OA,B between these two sets as

OA,B =
‖ A ∩ B ‖

min(‖ A ‖, ‖ B ‖)
× 100 (1)

Figure 14 plots the source overlap metric for each pair of the
eight spam campaigns that were identified in Table 4. From the
figure we see that SC-Book does not have much overlap with other
SCs, but there is a considerable overlap amongst the other SCs.

We observe that SC-Adult1 and SC-Software1 have about 48%
source overlap. Earlier we had observed that nearly all the spam
sources for these two campaigns finish their spam workload in the
first one hour of spamming (Figure 7). We next explore what these
spam sources do once they are done with sending spam for one
campaign. In particular, do they immediately start sending spam
for the other campaign?

In the following analysis, we carefully construct a set of IP ad-
dresses (described next) and study their properties across these two
campaigns, Adult1 and Software1. Since SC-Software1 is observed

Figure 13: Scatter plot demonstrating the breakdown of workload in
terms of spam recipients across IPs for SC-Adult1. Each point in the
plot depicts a particular IP on y-axis spamming a recipient on x-axis.
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Figure 14: Pairwise “Source IP Overlap” among the seven campaigns.

for about 12 days, starting mid-February, we first prune all the spam
mails in SC-Adult1 that lie outside the 12-day period (February 12 -
25) of SC-Software1. This leaves us with 22,567 total spam sources
and 228,000 total SMTP connections for SC-Adult1. Second, since
we are interested in spam sources that spam most of their workload
in the first one hour, we further prune sources that spam more than
one burst from both campaigns. Third, we extract the spam sources
left after step two that were observed spamming in both campaigns.
We call this set the “common-set”. We now study the properties of
the 6,550 spam sources belonging to this common-set.

How close in time do the sources spam for different campaigns?
For the spam sources in the common-set, we calculated the time
difference when they started spamming for SC-Adult1 and SC-
Software1. Figure 15 plots the CDF of the absolute time difference
between the starting time of the bursts by the common IPs across
the two campaigns. We observe that about 70% of the spam sources
spam the two campaigns within a period of one hour. About 85% of
sources spam the two campaigns within a period of two hours. This
clearly suggests that spam sources switch to the next campaign as
soon as they are done with their workload in one campaign.

Do the sources spam the same amount of workload across cam-
paigns? For the spam sources in the common-set, we calculated
the number of SMTP connections (workload) they spammed for
each of the campaigns. Specifically, we are interested in find-
ing whether they spammed different amount of workload in the
two campaigns. Figure 16 plots the CDF of the absolute differ-
ence of per-IP workload in the two campaigns, for every IP in the
common-set. From the figure we see that 40% of IPs belonging to
the common-set had a workload difference of at most one connec-
tion. About 80% of IPs had a workload difference of less than four
connections. This suggests that the spamming workload of a source
is a property dependent on the characteristics of the spam host and
not much dependent on the campaign that it spams for.
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Figure 15: CDF of absolute time difference between first spam by an
IP to SC-Adult1 and first spam to SC-Software1, for all the IPs in the
common-set.
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Figure 16: CDF of absolute difference between workload for all the
IPs in the common-set for SC-Adult1 and SC-Software1.

Do spam sources spam the same recipients across campaigns?
We next analyze whether the spam sources belonging to the common-
set spam the same set of recipients. The 6,550 IPs belonging to the
common-set made about 87,294 and 96,387 connections to our re-
lay to deliver spam to SC-Adult1 and SC-Software1, respectively.
They attempted to relay spam to 207,538 and 209,566 recipients,
respectively. Out of 6,550 IPs, only three had at least one common
recipient across the two campaigns. This suggests though the com-
mon IP addresses spam in close time intervals across campaigns
and with the same workload, they do not spam the same mailboxes.

8. CONCLUSIONS
In this paper, we presented a trace-driven analysis that character-

izes the burstiness and distributedness of botnet spam campaigns.
To enable our study, we manually identified seven major URL-
based botnet spam campaigns containing 2,042 distinct URLs and
2.09 million SMTP connections from a five-month trace captured
by a spam relay. Our study shows that URL-based campaigns can
be prolonged, sometimes lasting for periods of 99 days, suggesting
that burstiness can not be used as a necessary criteria to assist clus-
tering URL-based spam campaigns. Indeed, we showed burstiness-
based campaign generation with a cutoff of five days led to a high
false negative ratio (98.21%). Our finding suggests that despite
recent advances, the problem of campaign identification with rea-
sonable false negatives is harder than previously thought.

We further studied the characteristics of three botnet campaigns.
Though campaigns are found to be long lasting, individual bots
can exhibit a bursty behavior, with bots for one campaign (Book)
contacting the relay in multiple bursts (18% of bots arrive in 10 or
more bursts) with each burst lasting a short duration of 100-1,000
seconds. We also studied the coordination across spammers in a
campaign and for one campaign (Adult1), we identified a pattern
where the spammers that arrived at the relay in contiguous time
were found spamming recipients that were in alphabetically sorted
order, suggesting FIFO job dispatching by the spam coordinators.
Finally, we studied the interactions among the bots that spam on

behalf of multiple campaigns and found that such common bots
generate spam for each campaign in close-by time, with the same
workload per campaign, but to distinct recipients across campaigns.

In future work, we plan to study the interactions between spam
campaign identification schemes and IP blacklisting. On one hand,
bots identified in botnet spam campaigns can help to enhance the
freshness of IP blacklists. On the other hand, the IPs already in
the IP blacklists can potentially help to speed up the detection of
new or evolving campaigns. Finally, we plan to develop automated
schemes that exploit the spam content in addition to spam labels
for accurate and timely campaign identification and signature gen-
eration.
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