
Network Support for Mobile Multimedia Using a
Self-adaptive Distributed Proxy

Zhuoqing Morley Mao Hoi-Sheung Wilson So Byunghoon Kang Randy H. Katz
University of California at Berkeley

{zmao,so,hoon,randy}@cs.berkeley.edu

ABSTRACT
Recent advancements in video and audio codec technologies (e.g.,
RealVideo [18]) make multimedia streaming possible across a wide
range of network conditions. With an increasing trend of ubiqui-
tous connectivity, more and more areas have overlapping coverage
of multiple wired and wireless networks. Because the best network
service changes as the user moves, to provide good multimedia ap-
plication performance, the service needs to adapt to user move-
ment as well as network and computational resource variations. For
wireless multimedia applications, one must ensure smooth transi-
tions when network connectivity changes. We argue that network
adaptations for multimedia applications should be provided at the
application layer with help from proxies in the network. The rea-
sons are ease of programming, ease of deployment, better fault-
tolerance, and greater scalability.

We propose a self-adaptive distributed proxy system that pro-
vides streaming multimedia service to mobile wireless clients. Our
system intelligently adapts to the real-time network variations and
hides handoff artifacts using application protocol specific knowl-
edge whenever possible. It also uses application-independent tech-
niques such as dynamic relocation of transcoders and automatic
insertion of forward error correction and compression into the data
transcoding path. We advocate a composable, relocatable transcod-
ing data path consisting of a directed acyclic graph of strongly-
typed operators to bridge any data format mismatch between the
client and the data source. In this paper, we present the design, im-
plementation, and evaluation of our system in the context of stream-
ing video playback involving a series of transcoding proxies and a
mobile client.

Keywords
adaptation, handoff, transcoding, mobile multimedia, application
data path, distributed proxy

1. INTRODUCTION
Our work is motivated by the growing need to provide streaming

multimedia services to any mobile client using any network and
client software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’01, June 25-27, 2001, Port Jefferson, New York, USA.
Copyright 2001 ACM 1-58113-370-7/01/0006 ...$5.00.

Given the increasing coverage of wireless networks, it is very
common to find overlapping coverage of multiple wired and wire-
less networks. For instance, a mobile device may have access to
one or more networks such as CDPD, Ethernet, and WaveLAN si-
multaneously. In addition to increasing wireless coverage, there
is also a growing variety of mobile devices with varying capabil-
ity, e.g., Pocket PCs with access to CDPD, laptops with access to
Ricochet, and cell-phones with access to GPRS. Furthermore, mul-
timedia services such as video-on-demand and video conferencing
are rapidly gaining popularity.

Given these trends of increasing heterogeneity in terms of clients,
codecs, networks, and services, there needs to be infrastructure sup-
port for multimedia services in the network to hide the access net-
work and device heterogeneities as well as resource variations to
simplify the deployment of streaming multimedia services. More-
over, when roaming, a mobile user may wish to transparently con-
tinue an ongoing multimedia service session across network changes
or even across access devices changes.

We argue that roaming and adaptation support for multimedia
streaming to heterogeneous clients should be provided at the ap-
plication layer. Our solution is a self-adaptive distributed proxy
system (Figure 1) that intelligently adapts to network variations,
user mobility, and workload through passive monitoring of appli-
cation performance to optimize the users’ experience. It tries to
avoid changes to legacy multimedia services and the underlying
network. At the core of the proxy system is a middleware service,
Automatic Path Creation Service (APC), which provides a platform
for building streaming multimedia playback to mobile clients.

The rest of the paper is organized as follows. We first examine re-
lated work. In Section 3, we illustrate our design goals and then de-
scribe the self-adaptive distributed proxy architecture in Section 4.
The design and implementation of the Automatic Path Creation
Service (APC) is described in Section 5. We then examine in detail
our experience of how APC supports the construction of a multi-
media playback application. We then summarize and conclude.

: transcoding operator

Movie
Concert

Multimedia Applications Heterogeneous Client DevicesSelf−adaptive Transcoding Data Path

Figure 1: Distributed Proxy Architecture

1

2. RELATED WORK

2.1 Proxy Architecture
Our work is heavily influenced by the research in cluster based

scalable network services [12]. Using the Transformation, Aggre-
gation, Caching, and Customization (TACC) programming model,
Fox et al. provided a platform to easily build new applications
using service-specific modules such as filtering, down-sampling,
and compression. However, TACC is limited to run on a single
cluster of machines connected by a high speed system area net-
work. The assignment of specific workers to individual machines
depends only on the work load of the machines because the band-
width within a SAN is abundant. However, one can greatly improve
the service quality if the location of the computation with respect
to the mobile user is taken into account.

Conductor [19] [28] provides a distributed framework for mov-
ing the complexity of network adaptation from the end-host appli-
cation into the network. Each Conductor node can choose to run
a set of adaptors such as schedulers, compressors, and decompres-
sors to help applications adapt to the network path. One of the
major differences between APC and Conductor is that APC takes
a proactive approach in operator placement. Conductor sends a
packet towards the destination to discover any Conductor-enabled
nodes along the path. A planning algorithm then decides which
adaptors should be deployed at each node. APC, however, places
computation at a set of clusters strategically located inside the net-
work which may not lie on the shortest path taken by an ordinary
IP packet between the client and the server. In addition, the opera-
tors in APC are more general than the adaptors of Conductor in the
sense that operators can have multiple inputs and multiple outputs
which allows the creation of non-linear (parallel) paths as shown
in Section 6. This capability is essential for supporting multimedia
streams.

2.2 Handoff and Mobility Support
Our work has benefitted from research projects that study policy-

based handoffs between networks (i.e., Vertical Handoffs [23]) and
between cells in a single network (i.e., Horizontal Handoffs [20]).
We extend their ideas to handoffs across end devices which encom-
pass both of these types as well as handoffs of service sessions.
A service session handoff occurs when the user changes the end-
device used to access the network service during a service session.
Traditionally, handoffs can be supported at the link, network, or
transport layer. We argue that these solutions are not sufficient for
our purposes due to two reasons. First, they do not address the is-
sues of service session handoffs that involve more than simple redi-
rection of data packets. Second, they require support from the in-
frastructure which may not be ubiquitous in today’s heterogeneous
Internet. Link layer handoff (e.g., WaveLAN) is limited to specific
LANs with handoff support. Network layer solutions such as Mo-
bile IP [16] require the deployment of a Home Agent to keep track
of the current location of the mobile user. Transport layer solutions
such as that in Snoeren’s proposal [21] to add a new migrate option
to TCP may not be compatible with existing firewalls.

