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Abstract

An important class of attacks against cellular
network infrastructures, i.e., signaling DoS attack,
paging channel overload, and channel exhaustion
attack, operates by sending low rate data traffic to a
large number of mobile devices at a particular location to
exhaust bottleneck resources such as radio resource and
radio resource controller. We term this class of attack
targeted DoS attack on cellular networks, given the
focus on a specific location. The success of such attacks
depends on an important but unvalidated assumption
that it is possible to create a relatively accurate hit list
of mobile devices associated with the target network
location to which attackers can direct traffic. In this
study, we take an important first step to validate this
assumption by performing a large-scale study on the
feasibility of these attacks. In addition, we propose
accurate and efficient techniques for generating IP
address to network location association in real time for
existing commercial UMTS networks.

Our technique relies on developing and measuring
network signatures consisting of both static and dynamic
features of key network elements such as Radio Network
Controllers (RNCs) that are stable within the same
location but distinct across locations. We find that a
single feature in some cases is unique enough to locate
a city such as NYC. With as little as 800kbps probe rate,
we can identify a sufficient number of IPs to accurately
target a network location, after scanning millions of IPs
within 1.2 hours to effectively impose 2.5 to 3.5 times the
normal load on the network.

1 Introduction

Data cellular networks are perennially constrained
by limited radio resources due to ever-increasing user
demand. To enable efficient resource reuse, there
exists built-in support for intelligently allocating radio
resources among multiple users and releasing them
when they are perceived no longer actively in use.

However, the mechanism for implementing the radio
resource management primitives requires complex and
heavy signaling procedures, rendering cellular networks
vulnerable to a variety of low-rate targeted DoS
attacks [25, 35, 32]. Due to the low bandwidth property,
they can be launched from merely one or more external
Internet hosts and can deny service to a large number
of legitimate users in a particular area. In Figure 1,
this class of attacks is illustrated at the bottom left side.
Different from another class of attacks such as HLR
attack [34] (on the top right of the figure) that requires
access to cellular botnets, the low-rate targeted DoS
attacks are considered much more realistic given the
weaker requirements.

Although targeted DoS attacks are seemingly serious
threats, they are still hypothetical. In particular, an
important requirement, i.e., locating a sufficient number
of mobile devices in the same area (the so-called hit-
list) is not fully investigated. Previous work [19]
on exploiting SMS functionality to overload cellular
voice service proposed using phone numbers under
specific area codes to generate the hit-list. However,
phone numbers cannot be directly translated into IP
addresses needed for launching targeted DoS attacks on
cellular data services and have limited location accuracy
(detailed in §5.3).

To bridge this gap, we develop localization
techniques to identify IP addresses under a given
area via active probing and fingerprinting. It works
by controlling a probe phone under the target area
to measure the baseline signature of that location,
then searching for other devices with sufficiently
similar signature to the baseline. Our observation is
that it is possible to actively measure characteristics
and configuration parameters associated with network
elements that are similar at the same location and
distinct across locations. We empirically evaluate
this approach on two large UMTS carriers in the
U.S. (anonymized as Carrier 1 and Carrier 2 for
privacy concerns). We find the approach promising
in identifying a set of near-by mobile IPs with high
accuracy. This is particularly true for big cities that often



have unique configurations or features to satisfy their
load requirement. In certain cases, it is even possible
to uniquely identify a big city such as NYC with only
a single feature. Thus, our work demonstrates that the
threat of targeted DoS attacks is real.

Besides exposing the potential abuse of network
information to enable this class of targeted attack
against cellular networks, our technique can also
support legitimate privacy-preserving applications that
rely to the knowledge of the number of nearby
users to determine whether a user should send
his location information while ensuring k-anonymous
properties [21]. More generally, our technique
opens up a new direction in understanding how
critical infrastructures like cellular networks can leak
information about their networks which leads to privacy
implications, e.g., in the form of location exposure.

