PACMAN: a Platform for Automated and Controlled
network operations and configuration MANagement

Xu Chen
Department of EECS
University of Michigan

Ann Arbor, Mi
chenxu@umich.edu

ABSTRACT

The lack of automation associated with network operatiorgen-
eral and network configuration management in particulavjdgly
recognized as a significant contributing factor to userdating
network events. In this paper we present our work on the PAGMA
system, a Platform for Automated and Controlled networkrape
tions and configuration MANagement. PACMAN realizes networ
operations by executingctive documenfswhich systematically
capture the dynamics in network management tasks. Actige do
uments not only enable the complete execution of low-lewefig-
uration management tasks, but also allow the construcfiomooe
sophisticated tasks, while imposing additional reasotiggc to
realize network-wide management objectives. We presenti¢h
sign, realization and evaluation of the PACMAN frameworld an
illustrate its utility by presenting the implementationsaiveral so-
phisticated operational tasks.

Categories and Subject Descriptors
C.2.3 Network Operations]: Network Management

General Terms
Design, Management

Keywords

Network Management, Automation, Petri Net

1. INTRODUCTION

Network management plays a fundamental role in the operatio
and well-being of today’s networks. The configuration ofwak
elements collectively determines the very functionalityyided by
the network in terms of protocols and mechanisms involvgada
viding functionality such as basic packet forwarding. Cguafa-
tion management, or more generically all commands exectiged
the operational interface of network elements, are als@tineary
means through which most network operational taslgs,planned
maintenance, performance monitoring, fault managementjce
realization and capacity planning, are performed.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CoNEXT’'09,December 1-4, 2009, Rome, Italy.

Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

Z. Morley Mao
Department of EECS
University of Michigan

Ann Arbor, Ml
zmao@eecs.umich.edu

Jacobus Van der Merwe
Shannon Laboratory
AT&T Labs - Research
Florham Park, NJ
kobus@research.att.com

The inadequacies of current network management and opera-
tional procedures have been widely recognized [1], and nsany
lutions have been proposed. However, a variety of factonsioe
to make more automated network operations an elusive gaw. O
of the biggest challenges in network management automéion
to find the right level of abstraction. What is needed, on the o
hand, is the ability to abstractly describe operationallg@ath-
out getting bogged down in the minutiae of how to achieve éhos
goals. On the other hand, because of the sophistication df mo
ern networking equipment, the ability to fine tune the dstail
how an operational task is performed, is in fact critical¢biaving
the desired effect. This inherent tension is exacerbatettidyact
that network equipment vendors, driven in part by featugeiests
from operators, have allowed network configuration langsag
evolve into arcane sets of low-level commands. Operat@seth
fore have to become accustomed to designing and reasoning ab
their networks in the same low-level nomenclatures whiculte
in significant resistance to evolving to new network managgm
paradigms.

Indeed the lingua franca of network operations continueett-b
braries of so callethethod of procedure (MORJocuments. MOPs
describe the procedures to follow in order to realize spedifi-
erational tasks, usually containing the following compuse (i)
configuration changes (@ctiong that need to be performed, (ii)
operational checks (aronditiong that have to be satisfied before
such actions can be taken and/or after them for the purpoger-of
ification, and (iii) execution oworkflow logicthat ties actions and
conditions together. Currently, MOP documents are litgstbred
as libraries of text descriptions which is not suitable fatomation
or holistic network-wide reasoning.

In modern network operational environments, parts of MOP-
defined procedures are typically automated to limited extEor
example, configuration actions could be performed by scitipat
push configlets to network elements [2, 3, 4]. However, fa th
most part, network operations still require human opesatowver-
ify the result of actions and to navigate through the logioined
in operational procedures. This is especially true in teofrizeing
cognizant of possible interactions among different openat pro-
cedures and understanding the holistic impact of suchratiBor
example, sophisticated tools have been developed to helaimps
understand the possible impact of their actions [5]; howeyger-
ators typically consult these tools independently and tenthe
information they provide to manually “close the loop” to foem
operational tasks. In other words, such tools are not foliggrated
into the process of network operations.

The ultimate goal of our work, is to create an environmentolvhi
allows the full automation of this operational control loGpwards
this end, in this paper we present our work onPA¢&MANsystem,

a Platform for Automated and Controlled network operatiand
configuration MANagement. Our work builds on two basic obser
vations related to the elements contained in MOP documEirtt,
MOP document structuré.e., actions, conditions and the associ-
ated workflow logic, presents a natural way for operatorsiiakt
and reason about operational activities. Second, the Emgiced-
ded in the design of these procedures represent the expmul-kn
edge of MOP designers to ensure that high-level operatipoes
and conceptual designs are met, while minimizing unwanige s
effects of operational actions.

At a high level, PACMAN maintains these desirable propsrtie
by allowing experts to define operational procedures agéeith
one significant difference: The procedures defined in theNPAR
framework are not static documents meant for human consump-
tion, but insteadactive method of procedures, or simpbctive
documents (ADQ)meant for execution in the PACMAN framework.
Active documents formalize the configuration managementesr
dures described in MOP documents. l.e., ADs capture, in a sys
tematic manner, the actions, conditions and logic asstiaith
operational tasks, thus forming a fundamental buildinglblfor
the automation of network operations. ADs enable the comple
repeated, programmatic and automated execution of loglHean-
agement tasks, but more importantly enable the construaifo
more sophisticated tasks. Specifically, simple active demnts can
be combined intaomposedADs whose execution is dictated by
policies capturing holistic network-wide management objectives.
In so doing, PACMAN raises the level of abstraction as thdrhig
level operational goal becomes part of the composed AD, liktis
ing enforced in an automated fashion, eliminating the need-
erators to be continually concerned about and activelylvebin
howto carry out a goal amongst multiple tasks. Furthermore, the
PACMAN framework allows easy interaction with externalltotm
enable sophisticated decision making to be naturally mated into
the network operational loop.

In this work, we make the following contributions:

e We analyze method-of-procedure documents from an opera-
tional network to extract theetwork management primitives

associated with network operations.

We introduceactive documentgs a concise, composable,

and machine-executable representation of the actiongj-con
tions and workflow logic that operators perform during net-
work management tasks.

We present the design and implementation of PAEMAN
framework, an execution environment that automates the ex-
ecution of active documents.

our automated environment with the AlBeation framework
a set of tools which allow operators to work in their native
idiom to easily generate active documents.

We demonstrate the effectiveness of the framework using

We bridge the gap between current operational practices and

goals and indeed adopt new network management paradigms. In
contrast to PACMAN, most related work does not bridge the gap
between current network management approaches and new net-
work management paradigms, but rather fall in one of the two
categories. The state-of-the-art in practical networkfigomation
management is exemplified by the PRESTO configuration manage
ment system [2]. PRESTO templates lack the necessary execu-
tion logic to capture sophisticated operational tasksndeéd the
ability to intelligently create composed tasks from simmpgem-
ponents. Similar to PRESTO, a simple template based agproac
has been used to automate BGP configuration of new customer
links [3]. While also limited to BGP configuration, the worly b
Bohmet al.[4] had a broader scope in that it addressed the creation
of configuration files to realize network-wide inter-domadniting
policies.

