
ShadowNet: A Platform for Rapid and Safe Network Evolution

Xu Chen Z. Morley Mao Jacobus Van der Merwe
University of Michigan AT&T Labs - Research

Abstract

The ability to rapidly deploy new network services,
service features, and operational tools, without impact-
ing existing services, is a significant challenge for all
service providers. In this paper we address this prob-
lem by the introduction of a platform calledShadowNet.
ShadowNet exploits the strong separation provided by
modern compute and network equipment between log-
ical functionality and the physical infrastructure. It al-
lows logical topologies of compute servers, networking
equipment and links to be dynamically created, then in-
stantiated to and managed on the physical infrastruc-
ture. ShadowNet is a sharable, programmable, and com-
posable infrastructure, consisting of carrier-grade equip-
ment. Furthermore, it is a fully operational network
that is connected to, but functionally separate from the
provider production network. By exploiting the strong
separation support, ShadowNet allows multiple technol-
ogy and service trials to be executed in parallel in a real-
istic operational setting, without impacting the produc-
tion network. In this paper, we describe the ShadowNet
architecture and the control framework designed for its
operation and illustrate the utility of the platform. We
present our prototype implementation and demonstrate
the effectiveness of the platform through extensive eval-
uation.

1 Introduction
Effecting network change is fundamentally difficult.
This is primarily due to the fact that modern networks
are inherently shared and multi-service in nature, and
any change to the network has the potential to negatively
impact existing users and services. Historically, pro-
duction quality network equipment has also been propri-
etary and closed in nature, thus further raising the bar to
the introduction of any new network functionality. The
negative impact of this state of affairs has been widely
recognized as impeding innovation and evolution [22].
Indeed at a macro-level, the status quo has led to calls
for a clean slate redesign of the Internet which in turn has
produced efforts such as GENI [3] and FEDERICA [2].

In the work presented in this paper we recognize that
at a more modest micro-level, the same fundamental
problem, i.e., the fact that network change is inher-
ently difficult, is a majoroperationalconcern for service
providers. Specifically, the introduction of a new service

or service features typically involve long deployment cy-
cles: Configuration changes to network equipment is
meticulously lab-tested before staged deployments are
performed in an attempt to reduce the potential of any
negative impact on existing services. The same applies
to any new tools to be deployed in support of network
management and operations. This is especially true as
network management tools are evolving to be more so-
phisticated and capable of controlling network functions
in an automated closed-loop fashion [24, 9, 7]. The op-
eration of such tools depends on the actual state of the
network, presenting further difficulties in terms of test-
ing in a lab environment due to difficulties to artificially
recreate realistic network conditions in a lab setting.

In this paper we address these concerns through a plat-
form calledShadowNet. ShadowNet is designed to be an
operational trial/test network consisting of ShadowNet
nodesdistributed throughout the backbone of a tier-1
provider in the continental U.S. Each ShadowNet node
is composed of a collection of carrier-grade equipment,
namely routers, switches and servers. Each node is con-
nected to the Internet as well as to other ShadowNet
nodes via a (virtual) backbone.

ShadowNet provides asharable, programmable and
composableinfrastructure to enable the rapid trialing or
deployment of new network services or service features,
or evaluation of new network management tools in a re-
alistic operational network environment. Specifically,
via the Internet connectivity of each ShadowNet node,
traffic from arbitrary end-points can reach ShadowNet.
ShadowNet connects to and interacts with the provider
backbone much like a customer network would, and as
such the “regular” provider backbone, just like it would
protect itself from any other customers, is isolated from
the testing and experimentation that take place within
ShadowNet. In the first instance, ShadowNet provides
the means for testing services and procedures for sub-
sequent deployment in a (separate) production network.
However, in time we anticipate ShadowNet-like func-
tionality to be provided by the production network itself
to directly enable rapid but safe service deployment.

ShadowNet has much in common with other test net-
works [10, 26, 21]: (i) ShadowNet utilizes “virtualiza-
tion” and/or “partitioning” capabilities of equipment to
enablesharing of the platform between different con-
currently running trials/experiments. (ii) Equipment

1

in ShadowNet nodes areprogrammableto enable ex-
perimentation and the introduction of new functional-
ity. (iii) ShadowNet allows the dynamiccompositionof
test/trial topologies.

What makes ShadowNet unique, however, is that this
functionality is provided in anoperational networkon
carrier-grade equipment. This is critically important
for our objective to provide a rapid service deploy-
ment/evaluation platform, as technology or service tri-
als performed in ShadowNet should mimic technology
used in the provider network as closely as possible.
This is made possible by recent vendor capabilities that
allow the partitioning of physical routers into subsets
of resources that essentially provide logically separate
(smaller) versions of the physical router [16].

In this paper, we describe the ShadowNet architec-
ture and specifically the ShadowNet control framework.
A distinctive aspect of the control framework is that it
provides a clean separation between thephysical-level
equipment in the testbed and theuser-levelslice speci-
fications that can be constructed “within” this physical
platform. A slice, which encapsulates a service trial, is
essentially a container of the service design including
devices and connectivity specification and placement.
Once instantiated, a slice also contains the allocated
physical resources to the service trial. Despite this clean
separation, the partitioning capabilities of the underly-
ing hardware allows virtualized equipment to be largely
indistinguishable from their physical counterparts, ex-
cept that they contain fewer resources. The ShadowNet
control framework provides a set of interfaces allow-
ing users to programatically interact with the platform
to manage and manipulate their slices.

We make the following contributions in this work:

• Present a sharable, programmable, and composable
network architecture which employs strong separa-
tion between user-level topologies/slices and their
physical realization (§2).

• Present a network control framework that allows
users to manipulate their slices and/or the physical
resource contained therein with a simple interface
(§3).

• Describe physical-level realizations of user-level
slice specifications using carrier-grade equipment
and network services/capabilities (§4).

• Present a prototype implementation (§5) and evalu-
ation of our architecture (§6).

2 ShadowNet overview
In this paper, we present ShadowNet which serves as a
platform for rapid and safe network change. The pri-
mary goal of ShadowNet is to allow the rapid composi-
tion of distributed computing and networking resources,
contained in aslice, realized in carrier-grade facilities

which can be utilized to introduce and/or test new ser-
vices or network management tools. The ShadowNet
control framework allows the network-wide resources
that make up each slice to be managed either collectively
or individually.

In the first instance, ShadowNet will limit new ser-
vices to the set of resources allocated for that purpose,
i.e., contained in a slice. This would be a sufficient so-
lution for testing and trying out new services in a real-
istic environment before introducing such services into
a production network. Indeed our current deployment
plans espouse this approach with ShadowNet as a sep-
arate overlay facility [23] connected to a tier-1 produc-
tion network. Longer term, however, we expect the base
functionality provided by ShadowNet to evolve into the
production network and to allow resources and function-
ality from different slices to be gracefully merged under
the control of the ShadowNet control framework.

In the remainder of this section we first elaborate on
the challenges network service providers face in effect-
ing network change. We describe the ShadowNet archi-
tecture and show how it can be used to realize a sophis-
ticated service. Several experimental network platforms
are compared against it, showing only ShadowNet really
meets the requirements for realistic network testing. Fi-
nally we describe the architecture of the primary system
component, namely the ShadowNet controller.

2.1 Dealing with network change
There are primarily three drivers for change in modern
service provider networks:

Growth demands: Fueled by an increase in broadband
subscribers and media rich content, traffic volumes on
the Internet continue to show double digit growth rates
year after year. The implication of this is that service
providers are required to increase link and/or equipment
capacities on a regular basis, even if the network func-
tionality essentially stays the same.