In this work, we make the following contributions:
• We conduct the first large-scale empirical study on
the feasibility of targeted DoS attack against commercial
cellular data networks (with overview shown in Table 1),
using data collected through our deployed mobile app
on major smartphone platforms (with details of the app
covered in §3). We show that 80% of the devices keep
their device IPs for more than 4 hours, leaving ample
time for attack reconnaissance.
• We develop novel techniques to map IP addresses
of mobile devices to a geographic area, using
a combination of network features including static
configuration settings, topological properties, and
dynamic features.
• Using the proposed network signatures, we
empirically validate the evidence of diverse network
signatures across Radio Network Controllers (RNCs).
We show that in big cities, the signature is typically
unique enough to allow an attacker to locate enough
IPs to impose 2.5 to 3.5 times the normal load on the
network.

The rest of the paper is organized as follows. §2
presents the background on UMTS network as well
as the attack overview, followed by the IP-related
feasibility analysis in §3. §4 describes the methodology
for localization, and §5 discusses the evaluation results.
Possible defense solutions are described in §6. Finally
we cover the related work in §7 and conclude in §8.

2 Background and Overview

In this section, we first describe the UMTS
background with a focus on the measurable parameters
which can be configured differently across network
locations. We then discuss the intuition of the technique
and the detailed steps of the attack.

2.1 UMTS Background

UMTS architecture. A UMTS network consists of
three subsystems: Devices, Radio Access Network and
Core Network [24]. They form a hierarchical structure
where the lowest layer is the device, followed by radio
access network consisting of base-stations and Radio
Network Controllers (RNCs). At the highest level is the
Core Network which has Serving GPRS Support Node
(SGSN) and Gateway GPRS Support Node (GGSN).
The latter connects to the Internet. Our focus is on the
radio access network—the DoS target.
Radio Resource Control and State Machine. In
UMTS, to efficiently utilize the limited radio resources
(i.e., physical communication channels), the radio
resource control (RRC) protocol uses a state machine
(shown in Figure 2) associated with each device
typically with three RRC states—IDLE, CELL DCH
(or DCH) and CELL FACH (or FACH). Different states
have different amount of radio resource assigned. IDLE
has no radio resource allocated. To send or receive any
traffic, it has to promote to DCH where a dedicated
channel is assigned to the device. In FACH, devices
are assigned a shared channel which only provides
limited throughput (less than 20kbps). It is designed
for applications requiring a very low data rate. There
are several configurable static parameters associated
with state transitions. For example, Downlink/Uplink
(DL/UL) Radio Link Controller (RLC) buffer size is
used to determine when the FACH → DCH transition
occurs (we refer to it as queue size threshold
thereafter). If the number of bytes sent or received
exceeds the threshold, the state transition will be
triggered. Another example is the inactivity timer
which determines when the DCH → FACH transition
occurs. They are all configured at the RNC and may
differ across RNCs in different locations, making them
good candidates to construct the network signatures.
Note that different RNC implementations may also
employ slightly different state machines due to vendor
differences. For instance, there could be a IDLE →
FACH transition instead of IDLE → DCH. In some
cases, new states (e.g., CELL PCH) are introduced to
further optimize radio resource. These differences can
also be part of the signatures.

It is worth mentioning that in the next generation
LTE networks, similar resource control mechanism and
control parameters also exist [5].

2.2 Attack Outline

RNC-level Localization. At a high level, our
intuition is that network elements (e.g., RNC) in
different locations may be configured differently,



Signaling Attack

HLR Attack

Paging Attack

Channel Exhaustion

Attack

W
ith

o
u

t 

co
n

tro
llin

g
 

T
h

e
 p

h
o

n
e

C
o

n
tro

llin
g

 

th
e

 p
h

o
n

e

Attacking the radio 

access network

Attacking the 

core network

PDP context 

flood

SMS attack

Figure 1. Cellular attacks

Category Measurement target
MobileApp Cellular IP

reachability analysis (§3.1)
MobileApp IP duration analysis (§3.2)