The EDGE architecture [6] had the ambitious goal of mov-
ing to automated network configuration by first analyzinggrg
network configuration data and to then use such networkliintel
gence to create a database to drive future automated caatfaur
changes. This work seemed to have stopped short of actaslly t
ing the last step to create an automated configuration syatem
is therefore more similar to efforts that attempted to aralthe
correctness of existing network configurations [7, 8, 9]. jMa
router vendors have also proposed their own network managem
automation frameworks [10, 11]. Those management framewor
remain device-centric and are mostly used to handle lodairéa
response, while PACMAN allows a full spectrum of network man
agement tasks with a network-wide perspective.

Several proposals exist that address network management co
plexity through approaches that are less tethered to duopmra-
tional practices and device limitations [12, 13, 14]. Theseks do
not cover the full range of network management tasks reduire
operational networks [12], or attempt to limit the potehtiegative
impact of configuration management without directly adsires
its complexity [13, 14].

A number of “autonomic” network architectures are related t
PACMAN [15, 16]. Conceptually the FOCALE architecture [15]
perhaps the closest to PACMAN. Specifically, like PACMANg th
FOCALE architecture contains an explicit control loop satthet-
work operations can be cognizant of network conditions. el@w,
unlike PACMAN, which closely models current operationah@r
tices and ties in with existing network capabilities, theGALE
approach requires the adoption of new paradigms and tools.

Finally, PACMAN adopts Petri net [17] to model network man-
agement activities. Petri net, developed in the 1960s, @mm
compact representation and is convenient to model cormyre
control flow, and system dynamics. Recently Petri nets haen b
used to model IT automation workflows [18]. Formal verifioati
techniques are applied on Petri net modelg,,Gadara [19] uses
Petri nets to model multi-threaded programs, identifyingalocks
using structural analysis and patching them automaticétiythis
paper, we took a modest first step of using the Petri net mods t
low advanced network management workflow to be built and-high

several case studies of common configuration tasks such aslevel policy to be constructed and imposed. We leave forredt v

fault diagnosis, link maintenance, and a more complicated
task of IGP migration.

RELATED WORK

PACMAN enables automation and abstraction while not requir
ing operators and network designers to adopt a completehneée

2.

fication of the generated workflows as future work.

3. NETWORK MANAGEMENT PRIMI-
TIVES

To build a useful and practical automation system for networ

work management paradigm. At the same time and using the samemanagement, we first closely examine the current best peaiii

framework, PACMAN does go beyond simple configuration gen-
eration, allowing operators to articulate network-wideigtional

extract the fundamental primitives and requirements. A&#,s
we analyzed a month’s worth of method of procedure (MOP) doc-

uments from a tier-1 ISP network, as well as from major router
vendors. These documents cover a wide variety of network man
agement tasks, including customer provisioning, backtiokend
customer access link migration, software/hardware umgradu-
bleshooting VPNetc.

MOP documents are essentially instruction manuals fooperf
ing specific management tasks. They are usually modularized
sisting of multiple sub-tasks or steps. For example, a BGR cu
tomer provisioning MOP usually consists three steps of siekip,
IP setup and BGP session setup, where each step involveg-confi
uration change on a router and running status verificatiofauk
diagnosis MOP [20] often contains a sequence of network test
perform, such api ng, show bgp, and for each test an instruc-
tion of how to interpret and act upon the result.

At a micro level, we categorize the fundamental network man-
agement primitives that make up the MOPs as follows:

Configuration changing: Most of the management tasks involve
configuration modification, which directly leads to netwaldvice
behavior change. For example, configure a BGP session, ehang
OSPF link metricetc.

Status acquiring: Network status information is crucial for the
progression of network operations. Two types of status swally
obtained: static information, such as configuration, hamwcom-
ponents; dynamic information, such as BGP session staigting
tables. The acquired information can either be stored forréuwise
or processed immediately.

Status processing:Status information is evaluated in a variety of
ways, for example, check router configuration for OSPF-kthb
interfaces, verify if a routing table contains a specificteguor
even compare the current BGP peer list with previous cagtiise
Based on the evaluation, different next steps may be taken.

External synchronization: Explicit synchronization with other
parties, including field operators, centralized decisiogiee,etc,

is very common. The operator can either notify an externglypa
indicating operational progress or wait on external parfie their
progress update, for example, wait for a field operator tali@in
on-site physical upgrade.

The lack of automation also manifests as the fact that théise p
itives need to beomposedogether manually. We identify the fol-
lowing composition mechanisms (or workflow logic):

Sequential: This most basic composition simply perform one sub-
task after another. It is useful for stitching many starmhel oper-
ations into a complex operation.

If-else split: The purpose of status processing is to choose different
subsequent sub-tasks based on an if-else logic. For exafople
different OS versions or interface types, the configuratiachange
could be different.

Parallel split: In some cases, the operator is required to work on
multiple devices at the same time. In other cases, a momiatib-
task is spawned on the side. For example, creating a newrtarmi
session to launch a continuous ping to monitor delay aref jitt a
potentially impacted path.

Iterative processing: Operators may need to process one element
at a time, until there is no such element left. For exampléjea-

tify all interfaces with 1S-IS configured, and disable thenedy
one.

Wrapper: Predefined “head” and “tail” sub-tasks can be used to
wrap around other sub-tasks. For example, saving the caafign
and running status before and after the operation for laefica-
tion.

5 Active Document Library
'g Network
Pl Operator/ > Active
5 Designer Document
= N
7/
5 [4 I—
.8 Network-aware
% Network -~ Simple Policy Mechanism
8_ Database “1|| Execution
Task
g \ Composed
(@] \ Execution
I—, Task
P
g
g Running
= Execution
8 Task AN
[}
LI><.| External | —>| Execution Engine
|_, Entities
Network
Elements

Figure 1: The PACMAN framework

Sequential composition is the easiest to automate, butadiiet
frequent occurrence of other cases, the majority of netwoek-
agement tasks cannot simply be represented as a sequestial fl
Other composition mechanisms are almost always handlediby h
man operators.

At a macro level, the descriptive nature of MOPs dictates tha
the realization of management tasks have to rely on humaraope
tors, who consume the MOPs and carry them out either manually
or via limited automation, resulting in a process that iskndo be
time-consuming and error-prone. Based on our analysiy,aomi-
figuration changing and network status acquiring are autedno
a limited extent, through automated tools. The decisioic|dgr
example reasoning about network status to determine thgepro
next step, is usually described in high-level terms and atrat
ways left for human operators to realize. This deficit cadisdn
automatable representation of workflow logic, which we gnate
into our active document design.

MOP documents are by necessity limited in scope, typically f
cusing on a specific operational task, with little visilyilinto the
network-wide impact of the task or its interaction with athesks.

In the case of multiple concurrent tasks, the burden of awvgid
undesired network states based on reasoning about glotvadnke
status usually falls on human operators, who may not be able t
correctly perform such reasoning due to knowledge deficiteer
source constraint. This motivates us to design active deotsn
that are composable and capable for network-aware polioye
ment. On the other hand, while tools are available to show how
some operational tasks (e.g., costing out a link) might ichpize
network [5], the interaction with such tools is currentlygaly left

to operations personal.