APC does not exclude the use of existing techniques mentioned
above. But in general, the APC service provides smooth handoffs
across IP address changes at the application layer as described in
Section 4.3.1. Our approach requires no changes in the IP or the
TCP layer. This is possible only because our system has complete
control over the entire network path. The advantages of providing
mobility support at the application layer include extensibility, ease
of deployment and more intelligent handoff policies. By providing
the necessary application-level gateways that translate between two

network protocols (e.g., GSM-IP gateway), it is easy to extend our
solution to different networks. Furthermore, user-defined handoff
preferences can be easily specified in our system.

2.3 Channel Adaptation
The performance of distributed applications depends heavily on

the conditions and characteristics of the communication channel. It
is well known, for example, that any application built on top of an
off-the-shelf TCP (e.g., TCP Reno) suffers poor performance when
the communication path includes lossy wireless links. A good
comparison of the effectiveness of different mechanisms to im-
prove TCP performance over a heterogeneous wired/wireless net-
work can be found in [4]. Two solutions, link layer retransmis-
sions with TCP duplicate-ack suppression (Snoop) and split-TCP
connection with selective acknowledgement (SPLIT-SACK) yield
very good overall performance. While Snoop yields slightly bet-
ter performance, it requires link layer support which may not be
ubiquitous. The use of split-connections violates end-to-end TCP
semantics and is usually considered undesirable. Fortunately, for
our purposes, the data flow between the source of data and the user
is already segmented into different transport connections and hence
we are not bounded by the end-to-end semantics of TCP. Therefore,
we can achieve near optimal performance using a split-connection
approach by putting a proxy as close to the wired/wireless network
boundary as possible, without requiring any support from the net-
work.

For applications that use UDP or do Application Level Fram-
ing [8], the adaptation can be done at the application layer, at the
proxy with the help of APC, or a combination of the two. Our
architecture provides a general framework to allow automatic in-
sertion of FEC or compression/decompression operators to adapt to
the channel similar to Conductor [28] and transformer tunnels [24].
Bolot et al. in [6] [5] proposed to use FEC to protect delay-sensitive
audio flows when sending over a lossy packet network. Poldolsky
et al. in [17] have shown that using FEC can be beneficial even
when taking into account the extra traffic generated by FEC. The
idea of using FEC to protect against losses can also be extended to
protect video flows [25].

3. DESIGN GOALS

• Any-to-Any Communication: Nowadays, mobile devices
have a wide range of capabilities, e.g., in software, memory
capacity, and display hardware. Transparent access to any
existing service is an important goal.

• Automated Data Format Adaptation: The creation of a
data path for the adaptation of service content to heteroge-
neous devices should be automated. Negotiation between
devices and services for the purposes of selecting the device
to receive the service content and for device handoffs should
also occur without user intervention.

• Transparency: The proxy system must be as transparent to
existing services and client applications as possible, incur-
ring minimal changes without modifying the source code.

• Seamless Handoffs across Networks: During roaming, users
may change their IP addresses or leave one network coverage
area and enter a different one. It is therefore important to pro-
vide support for seamless handoffs across network changes
while maintaining the current service session. When multi-
ple networks are available, the selection decision should be

2

based on the tradeoffs between the overhead and the qual-
ity of service. Cost and power considerations may also be
factors and can be specified as user preferences.

• Seamless Handoffs across Devices: Mobile users may need
to hand off a service session from one or more devices to an-
other set of devices. Our service proxy system must support
policy based, user preference driven handoffs across devices
seamlessly—with minimal service disruption.

• High Quality of Service: Real-time multimedia applications
desire low jitter, delay, and guaranteed bandwidth, thus the
infrastructure must deploy various mechanisms to optimize
performance.

4. SELF-ADAPTIVE DISTRIBUTED PROXY
ARCHITECTURE

In this section, we describe the architecture of the distributed
proxy system. Unlike the traditional proxy, which is commonly
statically defined and manually configured, our system is defined
and configured automatically. It dynamically adapts to resource
variations and provides transparent client mobility support. The
proxy system provides an application data path: a directed acyclic
graph (DAG) of strongly-typed transcoding (e.g., GIF to JPEG con-
verter) and optimization operators (e.g., FEC). The data path serves
three purposes: adaptations to mismatched data formats, runtime
adaptations to resource variations, and client mobility support. The
creation of the data path is triggered when a client first initiates a
connection to a service.

The data path imposes no modification to the server software. A
slight change is nevertheless needed on the client side to intercept
the communication between the client and the service. When the
client first initiates a connection to the server, user input needs to
be captured and relayed along with other necessary information to
APC for path construction. Subsequently, client’s control input for
the service session are always redirected to the APC service for
forwarding. This change can be achieved easily through a wrapper
program without modifying the client software.

4.1 Data Format Adaptations
To achieve any-to-any communication between arbitrary client

devices and multimedia services, the APC Service compiles a DAG
of transcoding operators for data transformation to address any ca-
pability mismatches. The data path converts the original data flow
between the client and the server to eliminate any format mismatch
while optimizing the quality of service.

The path compilation process is an optimization problem with
continuous feedback (Figure 2). Its objective is to provide a fault-
tolerant data flow aiming for minimal delay, sufficient bandwidth,
and low jitter. Our strategy combines the approaches of resource
discovery, continuous passive resource monitoring, and proactive
adaptation. The path compilation consists of two steps: logical
path compilation and physical path creation.

4.1.1 Logical Path Compilation
A logical path consists of a DAG of operators with a single

source and sink. To construct a logical path, the inputs to the APC
must include the following information.

• information about the data source (i.e., multimedia service)
and the data sink (i.e., client): location, data format, data
rate, client’s capabilities (e.g., display, memory, etc.).

Resource Discovery

Operator Selection/Placement

Data Path Execution

Logical Path Compilation

Runtime Adaptation

Data Path Maintenance

Data Path Repair

Dynamic
Adaptation

Path
Search

Iterative

Physical Path Creation

Operator Graph Compilation

Figure 2: Iterative Path Execution Process.