New services and technologies:Satisfying customer
needs through new service offerings are essential to the
survival of any network provider. “Service” here spans
the range from application-level services like VoIP and
IPTV, connectivity services like VPNs and IPv4/IPv6
transport, traffic management services like DDoS miti-
gation or content distribution networks (CDNs), or more
mundane (but equally important and complicated) ser-
vice features like the ability to signal routing preferences
to the provider or load balancing features.

New operational tools and procedures:Increasing use
of IP networks for business critical applications is lead-
ing to growing demands on operational procedures. For
example, end-user applications are often very intolerant
of even the smallest network disruption leading to the

2

deployment of methods to decrease routing convergence
in the event of network failures. Similarly, availabil-
ity expectations, in turn driven by higher level business
needs, make regularly planned maintenance events prob-
lematic, leading to the development of sophisticated op-
erational methods to limit their impact.

As we have alluded to already, the main concern of
any network change is that it might have an impact on
existing network services, because networks are inher-
ently shared with known and potentially unknown de-
pendencies between components. An example would be
the multi-protocol extensions to BGP to enable MPLS-
VPNs or indeed any new protocol family. The change
associated with rolling out a new extended BGP stack
clearly has the potential to impact existing IPv4 BGP
interactions, as bugs in new BGP software could nega-
tively impact the BGP stack as a whole.

Note also that network services and service fea-
tures are normally “cumulative” in the sense that once
deployed and used, network services are very rarely
“switched off”. This means that over time the dependen-
cies and the potential for negative impact only increase
rather than diminish.

A related complication associated with any network
change, especially for new services and service features,
is the requirement for corresponding changes to a vari-
ety of operational support systems including: (i) con-
figuration management systems (new services need to
be configured typically across many network elements),
(ii) network management systems (network elements
and protocols need to be monitored and maintained),
(iii) service monitoring systems (for example to ensure
that network-wide service level agreements,e.g., loss,
delay, or video quality, are met), (iv) provisioning sys-
tems (e.g.,to ensure the timely build-out of popular ser-
vices). ShadowNet does not address these concerns per
se. However, as described above, new operational solu-
tions are increasingly more sophisticated and automated,
and ShadowNet provides the means for safely testing out
such functionality in a realistic environment.

Our ultimate goal with the ShadowNet work is to de-
velop mechanisms and network management primitives
that would allow new services and operational tools to be
safely deployed directly in production networks. How-
ever, as we describe next, in the work presented here we
take the more modest first step of allowing such actions
to be performed in an operational network that is sepa-
rate from the production network, which is an important
transition step.

2.2 ShadowNet architecture
Different viewpoints of the ShadowNet network archi-
tecture are shown in Figures 1(a) and (b). Figure 1(a)
shows the topology from the viewpoint of the tier-1

Tier-1 ISP

ShadowNet

Node
ShadowNet

Node

ShadowNet

Node ShadowNet

Node

 Internet connectivity

ShadowNet
Backbone
Connectivity

(a) ISP View

(b) ShadowNet View

ShadowNet

Node

ShadowNet

Node

ShadowNet

Node

ShadowNet Network

ShadowNet

Node

Figure 1: ShadowNet network viewpoints

Persistent storage

ShadowNet

Controller

Portal

Programatic

Access

User
ShadowNet NodesControl

Monitor

InternetShadowNet

Backbone

User
User
Users

User API

RouterServer

Server

Server

Server

Server

Router

Router

Router

Router

Switch

Figure 2: ShadowNet functional architecture

provider. ShadowNet nodes connect to the provider net-
work, but is essentially separated from it. Each Shad-
owNet node has connectivity to other ShadowNet nodes
as well as connectivity to the Internet. As shown in Fig-
ure 1(b), connectivity to other ShadowNet nodes effec-
tively creates an overlay network [23] to form a virtual
backbone among the nodes. Via the provided Internet
connectivity, the ShadowNet address space is advertised
(e.g.,using BGP) first to the provider network and then
to the rest of the Internet. Thus ShadowNet effectively
becomes a small provider network itself (i.e., a shadow
of the provider network).

The ShadowNet functional architecture is shown in
Figure 2. Each ShadowNet node contains different types
of computing and networking devices, such as servers,
routers, and switches. Combined with the network con-
nectivity received from the ISP, they complete the phys-
ical resource for ShadowNet. ShadowNet manages the
physical resources and enables its users to share it. The
devices provide virtualization/partitioning capabilities
so that multiple logical devices can share the same un-
derlying physical resource. For example, modern routers
allow router resources to be partitioned so that several
logical routers can be configured to run simultaneously
and separately on a single physical router [16]. (Note

3

that modern routers are also programmable in both con-
trol and data planes [18].) Logical interfaces can be mul-
tiplexed from one physical interface via configuration
and then assigned to different logical routers. We also
take advantage of virtual machine technology to man-
age server resources [5]. This technology enables multi-
ple operating systems to run simultaneously on the same
physical machine and is already heavily used in cloud
computing and data-center environments. To facilitate
sharing connectivity, the physical devices in each Shad-
owNet node are connected via a configurable switch-
ing layer, which shares the local connectivity, for ex-
ample using VLAN. The carrier-supporting-carrier ca-
pabilities enabled by MPLS virtual private networks
(VPNs) [11, 15] offer strong isolation and are therefore
an ideal choice to create the ShadowNet backbone.

As depicted in Figure 2, central to ShadowNet func-
tionality is theShadowNet Controller. The controller
facilitates the specification and instantiation of a ser-
vice trial in the form of aslice owned by a user. It
provides a programmatic application programming in-
terface (API) to ShadowNet users, allowing them to cre-
ate the topological setup of the intended service trial or
deployment. Alternatively users can access ShadowNet
through a Web-based portal, which in turn will interact
with the ShadowNet Controller via the user-level API.
The ShadowNet Controller keeps track of the physical
devices that make up each ShadowNet node by con-
stantly monitoring them, and further manages and ma-
nipulates those physical devices to realize the user-level
APIs, while maintaining a clean separation between the
abstracted slice specifications and the way they are re-
alized on the physical equipments. The user-level APIs
also enable users to dynamically interact with and man-
age the physical instantiation of their slices. Specifically,
users can directly access and configure each instantiated
logical device.

ShadowNet allows a user to deactivate individual de-
vices in a slice, or the slice as a whole, by releasing the
allocated physical resources. ShadowNet decouples the
persistent state from the instantiated physical devices, so
that the state change associated with a device in the spec-
ification is maintained even if the physical instantiation
is released. Subsequently, that device in the specifica-
tion can be re-instantiated assuming sufficient resources,
the saved state restored and thus the user perceived slice
remains intact. For example, the configuration change
made by the user to a logical router can be maintained
and applied to a new instantiated logical router, even if
the physical placement of that logical device is different.

2.3 Using ShadowNet
In this section we briefly describe an example usage sce-
nario that illustrates the type of sophisticated network

ServerServer

PE

Switch

PE

C

Cache

Route

Control

ServerServer

PE

Switch

PE

Cache

PE

PE
PE

CC

C

C

End-user
requests End-user

requests

End-user
requests

Figure 3: Usage scenario: load-aware anycast CDN.

service that can be tested using the ShadowNet infras-
tructure. We discuss the requirements and compare the
difference among several experimental networking envi-
ronments.

