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ABSTRACT
The lack of automation associated with network operations in gen-
eral and network configuration management in particular, iswidely
recognized as a significant contributing factor to user-impacting
network events. In this paper we present our work on the PACMAN
system, a Platform for Automated and Controlled network opera-
tions and configuration MANagement. PACMAN realizes network
operations by executingactive documents, which systematically
capture the dynamics in network management tasks. Active doc-
uments not only enable the complete execution of low-level config-
uration management tasks, but also allow the construction of more
sophisticated tasks, while imposing additional reasoninglogic to
realize network-wide management objectives. We present the de-
sign, realization and evaluation of the PACMAN framework and
illustrate its utility by presenting the implementation ofseveral so-
phisticated operational tasks.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Management

General Terms
Design, Management

Keywords
Network Management, Automation, Petri Net

1. INTRODUCTION
Network management plays a fundamental role in the operation

and well-being of today’s networks. The configuration of network
elements collectively determines the very functionality provided by
the network in terms of protocols and mechanisms involved inpro-
viding functionality such as basic packet forwarding. Configura-
tion management, or more generically all commands executedvia
the operational interface of network elements, are also theprimary
means through which most network operational tasks,e.g.,planned
maintenance, performance monitoring, fault management, service
realization and capacity planning, are performed.
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The inadequacies of current network management and opera-
tional procedures have been widely recognized [1], and manyso-
lutions have been proposed. However, a variety of factors conspire
to make more automated network operations an elusive goal. One
of the biggest challenges in network management automationis
to find the right level of abstraction. What is needed, on the one
hand, is the ability to abstractly describe operational goals with-
out getting bogged down in the minutiae of how to achieve those
goals. On the other hand, because of the sophistication of mod-
ern networking equipment, the ability to fine tune the details of
how an operational task is performed, is in fact critical to achieving
the desired effect. This inherent tension is exacerbated bythe fact
that network equipment vendors, driven in part by feature requests
from operators, have allowed network configuration languages to
evolve into arcane sets of low-level commands. Operators there-
fore have to become accustomed to designing and reasoning about
their networks in the same low-level nomenclatures which result
in significant resistance to evolving to new network management
paradigms.

Indeed the lingua franca of network operations continue to be li-
braries of so calledmethod of procedure (MOP)documents. MOPs
describe the procedures to follow in order to realize specific op-
erational tasks, usually containing the following components: (i)
configuration changes (oractions) that need to be performed, (ii)
operational checks (orconditions) that have to be satisfied before
such actions can be taken and/or after them for the purpose ofver-
ification, and (iii) execution orworkflow logicthat ties actions and
conditions together. Currently, MOP documents are literally stored
as libraries of text descriptions which is not suitable for automation
or holistic network-wide reasoning.

In modern network operational environments, parts of MOP-
defined procedures are typically automated to limited extent. For
example, configuration actions could be performed by scripts that
push configlets to network elements [2, 3, 4]. However, for the
most part, network operations still require human operators to ver-
ify the result of actions and to navigate through the logic involved
in operational procedures. This is especially true in termsof being
cognizant of possible interactions among different operational pro-
cedures and understanding the holistic impact of such actions. For
example, sophisticated tools have been developed to help operators
understand the possible impact of their actions [5]; however, oper-
ators typically consult these tools independently and thenuse the
information they provide to manually “close the loop” to perform
operational tasks. In other words, such tools are not fully integrated
into the process of network operations.

The ultimate goal of our work, is to create an environment which
allows the full automation of this operational control loop. Towards
this end, in this paper we present our work on thePACMANsystem,



a Platform for Automated and Controlled network operationsand
configuration MANagement. Our work builds on two basic obser-
vations related to the elements contained in MOP documents.First,
MOP document structure,i.e., actions, conditions and the associ-
ated workflow logic, presents a natural way for operators to think
and reason about operational activities. Second, the logicembed-
ded in the design of these procedures represent the expert knowl-
edge of MOP designers to ensure that high-level operationalgoals
and conceptual designs are met, while minimizing unwanted side
effects of operational actions.

At a high level, PACMAN maintains these desirable properties
by allowing experts to define operational procedures as before with
one significant difference: The procedures defined in the PACMAN
framework are not static documents meant for human consump-
tion, but insteadactive method of procedures, or simplyactive
documents (AD), meant for execution in the PACMAN framework.
Active documents formalize the configuration management proce-
dures described in MOP documents. I.e., ADs capture, in a sys-
tematic manner, the actions, conditions and logic associated with
operational tasks, thus forming a fundamental building block for
the automation of network operations. ADs enable the complete,
repeated, programmatic and automated execution of low-level man-
agement tasks, but more importantly enable the construction of
more sophisticated tasks. Specifically, simple active documents can
be combined intocomposedADs whose execution is dictated by
policies capturing holistic network-wide management objectives.
In so doing, PACMAN raises the level of abstraction as the high-
level operational goal becomes part of the composed AD, thusbe-
ing enforced in an automated fashion, eliminating the need for op-
erators to be continually concerned about and actively involved in
how to carry out a goal amongst multiple tasks. Furthermore, the
PACMAN framework allows easy interaction with external tools to
enable sophisticated decision making to be naturally integrated into
the network operational loop.

In this work, we make the following contributions:

• We analyze method-of-procedure documents from an opera-
tional network to extract thenetwork management primitives
associated with network operations.

• We introduceactive documentsas a concise, composable,
and machine-executable representation of the actions, condi-
tions and workflow logic that operators perform during net-
work management tasks.

• We present the design and implementation of thePACMAN
framework, an execution environment that automates the ex-
ecution of active documents.

• We bridge the gap between current operational practices and
our automated environment with the ADcreation framework,
a set of tools which allow operators to work in their native
idiom to easily generate active documents.

• We demonstrate the effectiveness of the framework using
several case studies of common configuration tasks such as
fault diagnosis, link maintenance, and a more complicated
task of IGP migration.