4. THE PACMAN FRAMEWORK

PACMAN is motivated by the fact that automation is limited in
current network management, as discussed in the previctierse
PACMAN bases on new abstractions, which incorporate all re-
quired operational primitives and compositional mechasiglen-
tified from MOP documents, allowing natural absorption @ #x-
pert knowledge and full automation of the network operatiofs

a step further, the abstractions allow multiple tasks tondepen-
dently specified but automated simultaneously with globaira-
ness seamlessly imposed without additional manual innodre;
therefore, they overcome the task-centric nature of MORudoc
ments. As shown in Figure 1, the PACMAN framework is con-
ceptually divided into three components, creation, contiposand
execution.

In PACMAN, we introduce a new abstraction, namadtive
Document to describe and further enable the automation of the
workflow of network management tasks in a form that is aceyrat
extensible, and composable, see “Creation” in Figure 1.ikenl
MOPs that are used tguide human operators, active documents
can beexecutedn different networks to fulfill different manage-
ment tasks. Compared to traditional scripts that at besnaate
the generation and modification of configuration on netwoek d
vices, an active document also encapsulatedatieal reasoning
that guides the workflow of a management task. This capgbilit
enables full automation of network management tasks, niim
ing human involvement. Active document models the priregiv
and composition mechanisms derived from MOP documents in a
straightforward fashion, thus can be created by anyone wberu
stands these documents, enabling our framework to quididgréa
the expert knowledge from existing MOP documents to form our
own active document libraryTo illustrate this conversion process,
a framework to enable semi-automated active documenticneat
described in 85.

Active documents model network operations genericallyinor
the abstract. As shown in the “Composition” component of Fig
ure 1, to realize a specific operation, an active documenmnistsin-
tiated into anexecution task Typically, a simple execution task
is generated by selecting the AD designed for the correspgnd
management task from the AD library and assigning proper pa-
rameters from external network databases. Furthermore/lowe
the creation of composed execution tasks from one or more sim
ple execution tasks to fulfill complex operationdletwork-wide
policies which take global network conditions into consideration,
can be imposed to automatically guarantee that the execofio
a collection of task-centric operations would not violagwork-
wide constraints. Note that such policies are pre-definetcamn
be selected and automatically imposed during compositidns
provides the means by which operators can start small anplesim
(developing task-centric ADs) yet achieve automation dfvoek-
wide coordination. Existing coordination and policy emf@ment
in management operations is usually either undocumentedtitr
ten in high-level terms in MOP documents, due to the compjexi
involved. It is mostly done by skilled human operatesy.,who
can decide when to execute which script so that traffic shifin-
imized. PACMAN, on the other hand, provides a fully autordate
solution, enabled by the flexible and generic active docurden
sign.

As depicted in the “Execution” component in Figure 1, simple
composed execution tasks are executed with the supporidpobv
by anexecution enginevhich we envision to be available for each
network. The execution engine runs the execution tasks utly f
automated fashion, achieving the goal of each task by reping
the workflow and decision logic. Illustrated in Figure 1, agsult
of running the execution tasks, the execution engine iated with
devices in the network to perform the configuration changeisp
fied by the execution task, obtain various types of netwaakust
and carry out the embedded reasoning logic. The executiginen
also interacts with entities external to the PACMAN framekva\s
shown in the figure, these external entities might also autewith
the network. Examples might include standalone networkitann

.y
ole

a) action node execution

Enabled Arrow "=

B Disabled Arrow ——»

b) condition node execution

Figure 2: Active document node execution

ing tools, or an on-site operator that is signaled that tiwaork has
been readied for the replacement of a router linecard, oesmher
manual operational task. The execution engine is also nsipe
for scheduling multiple tasks to run concurrently, promiifail-
ure handling supporgtc, moving closer to its goal of minimizing
human involvement.

Finally, we note that the relationship among active docusien
the execution engine, and running execution tasks is aoafotp
that among program binaries, the operating system, andnmginn
processes. Similar to what an operating system does, ticat@e
engine provides the running environment to the executisksta
ensuring the correct and automated task execution accptalithe
AD. We now consider each of the PACMAN components in detail.

4.1 Active Documents

Active documents provide the basis for achieving network-ma
agement automation under PACMAN. In a nutshell, active docu
ment is a graph representation that encodes the requineidtipes
and provides flexible composition mechanisms of networkagan
ment operations. Like a program binary, an active documembe
executed on the network with sufficient input parameters.

Elements: We use Petri nets [17] to model active documents. Petri
nets are bipartite directed graphs containing two typesooles:
places, shown as circles, and transitions, shown as bacé. tifge
of nodes encode a special type of management actiétionac-
tivities (corresponding to bars) include configurationtaite modi-
fication and external notificatiot€onditionactivities (correspond-
ing to circles) are status acquiring followed by status pssing.
We abstract receiving information from external partieaagpe
of status acquiring as well. This functional division keeps AD
model simple without compromising its functionality. Théges
between nodes encapsulates the workflow of active documesits
we describe next.

Execution: When executed, a node in the graph effects the corre-
sponding type of activity embedded. For example, an actaen
may emit a configuration change that add a BGP neighbor setup o
a router, while a condition node retrieves the BGP neightaius
and verifies if the session is established. The executiorctidra
and condition nodes may result in calling a set of APIs preditdy

the execution engine, which will be described later, toraxtewith
devices or external parties, as shown in Table 1.

The progression among these activities is modeled as thesrr
between nodes. An arrow from nodeto nodeb represents a
happen-after relationship during execution. The basicuti@n
mechanisms of active documents are shown in Figure 2. Each ar
row is marked as eitheznabledor disabled" An action node is
executed only ifall of its incoming arrows are enabled. After exe-
cution, all incoming arrows of the action node are changedito
abled, while all outgoing arrows are marked as enabled (show
Figure 2-a). A condition node is executedoifie of its incoming

Petri net executes by passing tokens between places thtargh
sitions, which is equivalent to enabling and disablingwsm AD
execution.

[Node type] API Call Name | Functionality |

Action Conmmi t Confi gDel ta() Commit a configuration change to a target device
Noti fyEntity() Send messages to external entities
Quer yDevi ceSt at us() Obtain physical device status information
Condition QueryEntity() Obtain information from external entities
Quer yExecutionState() Obtain execution task running status
TaskSucceed(), TaskFail () | Notify execution engine that task has succeeded or fajled

Table 1: API calls supported by the execution engine

[E—
Task 0
A 00 start

Composed Task:
BGP Peering Session Setup

Task O: Interface Setup

@ C_0_1: checks if old IP address
are configured
1) Sequential 2) Parallel 3) Conditional 4) Iterative Cco_l A—O—Z: remove old IP address
a - A_0_3: configure new IP
)) .) lf \ address
Figure 3: Active document design paradigms 202 A03 C_0_4: verifies new IP address
/ @ is in place
Co: Is Remote IP reachable? Task 1: BGP Protocol Set
Ping command in XML format: Cco4 ask 1: rotocol Setup
start Ao <<pcigg:t>5</co nt> C_1_1: verifies local-ip exist
ul ul) .
<host>PARA_PEER_IP</host> C.1.3: vgrlflesbremote-|p
</ping> ping-able
COQ Cl If ping test pass, enable arrow to Al @ A1l 4: configures BGP session
) Otherwise, call TaskFail() # C_1_5' verifi BGP ion
failure failure | 4, coni . —L_2wverifies sesslo
: Configure BGP session Succeed established
A1 A2 Change configuration in XML format:
<configuration>
<protocols> Figure 5: Sequential task composition
<bgp>
C2 C3 <neighbor>
<peer-as>PARA_PEER_AS </peer-as>
failure As failure </neighbor> operate on two routers. Conditiod% andC, launch api ng on
S ols> both routers to see if the other end is reachable. The takskifai
</configuration> eitherpi ng fails. Otherwise, actionsl; and A» are executed to
C2: Is BGP session to neighbor up? add the actual BGP neighbor configurations on both routdrenT
success [

conditionsC> andC's check if the configured BGP session is up on
both ends; only if both condition checks succeed, can theraut
Figure 4: An example active document As be executed. A dummy action node is used at the head and a
dummy condition node at the tail of the active document, dase

sary. For example, the bottom condition node in the exampés d

arrows are enabled. After executing, one of the enabledvintp not perform any activities but directly calaskSucceed() .