Assume that ShadowNet is to be used to run a cus-
tomer trial of aload-aware anycast content distribution
network (CDN)[9]. Figure 3 depicts how all the com-
ponents of such a CDN can be realized on the Shad-
owNet platform. Specifically, a network, complete with
provider edge (PE) and core (C) routers, can be dynami-
cally instantiated to represent a small backbone network.
Further, servers in a subset of the ShadowNet nodes can
be allocated and configured to serve as content caches.
A load-aware anycast CDN utilizes route control to in-
form BGP selection based on the cache load,i.e., using
BGP, traffic can be steered away from overloaded cache
servers. In ShadowNet this BGP speaking route control
entity can be instantiated on either a server or a router de-
pending on the implementation. Appropriate configura-
tion/implementation of BGP, flow-sampling, and server
load monitoring complete the infrastructure picture. Fi-
nally, actual end-user requests can be directed to this in-
frastructure,e.g.,by resolving a content URL to the any-
cast address(es) associated with and advertised by the
CDN contained in the ShadowNet infrastructure.

Using this example we can identify several capabili-
ties required of the ShadowNet infrastructure to enable
realistic service evaluation (see Table 1): (i) To gain con-
fidence in the equipment used in the trial it should be the
same as, or similar to, equipment used in the production
network (production-grade devices). (ii) To thoroughly
test load feedback mechanisms and traffic steering algo-
rithms, it requires participation of significant numbers
of customers (realistic workloads). (iii) This in turn re-
quires sufficient network capacity (high capacity back-
bone). (iv) Realistic network and CDN functionality re-
quire realistic network latencies and geographic distribu-
tion (geographic coverage). (v) Finally, the CDN con-
trol framework could dynamically adjust the resources

4

SN EL PL VN

Production grade devices Y N N N
Realistic workloads Y N Y Y
High capacity backbone Y N N Y
Geographical coverage Y N Y Y
Dynamic reconfiguration Y N N N

Table 1: Capability comparison between ShadowNet
(SN), EmuLab (EL), PlanetLab (PL) and VINI (VN)

allocated to it based on the offered load (dynamic recon-
figuration).

To illustrate the utility of the ShadowNet infrastruc-
ture, Table 1 also shows comparable capabilities pro-
vided by other experimental testbeds. We describe these
facilities next.

Emulab achieves flexible network topology through
emulation within a central testbed environment. There
is a significant gap between emulation environments and
real production networks. For example, software routers
typically do not provide the same throughput as pro-
duction routers with hardware support. As EmuLab is
a closed environment, it is incapable of combining real
Internet workload into experiments. Compared to Em-
uLab, the ShadowNet infrastructure is distributed, thus
the resource placement in ShadowNet more closely re-
sembles future deployment phases. In EmuLab, an ex-
periment in a slice is allocated a fixed set of resources
during its life cycle. ShadowNet, on the other hand, can
change the specificationdynamically. In the CDN ex-
ample, machines for content caches and network links
can be dynamically spawned or removed in response to
increased or decreased client requests.

PlanetLab has been extremely successful in academic
research, especially in distributed monitoring and P2P
research. It achieves its goal of amazing geographical
coverage, spanning nodes to all over the globe, obtain-
ing great end-host visibility. The PlanetLab nodes, how-
ever, are mostly connected to educational networks with-
out abundant upstream or downstream bandwidth. Plan-
etLab therefore lacks the capacity to realize a capable
backbonebetween PlanetLab nodes. ShadowNet, on the
other hand, is built upon a production ISP network, hav-
ing its own virtual backbone with bandwidth and latency
guarantees. This pushes the tested service closer to the
core of the ISP network, where the actual production ser-
vice would be deployed.

VINI is closely tied with PlanetLab, but utilizes In-
ternet2 to provide a realistic backbone. Like EmuLab
and PlanetLab, VINI runs software routers (XORP and
Click), the forwarding capacity of which lags behind
production devices. This is mostly because its focus is to
use commodity hardware to evaluate new Internet archi-

Figure 4: The ShadowNet controller

tectures, which is different from the service deployment
focus of ShadowNet. VINI and PlanetLab are based on
the same control framework. Similar to EmuLab, it lacks
the capability of changing slice configurations dynam-
ically, i.e., not closing the loop for more adaptive re-
source management, a functionality readily available in
ShadowNet.

2.4 The ShadowNet Controller
The ShadowNet controller consists of a user-level man-
ager, a physical-level manager, a configuration effector
and a device monitor, as shown in Figure 4. We describe
each component below. The current ShadowNet design
utilizes a centralized controller that interacts with and
controls all ShadowNet nodes.

2.4.1 User-level manager
The user-level manager is designed to take the input of
user-level API calls. Each API call corresponds to an
action that the users of ShadowNet are allowed to per-
form. A user can create a topological specification of a
service trial (§3.1), instantiate the specification to physi-
cal resources (§3.2), interact with the allocated physical
resources (§3.3), and deactivate the slice when the test
finishes (§3.4). The topology specification of a slice is
stored by the user-level manager in persistent storage,
so that it can be retrieved, revived, and modified over
time. The user-level manager also helps maintain and
manage the saved persistent state from physical instan-
tiations (§3.3). By retrieving saved states and applying
them to physical instantiations, advanced features, like
device duplication, can be enabled (§3.5).

The user-level manager is essentially a network ser-
vice used to manipulate configurations of user experi-
ments. We allow the user-level manager to be accessed
from within the experiment, facilitating network control
in a closed-loop fashion. In the example shown in Fig-
ure 3, the route control component in the experiment can
dynamically add content caches when user demand is
high by calling the user-level API to add more comput-
ing and networking resource via the user-level manager.

5

2.4.2 Physical-level manager
The physical-level manager fulfills requests from the
user-level manager in the form of physical-level API
calls by manipulating the physical resources in Shad-
owNet. To do this, it maintains three types of informa-
tion: 1) “static” information, such as the devices in each
ShadowNet node and their capabilities; 2) “dynamic”
information, e.g., the online status of all devices and
whether any interface modules are not functioning; 3)
“allocation” information, which is the up-to-date usage
of the physical resources. Static information is changed
when new devices are added or old devices are removed.
Dynamic information is constantly updated by the de-
vice monitor. The three main functions of the physical-
level manager is to configure physical devices to spawn
virtualizeddevice slivers (§4.1) for the instantiation of
user-level devices (§4.1.1) and user-level connectivities
(§4.1.2), to manage their states (§4.4) and to delete ex-
isting instantiated slivers. Asliver is a share of the phys-
ical resource,e.g.,a virtual machine or a sliced physical
link. The physical-level manager handles requests, such
as creating a VM, by figuring out the physical device to
configure and how to configure it. The actual manage-
ment actions are performed via the configuration effec-
tor module, which we describe next.

2.4.3 Configuration effector
The configuration effector specializes in realizing con-
figuration changes to physical devices.Configletsare
parametrized configuration or script templates, saved in
the persistent storage and retrieved on demand. To real-
ize the physical-level API calls, the physical-level man-
ager decides the appropriate configlet to use and gener-
ates parameters based on the request and the physical re-
source information. The configuration effector executes
the configuration change on target physical devices.

2.4.4 Device monitor
A device monitor actively or passively determines the
status of physical devices or components and propagates
this “dynamic” information to the physical-level man-
ager. Effectively, the device monitor detects any phys-
ical device failures in real time. As the physical-level
manager receives the update, it can perform appropri-
ate actions to mitigate the failure. The goal is to mini-
mize any inconsistency of physical instantiation and user
specifications. We detail the techniques in§4.5. Device
or component recovery can be detected as well, and as
such the recovered resource can again be considered us-
able by the physical-level manager.