End Client End ServiceCluster A

Cluster B

Cluster C

OpA
OpB

OpC

OpD

OpE

OpF

Figure 3: An Example Wide Area Path: each circle denotes an oper-
ator; the connecting lines indicate data flows. A data path may span
across multiple clusters in the wide area.

• available locations for executing operators, i.e., APC service
clusters.

• available operator software and existing operator instances
for reuse,

• operators’ execution requirements: restrictions on placement,
needed software or hardware environment, operator proper-
ties such as input/output rate, external data source, network
protocols,

• current network topology and load, and computational server
load.

Some of this information can be automatically discovered by APC
or obtained from other infrastructure services such as Service Dis-
covery Services [9] . To obtain network and server load informa-
tion, we propose using a wide-area monitoring service (e.g., [27])
that continuously gathers information to identify network bottle-
neck links and overloaded servers.

We showed in [15] that the logical path search problem can be
mapped to a shortest path graph search problem. The optimiza-
tion criteria are application-specific, e.g., data throughput, jitter,

3

delay, video/audio quality metrics. Some additional consideration
factors include operator instantiation latency and other path setup
overhead.

4.1.2 Physical Path Creation
After the logical graph of operators is selected, their physical

locations for execution are determined next by APC. Short-lived
operators are created on demand and their running locations are
determined. Long-lived operators in the paths are chosen from ex-
isting operator instances. A physical path (Figure 3) is a logical
path with each operator’s location determined.

Operator placement in the wide area is an optimization problem
that maximizes application performance while not exceeding the
available resource. Our operator placement strategies take into ac-
count network, server load information, the properties of operators
and data flow, as well as workload characteristics. Each operator
is benchmarked to determine its CPU and bandwidth requirement
for both input and output. We define operator execution criteria to
be those requirements in addition to other software and hardware
needs. APC obtains a global view of the available computational
clusters and estimates the network distances between them through
active probing and passive monitoring.

Given the client’s location and the requested service, APC lo-
cates the closest unloaded server to the client. We propose a greedy
approach for placing operators in the path. Operators in the path
are placed such that the end to end delay is minimized and opera-
tor execution criteria are satisfied. In general, operators are placed
on a single cluster with the minimal aggregate distance to the data
source and sink if sufficient computational power and bandwidth
are available at that cluster. If that is impossible, unloaded clusters
near the source and sink with good network interconnectivity are
selected. Adjacent operators in the transcoding data path with high
data rate are either colocated on the same machine or placed on
machines in a high-speed LAN. A compression operator is inserted
between operators with a high data rate when the data is compress-
ible.

If the client uses wireless access, then all operators should be
placed in the wired network. The last-hop operator is placed close
to the wireless access. This arrangement increases the effectiveness
of FEC encoding because the losses are only due to wireless link
errors. To scale with increasing data path users, operator placement
avoids creating any bottlenecks on both clusters and network links
using load-balancing heuristics.

For a given logical path, APC may not find a physical path with
acceptable performance due to resource constraints, thus APC may
go back to the logical path compilation step illustrated by the arrow
labeled “Iterative Path Search” in Figure 2.

4.2 Proactive Network and Server Load Adap-
tation

4.2.1 Adaptation to Resource Variations
The path execution process is iterative. It has a life cycle shown

in Figure 2. Once a path has been constructed, it is modified during
runtime given the feedback from the monitoring agents colocated
with each operator. These monitoring agents passively measure at
each operator to gather data on throughput, delay variation, and
any other application-specific metrics to discover any performance
anomalies. If the network or server performance degrades below an
application-specific threshold, the agent immediately notifies the
APC service for path adaptation.

Since the current Internet does not yet provide guaranteed end-
to-end QoS, the goal of the runtime network adaptation performed

by the APC service is to achieve service quality through proac-
tive operator adjustment, strategic placement and dynamic reloca-
tion of computation. We claim that application-level adaptation is
more flexible, extensible, and well-controlled. The potential con-
cern is added complexity and performance overhead. Our mecha-
nism hides this overhead as much as possible. For instance, when
operators are relocated, the original data flow is switched only after
the new data flow has been initiated to hide the data path migration
latency. Furthermore, the proxy system is easy to deploy, because
it requires essentially no modification to the client or service soft-
ware. The adaptation mechanism can be easily customized given
that the optimization goals may differ for different classes of mul-
timedia applications. For instance, minimizing delay is more im-
portant for interactive applications like video-conferencing than for
video-on-demand.

The proxy system deploys both application-specific and application-
independent adaptation mechanisms.

• Application-specific Adaptation: APC makes use of application-
specific information or techniques such as control channels
and knowledge of application protocols and data.

– Application-specific control: The application provides
mechanisms for dynamic adjustment but needs exter-
nal assistance. As an example, a codec may be error-
resilient, but needs to be notified of the current error
rate through a control channel. Another example would
be dynamically adjusting the source encoding rate of
video given feedback about the network conditions. In
this case, APC is responsible for monitoring the re-
source changes and providing information to the appli-
cations to enable dynamic adaptation.

– Application protocols: APC uses application protocol
specific knowledge whenever possible. For instance,
the Real Player reports bandwidth information back to
the Real Server using the RTSP protocol so that the
server can choose the data stream with the proper en-
coding rate. We observe from our experiments that the
bandwidth information is not very accurate or timely.
To improve performance, the proxy system parses the
stream and replaces the RTSP control messages with
more accurate bandwidth information to make applica-
tions more network-aware.

– Application data knowledge: For example, differen-
tial protection of data based on type and semantics (e.g.,
audio vs. video) is very important in the case where the
available bandwidth is not sufficient to support both.

For this class of adaptation, APC sets up the necessary con-
trol channels for these mechanisms during path compilation.
The mechanisms are dynamically triggered based on perfor-
mance monitoring. We aim to overcome the application-
specific complexities while still making use of them for re-
source adaptation.

• Application-independent Adaptation: APC takes advan-
tage of the fact the proxy system has control over the entire
network path of the data flow. The following mechanisms
are dynamically deployed based on per application hop per-
formance monitoring. Measurement information may con-
tain fluctuations; therefore, the proxy system uses hysteresis
to avoid instability and carefully considers the tradeoff be-
tween the adaptation overhead and possible improvement in
quality of service.

4

– Dynamic operator relocation moves operators to avoid
bottleneck servers and network links. Transcoders are
usually easy to relocate, because they are a special class
of programs with only soft state. To hide relocation la-
tency, data buffering and prefetching are used, as well
as prestarting the new data stream before switching over.