2. RELATED WORK
PACMAN enables automation and abstraction while not requir-

ing operators and network designers to adopt a completely new net-
work management paradigm. At the same time and using the same
framework, PACMAN does go beyond simple configuration gen-
eration, allowing operators to articulate network-wide operational

goals and indeed adopt new network management paradigms. In
contrast to PACMAN, most related work does not bridge the gap
between current network management approaches and new net-
work management paradigms, but rather fall in one of the two
categories. The state-of-the-art in practical network configuration
management is exemplified by the PRESTO configuration manage-
ment system [2]. PRESTO templates lack the necessary execu-
tion logic to capture sophisticated operational tasks, or indeed the
ability to intelligently create composed tasks from simpler com-
ponents. Similar to PRESTO, a simple template based approach
has been used to automate BGP configuration of new customer
links [3]. While also limited to BGP configuration, the work by
Bohmet al.[4] had a broader scope in that it addressed the creation
of configuration files to realize network-wide inter-domainrouting
policies.

The EDGE architecture [6] had the ambitious goal of mov-
ing to automated network configuration by first analyzing existing
network configuration data and to then use such network intelli-
gence to create a database to drive future automated configuration
changes. This work seemed to have stopped short of actually tak-
ing the last step to create an automated configuration systemand
is therefore more similar to efforts that attempted to analyze the
correctness of existing network configurations [7, 8, 9]. Major
router vendors have also proposed their own network management
automation frameworks [10, 11]. Those management frameworks
remain device-centric and are mostly used to handle local failure
response, while PACMAN allows a full spectrum of network man-
agement tasks with a network-wide perspective.

Several proposals exist that address network management com-
plexity through approaches that are less tethered to current opera-
tional practices and device limitations [12, 13, 14]. Theseworks do
not cover the full range of network management tasks required in
operational networks [12], or attempt to limit the potential negative
impact of configuration management without directly addressing
its complexity [13, 14].

A number of “autonomic” network architectures are related to
PACMAN [15, 16]. Conceptually the FOCALE architecture [15]is
perhaps the closest to PACMAN. Specifically, like PACMAN, the
FOCALE architecture contains an explicit control loop so that net-
work operations can be cognizant of network conditions. However,
unlike PACMAN, which closely models current operational prac-
tices and ties in with existing network capabilities, the FOCALE
approach requires the adoption of new paradigms and tools.

Finally, PACMAN adopts Petri net [17] to model network man-
agement activities. Petri net, developed in the 1960s, employs a
compact representation and is convenient to model concurrency,
control flow, and system dynamics. Recently Petri nets have been
used to model IT automation workflows [18]. Formal verification
techniques are applied on Petri net models,e.g.,Gadara [19] uses
Petri nets to model multi-threaded programs, identifying deadlocks
using structural analysis and patching them automatically. In this
paper, we took a modest first step of using the Petri net model to al-
low advanced network management workflow to be built and high-
level policy to be constructed and imposed. We leave formal veri-
fication of the generated workflows as future work.

3. NETWORK MANAGEMENT PRIMI-
TIVES

To build a useful and practical automation system for network
management, we first closely examine the current best practice to
extract the fundamental primitives and requirements. As a start,
we analyzed a month’s worth of method of procedure (MOP) doc-



uments from a tier-1 ISP network, as well as from major router
vendors. These documents cover a wide variety of network man-
agement tasks, including customer provisioning, backbonelink and
customer access link migration, software/hardware upgrade, trou-
bleshooting VPN,etc.

MOP documents are essentially instruction manuals for perform-
ing specific management tasks. They are usually modularized, con-
sisting of multiple sub-tasks or steps. For example, a BGP cus-
tomer provisioning MOP usually consists three steps of linksetup,
IP setup and BGP session setup, where each step involves config-
uration change on a router and running status verification. Afault
diagnosis MOP [20] often contains a sequence of network tests to
perform, such asping, show bgp, and for each test an instruc-
tion of how to interpret and act upon the result.

At a micro level, we categorize the fundamental network man-
agement primitives that make up the MOPs as follows:

Configuration changing: Most of the management tasks involve
configuration modification, which directly leads to networkdevice
behavior change. For example, configure a BGP session, change
OSPF link metricetc.

Status acquiring: Network status information is crucial for the
progression of network operations. Two types of status are usually
obtained: static information, such as configuration, hardware com-
ponents; dynamic information, such as BGP session states, routing
tables. The acquired information can either be stored for future use
or processed immediately.

Status processing:Status information is evaluated in a variety of
ways, for example, check router configuration for OSPF-enabled
interfaces, verify if a routing table contains a specific route, or
even compare the current BGP peer list with previous captured list.
Based on the evaluation, different next steps may be taken.

External synchronization: Explicit synchronization with other
parties, including field operators, centralized decision engine,etc.,
is very common. The operator can either notify an external party
indicating operational progress or wait on external parties for their
progress update, for example, wait for a field operator to finish an
on-site physical upgrade.

The lack of automation also manifests as the fact that these prim-
itives need to becomposedtogether manually. We identify the fol-
lowing composition mechanisms (or workflow logic):

Sequential:This most basic composition simply perform one sub-
task after another. It is useful for stitching many stand-alone oper-
ations into a complex operation.

If-else split: The purpose of status processing is to choose different
subsequent sub-tasks based on an if-else logic. For example, for
different OS versions or interface types, the configurationto change
could be different.

Parallel split: In some cases, the operator is required to work on
multiple devices at the same time. In other cases, a monitoring sub-
task is spawned on the side. For example, creating a new terminal
session to launch a continuous ping to monitor delay and jitter of a
potentially impacted path.

Iterative processing: Operators may need to process one element
at a time, until there is no such element left. For example, toiden-
tify all interfaces with IS-IS configured, and disable them one by
one.