Probing Active vs. Idle IPs (§3.3)
MobileApp IP locality analysis (§4.1)
MobileApp Phone-number-based

localization accuracy (§5.3)

Table 1. Attack feasibility analysis

CELL_DCH

CELL_FACHIDLE
Idle for 12 sec

Idle for
5 secDL/UL Queue

Size > Threshold

Snd/Rcv
Any
Data

High Power (800mW)
High Bandwidth

Low Power (460mW)
Low Bandwidth

No Radio Power
No Allocated Bandwidth

Figure 2. State machine for Carrier 1

therefore exhibit distinct network signature. Since
geographically close-by devices are governed by the
same RNC, they also share the same signature. We
discuss a more complete list of features of our proposed
network signature in §4.2.1. Since most features
identified are associated with the RNC, the localization
granularity is naturally at the RNC level. Typically, a big
city such as NYC has multiple RNCs, while a few small
cities may share the same RNC. To clearly illustrate the
attack, we outline the steps.
1. The attacker has access to a probe phone in
the target location. This phone measures the network
signature of that location and uses it as the baseline to
match against signatures of other probed phones. The
probe phone could either be compromised or owned by
the attacker. Note that we do not assume access to a
cellular botnet. Otherwise, it is trivial to obtain the
location information (e.g., GPS) from the phone.
2. The attacker first exclude IPs that are
unlikely under the target area through a coarse-grained
localization step. For instance, the attacker can exploit
the approximate IP locality in cellular networks, i.e.,
each GGSN responsible for a geographic region assigns
distinct IP blocks to phones (See §4.1).
3. The attacker probes the remaining IPs to measure
their associated signatures (as a fine-grained localization
step) with certain time and resource constraint. The
signatures are matched against the baseline signature.
The ones that are sufficiently similar are considered to
be under the same RNC.
4. After identifying enough IP addresses for the
target network location, the attacker can launch the
targeted DoS attack.

3 IP-related Feasibility Analysis

In this section, we investigate the feasibility of our
localization technique and the targeted DoS attack in
general. First (§3.1), we study how many carriers
allow cellular IPs to be probed directly (a requirement
for scanning/fingerprinting and the DoS attack itself).
Second (§3.2), we quantify how long a device keeps
its cellular IP address (to ensure IPs are still valid

after fingerprinting). Third (§3.3), we measure how
many devices are online versus active (to estimate the
additional attack load that can be introduced).
MobileApp. To answer the above questions, we collect
empirical data using a mobile app we deployed on
major platforms (referred to as MobileApp thereafter)
which measures various aspects of any cellular network
including throughput and port blocking behavior. It also
reports additional information such as Carrier, GPS, IP
address, timestamp, Signal Strength, and 7-digit phone
number prefix (with user’s consent). As of March,
2011, there are 100,223 users who have voluntarily
downloaded and run our app all over the world. There
is a small subset consisting of 1,683 users who opted to
run the periodic test that report the device’s IP address
every one hour and allow the signature measurement to
be conducted from our server. We focus on the data
set collected over a 2-week duration from Nov 7th to
21th, 2010. The complete list of analysis based on the
MobileApp is summarized in Table 1.

3.1 IP Reachability

Some carriers deploy NAT or firewall to ensure
traffic originated from the Internet cannot reach the
mobile devices directly. They affect signature-
based localization as well as the set of existing
attacks assuming direct reachability to the phones.
Based on the MobileApp data set, we collected
reachability information of 180 UMTS carriers in
different continents as summarized in Table 2. Among
them, 77 of them assign public IP addresses to devices,
52 of which are directly reachable from the Internet;
103 carriers assign private IP addresses to devices (with
NAT), 40 of which are reachable because they allow
either device-to-device probing within the same network
or one device to spoof other device’s IP address (4 out
of the 40 allow IP spoofing). In summary, regardless of
public or private IP carriers, the percentage of carriers
that allow direct reachability is 40+52

180 = 51%. This
result motivates our localization technique.