3 Network service in a slice
A user of ShadowNet creates a service topology in the
form of aslice, which is manipulated through the user-

S1

NY

Internet

R3

M5 M6

L5 L6

TX

Internet

R2

M3 M4

L3 L4

CA

Internet

R1

M1 M2

L1 L2

L7

L10

L8 L9

L11 L12 L13 L14 L15

$SL = AddUsrSlice();
$S1 = AddUsrSwitch($SL);
$R1 = AddUsrRouter($SL,"CA");
$M1 = AddUsrMachine($SL,"CA","Debian");
$M2 = AddUsrMachine($SL,"CA","Windows");
$L1 = AddUsrLink($M1,$R1); # similar for M2
$L10 = AddUsrLink($M1,$S1); # similar for M2
$L7 = AddToInternet($R1, "141.212.111.0/24");
similar for "TX" and "NY"

Figure 5: Example of user-level API calls

Figure 6: The slice life cycle

level API calls supported by the ShadowNet controller.
The three layers embedded in a slice and the interactions
among them are depicted in Figure 6 and detailed below.
In this section, we outline the main user-exposed func-
tionalities that the APIs implement.

3.1 Creating user-level specification
To create a new service trial, an authorized user of Shad-
owNet can create aslice. As a basic support, and usu-
ally the first step to create the service, the user speci-
fies the topological setup through the user-level API (a
in Figure 6). As an example, Figure 5 depicts the in-
tended topology of a hypothetical slice and the API call
sequence that creates it.

The slice created acts like a placeholder for a collec-
tion of user-level objects, including devices and connec-
tivities. We support three generic types of user-level de-
vices (UsrDevice): router (UsrRouter), machine (Usr-
Machine), and switch (UsrSwitch). Two UsrDevices can
be connected to each other via a user-level link (Usr-
Link). User-level interfaces (UsrInt) can be added to
a UsrDevice explicitly by the slice owner; however, in
most cases, they are created implicitly when a UsrLink
is added to connect two UsrDevices.

Functionally speaking, a UsrMachine (e.g., M1 in
Figure 5) represents a generic computing resource,
where the user can run service applications. A Usr-
Router (i.e., R1) can run routing protocols, filter and

6

forward packets,etc. Further, UsrRouters are pro-
grammable, allowing for custom router functionality. A
UsrLink (i.e., L1) ensures that when the UsrDevice on
one end sends a packet, the UsrDevice on the other
end will receive it. A UsrSwitch (i.e., S1) provides a
single broadcast domain to the UsrDevices connecting
to it. ShadowNet provides the capability and flexibil-
ity of putting geographically dispersed devices on the
same broadcast domain. For example,M1 to M6, al-
though specified in different locations, are all connected
to UsrSwitchS1. Besides internal connectivity among
UsrDevices, ShadowNet can drive live Internet traffic
to a service trial by allocating a public IP prefix for a
UsrInt on a UsrDevice. For example,L7 is used to
connectR1 to the Internet, allocating an IP prefix of
141.212.111.0/24.

Besides creating devices and links, a user of Shad-
owNet can also associate properties with different ob-
jects, e.g., the OS image of a UsrMachine and the IP
addresses of the two interfaces on each side of a Usr-
Link. As a distributed infrastructure, ShadowNet allows
users to specify location preference for each device as
well, e.g.,California forM1, M2 andR1. This location
information is used by the physical layer manager when
placement is performed.

3.2 Instantiation
A user can instantiate some or all the objects in her slice
onto physical resources (b in Figure 6). From this point
on, the slice not only contains abstracted specification,
but has associated physical resources that the instanti-
ated objects in the specification are mapped to.

ShadowNet provides two types of instantiation strate-
gies. First, a user can design a full specification for the
slice and instantiate all the objects in the specification
together. This is similar to what Emulab and VINI pro-
vide. As a second option, user-level objects in the speci-
fication can be instantiated upon request at any time. For
example, they can be instantiated on-the-fly as they are
added to the service specification.This is useful for users
who would like to build a slice interactively and/or mod-
ify it over time,e.g.,extend the slice resources based on
increased demand.

3.3 Device access & persistent slice state
ShadowNet allows a user to access the physical instanti-
ation of the UsrDevices and UsrLinks in her slice,e.g.,
logging into a router or tapping into a link (c in Figure 6).
This support is necessary for many reasons. First, the
user needs to install software on UsrMachines or Usr-
Routers and/or configure UsrRouters for forwarding and
filtering packets. Secondly, purely from an operational
point of view, operators usually desire direct access to
the devices (e.g.,a terminal window on a server, or com-

mand line access to a router), rather than using a re-
stricted set of function calls.

For UsrMachines and UsrRouters, we allow users to
log into the device and make any changes they want
(§4.3). For UsrLinks and UsrSwitches, we provide
packet dump feeds upon request (§4.3). This support
is crucial for service testing, debugging and optimiza-
tion, since it gives the capability and flexibility of sniff-
ing packets at any place within the service deployment
without installing additional software on end-points.

Enabling device access also grants users the ability to
change the persistent state of the physical instantiations,
such as files installed on disks and configuration changes
on routers. In ShadowNet, we decouple the persistent
states from the physical instantiation. When the physical
instantiation is modified, the changed state also become
part of the slice (d in Figure 6).

3.4 Deactivation
The instantiated user-level objects in the specification of
a slice can be deactivated, releasing the physical instan-
tiations of the objects from the slice by giving it back to
the ShadowNet infrastructure. For example, a user can
choose to deactivate an under-utilized slice as a whole,
so that other users can test their slices when the phys-
ical resources are scarce. While releasing the physical
resource, we make sure the persistent state is extracted
and stored as part of the slice (f in Figure 6). As a result,
when the user decides to revive a whole slice or an object
in the slice, new physical resources will be acquired and
the stored states associated with the object(s) applied to
it (e in Figure 6). Operationally speaking, this enables
a user to deactivate a slice and reactivate it later, most
likely on a different set of resources but still functioning
like before.

3.5 Management support
Abstracting the persistent state from the physical instan-
tiation enables other useful primitives in the context of
service deployment. If we instantiate a new UsrDevice
and apply the state of an existing UsrDevice to it, we ef-
fectively duplicate the existing UsrDevice. For example,
a user may instantiate a new UsrMachine with only the
basic OS setup, log into the machine to install necessary
application code and configure the OS. With the support
provided by ShadowNet, she can spawn several new Us-
rMachines and apply the state of the first machine. This
eases the task of creating a cluster of devices serving
similar purposes. From the ShadowNet control aspect,
this separation allows sophisticated techniques to hide
physical device failures. For example, a physical router
experiences a power failure, while it hosts many logical
routers as the instantiation of UsrRouters. In this case,
we only need to create new instantiations on other avail-

7

Figure 7: Network connectivity options.

able devices of the same type, and then apply the states
to them. During the whole process, the slice specifica-
tion, which is what the user perceives, is intact. Natu-
rally, the slice will experience some downtime as a result
of the failure.

4 Physical layer operations

While conceptually similar to several existing sys-
tems [10, 26], engineering ShadowNet is challenging
due to the strong isolation concept it rests on, the
production-grade qualities it provides and the distributed
nature of its realization. We describe the key methods
used to realize ShadowNet.

4.1 Instantiating slice specifications

The slice specification instantiation is performed by the
ShadowNet controller in a fully automated fashion. The
methods to instantiate on two types of resource are de-
scribed as follows.

4.1.1 User-level routers and machines

ShadowNet currently utilizes VirtualBox [5] from Sun
Microsystems, and Logical Routers [16] from Juniper
Networks to realize UsrMachines and UsrRouters re-
spectively. To instantiate a UsrRouter or a UsrMachine,
a ShadowNet node is chosen based on the location prop-
erty specified. Then all matching physical devices on
that node are enumerated for availability checking,e.g.,
whether a Juniper router is capable of spawning a new
logical router. When there are multiple choices, we dis-
tribute the usage across devices in a round-robin fash-
ion. Location preference may be unspecified because
the user does not care about where the UsrDevice is in-
stantiated,e.g.,when testing a router configuration op-
tion. In this case, we greedily choose the ShadowNet
node where that type of device is the least utilized. The
resource allocation problem in ShadowNet is largely de-
termined by availability in each node and thus handled
in a straightforward manner. When no available resource
can be allocated, an error is returned.