Wrapper: Predefined “head” and “tail” sub-tasks can be used to
wrap around other sub-tasks. For example, saving the configuration
and running status before and after the operation for later verifica-
tion.
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Figure 1: The PACMAN framework

Sequential composition is the easiest to automate, but due to the
frequent occurrence of other cases, the majority of networkman-
agement tasks cannot simply be represented as a sequential flow.
Other composition mechanisms are almost always handled by hu-
man operators.

At a macro level, the descriptive nature of MOPs dictates that
the realization of management tasks have to rely on human opera-
tors, who consume the MOPs and carry them out either manually
or via limited automation, resulting in a process that is known to be
time-consuming and error-prone. Based on our analysis, only con-
figuration changing and network status acquiring are automated, to
a limited extent, through automated tools. The decision logic, for
example reasoning about network status to determine the proper
next step, is usually described in high-level terms and almost al-
ways left for human operators to realize. This deficit calls for an
automatable representation of workflow logic, which we integrate
into our active document design.

MOP documents are by necessity limited in scope, typically fo-
cusing on a specific operational task, with little visibility into the
network-wide impact of the task or its interaction with other tasks.
In the case of multiple concurrent tasks, the burden of avoiding
undesired network states based on reasoning about global network
status usually falls on human operators, who may not be able to
correctly perform such reasoning due to knowledge deficit orre-
source constraint. This motivates us to design active documents
that are composable and capable for network-aware policy enforce-
ment. On the other hand, while tools are available to show how
some operational tasks (e.g., costing out a link) might impact the
network [5], the interaction with such tools is currently largely left
to operations personal.

4. THE PACMAN FRAMEWORK
PACMAN is motivated by the fact that automation is limited in

current network management, as discussed in the previous section.
PACMAN bases on new abstractions, which incorporate all re-
quired operational primitives and compositional mechanisms iden-
tified from MOP documents, allowing natural absorption of the ex-
pert knowledge and full automation of the network operations. As



a step further, the abstractions allow multiple tasks to be indepen-
dently specified but automated simultaneously with global aware-
ness seamlessly imposed without additional manual involvement;
therefore, they overcome the task-centric nature of MOP docu-
ments. As shown in Figure 1, the PACMAN framework is con-
ceptually divided into three components, creation, composition and
execution.

In PACMAN, we introduce a new abstraction, namedActive
Document, to describe and further enable the automation of the
workflow of network management tasks in a form that is accurate,
extensible, and composable, see “Creation” in Figure 1. Unlike
MOPs that are used toguidehuman operators, active documents
can beexecutedon different networks to fulfill different manage-
ment tasks. Compared to traditional scripts that at best automate
the generation and modification of configuration on network de-
vices, an active document also encapsulates thelogical reasoning
that guides the workflow of a management task. This capability
enables full automation of network management tasks, minimiz-
ing human involvement. Active document models the primitives
and composition mechanisms derived from MOP documents in a
straightforward fashion, thus can be created by anyone who under-
stands these documents, enabling our framework to quickly absorb
the expert knowledge from existing MOP documents to form our
own active document library. To illustrate this conversion process,
a framework to enable semi-automated active document creation is
described in §5.

Active documents model network operations generically, orin
the abstract. As shown in the “Composition” component of Fig-
ure 1, to realize a specific operation, an active document is instan-
tiated into anexecution task. Typically, a simple execution task
is generated by selecting the AD designed for the corresponding
management task from the AD library and assigning proper pa-
rameters from external network databases. Furthermore, weallow
the creation of composed execution tasks from one or more sim-
ple execution tasks to fulfill complex operations.Network-wide
policies, which take global network conditions into consideration,
can be imposed to automatically guarantee that the execution of
a collection of task-centric operations would not violate network-
wide constraints. Note that such policies are pre-defined and can
be selected and automatically imposed during composition.This
provides the means by which operators can start small and simple
(developing task-centric ADs) yet achieve automation of network-
wide coordination. Existing coordination and policy enforcement
in management operations is usually either undocumented orwrit-
ten in high-level terms in MOP documents, due to the complexity
involved. It is mostly done by skilled human operators,e.g.,who
can decide when to execute which script so that traffic shift is min-
imized. PACMAN, on the other hand, provides a fully automated
solution, enabled by the flexible and generic active document de-
sign.

As depicted in the “Execution” component in Figure 1, simpleor
composed execution tasks are executed with the support provided
by anexecution engine, which we envision to be available for each
network. The execution engine runs the execution tasks in a fully
automated fashion, achieving the goal of each task by reproducing
the workflow and decision logic. Illustrated in Figure 1, as aresult
of running the execution tasks, the execution engine interfaces with
devices in the network to perform the configuration change speci-
fied by the execution task, obtain various types of network status,
and carry out the embedded reasoning logic. The execution engine
also interacts with entities external to the PACMAN framework. As
shown in the figure, these external entities might also interact with
the network. Examples might include standalone network monitor-

Figure 2: Active document node execution

ing tools, or an on-site operator that is signaled that the network has
been readied for the replacement of a router linecard, or some other
manual operational task. The execution engine is also responsible
for scheduling multiple tasks to run concurrently, providing fail-
ure handling support,etc., moving closer to its goal of minimizing
human involvement.

Finally, we note that the relationship among active documents,
the execution engine, and running execution tasks is analogous to
that among program binaries, the operating system, and running
processes. Similar to what an operating system does, the execution
engine provides the running environment to the execution tasks,
ensuring the correct and automated task execution according to the
AD. We now consider each of the PACMAN components in detail.

4.1 Active Documents
Active documents provide the basis for achieving network man-

agement automation under PACMAN. In a nutshell, active docu-
ment is a graph representation that encodes the required primitives
and provides flexible composition mechanisms of network manage-
ment operations. Like a program binary, an active document can be
executed on the network with sufficient input parameters.