arrows is switched to disabled, andly oneof outgoing arrows
is enabled based on the status processing result perforfteé 0 4.2 EXxecution Task Composition

condition activity (sho_wn in Figure Z't.’)' By using the S‘“"_“a' While active documents describe the workflow of management
elements [18] shown in Figure 3, Petri net is capable of mogel a4y in the abstractimple execution taskse used to specify spe-
generic _and complex workflows, fully covering the compasitl cific instantiations of ADs by replacing all template placketers
mechanisms frpm MOP d.ocuments. . with appropriate parameter assignments, as shown in Figu¥er

For automation, an active docume_:nt_ must be reusable,_ MEaNIN example, an active document to configure an IP address otiepar
that it can be executed to handle similar network tasks ife®lif - jnterface of a router needs the parameters of routeddPeas,
ent parts of the network or even on different networks. Ta@&h e face name and IP address to set. The parameters aiy usua
this, the activities associated with the_ _nodes in an AD aveeet generated from external network related databases [6, Riati-
as tgmplates. . For example, a condl.tllon node that checks BGpcal concern is that the database could be out-of-sync wéth¢tual
session establishment would be specified as “Check BGPosessi \anvork state, which is a problem for existing managemerthme
to PARA_PEER | P on routerPARA_TARGET_DEVI CE", where ods as well. To alleviate the potential negative impact, &AB&xs be

the two placeholders are replaced during execution witheaofal- designed to always perform in-sync checks at the start afgia.
ues sp_ecmed In th_e execution task. . . PACMAN takes advantage that ADs are composable to enable
Besides cho.osmg a follow-up action, an executed condition building complex tasks from simple tasks. Moreover, it a8o
e e o o fenrc nevor avarepocieto be mposed. T comont
: ' these two abilities can support high-level managementsgdiae

Task!:ai I () are called respeqtively, §imi|ar Bxi t () statg- “execute these tasks, bavoid network partition We describe
ment in C programs. The execution engine stops the exedaisén three composition mechanisms in detail next.

and handles the failure faskFai | () is called.

Example: Figure 4 shows an active document that can be used Sequential: Figure 5 shows the result of applying a simple-
to set up a BGP session between two routers. Actlgnis not quential orderingto two tasks (failures are not shown for simplic-
performing any activities, except to create two parall@nmohes to ity), namely the link setup task as Task O and the BGP configure

[start

Snapshot
States

¥

I Single or :
) composed !
I task

Snapshot
states and
compare

~N
TaskSucceed() RollBack()

TrafficTest

RollBack()

Figure 6: Wrapper construct for concurrent traffic disrupti on
detection and state diffing

[Added dummy
nodes, to ensure

‘ execution flow of
the composed task.

TaskSuceed() call of each
sub-task is replaces with
an arrow pointing to the
Combiner node, to ensure
the whole task succeed if
all sub-tasks succeed.

A dummy node with an
enabled arrow pointing to
the start action of each
sub-task, to ensure each
sub-task is executed
exactly once.

TaskFail() TaskFail()

Combiner
Finish

Figure 7: Policy enforcement in parallel composed tasks

task as Task 1, resulting in a “BGP peering session setuR"ass
the composed task. A strict ordering is enforced: a task g on
executed when the previous task succeeds; the composeslitask
ceeds if the last task succeeds. Note that ode 4 originally
callsTaskSucceed() if task succeeds. This API call is replaced
with an arrow pointing téA_1_0 to stitch the two tasks together.

Meta structure: Figure 6 shows an example meta structure for au-
tomating operations before, during and after an execuéisk tThe
composed task starts by taking a snapshot of the runningssoat
the target device. At the same time, a loop structure (shawn o
the right) is used to continuously monitor network runninatss
via pi ng or dedicated traffic generation engine. If a network dis-
ruption is detectedTaskFai | () is called to perform roll back
immediately. When the wrapped task finishes, another soap$h
the network status is taken and compared with the previoes on
Failure is reported if certain criteria are not meigy.,some BGP
sessions fail to establish. This is particularly usefuldopporting
software or hardware upgrade tasks.

Parallel with policy enforced: Figure 7 shows how several tasks
are composed to execute in parallel but with a network-apale
icy enforced. Each dotted box contains the original AD ofheac
task for composition (only one action node and one conditiate

are shown for simplicity). Apolicy condition nodéor policy node)
is added to point to every action node in each task. Once iethos
the policy node becomes an additional condition to satisfyefich
action node, thus it can embed a network-aware decision tbgt
goes beyond individual tasks. We show later how genericigslj
like “prevent network partitioning” and “prevent link oveading”,
can be implemented. Policy nodes are usually written by ow
experts and can be directly used to regulate generic exadiasks.
This further lowers the bar for AD creation, as existing p@s can
be applied to carry out the more complicated decision logic.

The policy node doesot simply serialize the actions in each
tasks. There are multiple arrows pointing from the dummit sizx
tion node to the policy node. This effectively adds multiprebled
arrows to the policy node, so that the policy node does nal teee
wait for an action to finish before enabling another actidloyang
multiple action nodes to be executed concurrently, if paadiby
the policy. As shown in Figure 7, when the action node is done,
it would enable the added arrow pointing back to the policgieyo
such that the policy node can launch again to select the oégna
node to run, if there is any.

The active document design together with the sophisticatet
position support completes the picture of PACMAN's capibfbor
fulfilling automated network management. It fully satisfilks re-
quirements of automating MOP documents, but also goes ldeyon
that by imposing network awareness without additional nahnu
work.

4.3 Execution Engine

An execution engine runs all execution tasks like sepanaie p
grams, by providing three main functions:

Provide execution environment: Like an operating system, the
execution engine allows each running execution task taante
with physical devices or external entities through a set & A
calls. The execution state of an execution task is maindaase
a collection of enabled arrows by the execution engine. ad st
an execution task, a dummy condition node is added with an en-
abled outgoing arrow pointing to the start action node. Efffisc-
tively allows the start action node to activate the wholecexien
task. The enabled arrows for each execution task is updéed a
a node execution finishes. An execution task finishes byncalli
TaskSucceed() .

Handle API calls: To support the most common
Conmi t ConfigDelta() and QueryDeviceStatus()
calls, the configuration delta or status query template &t fir
parametrized, based on the input parameters to the exadati,
and then fed into the proper device, which is usually indidat
in the input parameters as well. If the configuration charge i
accepted by the device, the API call is done. A configuratielted
may not be accepted by the target device for various reasams,
command syntax error, missing reference links, or devicergr
In these caseJaskFai | () is called by the execution engine for
the execution taskNot i fyEntity() andQueryEntity()

are invoked based on the node specification. The messagemyr qu
should be parametrized as welQuer yExecuti onSt at e()
returns the list of enabled arrows and the current nodes €o th
calling condition node, mostly used in policy nodes thatchte
reason about the execution state.