4.1.2 User-level connectivity

The production network associated with ShadowNet
provides both Internet connection and virtual backbone
connectivity to each ShadowNet node. We configure a
logical router, which we call theheadrouter of the Shad-
owNet node, to terminate these two connections. With
the ShadowNet backbone connectivity provided by the
ISP, all head routers form a full-mesh, serving as the
core routers of ShadowNet. For Internet connectivity,
the head router interacts with ISP’s border router,e.g.,
announcing BGP routes.

Connecting device slivers on the same ShadowNet
node can be handled by the switching layer of that node.
The head routers are used when device slivers across
nodes need to be connected. In ShadowNet, we make
use of the carrier-supporting-carrier (CsC) capabilities
provided by MPLS enabled networks. CsC utilizes the
VPN service provided by the ISP, and stacks on top of
it another layer of VPN services, running in parallel but
isolated from each other. For example, layer-2 VPNs (so
called pseudo-wire) and VPLS VPNs can be stacked on
top of a layer-3 VPN service [15].

This approach has three key benefits. First, each
layer-2 VPN or VPLS instance encapsulates the network
traffic within the instance, thus provides strong isolation
across links. Second, these are off-the-shelf production-
grade services, which are much more efficient than man-
ually configured tunnels. Third, it is more realistic from
a configuration perspective, as we explain later. To em-
phasize, the layer-2 VPN and VPLS options that we
heavily use in ShadowNet provides layer-2 connectiv-
ity similar to physical wires, meaning that any layer-3
protocol can run on top of it. For example, the data
plane programmability provided by the routers that we
deploy [18], allow for the realization of network layer
protocols other than IP on these layer-2 services.

Figure 7 contains various examples of enabling con-
nectivity, which we explain in detail next.
UsrLink: To instantiate a UsrLink, the instantiations of
the two UsrDevices on the two ends of the UsrLink are
first identified. We handle three cases, see Figure 7a).
(We consider the UsrLinks connected to a UsrSwitch
part of that UsrSwitch, which we describe later):

1) Two slivers are on the same physical device:for
example,V M1 andV M2 are on the same server;LR2
andHead1 are on the same router. In this case, we use
local bridging to realize the UsrLink.

2) Two slivers are on the same ShadowNet node, but
not the same device: for example,V M1 and LR1,
LR1 andLR2. We use a dedicated VLAN on that node
for each UsrLink of this type. For example,LR1 will
be configured with two interfaces, joining two different

8

VLAN segments, one for the link toV M1, the other one
to LR2.

3) Two slivers are on different nodes: for example,
LR2 andLR3. In this case, we first connect each sliver
to its local head router, using the two methods above.
Then the head router creates a layer-2 VPN to bridge the
added interfaces, effectively creating a cross-node tunnel
connecting the two slivers.

In each scenario above, the types of the physical inter-
faces that should be used to enable the link are decided,
the selected physical interfaces are configured, and the
resource usage information of the interfaces is updated.

The various MPLS VPN technologies achieve much
higher levels of realism over software tunnels, because
almost no configuration is required at the end-points that
are being connected. For example, to enable the direct
link betweenLR2 andLR3, the layer-2 VPN configu-
ration only happens onHead1 andHead2. As a result,
if the user logs into the logical routerLR2 after its cre-
ation, she would only sees a “physical” interface setup
in the configuration, even without IP configured, yet that
interface leads toLR3 according to the layer-2 topol-
ogy. Furthermore, the rate-limiting filters are configured
on the interfaces assigned to the head routers, leaving
the user-exposed VM or router slivers with clean config-
urations.
User-view switches:Unlike for UsrMachines and Usr-
Routers, ShadowNet does not allocate user-controllable
device slivers for the instantiation of UsrSwitches, but
rather provide an Ethernet broadcasting medium. (See
Figure 7b).)

To instantiate a UsrSwitch connecting to a set of Us-
rDevices instantiated on the same ShadowNet node, we
allocate a dedicated VLAN-ID on that node and config-
ure those device slivers to join the VLAN (i.e.,LR5 and
LR6). If the device slivers mapped to the UsrDevices
distribute across different ShadowNet nodes, we first
recursively bridge the slivers on the same node using
VLANs, and then configure one VPLS-VPN instance on
each head router (i.e.,Head3 andHead4) to bridge all
those VLANs. This puts all those device slivers (i.e.,
V M3, LR5, LR6) onto the same broadcast domain.
Similar to layer-2 VPN, this achieves a high degree of
realism, for example onLR5 andLR6, the instantiated
logical router only shows one “physical” interface in its
configuration.
Internet access:We assume that ShadowNet nodes can
use a set of prefixes to communicate with any end-points
on the Internet. The prefixes can either be announced
through BGP sessions configured on the head routers to
the ISP’s border routers, or statically configured on the
border routers.

To instantiate a UsrDevice’s Internet connectivity, we

first connect the UsrDevice’s instantiation to the head
router on the same node. Then we configure the head
router so that the allocated prefix is correctly forwarded
to the UsrDevice over the established link and the route
for the prefix is announced via BGP to the ISP. For ex-
ample, a user specifies two UsrRouters connecting to the
Internet, allocating them with prefix136.12.0.0/24
and136.12.1.0/24. The head router should in turn
announce an aggregated prefix136.12.0.0/23 to
the ISP border router. Traffic filters are applied to the in-
terfaces configured on the head routers to prevent packet
spoofing and achieve rate-limiting.

4.2 Achieving isolation and fair sharing
As a shared infrastructure for many users, ShadowNet
attempts to minimize the interference among the physi-
cal instantiation of different slices. Each virtual machine
is allocated with its own memory address space, disk im-
age, and network interfaces. However, some resources,
like CPU, are shared among virtual machines, so that
one virtual machine could potentially drain most of the
CPU cycles. Fortunately, virtual machine technology is
developing better control over CPU usage of individual
virtual machines [5].

A logical router on a Juniper router has its own config-
uration file and maintains its own routing table and for-
warding table. However, control plane resources, such
as CPU and memory are shared among logical routers.
We evaluate this impact in§6.3.

The isolation of packets among different UsrLinks is
guaranteed by the physical device and routing protocol
properties. For each UsrLink, we impose a default rate-
limit (e.g.,10Mbps), which can be upgraded by sending
a request via the user-level API. We achieve rate limit-
ing via hardware traffic policers [19] and Linux kernel
support [4].

4.3 Enabling device access
Console or remote-desktop access:For each VM run-
ning on VirtualBox, a port is specified on the hosting
server to enable Remote Desktop protocol for graphical
access restricted to that VM. If the user prefers command
line access, a serial port console in the VM images is en-
abled and mapped to a UNIX domain socket on the host-
ing machine’s file system [5]. On a physical router, each
logical router can be configured to be accessible through
SSH using a given username and password pair, while
confining the access to be within the logical router only.

Though the device slivers of a slice can be connected
to the Internet, the management interface of the actual
physical devices in ShadowNet should not be. For ex-
ample, the IP address of a physical server should be con-
tained within ShadowNet rather than accessible globally.
We thus enable users to access the device slivers through

9

one level of indirection via the ShadowNet controller.