Elements:We use Petri nets [17] to model active documents. Petri
nets are bipartite directed graphs containing two types of nodes:
places, shown as circles, and transitions, shown as bars. Each type
of nodes encode a special type of management activity.Actionac-
tivities (corresponding to bars) include configuration or state modi-
fication and external notification.Conditionactivities (correspond-
ing to circles) are status acquiring followed by status processing.
We abstract receiving information from external parties asa type
of status acquiring as well. This functional division keepsour AD
model simple without compromising its functionality. The edges
between nodes encapsulates the workflow of active documents, as
we describe next.

Execution: When executed, a node in the graph effects the corre-
sponding type of activity embedded. For example, an action node
may emit a configuration change that add a BGP neighbor setup on
a router, while a condition node retrieves the BGP neighbor status
and verifies if the session is established. The execution of action
and condition nodes may result in calling a set of APIs provided by
the execution engine, which will be described later, to interact with
devices or external parties, as shown in Table 1.

The progression among these activities is modeled as the arrows
between nodes. An arrow from nodea to nodeb represents a
happen-after relationship during execution. The basic execution
mechanisms of active documents are shown in Figure 2. Each ar-
row is marked as eitherenabledor disabled.1 An action node is
executed only ifall of its incoming arrows are enabled. After exe-
cution, all incoming arrows of the action node are changed todis-
abled, while all outgoing arrows are marked as enabled (shown in
Figure 2-a). A condition node is executed ifoneof its incoming
1Petri net executes by passing tokens between places throughtran-
sitions, which is equivalent to enabling and disabling arrows in AD
execution.



Node type API Call Name Functionality

Action CommitConfigDelta() Commit a configuration change to a target device
NotifyEntity() Send messages to external entities

Condition

QueryDeviceStatus() Obtain physical device status information
QueryEntity() Obtain information from external entities

QueryExecutionState() Obtain execution task running status
TaskSucceed(), TaskFail() Notify execution engine that task has succeeded or failed

Table 1: API calls supported by the execution engine

Figure 3: Active document design paradigms

Figure 4: An example active document

arrows are enabled. After executing, one of the enabled incoming
arrows is switched to disabled, andonly oneof outgoing arrows
is enabled based on the status processing result performed of the
condition activity (shown in Figure 2-b). By using the structural
elements [18] shown in Figure 3, Petri net is capable of modeling
generic and complex workflows, fully covering the compositional
mechanisms from MOP documents.

For automation, an active document must be reusable, meaning
that it can be executed to handle similar network tasks in differ-
ent parts of the network or even on different networks. To achieve
this, the activities associated with the nodes in an AD are stored
as templates. For example, a condition node that checks BGP
session establishment would be specified as “Check BGP session
to PARA_PEER_IP on routerPARA_TARGET_DEVICE”, where
the two placeholders are replaced during execution with actual val-
ues specified in the execution task.

Besides choosing a follow-up action, an executed condition
node can decide that the management task has succeeded or
failed. In these cases, the API functionsTaskSucceed() and
TaskFail() are called respectively, similar toexit() state-
ment in C programs. The execution engine stops the executiontask
and handles the failure ifTaskFail() is called.

Example: Figure 4 shows an active document that can be used
to set up a BGP session between two routers. ActionA0 is not
performing any activities, except to create two parallel branches to

Figure 5: Sequential task composition

operate on two routers. ConditionsC0 andC1 launch aping on
both routers to see if the other end is reachable. The task fails if
eitherping fails. Otherwise, actionsA1 andA2 are executed to
add the actual BGP neighbor configurations on both routers. Then,
conditionsC2 andC3 check if the configured BGP session is up on
both ends; only if both condition checks succeed, can the action in
A3 be executed. A dummy action node is used at the head and a
dummy condition node at the tail of the active document, if neces-
sary. For example, the bottom condition node in the example does
not perform any activities but directly callsTaskSucceed().

4.2 Execution Task Composition
While active documents describe the workflow of management

tasks in the abstract,simple execution tasksare used to specify spe-
cific instantiations of ADs by replacing all template placeholders
with appropriate parameter assignments, as shown in Figure1. For
example, an active document to configure an IP address on a partic-
ular interface of a router needs the parameters of router IP address,
interface name and IP address to set. The parameters are usually
generated from external network related databases [6, 2]. Apracti-
cal concern is that the database could be out-of-sync with the actual
network state, which is a problem for existing management meth-
ods as well. To alleviate the potential negative impact, ADscan be
designed to always perform in-sync checks at the start of execution.

PACMAN takes advantage that ADs are composable to enable
building complex tasks from simple tasks. Moreover, it allows
generic network-aware policies to be imposed. The combination of
these two abilities can support high-level management goals, like
“execute these tasks, butavoid network partition”. We describe
three composition mechanisms in detail next.

Sequential: Figure 5 shows the result of applying a simplese-
quential orderingto two tasks (failures are not shown for simplic-
ity), namely the link setup task as Task 0 and the BGP configure



Figure 6: Wrapper construct for concurrent traffic disrupti on
detection and state diffing

Figure 7: Policy enforcement in parallel composed tasks

task as Task 1, resulting in a “BGP peering session setup” task as
the composed task. A strict ordering is enforced: a task is only
executed when the previous task succeeds; the composed tasksuc-
ceeds if the last task succeeds. Note that nodeC_0_4 originally
callsTaskSucceed() if task succeeds. This API call is replaced
with an arrow pointing toA_1_0 to stitch the two tasks together.

Meta structure: Figure 6 shows an example meta structure for au-
tomating operations before, during and after an execution task. The
composed task starts by taking a snapshot of the running status of
the target device. At the same time, a loop structure (shown on
the right) is used to continuously monitor network running status
via ping or dedicated traffic generation engine. If a network dis-
ruption is detected,TaskFail() is called to perform roll back
immediately. When the wrapped task finishes, another snapshot of
the network status is taken and compared with the previous one.
Failure is reported if certain criteria are not met,e.g.,some BGP
sessions fail to establish. This is particularly useful forsupporting
software or hardware upgrade tasks.