Handle failures: An execution task fails ifTaskFai | () is
called. The execution task is stopped immediately, and p-sna
shot of the execution status is taken, which consists ofabelir for
Quer yExecut i ngSt at e() along with the condition node that

MOP/ . == Convert
» <
Common S Active
Best PK -~ . Docu

/ ment Library
P
Operator Recorder —Jp-| Extractor = i —
4
.
Manual } R4
Configuration *(La=" -
a== Verify* ™
Network |«€==="="
Element

Figure 8: AD Creation Framework

reports the failure. These are recorded for future mangakiction.
The execution engine allows different failure mitigatidragegies.
By default, the effect of the whole execution task is rolledk To
support this, the execution engine maintains an executistorly
for each task. The rollback action is done by undoing all the-c
figuration changes made based on history information. Hresl
entities are notified in any form, revoke messages are sethierO
mitigation strategies may be also be used, such as no-c&llpar-
tial rollback or redo.

5. CREATING ACTIVE DOCUMENTS

In Section 4 we abstractly described the creation of acthaid
ments and their derived execution tasks. We now describaciipr
cal framework to assist the rapid creation of ADs. This ADatien

Extracted events
Oc

W}

Oc

W)

YOCs

C1: show interface fe0
R: IP address: 1.0.0.2/24; Status: Up; ...

After annotation
Ao

TaskFail() A:

Time

Ao: Dummy start transition

C1: CLI("show interface INT_ NAME")
if (no_such_interface) TaskFail()
else if (has_ip_adr) Enable Arrow To A1
else Enable Arrow ToAz

A1 delete interface fe0 ip address

Cz: show interface feQ
R: IP address: none; Status: Up; ...

Az: set interface fe0 ipaddr 1.1.1.2/24

A1: CLI("delete interface INT_NAME ip address")
Az: CLI("set interface INT_NAME ipaddr IP_ADDR")
Cs: CLI("show interface INT_NAME")

if (ip_is_set) TaskSucceed()
else TaskFail()

C3: show interface fe0
R: IP address 1.1.1.2/24; Status: Up; ...

Figure 9: Example of operator annotation

condition node, iv) external synchronization events, sithey are
not recorded, v) additional events for hypothetical scesae.g.,
failure detection (condition) and response (action).

Figure 9 shows an example of operator annotation. The kbt si
shows the processed CLI log by events generati@rindicates a
condition checking, followed by the responde) from the device;
A indicates an action performed by the user. On the right siae,
annotation result is shown: all IP addresses and interfacesn are
replaced by generic placeholders, sucH B8 _NAME; the nodes

framework is depicted in Figure 8. There are two requiresient are connected by arrows, indicating execution flow; for ezmtdi-

for building this creation framework: i) high usability, vef can
lead to quick adoption; ii) high expressiveness, so thaggmeer-
ated ADs describe management tasks accurately. An AD isettea
via the following three steps, allowing quick transforroatifrom
MOPs to ADs, forming an AD library:

Task observation: An operator or AD designer, guided by the

tion nodes, the actual decision process is formally spekifiehe

form of a sequence off - t hen- el se statements, which process

the retrieved status information and determines a follpaaction.

The same framework for annotation can be used to directtere

or modify ADs, e.g.,by a skilled designer. This creation process
only needs to be done once, as the generated ADs can be re-used
and composed in the future to fulfill similar or even more ctarp

MOP documents or with a common best practice in mind, per- tasks.

forms a network management task on a set of network elements,

typically in a testbed environment. Operators directlyesscthe
target devicese.g., spawn multiple SSH sessions to CLI, while

One limitation of this creation framework is that the remtd
AD reflects the operations onfexedamount of devices. As such,
tasks like “to enable IS-IS oall routers” cannot be captured by

we use aecorderto transparently capture the full interaction. We a single AD, because the number of routers in the creatioir env

record: i) performed activities through Cld,g.,modify configu-
ration, change protocol state (such as BGP session resgtlire
network status; ii) device response and internal states, dis-

ronment does not match that in the production environmemt. T
overcome this problem, it is advised that the operatorstedBs
that are smaller and more specialized.,“to enable I1S-IS on a

played network status, emitted SNMP trap messages andedevic single router”, and use the composition mechanisms tchstitial-

log messages. The recordings are tagged with timestamps.

Event extraction: Action and condition activities are extracted
from the recordings automatically by artractor. Contiguous con-
figuration changes are grouped together as a single evdohgas
there are no condition activities in the middle. Similarbpetitive
condition checks with the same result are combined. Wheiteev
status is inspected in the CLI, we correlate logs from otbarces,

such as SNMP or device log message, to augment the condition

event. That is, we allow the operator to specify the decitgic
based on those information sources as well.

tiple ADs together. For more sophisticated taskg,,“operate on
all the routers that meet a certain criterion”, the AD desigoan
design ADs to operate on one device, while encoding the tietec
criteria into the beginning of the AD, so that the operator sin-
ply compose an execution task that works on all routers. Rarot
solution is to leverage on external databases to deterininget of
devices to operate on.

6. CASE STUDIES

In this section, we use several realistic examples to shaw ho

Operator annotation: The events extracted from previous step are active documents are used to perform complex yet automated n

presented as action or condition nodes inAdh editor, pending
operators’ annotation to complete the AD generation. Tlezatpr
has to specify i) the parameters that are specific to taskthado
we abstract them as placeholders for future re-use, ii) tré&flow
logic by drawing arrows between nodesg., identify two paral-
lel branches, iii) the information source and decisionddgieach

work operations in the PACMAN framework. Since a quantiati
measurement of improvement is hard, we qualitatively etalthe
benefit of PACMAN comparing to existing approaches.

6.1 Fault Diagnosis

Active document is an ideal candidate for automating thét fau

All checks performed on PARA_REMOTE_PE

Co: check if has route to PARA_LOCAL_CE_LO_IP L L.
—> Traffic direction in OSPF
C1: check iBGP next-hop in inet.3 table
> Traffic direction in IS-IS
C2: check iBGP session to PARA_LOCAL_PE

C3: check for hidden routes

A1, A2, A3: either notification or auto recovery
" Aa4: notification

Figure 12: A simplified ISP Backbone

Figure 10: Layer-3 VPN diagnostic AD
Composed task: OSPF to ISIS migration

- Policy: sequential execution of stagel and stage2

\‘ ,,,,, i Po}

At ;7 FO:Field Operator Composed task: stagel

: / Ao: CommitConfigDelta(...) // OSPF link cost-out Policy: parallel execution

3 Co i Co: Dummy node Task Task Task

j ; Az: CommitConfiabelta(... / shut d . Setup IS-IS| |Setup IS-IS| ==+ |Setup IS-IS