In those cases where carriers do not allow phones
to be probed in any way, existing attacks discussed



Carrier Private IP Public IP
count Reachable1 Not Reachable Not
180 40 63 52 25

1 In-NAT device-to-device probe allowed

Table 2. Reachability for 180 UMTS
carriers.
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in [25, 35, 32] will also be deterred. However, denying
reachability is not without any cost. For instance, it may
hurt peer to peer applications as well as applications that
require running servers on the phones.

3.2 IP Duration

It is critical to understand how long a device keeps
the same IP address as it takes time to measure the
signature and identify the location of an IP. Previous
work has shown that when NAT boxes are deployed,
the public IPs assigned by NAT can change frequently
in cellular networks [15]. For instance, they show
that with the same private IP address, the public IP
address can change on the order of tens of seconds.
However, device IPs (IPs directly assigned to devices)
often change much less frequently in contrast to NAT-
assigned IPs. Typically such IPs only change when
the device reboots or the network interface is switched
(e.g., WiFi to 3G). Carriers do not have incentives to
frequently reassign new device IPs as it incurs overhead.

Indeed, from the MobileApp’s periodic test data
consisting of (deviceID, timestamp, deviceIP) tuples,
we quantify the expected IP duration of each device as
shown in Figure 3 and find the duration of the device IP
is fairly long, with more than 80% devices keep their IP
addresses longer than 4 hours.

3.3 Online Devices vs. Active Devices

We define online devices as the ones reachable but
may or may not be actively using the network. Active
devices as the ones reachable and also actively using the
network. The ratio of active to online devices determines
the upper bound of additional load an attacker can
impose on the network.

To quantify the number of online and active devices,
we conduct a TCP SYN probing experiment on 12
sampled /24 IP prefixes used in the cellular network
operated by Carrier 1 in the U.S. in March, 2011 for
two hours at different time-of-day (one hour at noon,
one hour after midnight). We probe all IP addresses in
the range every 30 seconds. Though the analysis does
not cover all the IP ranges, we believe the result is still
representative based on randomly sampled IP prefixes.

For validation, we confirm that TCP SYN packets
can indeed elicit response from the phone instead of
the firewall with spoofed responses. We verify this
by launching two different “TCP traceroutes” from the
server to the phone – if the probing packet is non-SYN
packet, the traceroute will discontinue at the firewall hop
(the firewall drops out-of-state TCP packets) while SYN
packet can move forward until it reaches the phone and
elicit response. To infer if a phone is actively using the
network, we exploit the IP ID field in the IP header in
the response packets [31]. In practice, many operating
systems (such as Windows family) increment a system-
wide IP ID counter for every outgoing IP packet. If two
consecutive response packets have IP ID values X and
X + 1, it means the phone is idle for the 30-second
probing interval. Otherwise, it is active.

On average, there are 22% of the probed IPs respond
(other IPs are likely unassigned at the moment we
probe). Out of the responsive/online devices, the active
ratio is 20% during day time and 13% at midnight,
showing some time-of-day pattern. The ratio indicates
that an attacker can introduce at most 5 times the normal
load at day time, assuming all IPs can be correctly
located. Even if the attacker finds only half of the online
phones, he can still impose 3 times the normal load on
average, or 50%

20% = 2.5 to 50%+20%
20% = 3.5, depending on

how many identified IPs are overlapping with the ones
that are already active. Either way, the attack load is
significant enough to cause damage assuming a common
over-provisioning factor of 1:2 [20].

From the probing, we can also infer the average idle
duration for each IP address. This information helps us
understand how likely there will be background traffic
interfering with the feature measurement described
in §4.2.2. Figure 4 shows that 85% of the IP addresses
have an idle duration of 100 seconds, which are long
enough for most measurements.