Parallel with policy enforced: Figure 7 shows how several tasks
are composed to execute in parallel but with a network-awarepol-
icy enforced. Each dotted box contains the original AD of each
task for composition (only one action node and one conditionnode

are shown for simplicity). Apolicy condition node(or policy node)
is added to point to every action node in each task. Once imposed,
the policy node becomes an additional condition to satisfy for each
action node, thus it can embed a network-aware decision logic that
goes beyond individual tasks. We show later how generic policies,
like “prevent network partitioning” and “prevent link overloading”,
can be implemented. Policy nodes are usually written by network
experts and can be directly used to regulate generic execution tasks.
This further lowers the bar for AD creation, as existing policies can
be applied to carry out the more complicated decision logic.

The policy node doesnot simply serialize the actions in each
tasks. There are multiple arrows pointing from the dummy start ac-
tion node to the policy node. This effectively adds multipleenabled
arrows to the policy node, so that the policy node does not need to
wait for an action to finish before enabling another action, allowing
multiple action nodes to be executed concurrently, if permitted by
the policy. As shown in Figure 7, when the action node is done,
it would enable the added arrow pointing back to the policy node,
such that the policy node can launch again to select the next action
node to run, if there is any.

The active document design together with the sophisticatedcom-
position support completes the picture of PACMAN’s capability for
fulfilling automated network management. It fully satisfiesthe re-
quirements of automating MOP documents, but also goes beyond
that by imposing network awareness without additional manual
work.

4.3 Execution Engine
An execution engine runs all execution tasks like separate pro-

grams, by providing three main functions:

Provide execution environment: Like an operating system, the
execution engine allows each running execution task to interact
with physical devices or external entities through a set of API
calls. The execution state of an execution task is maintained as
a collection of enabled arrows by the execution engine. To start
an execution task, a dummy condition node is added with an en-
abled outgoing arrow pointing to the start action node. Thiseffec-
tively allows the start action node to activate the whole execution
task. The enabled arrows for each execution task is updated after
a node execution finishes. An execution task finishes by calling
TaskSucceed().

Handle API calls: To support the most common
CommitConfigDelta() and QueryDeviceStatus()
calls, the configuration delta or status query template is first
parametrized, based on the input parameters to the execution task,
and then fed into the proper device, which is usually indicated
in the input parameters as well. If the configuration change is
accepted by the device, the API call is done. A configuration delta
may not be accepted by the target device for various reasons,e.g.,
command syntax error, missing reference links, or device errors.
In these cases,TaskFail() is called by the execution engine for
the execution task.NotifyEntity() andQueryEntity()
are invoked based on the node specification. The message or query
should be parametrized as well.QueryExecutionState()
returns the list of enabled arrows and the current nodes to the
calling condition node, mostly used in policy nodes that need to
reason about the execution state.

Handle failures: An execution task fails ifTaskFail() is
called. The execution task is stopped immediately, and a snap-
shot of the execution status is taken, which consists of the result for
QueryExecutingState() along with the condition node that
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reports the failure. These are recorded for future manual inspection.
The execution engine allows different failure mitigation strategies.
By default, the effect of the whole execution task is rolled back. To
support this, the execution engine maintains an execution history
for each task. The rollback action is done by undoing all the con-
figuration changes made based on history information. If external
entities are notified in any form, revoke messages are sent. Other
mitigation strategies may be also be used, such as no-rollback, par-
tial rollback or redo.

5. CREATING ACTIVE DOCUMENTS
In Section 4 we abstractly described the creation of active docu-

ments and their derived execution tasks. We now describe a practi-
cal framework to assist the rapid creation of ADs. This AD creation
framework is depicted in Figure 8. There are two requirements
for building this creation framework: i) high usability, which can
lead to quick adoption; ii) high expressiveness, so that thegener-
ated ADs describe management tasks accurately. An AD is created
via the following three steps, allowing quick transformation from
MOPs to ADs, forming an AD library:

Task observation: An operator or AD designer, guided by the
MOP documents or with a common best practice in mind, per-
forms a network management task on a set of network elements,
typically in a testbed environment. Operators directly access the
target devices,e.g., spawn multiple SSH sessions to CLI, while
we use arecorderto transparently capture the full interaction. We
record: i) performed activities through CLI,e.g.,modify configu-
ration, change protocol state (such as BGP session reset), acquire
network status; ii) device response and internal states,e.g., dis-
played network status, emitted SNMP trap messages and device
log messages. The recordings are tagged with timestamps.

Event extraction: Action and condition activities are extracted
from the recordings automatically by anextractor. Contiguous con-
figuration changes are grouped together as a single event, aslong as
there are no condition activities in the middle. Similarly,repetitive
condition checks with the same result are combined. When device
status is inspected in the CLI, we correlate logs from other sources,
such as SNMP or device log message, to augment the condition
event. That is, we allow the operator to specify the decisionlogic
based on those information sources as well.

Operator annotation: The events extracted from previous step are
presented as action or condition nodes in anAD editor, pending
operators’ annotation to complete the AD generation. The operator
has to specify i) the parameters that are specific to tasks, sothat
we abstract them as placeholders for future re-use, ii) the workflow
logic by drawing arrows between nodes,e.g., identify two paral-
lel branches, iii) the information source and decision logic in each

Figure 9: Example of operator annotation

condition node, iv) external synchronization events, since they are
not recorded, v) additional events for hypothetical scenarios, e.g.,
failure detection (condition) and response (action).

Figure 9 shows an example of operator annotation. The left side
shows the processed CLI log by events generation.C indicates a
condition checking, followed by the response (R) from the device;
A indicates an action performed by the user. On the right side,the
annotation result is shown: all IP addresses and interface names are
replaced by generic placeholders, such asINT_NAME; the nodes
are connected by arrows, indicating execution flow; for eachcondi-
tion nodes, the actual decision process is formally specified in the
form of a sequence ofif-then-else statements, which process
the retrieved status information and determines a follow-up action.
The same framework for annotation can be used to directly create
or modify ADs, e.g.,by a skilled designer. This creation process
only needs to be done once, as the generated ADs can be re-used
and composed in the future to fulfill similar or even more complex
tasks.