: ! 1: CommitConfigDelta(...) // shut down interface

Air NotifyEntity("FO", "proceed with PARA INT NAME ") on router 1 on router 2 on router N
¢ 3 Po: delay action that will cause predicted link overload,

b delay shut down a link when there is still traffic

Composed task: stage2
Policy: finish all edge routers first, then core routers

Figure 11: Planned maintenance AD

Task Task Task
Disable OSPF| [Disable OSPF| = » = | Disable OSPF
on router 1 on router 2 on router N

diagnosis process. Condition nodes can be used to retréése r

vant information from various devices and then reason atiwit

symptom. The outgoing arrows of condition nodes corresgond

different diagnosis results and may lead to additionalsstep Figure 13: Task design for OSPF to IS-IS migration
Figure 10 shows a portion of an active document that is used to

diagnose layer-3 VPN connectivity. This AD is convertedniira

MOP provided by a major router vendor [20]. The whole diagos This task involves OSPF weight change and interface shubhdow
procedure checks multiple routers to see if VPN routes cap-pr thus has the potential of negatively impacting live traff@urrent
erly propagate from a local customer edge (CE) router, tjiinabe solutions rely on operators to manually predict and avoghtiee
local provider edge (PE) router, and reach the remote PErantd impact, a usually slow and unreliable process, which isqaetrly

remote CE. The example shows the portion that diagnosestéso undesired for such tasks with stringent requirements oimgjrand
propagate correctly from local PE to remote RE.logs into the reliability. In PACMAN, we can impose a policy node, lik&,,

remote PE router to check if the loopback IP address of the lo- to enforce a high-level policy that automates a networkraweaci-
cal CE router is seen on its layer-3 VPN routing table. If trite sion process for minimizing traffic disruptio®, is composed with

means that routes from the local CE correctly propagatenmte the original AD with added arrows pointing to all action nedén
PE, thus this portion of AD can be bypassed. Otherwig,is essencel is a condition node that reasons about network-wide
executed to spawn multiple tests to further diagnose thblgnm states, such as traffic demand matrix, existing OSPF weigtts
e.g.,C> checks on remote PE if the iBGP session to the local PE and makes decisions by enabling the arrows to appropridignac
is properly established; if not, the problem is found, legadio the nodes. In effectP, will not allow Ay (OSPF cost-out) to proceed,
execution ofA, which either starts another sub-task to automati- unless the estimated traffic shift causedAywould not overload
cally fix the BGP session or caldot i fyEntity() to contact other links; Py will not allow A, (interface shut down), unless i) the
an operator about the diagnosis result. routing has converged and ii) indeed no traffic is flowing tiyte

The flexible composition capability provided by active docu the link. Given the composition capability, can be used to reg-
ments allows network-wide fault detection, fault diagsasid fault ulate arbitrary tasks without additional manual work. Tisi®s-
recovery in a closed loop by stitching appropriate ADs, oéulyl pecially useful for carrying out simultaneous maintenatasks,
human involvement significantly. The state of the art in enated which are hard to coordinate by operators and may causefisigni
fault diagnosis relies on router vendor support [10] to exedi- cant network downtimeg.g.,a partitioned network.
agnosis scripts automatically when certain condition is. nidis Besides using network-aware policy control, this mainteea
support is limited to a single device, while PACMAN can egsil job can also take advantage of external reasoning platfosoth
correlate and reason about status from devices acrosstiherke as a traffic engineering planner [5]. For examlg,can query the

. . planner if it is permitted to shut down the interface. Thi®wb

6.2 Link Maintenance PACMAN to take full advantage of existing infrastructures.

Figure 11 shows a planned maintenance task with enhancement . .
by applying a network-aware policy. The dashed box contaams ~ 0-3 IGP Migration
of the original active document: action nodg increases the OSPF Many ISP networks have performed IGP migration for a variety
metric of the target link to cost it outd; brings the link down by of reasons [21]. IGP migration is a challenging task as |Gde&p
changing configuration and, at the same time, notifies fiekt-op down the dependency stack — many other network services and
ators, signaling them to start the on-site maintenance Iateck protocols depend on it. Let us consider the task of migraéing
physical interfaces. The link bring-up procedure is simtifaus ig- network from running OSPF to IS-IS (actually performed by tw
nored for brevity. large ISPs previously [22, 23].)

The migration process first enables I1S-IS (with a lower prefe
ence) in the network and then disables OSPF. One of the olgake
is to prevent transient forwarding loops. Consider a sifigalilSP
topology in Figure 12. After IS-IS is enabled and runningetibgr
with OSPF, it is possible that ik R1 — C R2 has a high weight
in OSPF and”’R2 — C'R3 has a high weight in IS-IS. The traffic
from BR1to BR2 goes fromBR1—-CR1—-CR3—CR2— BR2,
as OSPF is still the preferred IGP. If OSPF is disabled first on
CR3, C'R1 still forwards traffic toC'R3 because” R1 still runs
and prefers OSPF, and the shutdown(®R3’s OSPF will not
be detected after a timeoutC' R3, on the other hand, switches
to IS-IS immediately, thus starts to forward traffic via thathp
CR3 — CR1 — CR2 — BR2. As aresult, packets would bounce
betweenC'R1 andC R3, until OSPF re-converges. A simple solu-
tion to prevent this in common ISP setups is to disable OSP4flon
edge routers first and then on all core routers [23]. Thisreefo
ment, however, is unreliable and requires much manualteiffior
existing approach.

PACMAN automates this process using a composed execution
task, with two major stages, as shown in Figure 13:

Stage 1:for each router, i) configureso layer on all interfaces;

i) verify i so is enabled; iii) configure IS-IS protocol to run with
a lower preference than OSPF; iv) verify the IS-IS protocas h
learned all the routes as OSPF does.

Stage 2: for each router, i) deactivate OSPF; ii) verify no loss of
routes; iii) remove OSPF config, adjust IS-1S preference.

Both stages are also composed tasks, executed in sequential
der. For stagel, all sub-tasks are executed in a simpldgldeah-
ion, because they do not interfere with each other. For 2teae
sub-tasks are executed in parallel, with additional poéinjorce-
ment (ordering constraint) to avoid forwarding loops. Wé W4
lustrate in the 88.1 the effectiveness and correctnesssotdimpo-
sition.

7. IMPLEMENTATION

In this section, we briefly describe our implementation & th
PACMAN framework. Two major components are the AD creation
framework and the execution engine. All implementationseve
performed in Java, and we mostly focus on Juniper routersa@ue
availability in our test environment, but our methodologyemds
to other network devices.

7.1 Active Document Creator

Our implementation of AD creator contains several piecasies
of which leverage existing software packages. We customize
screen andscri pt Linux commands such that SSH sessions
can be made simultaneously to the same or different devibéde w
each session interaction being recorded with timing infdrom.

Execution
Engine Enabled Enabled
Arrows Arrows
[I I]
Execution Execution
Task Task

e/
[=[0l==[0]0]
Queue of AD nodes

to execute

Execute on
available
worker process

Y =@ O (—
Node
Processor e Worker
Threads
A \
Configure Change Device state RPC calls
State query 17 information Y and responses

| Physical devices | | External Entity

Figure 14: Execution engine architecture

7.2 Execution Tasks and Execution Engine

A simple execution task is created from an AD and a parame-
ter assignment. A quick sanitization process is performetdke
sure that enough parameters are specified and the valuesroonf
to the parameter types. When composing execution taskthege
the node names and parameter names used in ADs of diffedent su
tasks are renamed to avoid confusion. For example, Midere-
named adN_MwhereN _is a prefix added for all the nodes of the
sub-task. (This renaming effect can be seen in Figure 5.)