Sniffing links: To provide packet traces from a partic-
ular UsrLink or UsrSwitch, we dynamically configure a
SPAN port on the switching layer of a ShadowNet node
so that a dedicated server or a pre-configured VM can
sniff the VLAN segment that the UsrLink or UsrSwitch
is using. The packet trace can be redirected through the
controller to the user in a streaming fashion or saved as
a file for future downloading. There are cases where no
VLAN is used,e.g.,for two logical routers on the same
physical router connected via logical tunnel interfaces.
In this case, we deactivate the tunnel interfaces and re-
instantiate the UsrLink using VLAN setup to support
packet capture. This action, however, happens at the
physical-level and thus is transparent to the user-level,
as the slice specification remains intact.

4.4 Managing state
To extract the state of an instantiated UsrMachine, which
essentially is a VM, we keep the hard drive image of
the virtual machine. The configuration file of a logical
router is considered as the persistent state of the cor-
responding UsrRouter. While a disk image can be at-
tached to a newly instantiated VM, reviving the stored
states, the router configuration files need additional pro-
cessing. For example, a user-level interface may be in-
stantiated as interfacefe-0/1/0.2 and thus appear
in the configuration of the instantiated logical router.
When the slice is deactivated and instantiated again,
the UsrInt may be mapped to a different interface, say
ge-0/2/0.1. To deal with this complication, we nor-
malize the retrieved configuration and replace physical
dependent information with user-level object handles,
and save it as the state.

4.5 Mitigating and creating failures
Unexpected physical device failures can occur, and as
an option we would like to be able to mitigate failures as
quickly as possible to reduce user perceived down time.
One benefit of separating the states from the physical
instantiation is that we can replace a new physical in-
stantiation with the saved state applied without affecting
the user perception. Once a device or a physical compo-
nent is determined to be offline, we identify all instan-
tiated user-level devices associated to it. New instantia-
tions are created on healthy physical devices and saved
states are applied if possible. Note that certain users
are specifically interested in observing service behavior
during failure scenarios. We allow the users to spec-
ify whether they want physical failures to pass through,
which is disabling our failure mitigation functionality.
On the other hand, we also support failure injection, for
example tearing down the physical instantiation of a link
or a device in the specification.

For physical routers, the monitor performs periodic
retrieval of the current configuration files, preserving the
states of UsrRouters more proactively. When a whole
physical router fails, the controller creates new logi-
cal routers with connectivity satisfying the topology on
other healthy routers and apply the saved configuration,
such as BGP setup. If an interface module fails, the other
healthy interfaces on the same router are used instead.
Note that the head router is managed in the same way as
other logical routers, so that ShadowNet can also recover
from router failures where head routers are down.

A physical machine failure is likely more catas-
trophic, because it is challenging to recover files from
a failed machine and it is not feasible to duplicate large
files like VM images to the controller. One potential so-
lution is to deploy a distributed file system similar to the
Google file system [13] among the physical machines
within one ShadowNet node. We leave this type of func-
tionality for future work.

5 Prototype Implementation
In this section, we briefly describe our prototype im-
plementation of the ShadowNet infrastructure, including
the hardware setup and management controller. (At the
time of writing a four node ShadowNet instance is being
deployed in a production network. We plan to include
details of this deployment in the final paper.)

5.1 Hardware setup
We built two ShadowNet nodes and deployed them lo-
cally. Each node has two Juniper M7i routers running
JUNOS version 9.0, one Cisco C2960 switch, as well as
four HP DL520 servers. The M7i routers are equipped
with one or two Gigabit Ethernet PICs (Physical Inter-
face Cards), FastEthernet PIC, and tunneling capability.
Each server has two gigabit Ethernet interfaces, and we
installVirtualBox in theLinux Debian operating
system to host virtual machines. The switch is capable
of configuring VLANs and enabling SPAN ports. (The
ShadowNet nodes being deployed in the production net-
work are using very similar hardware.)

In the local deployment, two Cisco 7206 routers are
used to emulate the ISP backbone. MPLS is enabled
on the Cisco routers to provide layer-3 VPN service as
the ShadowNet backbone. BGP sessions are established
between the head router of each node and its adjacent
Cisco router, enabling external traffic to flow into Shad-
owNet. We connect the network management interface
fxp0 of Juniper routers and one of the two Ethernet in-
terfaces on machines to a dedicated and separate man-
agement switch. These interfaces are configured with
private IP addresses, and used for physical device man-
agement only, mimicking the out-of-band access which
is common in ISP network management.

10

5.2 Controller
The ShadowNet controller runs on a dedicated machine,
sitting on the management switch. The controller is
currently implemented in Perl. A Perl module, with
all the user-level APIs, can be imported in Perl scripts
to create, instantiate and access service specifications,
similar to the code shown in Figure 5. Amysql
database is running on the same machine as the con-
troller, serving largely, though not entirely, as the per-
sistent storage connecting to the controller. It saves
the physical device information, user specifications, and
normalized configuration files, etc. We use a differ-
ent set of tables to maintain physical-level informa-
tion, phy_device_table, and user-level informa-
tion, usr_link_table. The Perl module retrieves
information from the tables and updates the tables when
fulfilling API calls.

The configuration effector of the ShadowNet con-
troller is implemented within the Perl module as well.
We make use of the NetConf XML API exposed by Ju-
niper routers to configure and control them. Configlets
in the form of parametrized XML files are stored on
the controller. The controller retrieves the configura-
tion of the physical router in XML format periodically
and when UsrRouters are deactivated. We wrote a spe-
cialized XML parser to extract individual logical router
configurations and normalize relative fields, such as in-
terface related configurations. The normalized config-
urations are serialized in text format and stored in the
mysql database associating to the specific UsrRouter.

Shell and Perl scripts, which wrap the VirtualBox
management interface, are executed on the hosting
servers to automatically create VMs, snapshot running
VMs, stop or destroy VMs. The configuration effector
logs into each hosting server and executes those scripts
with the correct parameters. On the servers, we run
low-priority cron jobs to maintain a fair amount of de-
fault VM images of different OS types. In this case,
the request of creating a new VM can be fulfilled fairly
quickly, amortizing the overhead across time. We use the
following steps to direct the traffic of an interface used
by a VM to a particular VLAN. First, we runtunctl
on the hosting server to create atap interface, which is
configured in the VMM to be the “physical” interface of
the VM. Second, we make use of 802.1Q kernel mod-
ule to create VLAN interfaces on the hosting server, like
eth1.4, which participates in VLAN4. Finally we use
brctl to bridge the created tap interface and VLAN
interface.

Instead of effecting one configuration change per ac-
tion, the changes to the physical devices are batched and
executed once per device, thus reducing authentication
and committing overheads. All devices are manipulated
in parallel. We evaluate the effectiveness of these two

Router Machine DB Total

Default (ms) 81834 11955 452 94241
Optimized (ms) 6912 5758 452 7364

Table 2: Slice creation time comparison

heuristic in§6.1.

In our prototype, we simply configure all switch ports
in trunk mode and allow all VLAN-ID on all ports. In
this case, we do not need extra configuration if a par-
ticular VLAN is assigned to facilitate a UsrLink or Usr-
Switch. We are in the process of implementing a more
secure realization.

The device monitor module is running as a daemon
on the controller machine. SNMP trap messages are en-
abled on the routers and sent over the management chan-
nel to the controller machine.Ping messages are sent
periodically to all devices. The two sources of infor-
mation are processed in the background by the monitor-
ing daemon. When failures are detected, the monitoring
module calls the physical-level APIs in the Perl module,
which in response populates configlets and executes on
the routers to handle failures. An error message is also
automatically sent to the administrators.