– Dynamic insertion of computation is another tech-
nique used to adapt to resource variations. For instance,
if the network between two operators has a high error
rate or becomes lossy, forward error correction (FEC)
is automatically inserted to increase goodput. FEC also
varies the amount of redundancy based on the measured
packet loss rate and error rate.

4.2.2 Data Path Failure Recovery
Besides adapting to resource changes, another aspect of adapta-

tion is quickly reacting to any path failures. APC provides recovery
mechanisms for both operator and network failures. Path failure is
detected through active probing and passive monitoring. Active
probing occurs between APC and each operator’s monitoring agent
to detect failures at both the process and machine level. Passive
monitoring is also used by taking advantage of the continuous data
flow during execution. Any interruption of data flow can be an
indication of a potential failure. Each operator can time out de-
pending on the application-specific expected latency of receiving
data from the previous operator in the chain. Furthermore, upon
catching an I/O exception or getting an error message when an op-
erator attempts to read or write, it can deduce that its connecting
operators have failed.

Restarting a failed operator during a live data path is neces-
sary in our recovery mechanism. From our implementation experi-
ence, transcoding operators have only soft-state and are restartable.
MPEG decoders, for example, can restart in the middle of a video
stream [26].

To achieve fast fault recovery, we use the following protocol to
minimize the amount of path down-time and its impact on the end-
users. Partial path repair is always attempted before rebuilding
the entire path. There is usually never a need to tear down the
entire path to rebuild it as long as the control path is resilient to
failures. APC has built-in redundant control paths for each data
path: between operators in the data path and between operators and
APC.

The following discussion of path repair applies to both single and
multiple operator failure. First, if failure occurs only at the process
level, the failed operator is restarted on the original node. If that
is unsuccessful, a new physical path is constructed to relocate the
failed operator to a different processor. APC always attempts to
reuse existing operators to avoid loading and initialization over-
head. If none are found, the physical path construction process is
repeated to find an optimized location to restart the failed operator.
The connections between the failed operator and its neighboring
operators are reestablished to resume the data flow. To minimize
the amount of data lost, as soon as the path component failure is
detected, the data flow is halted (i.e., buffered) to minimize loss of
data. To achieve full reliability, lost data need to be retransmitted
by the application. If the newly found physical path fails again, the
logical path is rebuilt.

4.3 Client Mobility Support

4.3.1 Handoffs across networks/devices
During a service session, roaming users may experience chang-

ing network connectivity and new networks may become available

for access. The APC service automatically manages handoffs to
new networks. The discovery of new network interfaces or network
disconnectivity occurs without user intervention. A light-weight
client proxy that executes on the client device monitors the avail-
ability of network interfaces and signals APC when changes occur.
As new devices become available, service session handoff occurs
automatically.

The handoff decision across networks or devices is policy-driven.
The best network connection is selected based on cost, connectiv-
ity, handoff overhead, and network characteristics (e.g., bandwidth,
error rate.) The handoff overhead is weighed against the potential
improvement in quality of service. During handoff, the data stream
is temporarily interrupted. To minimize the disruption to the users,
the proxy system proactively caches, prefetches, and retransmits
data.

4.3.2 General mobility support
As users roam farther away from the last hop of the proxy chain,

the performance may start to degrade due to the increasing network
distance between the client and proxy. APC adapts to the changes
by modifying the data path using techniques mentioned in the Sec-
tion 4.2.

5. DESIGN AND IMPLEMENTATION OF
APC

A distributed middleware service, Automatic Path Creation Ser-
vice (APC) [15] is responsible for automatically creating, execut-
ing, and maintaining the data path. APC is implemented as a cluster-
based, wide-area service. A bootstrapping mechanism is used for a
client to first contact the APC service. It also serves to load-balance
across APC service instances.

5.1 Bootstrapping and Load-balancing Mech-
anisms

This scheme has two alternatives: the BGP anycast mechanism
(used by Inktomi) and the DNS redirection technique (used by Aka-
mai). In the first scheme, a well-known “phantom” IP address (e.g.,
1.2.3.4) is associated with the APC service. All the APC service
clusters form a virtual AS. A redirector router is located in each
APC service cluster, and it advertises BGP routes to this phantom
address. The redirector is aware of all APC service instances in
the network. When a client sends its first path creation request,
the nearest redirector by the hop count metric intercepts the request
and returns the physical IP address of the colocated APC cluster
service. This address can be that of a transport level switch for the
cluster. The switch forwards the request to a least-loaded service
instance in the cluster. Notice that the APC service cluster found
in this way is by the hop count metric which in some cases may
not give the best application performance. To improve this scheme,
the redirectors can exchange load information of the APC service
clusters and monitor their network delay among each other. The
redirector returns to the client the address of the least loaded APC
cluster with a small network distance.

The second scheme uses modified local DNS servers which con-
tain information about the current load of and network distance to
the APC service clusters. When a client sends a request to the well-
known APC service domain name, the local DNS server translates
the name to the least loaded APC service cluster within close net-
work proximity.

5

5.2 Performance Evaluation
To achieve scalability, the APC service consists of multiple ser-

vice clusters in the wide area. Within each local-area cluster, mul-
tiple APC service instances exist to guarantee scalability and fault-
tolerance. Their persistent state is kept in a fault-tolerant, dis-
tributed data structure (e.g., [13]).

APC uses an asynchronous, event-driven programming model
rather than the traditional thread-based approach for better scala-
bility and more graceful degradation in case of an overload. Over
the wide area, a soft-state based signaling protocol is used to com-
municate across clusters and to maintain liveness information.

Our prototype implementation uses the Ninja cluster platform [11].
Table 5.2 shows good performance of a single APC service instance
for a path consisting of 4 operators on 2 nodes with 200 paths con-
tinuously being created and torn down in the background. The as-
sociated path application is accessing an mp3 streaming Jukebox
service using a GSM cell-phone. The measurements are performed
on a local area cluster of 400MHz Pentium-II machines each with
256MB of main memory and 512KB of processor cache with a Gi-
gabit Ethernet connection.