Figure 14 shows the high-level architecture for our execugn-
gine. Each running execution task is associated with a fishe
abled arrows. The execution engine scans all executiors fask
riodically. Based on the enabled arrows, the nodes thatesayr
to execute in each executed task is added into a queue wéiting
execution.

A node processolis responsible for actual execution of the
nodes. Multiple worker threads are spawned to handle cosrocy.

If a worker thread is available, a node is fetched from thetingi
queue. Rather than picking nodes from the head of the queue, a
node is randomly selected from the queue, to ensure faiaress
avoid potential live lock. To execute a node, parametereshare
copied from the execution task to replace the parameteeptdd-

ers in the node.

To handle Conmi t Confi gDel ta() and
Quer yDevi ceSt at us() in a node, the worker thread contacts
physical devices specified via either CLI or NetConf integfa
Connections to recently contacted physical devices arbechc
and reused to reduce connection establishment overheadigCo
uration changes made to the same device are serialized @ avo

SNMP messages and device log messages are constantly bein§otential conflicts. QueryEntity() andNotifyEntity()

monitored and later retrieved to correlate with console amds
based on timing. The annotation is done in a Java-based GUI. F
each action or condition node, a pop-out window allows therap
tor to specify the parameters. For condition nodes, a cHaiests

is specified to represent an if-then-else decision makimghHEest
need to specify: an information source, which could be tisalte
of a status-checking command, SNMP or device logs, or puslyo
saved information; a predicate as test body, which can biergoes

as string matching, or as complicated as an XML query — Junipe
routers support XML-based interaction for retrieving devstatus;

a test result, which can be an arrow to enable or calling an API

are simple wrappers to external scripts. For example, éxeru
Noti fyEntity('mail’,’ a@.com,’ done’) invokes a
shell command/ mai | . sh a@. com done.

7.3 Programming Policy Nodes

Policy nodes can be much more complicated than the regular
condition nodes created via the AD creator. Infact, we afjolicy
nodes to be written in Java and handled using the same eseculti
engine. When executed, a policy node first identifies a settaira
nodes that have all other pre-conditions satisfied and aitnga
for its permission to proceed. Among these nodes, the pobicle

Algorithm 1 Implementation of the prioritization policy node

Require: AdSpec AS, ExecutionStateF’S, NetworkStateN S,
DemandMatrixD M

1: W «— GenWaitingNodeList(AS, ES)

2: for actionn in W do

3: NewState — NS applies action of

4: calculate connectivity matrix and traffic on each link s

on NewState and D M

5: if in NewState network is not partitioned and no over-
6

7

loaded linkthen
return n
end if
8: end for
9: return null

1S-IS to OSPF Migration without Policy Enforcement

Ping passf Change ‘ ‘ : ‘]
made
Task
Ping fail_stat ; 1

0 5 10 15 20 25 30
Time (second)

1S-1S to OSPF Migration with Policy Enforcement
X \ X X X

Ping passr

Ping fail I]
0 5 10 15 20 25 30
Time (second)

Figure 15: Effectiveness of policy enforcement

can choose one from them to allow its execution by enablieg th
final arrow. It is possible for the policy node to decide thahe of
those actions should proceed at the moment. On the other hand
policy node sometimes need to consider the action nodesighat

be executed in the future, because it might be a better choice
execute them rather than currently ready nodes. Detergithiese

working on different part of the network simultaneouslyt ye-
aware of the potential problem; ii) in one composed taskgitie
prioritization policy to ensure edge routers are first upddiefore
changing the configuration of any core routers. We used siéu
routers in a local testbed, connected as shown in Figure i eX-
periments were performed on the network state after sta§éGRo
migration had finished (IS-IS was configured as the lessepred
IGP, while OSPF was still running as the preferred IGP). Oae m
chine connected t@R1 was sendingpi ng to another machine
connected taBR3 during the migration period. Link weights of
OSPF and IS-IS were intentionally tweaked to create thetsn
discussed in §6.3.

Figure 15 shows the result. When individual tasks were exe-
cuted in parallel, repeating this experiment multiple tnséowed
that when the task working ofi R3 is executes first a forwarding
loop was indeed created as shown in the top figure: the canitgct
was temporarily lost for a few seconds (the amount of timeota
mit configuration changes on Juniper routers) after thestesked.
The connectivity was resumed and lost again before it eadigtu
stabilized, mostly due to the complex interaction of the @&
protocols. In contrast, the composed task using priotitngpol-
icy did not experience any problems, as shown in the bottonndig

8.2 Automating Network Operations

We again use the IGP migration task in an ISP depicted in Fig-
ure 13 to estimate the time saving by using PACMAN to automate
network operations. For comparison purposes, one of tHemut
who is proficient in network management and router confignmat
performed the migration task. That author performed thle sas-
eral times beforehand for training purposes and then regdrte
lower-bound estimate of how long a sub-task would take wixen e
ecuted manually (we expect the actual performance numtiars f
real operators to be quite similar).

The amount of time to manually perform configuration change
on the routers takes less than 2 minutes each, thus ideattyiri-2

two sets of nodes can be done via flow analysis based on thk grap ytes to finish six routers. Interestingly, the total amotftiroe to
structure of the composed AD and execution state. We provide finish the migration task for all routers takes no less thamas

generic helper functions to ease the development process.

Here we describe the sketch of a policy node, which speegliz
in avoiding network partitioning and traffic overloadingusad by
arbitrary simultaneous network tasks, shown in Algorithnirhe
first line uses a provided function to generate a list of actiodes
that are waiting for permission. Line 2-8 iterate throughsakh
nodes. For each action node being considered, the resuiéing
work stateNewState, including reachability and routing table, is
calculated based on the current network state and the coatfigii
change embedded in the action node. If a partitioned netisaoié-
tected, the action node will not be permitted. Combiningtthéic
demand matrix and new routing table, an action is permittéd i
does not cause other links to overload or exceed some preedefi
thresholde.qg.,90% utilization ratio.

8. EVALUATION

We evaluated our prototype implementation to demonsttate i
effectiveness in preventing operational errors and engfficient
configuration management, which scales well with netwark.si

8.1 Network-awareness Support

To exemplify the effectiveness of policy enforcement, we-pe
form stage 2 of the IGP migration task (disabling OSPF on all
routers) in two different ways: i) in multiple individualgks, each

utes, due to additional network status verification andridevice
synchronization. In contrast, PACMAN finishes the whole raig
tion task within 2 minutes - 90% of time on effecting configioa
change and acquiring status via NetConf and the rest omatter
processing. If we extrapolate to a network of 100 routers nlan-
ual operation time is over 400 minutes, exceeding an entai@-m
tenance window, which is typically of a 3 to 4 hour durationek
worse, when the operated network is considerably largenrthn-
ual operation time is unlikely to scale linearly, despite glotential
use of automated scripts, due to more complicated netwatksst
verification and additional synchronization between iwedl hu-
man operators. In fact, the IGP migration processes docigden
online [23] took several maintenance windows across 3-5 day
finish. For PACMAN, since all the verification process arelacc
rately modeled and automatically carried out, it can easiigle
with the network size.