In summary, we have studied various aspects of real
networks and collected evidence demonstrating that the
localization scheme and the targeted DoS attack are
indeed feasible.
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Feature Type Measurement cost
Min-RTT Dynamic Medium

DCH tail time Static Medium
FACH DL queue size threshold Static Medium
FACH UL queue size threshold Static Medium
FACH queue consumption rate Static High

Avg promotion delay Dynamic Low
RRC State machine Static Low

Max number of RLC retransmission Static High

Table 3. Features of the network signature.

4 Localization Methodology

4.1 Coarsegrained Localization using IP
Locality

IP address is known to have locality on the Internet
– close-by IPs in the address space tend to share
geographic proximity. However, as pointed out by
previous work [36], a large geographic area may share
the same set of IP pools managed at a GGSN location.
We verify this using 13,784 samples of GPS-IP pairs
of Carrier 1 and 17,589 pairs of Carrier 2 from the
MobileApp data, during the time period from Sep 2009
to Nov, 2010.

Figure 5 shows Carrier 1’s private IP address locality.
We observe the same private IP range is indeed shared
by a large geographic area. For example, X.64.X.X
– X.82.X.X are always allocated to devices from the
East Coast, while IPs in X.128.X.X – X.147.X.X are
mostly assigned to devices on the Central or Northeast.
In total, we find 4 such disjoint IP ranges which likely
correspond to different GGSNs [36]. Similar results
are found for Carrier 2. In summary, device IPs only
show coarse-grained geographic locality. Nevertheless,
it allows the attacker to exclude a large range of IPs
without ever probing them.

For an attacker without prior knowledge about which
IP range corresponds to the target area, we devise a
simple technique to obtain such knowledge — one
can reset the network interface programmatically to
continuously obtain new IP addresses. It takes about
30 seconds to get a new IP address every time. In our
experiment, this technique allows us to obtain the IP
pool of X.128.X.X – X.147.X.X within about an hour.

4.2 Finegrained Localization using Network
Signatures

From coarse-grained IP locality, the attacker can
obtain a set of candidate IPs only knowing their rough
location at the granularity of several states in the U.S.
To narrow down to a more fine-grained target location,

the next step is probe these IPs directly to obtain their
network signatures.

4.2.1 Network Signature Definition

Here we define network signature as a set of measurable
features that are potentially distinct across different
locations. We discuss why the signature exists and how
we select them:
• Incremental changes: different hardware
components are purchased and upgraded at different
time to improve capacity of the network or to introduce
new technologies [4, 3], thus likely introducing
heterogeneity in the RNC hardware. For example,
min-RTTs are reduced when HSUPA are deployed on
top of HSDPA compared to when HSDPA deployed
alone [23]. Also, different RNC products can have
slightly different state machine behavior as explained
before. As 4G LTE network technology is gradually
deployed, we expect even more heterogeneity across
network locations.
• Connectivity between RNC and base-stations:
this may vary across locations. The network delay
variation may be due to either RNC processing delay
difference or base-station-to-RNC link delay difference
(e.g., link congestion) [25, 7], thus affecting the
observed state promotion delay.
• Configurations: Different RNCs have different
static parameter settings to accommodate the load at
different locations. For instance, big cities often
configure resource-recycling parameters (e.g., inactivity
timer) more aggressively to accommodate more users.

The general criteria for selecting features is that
any measurable properties associated with RNC can
be considered. We list the potential set of features in
Table 3, most of which have been introduced in §2.1.
Although it may not be complete, it is a good starting
point. These features can be classified as static or
dynamic. Static features are configured statically on
the RNC. They are thus very stable and relatively easy
to measure. Dynamic features, on the other hand,
are likely to vary over time thus harder to measure.
Also, some features are more expensive to characterize.



For example, the maximum number of allowed RLC
retransmission [26] and the FACH queue consumption
rate may take many measurements to correctly identify.