One limitation of this creation framework is that the recorded
AD reflects the operations on afixedamount of devices. As such,
tasks like “to enable IS-IS onall routers” cannot be captured by
a single AD, because the number of routers in the creation envi-
ronment does not match that in the production environment. To
overcome this problem, it is advised that the operators create ADs
that are smaller and more specialized,e.g., “to enable IS-IS on a
single router”, and use the composition mechanisms to stitch mul-
tiple ADs together. For more sophisticated tasks,e.g.,“operate on
all the routers that meet a certain criterion”, the AD designer can
design ADs to operate on one device, while encoding the selection
criteria into the beginning of the AD, so that the operator can sim-
ply compose an execution task that works on all routers. Another
solution is to leverage on external databases to determine the set of
devices to operate on.

6. CASE STUDIES
In this section, we use several realistic examples to show how

active documents are used to perform complex yet automated net-
work operations in the PACMAN framework. Since a quantitative
measurement of improvement is hard, we qualitatively evaluate the
benefit of PACMAN comparing to existing approaches.

6.1 Fault Diagnosis
Active document is an ideal candidate for automating the fault



Figure 10: Layer-3 VPN diagnostic AD

Figure 11: Planned maintenance AD

diagnosis process. Condition nodes can be used to retrieve rele-
vant information from various devices and then reason aboutthe
symptom. The outgoing arrows of condition nodes correspondto
different diagnosis results and may lead to additional steps.

Figure 10 shows a portion of an active document that is used to
diagnose layer-3 VPN connectivity. This AD is converted from a
MOP provided by a major router vendor [20]. The whole diagnosis
procedure checks multiple routers to see if VPN routes can prop-
erly propagate from a local customer edge (CE) router, through the
local provider edge (PE) router, and reach the remote PE router and
remote CE. The example shows the portion that diagnoses if routes
propagate correctly from local PE to remote PE.C0 logs into the
remote PE router to check if the loopback IP address of the lo-
cal CE router is seen on its layer-3 VPN routing table. If true, it
means that routes from the local CE correctly propagate to remote
PE, thus this portion of AD can be bypassed. Otherwise,A0 is
executed to spawn multiple tests to further diagnose the problem:
e.g.,C2 checks on remote PE if the iBGP session to the local PE
is properly established; if not, the problem is found, leading to the
execution ofA2 which either starts another sub-task to automati-
cally fix the BGP session or callsNotifyEntity() to contact
an operator about the diagnosis result.

The flexible composition capability provided by active docu-
ments allows network-wide fault detection, fault diagnosis and fault
recovery in a closed loop by stitching appropriate ADs, reducing
human involvement significantly. The state of the art in automated
fault diagnosis relies on router vendor support [10] to execute di-
agnosis scripts automatically when certain condition is met. This
support is limited to a single device, while PACMAN can easily
correlate and reason about status from devices across the network.

6.2 Link Maintenance
Figure 11 shows a planned maintenance task with enhancement

by applying a network-aware policy. The dashed box containspart
of the original active document: action nodeA0 increases the OSPF
metric of the target link to cost it out;A1 brings the link down by
changing configuration and, at the same time, notifies field oper-
ators, signaling them to start the on-site maintenance on related
physical interfaces. The link bring-up procedure is similar thus ig-
nored for brevity.

Figure 12: A simplified ISP Backbone

Figure 13: Task design for OSPF to IS-IS migration

This task involves OSPF weight change and interface shut down
thus has the potential of negatively impacting live traffic.Current
solutions rely on operators to manually predict and avoid negative
impact, a usually slow and unreliable process, which is particularly
undesired for such tasks with stringent requirements on timing and
reliability. In PACMAN, we can impose a policy node, likeP0,
to enforce a high-level policy that automates a network-aware deci-
sion process for minimizing traffic disruption.P0 is composed with
the original AD with added arrows pointing to all action nodes. In
essence,P0 is a condition node that reasons about network-wide
states, such as traffic demand matrix, existing OSPF weights, etc.,
and makes decisions by enabling the arrows to appropriate action
nodes. In effect,P0 will not allow A0 (OSPF cost-out) to proceed,
unless the estimated traffic shift caused byA0 would not overload
other links;P0 will not allow A1 (interface shut down), unless i) the
routing has converged and ii) indeed no traffic is flowing through
the link. Given the composition capability,P0 can be used to reg-
ulate arbitrary tasks without additional manual work. Thisis es-
pecially useful for carrying out simultaneous maintenancetasks,
which are hard to coordinate by operators and may cause signifi-
cant network downtime,e.g.,a partitioned network.

Besides using network-aware policy control, this maintenance
job can also take advantage of external reasoning platforms, such
as a traffic engineering planner [5]. For example,C0 can query the
planner if it is permitted to shut down the interface. This allows
PACMAN to take full advantage of existing infrastructures.

6.3 IGP Migration
Many ISP networks have performed IGP migration for a variety

of reasons [21]. IGP migration is a challenging task as IGP isdeep
down the dependency stack — many other network services and
protocols depend on it. Let us consider the task of migratinga
network from running OSPF to IS-IS (actually performed by two
large ISPs previously [22, 23].)