Table 5.2 shows that the response time for a path creation is less
than 500ms. The path creation time consists of logical path com-
pilation, physical path creation, and path instantiation time. Users
typically do not care about how long it takes for the service session
to terminate. In this case, it takes less than 300ms to terminate the
operators. The recovery time is that of a single failed operator. The
recovery mechanism involves relocating the operator on a different
processor and repairing the connections. Although it takes 400ms
to recover, buffering is used to reduce the perturbation to the user.
The path scalability measure denotes that using two processors, we
can transcode for 32 conversations (for mp3 to GSM conversion)
with good performance.

Table 1: Performance of a single APC service instance for operating
on 4-operator-paths on 2 nodes.

Logical and physical path creation time: 264ms
Path instantiation time: 215ms
Total path construction latency: 479ms
Path teardown time: 289ms
Path recovery from one failed operator: 402ms
Data rate: 64kbps
Path scalability: 32 concurrent paths

6. SAMPLE PATH APPLICATION
To validate the design of our self-adaptive proxy system, we built

a service for real-time multimedia stream playback to a wireless
client. Here we discuss our experience and show how the proxy
system facilitates building such an application.

The example application is delivering an MPEG-1 video/audio
stream to a mobile user using a laptop with both WaveLAN and
Ethernet interfaces. The client is only capable of playing RealVideo
and RealAudio format.

6.1 Data Format Adaptation
In this scenario, because the end client cannot play any MPEG

stream, we must provide a service to transcode MPEG to RealVideo
on the fly. Four operators are needed for the data format adaptation.
The first operator, MPEG Demultiplexer (mpegdemux), is a simple
program which separates an integrated MPEG Audio/Video stream
into separate MPEG-1 video and MPEG-1 layer 3 (mp3) audio
streams. The second operator, MPEG-1 video decoder (mpegdec)

is used to decode MPEG-1 video stream into raw YUV video frames.
Both mpegdemux and mpegdec are derived from a code base pro-
duced at Berkeley [7]. The third operator is a simple wrapper
around the popular command line mp3 decoder called mpg123. It
takes in mp3 audio and outputs sound in PCM format. The creation
of these operators is very easy, not only because their source code
is freely available, but also because they have a simple I/O model
using either the UNIX style standard I/O or files.

The last operator needed for format conversion is a RealVideo
encoder. It is developed using a toolkit called RealProducer [18].
The toolkit includes a video and audio encoder library in binary
format together with the source code of some sample programs to
invoke the library. We wrapped the video/audio codec in an oper-
ator which takes in an audio stream of PCM samples and a video
stream of YUV frames, and produces a combined A/V stream in
RealVideo format. Even though the source code of the codec was
not available, the conversion of the library into an operator is rela-
tively straightforward.

Compression
Operator

REAL
Encoder

Operator
Decompression FEC

Encoder
FEC

Decoder

MPEG
Decoder

REAL Player

Mpg123

(MPEG Video)

Mpeg Stream Splitter
(MPEG Audio)

(compressed YUV)

(PCM)

(REAL)MPEG Stream

Mobile Client

Figure 4: Example Transcoding Path: each circle denotes an operator.
Operators separated by arrows may be located on separate physical
machines.

Once the input and output types of the operators are encoded
properly, APC automatically finds a transcoding data path as shown
in Figure 4. Depending on the bandwidth available, a compression
operator may be inserted between MPEGDecoder and RealEncoder
to reduce the data rate. Similarly, an FEC encoder and decoder pair
may be inserted if the path between the RealEncoder and the client
includes a wireless link.

6.2 Mobility Adaptation

6.2.1 Network Address Changes Detection
The ability to detect network address changes provides an excel-

lent opportunity for optimization for better network utilization. For
example, if we know that an application is running on a laptop com-
puter that is about to lose its wired network connectivity and later
be reconnected to a wireless network of lower bandwidth, we can
inform the streaming media server to send lower-quality version of
the same stream immediately. One technique we use is promptly
detecting the insertion of a PCMCIA network card. Once a card
is inserted, a hardware interrupt is generated. As a result, Linux
executes a pre-defined shell script (/etc/pcmcia/network). We mod-
ified this script such that every time a network card is inserted, its
hardware address is used to lookup a table of known cards. The
script contains information about a list of known cards that the user
specifies. In addition to setting the IP address and gateway of the
card, the script also checks whether the card is a wireless or wired
network interface card (NIC). A routing metric is associated with
each card so that when a high speed NIC (e.g., Fast Ethernet) and
a lower speed one (e.g., Digital RoamAbout) are both available,
we pick the one with a higher speed. The insertion of a wireless
NIC is a good hint that the user is about to roam. Conversely, the
insertion of a wired NIC indicates that the user intends to stay in
physical proximity of a certain area. As soon as the card is inserted
and configured, it sends a signal to the APC client-side network

6

RTSP
Server

Real
Player

Relay
Proxy

Relay
127.0.0.1

Proxy
wired

wireless

NIC

NIC

Signal()

 NIC Insert

127.0.0.1

DATA/
CONTROL
in TCPDATA(UDP)

CONTROL(TCP)

DATA/
CONTROL
in TCP

Figure 5: Redirection Proxies (Relay Proxies) for TCP and UDP Con-
nections

monitor along with the speed and type (wireless vs. wired) of the
NIC. The client-side network monitor subsequently makes use of
the address change information and interacts the redirection proxy
in preparation for a handoff.

6.2.2 Redirection Proxy
One objective of our system is to allow transparent service hand-

offs when the user is roaming. There has been a range of solutions
proposed by the research community. Mobile IP [3] is one example
that works at the network layer, completely transparent to the trans-
port and application layer. Added TCP options proposed by [22]
work at the transport layer. MSOCKS [14] works at the session
layer by replacing the regular TCP/IP socket layer. Our approach
is entirely at the application layer. We deploy TCP and UDP prox-
ies which terminate a connection on one side and reconnect to the
desired destination on the other. By adding a level of indirection
between the two parties of communications, the client can roam
without affecting the operations of the client or the server.

Application layer mobility support is well suited for our purposes
because in APC, all operators of a path are set up and maintained by
the APC service. Because the locations of all operators are known
to APC, there is no need for the redirection proxies to understand
the application protocol spoken by the application. The destina-
tion of the redirection can be specified by APC, which is constantly
monitoring the location of the client. In fact, redirection at the ap-
plication level is ideal for two reasons. First, because APC relies
only on application level redirection proxies for service handoff,
there is no need for any changes in the network infrastructures in
which the client roams. This increases the service coverage area
— an important step toward ubiquitous deployment. For example,
Mobile IP has problems that the user’s home network must provide
a Home Agent to support Mobile IP. The second reason that ap-
plication level redirection is ideal is that APC is directly involved
in monitoring the location of the clients and redirecting data flow,
APC now has the knowledge and flexibility to relocate computa-
tion within the network to reduce delay, increase throughput, and
provide a higher level of quality of service.