8.3 System Constraints

The execution engine directly interacts with physical desi
Out-of-band access, which is standard in ISP environmewt, p
vides a more reliable connectivity channel, but the bantdwis
limited, ranging from 9.6kbps serial console, 56Kbps modiam
to 1.5Mbps T1 connection. Router configuration in XML forrigat
usually tens or hundreds of kilobytes. Assuming a T1 conoegct

of which disables OSPF on one router, processed by the execu-it may take around hundreds of milliseconds to transfer apteta

tion engine concurrently, mimicking the effect of severpémtors

configuration file. Fortunately, most management activitian be

performed in-band where bandwidth is not an issue.

We performed some micro-benchmarks to investigate resourc
constraints the server that runs the execution engine. @nvars
with 2.5G Intel core 2 duo CPU, it takes about g60to load a
2KB XML file with 86 lines, describing 10 routes in the routing
table. It takes about 956 to perform an XPath query to count
the number of routes described in the XML file. The processing
time should be on the order of hundreds of milliseconds tallean

10000s routes. The processing power may become a bottleneck

when the reasoning activity becomes significantly more dbmp
cated. This can either be mitigated by using multiple exeout
engines for load-balancing, or offloading some reasonigé:lto
programmable routers.

9. CONCLUSION

Network management has been an enduring research topic. De-

spite efforts by both academia and industry, network mamage
remains largely driven by manual efforts, and is thus eprone
and time-consuming. In this paper, we proposed the PACMAN
platform, aiming to automate existing network managemeet-o
ations and enabling the adoption of new holistic networklenop-
erational practices. The key intuition behind our work isute
the right level of abstraction which is both close enoughuo c
rent management approach, thus enable quick adoptionraiene
enough to capture the complexity of existing approachespamw-
erful enough to automate and augment them.

Towards the goal of building automated network management
system, PACMAN uses the Active Document abstraction to sys-
tematically capture the dynamics of network managemerdstas
This abstraction allows the composition and execution sk ta
level, thus raising the level of abstraction. The abilityiritegrate
network-wide policies distinguishes PACMAN from devicentric
support from vendors and task-oriented nature of MOPs.

We described the design and implementation of the PACMAN
framework, and used realistic usage scenarios to show fias-ef
tiveness. As future work, we plan to corroborate with networ
operators for feedback and comments in order to further orrgor
the usability and practicality of PACMAN. In particular, we
aim at allowing more flexible creation and more programmable
composition of active documents by improving the intexacti
between human operators and our system.

Acknowledgement

We would like to thank our shepherd Sanjay Rao and the anony-
mous reviewers for their valuable comments. We are alsefyiat
for the feedback from Yun Mao, Jennifer Yates and Bobby Baile
Chen is supported in part by US NSF Award CNS-0939707 and
DARPA Computer Science Study Panel. Any opinions, findings,
and conclusions or recommendations expressed in this ialates
those of the authors and do not necessarily reflect the viétreo
funding sources.

10. REFERENCES

[1] Z. Kerravala. Configuration Management Delivers Busge
Resiliency. The Yankee Group, Novenver 2002.

[2] William Enck, Patrick McDaniel, Subhabrata Sen, Pantgi
Sebos, Sylke Spoerel, Albert Greenberg, Sanjay Rao, and
William Aiello. Configuration management at massive scale:
system design and experience Aroceedings of USENIX
Annual Technical Conferenc007.

[3] Joel Gottlieb, Albert Greenberg, Jennifer Rexford, drad
Wang. Automated Provisioning of BGP CustoméEEE
Network 17, 2003.

Hagen Bohm, Anja Feldmann, Olaf Maennel, Christian

Reiser, and Rudiger Volk. Network-wide inter-domain

routing policies: Design and realization. Presentatiaihet

NANOG34 Meeting.

[5] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick

Reingold, and Jennifer Rexford. NetScope: Traffic

engineering for IP networks. IEEE Network Magazine,

March/April 2000, pp. 11-19.

Don Caldwell, Anna Gilbert, Joel Gottlieb, Albert

Greenberg, Gisli Hjalmtysson, and Jennifer Rexford. The

cutting EDGE of IP router configuration. Proceedings of

ACM SIGCOMM HotNets Workshpp003.

[7] Anja Feldmann and Jennifer Rexford. IP network

configuration for intradomain traffic engineeringEE

Network Magazingpages 46-57, September/October 2001.

Nick Feamster and Hari Balakrishnan. Detecting BGP

Configuration Faults with Static Analysis. Rroceedings of

Symposium on Networked Systems Design and

ImplementationMay 2005.

[9] Xu Chen, Z. Morley Mao, and Jacobus Van der Merwe.

Towards Automated Network Management: Network

Operations using Dynamic Views. Rroceedings of ACM

SIGCOMM Workshop on Internet Network Management

(INM), 2007.

Juniper Networks, Configuration and Diagnostic Autdiora

Guide.ht t p: / / www. j uni per. net .

Cisco Active Network abstraction.

http://ww. ci sco. com

Hitesh Ballani and Paul Francis. CONMan: A Step towards

Network Manageability. IfProceedings of ACM SIGCOMM

2007.

[13] Richard Alimi, Ye Wang, and Yang Richard Yang. Shadow

configuration as a network management primitive. In

Proceedings of ACM SIGCOMMNO008.

Yi Wang, Eric Keller, Brian Biskeborn, Jacobus van der

Merwe, and Jennifer Rexford. Virtual Routers on the Move:

Live Router Migration as a Network-Management Primitive.

In Proceedings of ACM SIGCOMN2008.

John C. Strassner, Nazim Agoulmine, and Elyes Lehtihet

FOCALE - A Novel Autonomic Networking Architecture.

Latin American Autonomic Computing Symposium

(LAACS), 2006.

Hemant Gogineni, Albert Greenberg, David A. Maltz,

T. S. Eugene Ng, Hong Yan, and Hui Zhang. MMS: An

Autonomic Network-Layer Foundation for Network

Management. Rice University Technical Report TR08-11,

December 2008.

[17] Tadao Murata. Petri Nets: Properties, Analysis and
Applications. Proceedings of the IEEE 77, 4 (1989).

[18] W.M.P. van der Aalst. The application of petri nets to
workflow management, 1998.

[19] Yin Wang, Terence Kelly, Manjunath Kudlur, Stephane
Lafortune, and Scott Mahlke. Gadara: Dynamic Deadlock
Avoidance for Multithreaded Programs. Rmoceedings of
OSD|, 2008.

[20] Juniper Networks: Troubleshooting Layer 3 VPNSs.
http://ww. j uni per.net/techpubs/
sof twar e/ j unos/j unos93/ swconfi g- vpns/tr%

(4]

(6]

(8]

[10]

[11]

[12]

[14]

[15]

[16]

oubl eshoot i ng- | ayer - 3- vpns- usi ng- pi ng-\
\and-traceroute. htni.
[21] Manav Bhatieet al.. IS-1S and OSPF Difference Discussions.
http://ww. j oi n. uni - nuenst er. de/
Dokunent e/ draft s/ draft- bhati a- manral - di %
ff-isis-ospf-01.txt.
[22] Vijay Gill and Jon Mitchell. OSPF to IS-ISht t p:
/ I www. nanog. or g/ mt g- 0310/ pdf/ gil | . pdf.
[23] Results of the GEANT OSPF to ISIS Migratidmt t p:
/I www. geant . net / eunedconnect / upl oad/ pdf/
GEANT- OSPF-to- 1 SI S- M grati Yon. pdf.