The migration process first enables IS-IS (with a lower prefer-
ence) in the network and then disables OSPF. One of the challenges
is to prevent transient forwarding loops. Consider a simplified ISP
topology in Figure 12. After IS-IS is enabled and running together
with OSPF, it is possible that linkCR1 → CR2 has a high weight
in OSPF andCR2 → CR3 has a high weight in IS-IS. The traffic
from BR1 to BR2 goes fromBR1−CR1−CR3−CR2−BR2,
as OSPF is still the preferred IGP. If OSPF is disabled first on
CR3, CR1 still forwards traffic toCR3 becauseCR1 still runs
and prefers OSPF, and the shutdown ofCR3’s OSPF will not
be detected after a timeout.CR3, on the other hand, switches
to IS-IS immediately, thus starts to forward traffic via the path
CR3 − CR1 − CR2 − BR2. As a result, packets would bounce
betweenCR1 andCR3, until OSPF re-converges. A simple solu-
tion to prevent this in common ISP setups is to disable OSPF onall
edge routers first and then on all core routers [23]. This enforce-
ment, however, is unreliable and requires much manual effort in
existing approach.

PACMAN automates this process using a composed execution
task, with two major stages, as shown in Figure 13:

Stage 1: for each router, i) configureiso layer on all interfaces;
ii) verify iso is enabled; iii) configure IS-IS protocol to run with
a lower preference than OSPF; iv) verify the IS-IS protocol has
learned all the routes as OSPF does.

Stage 2: for each router, i) deactivate OSPF; ii) verify no loss of
routes; iii) remove OSPF config, adjust IS-IS preference.

Both stages are also composed tasks, executed in sequentialor-
der. For stage1, all sub-tasks are executed in a simple parallel fash-
ion, because they do not interfere with each other. For stage2, all
sub-tasks are executed in parallel, with additional policyenforce-
ment (ordering constraint) to avoid forwarding loops. We will il-
lustrate in the §8.1 the effectiveness and correctness of this compo-
sition.

7. IMPLEMENTATION
In this section, we briefly describe our implementation of the

PACMAN framework. Two major components are the AD creation
framework and the execution engine. All implementations were
performed in Java, and we mostly focus on Juniper routers dueto
availability in our test environment, but our methodology extends
to other network devices.

7.1 Active Document Creator
Our implementation of AD creator contains several pieces, some

of which leverage existing software packages. We customize
screen andscript Linux commands such that SSH sessions
can be made simultaneously to the same or different devices while
each session interaction being recorded with timing information.
SNMP messages and device log messages are constantly being
monitored and later retrieved to correlate with console commands
based on timing. The annotation is done in a Java-based GUI. For
each action or condition node, a pop-out window allows the opera-
tor to specify the parameters. For condition nodes, a chain of tests
is specified to represent an if-then-else decision making. Each test
need to specify: an information source, which could be the result
of a status-checking command, SNMP or device logs, or previously
saved information; a predicate as test body, which can be as simple
as string matching, or as complicated as an XML query — Juniper
routers support XML-based interaction for retrieving device status;
a test result, which can be an arrow to enable or calling an API.

Figure 14: Execution engine architecture

7.2 Execution Tasks and Execution Engine
A simple execution task is created from an AD and a parame-

ter assignment. A quick sanitization process is performed to make
sure that enough parameters are specified and the values conform
to the parameter types. When composing execution tasks together,
the node names and parameter names used in ADs of different sub-
tasks are renamed to avoid confusion. For example, nodeM is re-
named asN_M whereN_ is a prefix added for all the nodes of the
sub-task. (This renaming effect can be seen in Figure 5.)

Figure 14 shows the high-level architecture for our execution en-
gine. Each running execution task is associated with a list of en-
abled arrows. The execution engine scans all execution tasks pe-
riodically. Based on the enabled arrows, the nodes that are ready
to execute in each executed task is added into a queue waitingfor
execution.

A node processoris responsible for actual execution of the
nodes. Multiple worker threads are spawned to handle concurrency.
If a worker thread is available, a node is fetched from the waiting
queue. Rather than picking nodes from the head of the queue, a
node is randomly selected from the queue, to ensure fairnessand
avoid potential live lock. To execute a node, parameter values are
copied from the execution task to replace the parameter placehold-
ers in the node.

To handle CommitConfigDelta() and
QueryDeviceStatus() in a node, the worker thread contacts
physical devices specified via either CLI or NetConf interface.
Connections to recently contacted physical devices are cached
and reused to reduce connection establishment overhead. Config-
uration changes made to the same device are serialized to avoid
potential conflicts. QueryEntity() andNotifyEntity()
are simple wrappers to external scripts. For example, executing
NotifyEntity(’mail’,’a@b.com’,’done’) invokes a
shell command./mail.sh a@b.com done.

7.3 Programming Policy Nodes
Policy nodes can be much more complicated than the regular

condition nodes created via the AD creator. In fact, we allowpolicy
nodes to be written in Java and handled using the same execution
engine. When executed, a policy node first identifies a set of action
nodes that have all other pre-conditions satisfied and are waiting
for its permission to proceed. Among these nodes, the policynode



Algorithm 1 Implementation of the prioritization policy node
Require: AdSpecAS, ExecutionStateES, NetworkStateNS,

DemandMatrixDM
1: W ← GenWaitingNodeList(AS,ES)
2: for actionn in W do
3: NewState ← NS applies action ofn
4: calculate connectivity matrix and traffic on each link based

onNewState andDM
5: if in NewState network is not partitioned and no over-

loaded linkthen
6: return n
7: end if
8: end for
9: return null
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Figure 15: Effectiveness of policy enforcement

can choose one from them to allow its execution by enabling the
final arrow. It is possible for the policy node to decide that none of
those actions should proceed at the moment. On the other hand, a
policy node sometimes need to consider the action nodes thatmight
be executed in the future, because it might be a better choiceto
execute them rather than currently ready nodes. Determining these
two sets of nodes can be done via flow analysis based on the graph
structure of the composed AD and execution state. We provide
generic helper functions to ease the development process.