In APC, we introduce a special type of operator called the redi-
rection proxy. A redirection proxy is a very light-weight operator
whose only purpose is to listen on a TCP or UDP socket and for-
ward data to another outgoing socket. The source address of the
incoming socket and the destination address of the outgoing socket
are specified by APC and may change during the lifetime of a path.
To allow uninterrupted conversation between an unmodified server
and an unmodified client when the mobile client roams to a differ-
ent network and obtains a different address, we need to set up a
path consisting of two redirection proxies as shown in Figure 5.

The server redirection proxy resides on any machine with a fixed
IP address. Its job is to provide a fixed point of correspondence
from the point of view of the server. A client-side proxy sits on
the same machine as the client application. The client-side proxy
binds to a well known port on the loop back address 127.0.0.1 so

that its IP address remains valid across IP address changes during
roaming. The connection between the client application and the
client-side proxy stays constant; so does the one between the server
application and the server-side proxy. On the client side, a small
program constantly monitors for available network interfaces and
IP level connectivity as described in Section 6.2.1.

When APC detects that the network address of the client has
changed through the signal from the client-side network monitor, it
notifies the client-side proxy to reconnect to the server-side proxy
using the newly obtained IP as the source address. As soon as the
new connection is established, data from the client to the server
is sent over the new connection. The server-side proxy then im-
mediately starts sending and receiving data through the new con-
nection. If the transport used is UDP, this approach would work
perfectly, but TCP requires reliable, in-order, and duplicate-free se-
mantics. There is a race condition due to fact that the opening of the
new connection and the closing of the old happen asynchronously.
Once data is sent through the socket interface, there is no way for
the redirection proxy to check the receiving status of the data sent.
When the new connection is established, it is unclear if all the data
sent over the old connection has been delivered. Our solution is to
introduce a 3-way handshake at the application layer between the
redirection proxies every time the IP address of the client changes.
When the new connection is established, the client-side proxy sends
a message (over the new connection) telling the server-side proxy
the number of bytes it has received since the beginning of the old
connection. The server-side proxy also sends a message telling the
client-side the number of bytes received since the beginning of the
old connection. After that, each side resumes the transmission of
data starting from the offset specified by the other side. To achieve
this, both proxies must buffer a certain amount of data. Fortunately,
this amount of data is bounded by the size of the TCP send buffer,
which can be queried by calling getsockopt() with the option name
SO SNDBUF on most operating systems. Thus, our approach does
not violate the TCP semantics and yet provides transparent trans-
port session handoff at the application layer.

6.3 Wireless Channel Adaptation

6.3.1 Differential Treatment of Control/Audio/Video
RealServer serves data to a client using a variety of applica-

tion and transport protocols. Below we describe a common setting
where a single TCP connection is used as the transport protocol
and how APC optimizes it. RealServer and RealPlayer can use the
Realtime Streaming Protocol (RTSP) [10] for controlling playback,
recording, and getting multimedia clip information. RTSP is very
similar to HTTP in that both define how the client requests data
from the server and negotiates options with the server. Actual data
(e.g., HTML, JPEG, etc) are embedded in the HTTP streams in bi-
nary format. RTSP also embeds video and audio data in the form of
interleaved RTP frames among blocks of RTSP control data. The
difference between HTTP and RTSP is that the RTSP client does
not need to request each individual video and audio frame. The
server encapsulates audio samples and video frames in RTP frames.
The audio and video frames are then interleaved in between the
RTSP control data sent to the client.

From a performance perspective, streaming multimedia over TCP
is a very bad design choice, especially over wireless links. The con-
gestion control mechanism of TCP decreases the sending window
by at least half on each data packet loss which causes the bandwidth
to fluctuate too much and increases jitter. In addition, TCP en-
forces reliability and in-order delivery which means that if a single
packet is dropped, all subsequent packets received cannot be played

7

back until the lost packet is retransmitted and received. When TCP
runs over a wireless link, it mistakes wireless losses as congestion
losses, causing the congestion window to shrink roughly propor-
tional to 1

√

lossrate
. To tackle these problems, APC differentiates

application data from control information and selectively applies
FEC or ARQ for error control. Control information is usually re-
liable and not very delay-sensitive. Therefore, control information
is sent over TCP. For audio and video data in RTP format, UDP is
a better choice for reasons of real-time requirements. We therefore
apply FEC to RTP frames to increase their loss resilience.

6.3.2 Forward Error Correction (FEC)
FEC is a well-known technique for protecting data over lossy

links. The use of FEC to protect data can replace traditional tech-
niques such as retransmission (ARQ) for unreliable data. FEC is
suitable for streaming multimedia data because retransmission can
increase the delay of certain packets beyond their playout point and
render them useless to the receiver. APC automatically inserts FEC
for unreliable multimedia streams transmitted over a wireless link.
In our example scenario, the link between the two redirection prox-
ies changes from wired to wireless. At the time of change, APC
quickly detects the change and inserts an FEC-encoding and an
FEC-decoding operator to compensate for wireless losses to pro-
tect delay-sensitive data.

The FEC encoding that we have implemented in APC is a simple
parity scheme. More effective FEC schemes can be implemented
for different channels, but the design of FEC schemes is outside the
scope of this paper. Packets are sent in groups, with the last packet
of the group being a parity packet. Because the packets can have
different lengths, the parity packet is calculated as if all packets
were of a length equal to the longest packet of the group. Each
RTP data packet is sent with an FEC header of the format shown in
Fig. 6. Each FEC packet is sent with an FEC Parity header of the
format shown in Fig. 7.

Group Seq Num
2 bytes

Group Size
1 byte

Seq Num
1 byte

RTP Packet Payload
variable length

Figure 6: Data Packet Header

Group Seq Num
2 bytes

Group Size
1 byte 1 byte

Seq Num=0 Length of the packets
in the group

XOR of all other packets payload
in the group

Figure 7: FEC Parity Packet Header

The group sequence number identifies the group to which the
packet belongs. Group size indicates the number of packets includ-
ing the parity packet in each group. Sequence number field is the
sequence number of a packet within a group starting at 1 for data
packets. The parity packet always has a sequence number of 0. The
packet header of the FEC packet has an array which stores the size
of each packet in the group. This information is necessary in the
reconstruction of a lost packet.