In our current study, we pick the 5 features
highlighted in Table 3 (and described in §2.1) that
are relatively easy to measure. The methodology for
measuring them is described in the next section. We
did not include the RRC state machine feature because
we did not find a corresponding ground truth RNC to
test our measurement methodology. The local RNC
on which we rely for testing did not implement the
CELL PCH state. A dedicated attacker can however
spend more effort and take advantage of the remaining
features to refine the signature.

4.2.2 Measurement Methodology

Our probing methodology assumes control at only one
end (i.e., the server side). It is different from a previous
study [29] that devised a methodology to measure
similar features but with complete control on both ends.
In our case, we have to overcome additional challenges
such as background traffic on the device which may
distort the measured result. Moreover, when state
promotion delay is measured from the server, there is
an additional variable, i.e., paging delay that needs to
be factored out. Finally, without controlling the device,
it is hard to control the size of the packet responded
by the device (thus hard to measure the UL queue size
threshold). For instance, we can use a large TCP SYN
packet to probe a device, but the size of the response
packet is fixed (40 bytes TCP RST). To control the
uplink size, we use UDP probing where the response
packet is 24 bytes larger than the original probing packet
because the triggered ICMP port unreachable packet
embed the original UDP packet and wrap it with a new
ICMP and IP header. The ICMP response packet is
limited to at most 576 bytes as per RFC [6]. We will
discuss how to use TCP and UDP probing by adjusting
the probing packet size to measure DL and UL queue
size threshold respectively.
DCH inactivity timer. As described in §2.1, this
parameter determines when to release radio resource
(after N seconds of inactivity). The procedure to
measure inactivity timer is as follows: (1). The attacker
first sends a large probe packet (i.e., 1200 bytes). If
the phone is in IDLE or FACH, it will trigger a state
promotion to DCH; otherwise, it will reset the inactivity
timer [30]. (2). Then the attacker waits for some
interval, X seconds before he sends the next large
packet. (3). If the next packet incurs an RTT sufficiently
large to include the state promotion, this indicates the
power state has changed from DCH to FACH after X
seconds of inactivity, and therefore the inactivity timer

is X seconds. (4). Else, if the next large packet
experiences a small RTT, indicating that the power state
is still in DCH, it then set X = X + ∆ and go back to
step (2). We set the initial X to be 2.5s which is small
enough to catch all the known values of inactivity timer.
We use a measurement granularity of 0.2s (∆ = 0.2s). It
is not useful to increase the granularity further since the
variation of normal cellular RTT will prevent us from
getting more fine-grained results.

As mentioned, one challenge is background traffic,
which may prematurely reset the timer, inflating the
measured inactivity timer. The counter strategy is to
continue the measurement only when the initial state is
in IDLE. The assumption is that if the phone is not using
network now, it is likely to continue to stay idle in the
near future (demonstrated in Figure 4). After all in a real
attack, the timer inference can finish much more quickly
given the attacker can profile the timer value in the target
RNC offline using his attack phone. Specifically, instead
of measuring all possible timer values, he only needs
to make a binary inference – whether the tested IP has
a target timer or not. Nevertheless, the above general
methodology assumes no prior knowledge of the timer
value; we use it to understand how diverse they can be
across locations.

The other source of noise is fast dormancy [13], a
mechanism implemented on some devices to release
radio resource before the timer expires and save battery
life on the phone, causing early transition from DCH
to IDLE. However, since the power state transitions
directly from DCH to IDLE instead of to FACH, the next
observed RTT is much larger and thus distinguishable
from the non-fast-dormancy case. More importantly,
it is not always implemented or triggered every time.
Thus, we can repeat the measurements several times
and discard the fast dormancy cases. In practice, we
find UDP probing rarely encountered fast dormancy
(compared to TCP probing), likely due to more bytes
being exchanged in the UDP case.
FACH → DCH DL/UL queue size threshold. As
described before, there exists a queue size threshold for
DL and UL respectively. Using TCP probing, the size
of the TCP RST response is fixed, allowing DL packet
size adjusted independently without affecting the UL
packet size (ensuring UL threshold is not exceeded first).
The following depicts the procedures on the server side
to measure DL queue size threshold: (1) send a large
packet to make sure the state will be in DCH; (2) wait
for T = Timer seconds to let the power state enter
FACH; (3) send a packet with size Y ; (4) If a state
promotion is triggered (identified by a large RTT), then
record Y as the queue size threshold and exit; (5) else,
try a larger packet size Y = Y + ξ and go back to (3).
We set the initial Y = 20 and ξ = 30 in the MobileApp
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Figure 6. An example of paging delay.