6 Prototype Evaluation

In this section, we evaluate various aspects of Shad-
owNet based on two example slices instantiated on our
prototype. The user specifications are illustrated on the
left side of Figure 8; the physical realization of that spec-
ification is on the right. InSlice1, two locations are
specified, namely LA and NY. On the LA side, one Us-
rMachine (M1) and one UsrRouter (R1) are specified.
R1 is connected to M1 through a UsrLink. R1 is con-
nected to the Internet through L2 and to R2 directly via
L5. The setup is similar on NY side. We use mini-
mum IP and OSPF configuration to enable the correct
forwarding between M1 and M2.Slice2 has essentially
the same setup, except that the two UsrRouters do not
have Internet access.

The right side of Figure 8 shows the instantiation of
Slice1 andSlice2. VM1 and LR1 are the instantiation
of M1 and R1 respectively. UsrLink L1 is instantiated
as a dedicated channel formed by virtualized interfaces
from physical interfaces,eth1 andge-0/1/0, config-
ured to participate in the same VLAN. To create the Us-
rLink L5, ShadowNet first uses logical tunnel interfaces
to connect LR1 and LR2 with their head routers, which
in turn bridge the logical interfaces using layer-2 VPN.
Note that in a different instantiation the head router may
not be on the same physical router as LR1 , in which
case a VLAN would be used.

11

L1

L2 L3

L4

LA NY

M1 R1 M2R2

L5

L6 L8

M3 M4R3 R4

Slice1

Slice2

Internet

L7

Vlan3

Vlan1

LTs

ge-0/1/0

LR1

Head
Internet

VPN

JuniperRouter1

Vlan4

Vlan2

LTs

ge-0/1/0

Internet

VPN

JuniperRouter2

Internet

VPN

Internet

VPN

VM3

VM1

Eth1.3

Eth1.1

Server1

Eth1
VM4

VM2

Eth1.4

Eth1.2

Server2

Eth1

SwitchISPSwitch

LR3 LR4

LR2

Head

LTs stands for Logical Tunnels

For L2VPN that connects LR1 to LR2For L2VPN that connects LR3 to LR4

For Internet access to LR1/LR2

Slice specif ication Actual instant iat ion

Figure 8: User slices for evaluation

bandwidth packet Observed Delta
(Kbps) size bandwidth (%)

56
64 55.9 .18

1500 55.8 .36

384
64 383.8 .05

1500 386.0 .52

1544
64 1537.2 .44

1500 1534.8 .60
5000 1500 4992.2 .16

NoLimit 1500 94791.2 NA

Table 3: Cross-node link stress test

6.1 Slice creation time
Table 2 shows the creation time forSlice1, broken
down into instantiation of machine and router, along
with database access (DB in the table.) Using a naive
approach, the ShadowNet controller needs to spend 82
seconds on the physical routers alone by making 13
changes, resulting a 94-second execution time in to-
tal. For machine configuration, two scripts are exe-
cuted for creating the virtual machines, and two for
configuring the link connectivity. With the optimiza-
tion in §5, the total execution time is reduced to 7.4
seconds. Note that the router and machine configura-
tions are parallelized, so that we havetotal = DB +
max(Routeri, Machinej). Parallelization ensures that
the total time to create a slice doesnot increase linearly
with the size of the slice. We estimate creation time for
most slices to be within 10 seconds.

6.2 Link stress test
We perform various stress tests to examine ShadowNet’s
capability and fidelity. We make L5 the bottleneck link,
setting different link constraints using Juniper router’s
traffic policer, and then test the observed bandwidth M1
and M2 can achieve on the link by sending packets as
fast as possible. Packets are dropped from the head of
the queue. The results are shown in Table 3, demon-
strating that ShadowNet can closely mimic different link
capacities.

When no constraint is placed on L5, the throughput
achieved is around 94.8Mbps, shown as “NoLimit” in

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

P
ro

ce
ss

in
g

tim
e

(s
ec

on
d)

Routes to receive

w/o impact
w/ impact

(a) Impact of shared control
planes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 (

kb
ps

)

Time (second)

Packet rate

(b) Hardware failure recovery

Figure 9: Control plane isolation and recovery test.

the table. This is close to maximum, because the routers
we used as ISP cores are equipped with FastEthernet in-
terfaces, which have 100Mbps capacity and the VM is
specified with 100Mbps virtual interface. Physical gi-
gabit switches are usually not the bottleneck, as we ver-
ified that two physical machines on the same physical
machines connected via VLAN switch can achieve ap-
proximately 1Gbps bandwidth.

6.3 Slice isolation
We describe our results in evaluating the isolation assur-
ance from the perspectives of both the control and data
plane.

6.3.1 Control plane
To understand the impact of a stressed control plane on
other logical routers, we run software routers,bgpd of
zebra, on both M1 and M3. The two software routers
are configured to peer with the BGP processes on LR1
and LR3. We load the software routers with BGP rout-
ing tables of different sizes, transferred to LR1 and LR3.
The BGP event log on the physical router is analyzed by
measuring the duration from the first BGP update mes-
sage to the time when all received routes are processed.

In Figure 9(a), the bottom line shows the processing
time of the BGP process on LR1 to process all the routes
if LR3 is BGP-inactive. The top line shows the process-
ing time for LR1 when LR3 is also actively processing
the BGP message stream. Both processing times in-
crease linearly with the number of routes received. The
two lines are almost parallel, meaning that the delay is
proportional to the original processing time. The dif-
ference of receiving 10k routes is about 13 seconds, 73
seconds for 50k routes. We have verified that the CPU

12

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200 1400

R
ec

ei
vi

ng
 r

at
e

on
 M

2
(k

bp
s)

Sending rate on M1 (kbps)

L1
 900

 920

 940

 960

 980

 1000

 0 200 400 600 800 1000 1200 1400

R
ec

ei
vi

ng
 r

at
e

on
 M

2
(k

bp
s)

Sending rate on M3 (kbps)

L1

(a) Variable packet rate (b) Max packet rate
(L6’s rate is maxed) (L6’s rate is variable)

Figure 10: Data plane isolation test.

usage is 100% even if only LR1 is BGP-active. We have
also used two physical machines to peer with LR1 and
LR3 and confirmed that the bottleneck is due to the Ju-
niper router control processor. We note that this prop-
erty is only applicable to the control plane of Juniper
M7i routers using “Internet Processor II”. We expect
the impact is smaller when better control plane modules
are used, for example the MX-series. If these limita-
tions prove to be problematic in practice, solutions exist
which allow a hardware separation of logical router con-
trol planes [17].

6.3.2 Data plane
L1 and L6 share the same physical interfaces,eth1
on Server1 andge-0/1/0 on JuniperRouter1. We
restrict the bandwidth usage of both L1 and L6 to be
1Mbps by applying traffic policer on the ingress inter-
faces on LR1 and LR3. From the perspective of a given
UsrLink, sayL1, we evaluate two aspects: regardless
of the amount of traffic sent onL6, (1) L1 can always
achieve the maximum bandwidth allocated (e.g.,1Mbps
given a 100Mbps interface); (2)L1 can always obtain
its fair share of the link. To facilitate this test, we apply
traffic policer on the ingress interfaces (ge-0/1/0) on
LR1 and LR3, restricting the bandwidth of L1 and L6 to
1Mbps. Simultaneous traffic is sent from M1 via L1 to
M2, and from M3 via L6 to M4.

Figure 10(a) shows the observed receiving rate on M2
(y-axis) as the sending rate of M1 (x-axis) increases,
while M3 is sending as fast as possible. The receiving
rate matches closely with the sending rate, before reach-
ing the imposed 1Mbps limit, This demonstrates thatL1
capacity is not affected, even ifL6 is maxed out. Fig-
ure 10(b) shows the max rate ofL1 can achieve is always
around 980kbps no matter how fastM2 is sending.