The packet payload of a parity packet is simply the XOR of all
packet payloads in the group. Because XOR’ing with 0 has no
effect on the result, we are able to calculate the parity of a shorter
packet simply by XOR’ing the packet with the parity packet buffer
over the length of the packet. Hence there is no need to find out
about the length of each packet ahead of time.

This simple FEC encoding scheme can recover exactly one lost
packet in each group. If the packet lost is the FEC packet, no recov-
ery is necessary. Otherwise, we can recover a lost packet as follows.
When a packet is received, its sequence number is remembered. In
addition, its payload is XOR’ed with a parity buffer initialized to
be zero for each group of packets. When exactly one packet is lost
in a particular group, the parity buffer should contain the payload
of the missing packet.

To achieve better performance, we can apply different levels of
FEC for audio and video data. The amount of FEC overhead is con-
trolled by the group size parameter. The smaller the group size, the
more resilient the coding is to losses. However, it also increases the
overhead. From experimenting with the code used by RealPlayer, it
seems that their audio codec is extremely error-resilient. At a 50%

drop rate, the audio is still intellegible but the video becomes very
distorted and pauses quite often. Therefore, it makes sense to use a
smaller group size for video data than for audio data.

6.4 RTSP Parsing
To separate the control data from audio and video sent so that

APC can apply selective FEC on audio and video data, we imple-
mented a simple RTSP parser. The syntax of RTSP is very similar
to that of HTTP/1.1. It is a request-response protocol. Each re-
quest or response starts with a header which ends with a blank line
(i.e., a pair of CR and LF characters). The header is followed by
an optional body. RTSP can encapsulate any binary data in it. For
our example scenario, RTP frames are encapsulated in RTSP. The
encapsulated binary data in RTSP begins with a header with the
character ’$’ followed by a 1-byte channel ID, and 2 bytes of encap-
sulated payload length in network byte-order. An embedded binary
data block can appear between any two RTSP requests/responses
blocks.

APC parses all data sent by the server into 3 separate streams:
control data (RTSP), video (RTP) and audio (RTP). Each control
data block is prepended with a 2-byte length field to make the pars-
ing of the control data easier on the client-side proxy which has to
merge the 3 streams back into one. Control data is sent over TCP
immediately with a 2-byte header for each RTSP request/response
block. Video and audio frames are sent as complete UDP data-
grams without any additional header. Therefore, there are a total of
three streams: one TCP stream for RTSP control information, two
separate UDP streams for audio and video.

Upon receiving data from the server-side proxy, the client-side
proxy merges the three streams together and sends the result to the
client over a single TCP connection. The client-side proxy issues
a select() system call on all 3 sockets. Because RTSP requires that
the embedded data only appear in between RTSP blocks, the client-
side proxy must buffer up any partial RTSP block and prevent it
from being sent to the client. RTP frames received from the UDP
packets have well-defined boundaries and hence can be forwarded
directly to the client as soon as they arrive.

6.5 Evaluation
When the wireless network card is inserted and the Ethernet card

is removed, handoff occurs immediately. No noticeable delay and
loss of data occur at the client. The RealPlayer continues play-
ing without any pause or gap. This is due to the effective net-
work adaptation and the fact that RealPlayer buffers a few sec-
onds of data. In Figure 8, we compare the video with and with-
out the above-mentioned optimizations after the client switches to
1.5Mb/sec shared WaveLAN network. This clearly demonstrates
the benefit of network adaptation provided by the proxy system.

8

Figure 8: Evaluation: benefit of FEC over wireless link with 20%
uniform error rate.

7. LESSONS AND FUTURE WORK

7.1 Creating Operators
Retrofitting legacy programs into operators is not an easy task

because the source code is often unavailable. For example, a legacy
program may be designed to use file I/O which must be converted
to use socket I/O. Fortunately, a wide range of run-time linking
tricks can be used to redirect I/O. Also, to improve performance, if
two operators run on the same machine, they can be manipulated
to communicate through shared memory instead of sockets as fol-
lows. When a legacy program (operator) is loaded at run time, we
link it with a modified C runtime library so that all socket-related
calls are trapped. To redirect file I/O to the network, all file I/O calls
are remapped to socket calls. Mapping socket calls to shared mem-
ory I/O operations works in a similar way: if it is determined that
a socket is connected to another socket on the local machine, then
the modified runtime creates a piece of shared memory to be used
for I/O between the sender and the receiver. Using shared memory
avoids the overhead of going through the TCP-stack. From our ex-
perience, many of these I/O optimizations are possible only when
each operator reads from the input and writes to the output sequen-
tially. But most audio/video encoders and decoders work in this
fashion.

Encoding all relevant properties of an operator in a machine
readable form is also a difficult problem. It is obvious that the
input and output types of each operator must be encoded in the de-
scription for APC to create a logical path. From our experience,
we must also benchmark each operator to obtain a profile of the

resource requirement of each operator in terms of network I/O, file
I/O, memory, and CPU. Given our focus on streaming multimedia
applications, CPU and network I/O performance profiles are likely
to be the most critical factors in the placement decisions. In addi-
tion, the output of an operator should be measured to find out the
amount of entropy contained in the data. This information is nec-
essary to avoid making mistakes such as compressing data that are
already compressed or encrypted. Each output stream should also
be marked as “soft restartable” or not. A soft-restartable stream
output can be decoded by the next operator even if the beginning of
the stream is not available.

7.2 Fault Tolerance
Building and maintaining a fault-tolerant data path requires mak-

ing both the APC service and the individual operators fault tolerant.
The fault tolerance of the APC service itself is due to its design and
its implementation on clusters. The fault tolerance of the individ-
ual transcoders is much more difficult to guarantee. People have
proposed heavy weight mechanisms such as process pairs, check-
pointing, proof-carrying code, and formal verification techniques
to combat the general problem of making software systems robust.
However, video and audio codecs often can start encoding or de-
coding from mid-stream which makes guaranteeing fault-tolerance
an easier task.