Here we describe the sketch of a policy node, which specializes
in avoiding network partitioning and traffic overloading caused by
arbitrary simultaneous network tasks, shown in Algorithm 1. The
first line uses a provided function to generate a list of action nodes
that are waiting for permission. Line 2-8 iterate through all such
nodes. For each action node being considered, the resultingnet-
work stateNewState, including reachability and routing table, is
calculated based on the current network state and the configuration
change embedded in the action node. If a partitioned networkis de-
tected, the action node will not be permitted. Combining thetraffic
demand matrix and new routing table, an action is permitted if it
does not cause other links to overload or exceed some pre-defined
threshold,e.g.,90% utilization ratio.

8. EVALUATION
We evaluated our prototype implementation to demonstrate its

effectiveness in preventing operational errors and ensuring efficient
configuration management, which scales well with network size.

8.1 Network-awareness Support
To exemplify the effectiveness of policy enforcement, we per-

form stage 2 of the IGP migration task (disabling OSPF on all
routers) in two different ways: i) in multiple individual tasks, each
of which disables OSPF on one router, processed by the execu-
tion engine concurrently, mimicking the effect of several operators

working on different part of the network simultaneously, yet un-
aware of the potential problem; ii) in one composed task, using the
prioritization policy to ensure edge routers are first updated before
changing the configuration of any core routers. We used six Juniper
routers in a local testbed, connected as shown in Figure 12. The ex-
periments were performed on the network state after stage 1 of IGP
migration had finished (IS-IS was configured as the less-preferred
IGP, while OSPF was still running as the preferred IGP). One ma-
chine connected toBR1 was sendingping to another machine
connected toBR3 during the migration period. Link weights of
OSPF and IS-IS were intentionally tweaked to create the situation
discussed in §6.3.

Figure 15 shows the result. When individual tasks were exe-
cuted in parallel, repeating this experiment multiple times showed
that when the task working onCR3 is executes first a forwarding
loop was indeed created as shown in the top figure: the connectivity
was temporarily lost for a few seconds (the amount of time to com-
mit configuration changes on Juniper routers) after the taskstarted.
The connectivity was resumed and lost again before it eventually
stabilized, mostly due to the complex interaction of the twoIGP
protocols. In contrast, the composed task using prioritization pol-
icy did not experience any problems, as shown in the bottom figure.

8.2 Automating Network Operations
We again use the IGP migration task in an ISP depicted in Fig-

ure 13 to estimate the time saving by using PACMAN to automate
network operations. For comparison purposes, one of the authors
who is proficient in network management and router configuration
performed the migration task. That author performed the task sev-
eral times beforehand for training purposes and then reported the
lower-bound estimate of how long a sub-task would take when ex-
ecuted manually (we expect the actual performance numbers from
real operators to be quite similar).

The amount of time to manually perform configuration change
on the routers takes less than 2 minutes each, thus ideally 12min-
utes to finish six routers. Interestingly, the total amount of time to
finish the migration task for all routers takes no less than 25min-
utes, due to additional network status verification and inter-device
synchronization. In contrast, PACMAN finishes the whole migra-
tion task within 2 minutes - 90% of time on effecting configuration
change and acquiring status via NetConf and the rest on internal
processing. If we extrapolate to a network of 100 routers, the man-
ual operation time is over 400 minutes, exceeding an entire main-
tenance window, which is typically of a 3 to 4 hour duration. Even
worse, when the operated network is considerably larger, the man-
ual operation time is unlikely to scale linearly, despite the potential
use of automated scripts, due to more complicated network status
verification and additional synchronization between involved hu-
man operators. In fact, the IGP migration processes documented
online [23] took several maintenance windows across 3-5 days to
finish. For PACMAN, since all the verification process are accu-
rately modeled and automatically carried out, it can easilyscale
with the network size.

8.3 System Constraints
The execution engine directly interacts with physical devices.

Out-of-band access, which is standard in ISP environment, pro-
vides a more reliable connectivity channel, but the bandwidth is
limited, ranging from 9.6kbps serial console, 56Kbps modemline
to 1.5Mbps T1 connection. Router configuration in XML formatis
usually tens or hundreds of kilobytes. Assuming a T1 connection,
it may take around hundreds of milliseconds to transfer a complete
configuration file. Fortunately, most management activities can be



performed in-band where bandwidth is not an issue.
We performed some micro-benchmarks to investigate resource

constraints the server that runs the execution engine. On a server
with 2.5G Intel core 2 duo CPU, it takes about 360µs to load a
2KB XML file with 86 lines, describing 10 routes in the routing
table. It takes about 950µs to perform an XPath query to count
the number of routes described in the XML file. The processing
time should be on the order of hundreds of milliseconds to handle
10000s routes. The processing power may become a bottleneck
when the reasoning activity becomes significantly more compli-
cated. This can either be mitigated by using multiple execution
engines for load-balancing, or offloading some reasoning logic to
programmable routers.

9. CONCLUSION
Network management has been an enduring research topic. De-

spite efforts by both academia and industry, network management
remains largely driven by manual efforts, and is thus error-prone
and time-consuming. In this paper, we proposed the PACMAN
platform, aiming to automate existing network management oper-
ations and enabling the adoption of new holistic network-wide op-
erational practices. The key intuition behind our work is touse
the right level of abstraction which is both close enough to cur-
rent management approach, thus enable quick adoption, general
enough to capture the complexity of existing approaches, and pow-
erful enough to automate and augment them.

Towards the goal of building automated network management
system, PACMAN uses the Active Document abstraction to sys-
tematically capture the dynamics of network management tasks.
This abstraction allows the composition and execution at task
level, thus raising the level of abstraction. The ability tointegrate
network-wide policies distinguishes PACMAN from device-centric
support from vendors and task-oriented nature of MOPs.

We described the design and implementation of the PACMAN
framework, and used realistic usage scenarios to show its effec-
tiveness. As future work, we plan to corroborate with network
operators for feedback and comments in order to further improve
the usability and practicality of PACMAN. In particular, we
aim at allowing more flexible creation and more programmable
composition of active documents by improving the interaction
between human operators and our system.
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