6.4 Device failure mitigation
We evaluate the recovery time in response to a hardware
failure in ShadowNet. WhileSlice1 is running, M1 con-
tinuously sends packets to M2 via L1. We then phys-
ically yanked the Ethernet cable on the Ethernet mod-
ulege-0/1/0, triggering SNMPLinkDown trap mes-
sage and the subsequent reconfiguration activity. Fig-
ure 9(b) shows the packet rate that M2 observes. The

downtime is about 7.7 seconds, mostly spent on effect-
ing router configuration change. Failure detection is fast
due to continuous SNMP messages, and similarly con-
troller processing takes less than 100ms. This exem-
plifies the benefit of strong isolation in ShadowNet, as
the physical instantiation is dynamically replaced using
the previous IP and OSPF configuration, leaving the user
perceived slice intact after a short interruption.

7 Related work
ShadowNet has much in common with other test/trial
networks [10, 26, 21]. However, to our knowledge,
ShadowNet is the first platform to exploit recent ad-
vances in the capabilities of networking equipment to
provide a sharable, composable and programmable in-
frastructure using carrier-grade equipment running on
a production ISP network. This enables a distinct em-
phasis shift from experimentation/prototyping (enabled
by other test networks), to service trial/deployment (en-
abled by ShadowNet). The fact that ShadowNet uti-
lizes production quality equipment frees us from having
to deal with low-level virtualization/partitioning mech-
anisms, which typically form a significant part of other
sharable environments. Please refer to§2.3 for compar-
ison between ShadowNet and other networking experi-
mental testbeds.

A similar service deployment incentive to that es-
poused by ShadowNet was advocated in [20]. Their ser-
vice definition is, however, narrower than ShadowNet’s
scope which also includes network layer services. Ama-
zon’s EC2 provides a platform for rapid and flexible
edge service deployment with a low cost [1]. This plat-
form only rents computing machines with network ac-
cess, lacking the ability to control the networking as-
pects of service testing, or indeed network infrastructure
of any kind. PLayer [14] is designed to provide a flexible
and composable switching layer in data-center environ-
ment. It achieves dynamic topology change with low
cost; however, it is not based on commodity hardware.

Alimi et al. proposed the idea of shadow configura-
tion [8], a new set of configuration files that first run in
parallel with existing configuration and then either com-
mitted or discarded. The shadow configuration can be
evaluated using real traffic load. The downside is that
the separation between the production network and the
shadowed configuration may not be strongly guaranteed.
This technique requires significant software and hard-
ware modification on proprietary network devices.

We heavily rely on hardware-based and software-
based virtualization support [6] in the realization of
ShadowNet, for example virtual machines [5] and Ju-
niper’s logical router [16]. The isolation between the
logical functionality and the physical resource can be
deployed to achieve advanced techniques, like router

13

migration in VROOM [25] and virtual machine migra-
tion [12], which can be used by ShadowNet.

8 Conclusion
In this paper, we propose an architecture called Shad-
owNet, designed to accelerate network change in the
form of new networks services and sophisticated net-
work operation mechanisms. Its key property is that the
infrastructure is connected to, but functionally separated
from a production network, thus enabling more realistic
service testing. The fact that production-grade devices
are used in ShadowNet greatly improves the fidelity and
realism achieved. In the design and implementation of
ShadowNet, we created strong separation between the
user-level representations from the physical-level instan-
tiation, enabling dynamic composition of user-specified
topologies, intelligent resource management and trans-
parent failure mitigation. Though ShadowNet currently
provides primitives mainly for service testing purposes,
as a next step, we seek to broaden the applicability of
ShadowNet, in particular, to merge the control frame-
work into the production network for allowing service
deployment.

References
[1] Amazon Elastic Compute Cloud. http://aws.

amazon.com/ec2/.

[2] FEDERICA: Federated E-infrastructure Dedicated to Eu-
ropean Researchers Innovating in Computing network
Architectures.http://www.fp7-federica.eu/.

[3] GENI: Global Environment for Network Innovations.
http://www.geni.net/.

[4] Traffic Control HOWTO.http://linux-ip.net/
articles/Traffic-Control-HOWTO/.

[5] VirtualBox. http://www.virtualbox.org.

[6] K. Adams and O. Agesen. A comparison of software and
hardware techniques for x86 virtualization. InASPLOS-
XII: Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems, 2006.

[7] M. Agrawal, S. Bailey, A. Greenberg, J. Pastor, P. Se-
bos, S. Seshan, K. van der Merwe, and J. Yates. Router-
farm: Towards a dynamic, manageable network edge.
SIGCOMM Workshop on Internet Network Management
(INM), September 2006.

[8] R. Alimi, Y. Wang, and Y. R. Yang. Shadow configura-
tion as a network management primitive. InProceedings
of ACM SIGCOMM, Seattle, WA, August 2008.

[9] H. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and
J. V. der Merwe. Anycast CDNs Revisited. 17th Inter-
national World Wide Web Conference, April 2008.

[10] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In VINI veritas: realistic and controlled net-
work experimentation. SIGCOMM Comput. Commun.
Rev., 36(4):3–14, 2006.

[11] Cisco Systems. MPLS VPN Carrier Supporting Carrier.
http://www.cisco.com/en/US/docs/ios/
12_0st/12_0st14/feature/guide/csc.
html.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. InNSDI’05: Proceedings of the 2nd
conference on Symposium on Networked Systems Design
& Implementation, 2005.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system.SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[14] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware
switching layer for data centers.SIGCOMM Comput.
Commun. Rev., 38(4), 2008.

[15] Juniper Networks. Configuring Interprovider and
Carrier-of-Carriers VPNs.http://www.juniper.
net/.

[16] Juniper Networks. Juniper Logical Routers.http:
//www.juniper.net/techpubs/software/
junos/junos85/feature-guide-85/
id-11139212.html.

[17] Juniper Networks. Juniper Networks JCS 1200 Con-
trol System Chassis.http://www.juniper.net/
products/tseries/100218.pdf.

[18] Juniper Networks. Juniper Partner Solution Devel-
opment Platform. http://www.juniper.net/
partners/osdp.html.

[19] Juniper Networks. JUNOS 9.2 Policy Framework
Configuration Guide. http://www.juniper.
net/techpubs/software/junos/junos92/
swconfig-policy/frameset.html.

[20] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology Into the
Internet. InProc. of ACM HotNets, 2002.

[21] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir.
Experiences building planetlab. InOSDI ’06: Proceed-
ings of the 7th symposium on Operating systems design
and implementation. USENIX Association, 2006.

[22] L. Peterson, S. Shenker, and J. Turner. Overcoming the
Internet Impasse through Virtualization. Proc. of ACM
HotNets, 2004.

[23] J. Turner and N. McKeown. Can overlay hosting services
make ip ossification irrelevant? PRESTO: Workshop
on Programmable Routers for the Extensible Services of
TOmorrow, May 2007.

[24] J. E. Van der Merwe et al. Dynamic Connectivity Man-
agement with an Intelligent Route Service Control Point.
Proceedings of ACM SIGCOMM INM, October 2006.

[25] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and
J. Rexford. Virtual routers on the move: live router mi-
gration as a network-management primitive.SIGCOMM
Comput. Commun. Rev., 38(4), 2008.

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An In-
tegrated Experimental Environment for Distributed Sys-
tems and Networks. InProc. of the Fifth Symposium on
Operating Systems Design and Implementation, 2002.

14