Most commercial video and audio codecs provide “entry points”
into a compressed stream in which a decoder can start decoding.
For example, MPEG video streams contain frames divided into
Groups of Pictures (GOP). Each GOP can be decoded indepen-
dently. Therefore, to make a data path fault tolerant, we do not need
to restore the state of a crashed decoder operator explicitly. Once
crashed, a new instance of the decoder can be started. It should
be able to decode starting at the next GOP. In MPEG [1] video, a
GOP is on the order of 15 frames. Given a frame rate of about 30
frames per second, the expected wait for the next GOP should be
less than a second. While not ideal, such a design greatly simpli-
fies crash recovery. We are investigating addition techniques such
as caching and retransmission after an operator failure to reduce
this gap. As another example, H.263+ [2] video source encodes the
video by sending only those blocks that have changed from previ-
ous frame. There is also a refresh message that the receiver can
send to the sender to trigger a full-frame update. Once a decoder
has crashed, the new instance of the decoder can send a refresh re-
quest to the sender, and the decoder now has enough information
to decode the video. Similarly, any encoder that takes in raw un-
compressed data can start encoding at any time. However, after an
operator has crashed and restarted, audio and video synchronization
can become a problem. For future work, we plan to use the times-
tamps embedded in video and audio streams to re-synchronize the
two after a crash.

8. CONCLUSION
By passively monitoring and proactively adapting to network

variations using both application-independent and application-specific
techniques, we have demonstrated a pragmatic approach to provide
good performance for streaming multimedia applications for mo-
bile wireless clients. These techniques include dynamic insertion
of optimization operators, strategic placement and dynamic reloca-
tion of computations, proactive caching, prefetching, and retrans-
mission of data. Since the self-adaptive distributed proxy system
has control over the network paths, it can easily deploy these mech-
anisms. We have shown that implementing network adaptation at
the application level is flexible, extensible, and facilitates adapting
existing multimedia services to wireless clients.

9

9. ACKNOWLEDGEMENT
We are grateful to Adam Costello for his suggestions to greatly

improve the writing of this paper. We thank Professor Anthony
Joseph, and the anonymous reviewers for useful comments. We
also thank Samson Cheung for helpful discussion on MPEG codecs.

10. REFERENCES
[1] ISO/IEC 11172-1 11172-2 11172-3 11172-4 11172-5

Information technology – Coding of moving pictures and
associated audio for digital storage media at up to about 1,5
Mbit/s Part 1 to Part 5.

[2] ITU-T Recommendation H.263+.
[3] C. P. A. Myles, D. B. Johnson. A mobile host protocol

supporting route optimization and authentication. IEEE
Journal of Selected Areas in Communication,
13(5):839–849, June 1995.

[4] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H.
Katz. A comparison of mechanisms for improving TCP
performance over wireless links. IEEE/ACM Transactions on
Networking, 5(6):756–769, 1997.

[5] J. Bolot, S. Fosse-Parisis, and D. Towsley. Adaptive
fec-based error control for internet telephony. In Proc. of
IEEE INFOCOM’99, pages 1453–1460, March 1999.

[6] J.-C. Bolot and A. Vega-Garcia. The case for FEC-based
error control for packet audio in the Internet. ACM
Multimedia Systems, 1997.

[7] B. M. R. Center.
http://bmrc.berkeley.edu/frame/research/mpeg.

[8] D. D. Clark and D. L. Tennenhouse. Architectural
Considerations for a New Generation of Protocols. In
SIGCOMM Symposium on Communications Architectures
and Protocols, pages 200–208, Philadelphia, PA, 1990.

[9] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz.
An Architecture for a Secure Service Discovery Service. In
Fifth Annual International Conference on Mobile Computing
and Networks (MobiCOM ’99), August 1999.

[10] H. S. et al. Rtsp: Real time stream protocol. RFC 2326, April
1998.

[11] S. D. G. et. al. The MultiSpace: an Evolutionary Platform for
Infrastructural Services. In Usenix Annual Technical
Conference, June, 1999, Monterey, CA.

[12] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-based scalable network services. In
Symposium on Operating Systems Principles, pages 78–91,
1997.

[13] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, Distributed Data Structures for Internet Service
Construction. In Proceedings of OSDI 2000.

[14] D. Maltx and P. Bhagwat. Msocks: An architecture for
transparent layer mobility. In IEEE Infocom ’98, March
1998.

[15] Z. M. Mao and R. H. Katz. Achieving service portability in
iceberg. In Proceedings of IEEE GlobeCom 2000, Workshop
on Service Portability, March 2000.

[16] C. Perkins. IP mobility support. Technical Report Internet
Draft, 1994.

[17] M. Podolsky, C. Romer, and S. McCanne. Simulation of
fec-based error control for packet audio on the internet. In
Proc. of IEEE Infocom’98, San Francisco, CA, March 1998.

[18] Real.com. Working with RealProducer 8 codecs, June 28,
2000.

[19] P. Reiher, M. Y. R. Guy, and A. Rudenko. Automated
planning for open architectures. In Openarch 2000 short
paper, March 2000.

[20] S. Seshan. Low-latency handoff for cellular data networks.
Technical Report CSD-96-899, 1996.

[21] A. C. Snoeren and H. Balakrishnan. An end-to-end approach
to host mobility. In Proc. 6th International Conference on
Mobile Computing and Networking (MobiCom), 2000.

[22] Snoren and Balakrishnan. An end-to-end approach to host
mobility. In Mobicom 2000.

[23] M. Stemm and R. H. Katz. Vertical handoffs in wireless
overlay networks. ACM Mobile Networking (MONET),
Special Issue on Mobile Networking in the Internet, winter
1998.

[24] P. Sudame and B. R. Badrinath. Transformer tunnels: A
framework for providing route-specific adaptations. In Proc.
of the USENIX Technical Conf., 1998.

[25] W. Tan and A. Zakhor. Multicast transmission of scalable
video using receiver-driven hierarchical fec. In Proc. Packet
Video’99, New York, April 1999.

[26] S. M. Weiss. Switching facilities in mpeg-2: Necessary but
not sufficient. In Proceedings SMPTE Advanced Television
and Electronic Imaging Conference, San Francisco, CA,
pages 44–70, February 1995.

[27] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Journal of Future Generation
Computing Systems, 1999.

[28] M. Yarvis, A.-I. A. Wang, A. Rudenko, P. Reiher, and G. J.
Popek. Conductor: Distributed adaptation for complex
networks. Technical Report UCLA Technical Report:
CSD-TR990042, 1999.

10