experiment. In the later large-scale probing experiment,
we change ξ = 10 bytes in an attempt to measure more
fine-grained queue size threshold. Nevertheless, the
later experiment confirms that the results with ξ = 30
are still valid (without missing any values in between).

Measuring UL queue size threshold is more difficult,
because distinguishing between DL threshold and UL
threshold being exceeded is hard — in both cases we
just observe a large RTT indicating that state promotion
is triggered. Fortunately, since we now already know the
DL queue size threshold via TCP probing, we can send
UDP packets with size smaller than the DL threshold
so that they are guaranteed not to exceed the DL queue
threshold. If there is still a state promotion triggered,
then it has to be the UL packet that exceeds the UL
queue size threshold. This is why we have to measure
the DL threshold before the UL threshold. There are
two constraints in the results: 1). The UL response
packet is always 24 bytes larger than the DL probe
packet (as described earlier), therefore, we can measure
the UL threshold up to 24 bytes larger than the DL queue
threshold. 2). The max size of the UL response packet
is 576 bytes (as discussed earlier). As a result, the UDP
probing can only measure up to 576 bytes for the UL
threshold.
IDLE → DCH Promotion delay. Although it is easy
to measure promotion delay from the phone, it is much
more difficult to do so from the other end. This is
because when a downlink packet is to be received in
IDLE state, it may get delayed significantly due to a
process called paging [2].

Figure 6 shows an example where the phone is
in IDLE state, only periodically wakes up to listen
for incoming packets. If a packet happens to arrive
between two paging occasions, it will be delayed until
the next paging occasion. In the worst case, the delay
can be as large as a full paging cycle length. The
paging cycle length is determined by Core Network and
is stable across RNCs [2]. According to the 3GPP
specification [1], the protocol should support several
values: 0.64s, 1.28s, 2.56s, etc. In practice, we observe
it to be 2.56s for Carrier 1 and 1.28s for Carrier 2. It
is stable and validated through a hardware power-meter:
every 2.56s a power spike is seen, and we can observe
that the promotion process must wait after the spike.

To overcome the effect due to paging delays, we
design a probing technique using binary search that

can distinguish the paging delay from the estimated
promotion delay. It requires several rounds of probing
(the exact number of rounds depends on the accuracy
desired). The high-level idea is that we gradually narrow
down the exact paging occasion. The more we probe,
the closer to the paging occasion the probing will be.
We validated the inferred promotion delays match the
duration of power spikes using power-meter. Below is
the detailed methodology:

We use the following notations: we denote C as the
paging cycle, Si as the start time of ith probe mod by C
(0 ≤ Si ≤ C), Pi as the paging delay of the ith probing,
and Ti to be the RTT of the ith round.

Initially, without any knowledge of the paging
occasion, we conduct the initial two probes spaced out
with an offset of C

2 . More specially, S2 − S1 = C
2 .

An example outcome is shown in Figure 7.(a). We
can infer P1 < P2 based on the fact that T1 < T2,
and paging occasion should be somewhere between S1
and S2. Despite potential variation in promotion delay
(on the order of hundreds of milliseconds), the spacing
between P1 and P2 of C

2 =1.28s should be large enough
to overcome the noise.

We select the next Si to bound the paging occasion
further. For example, in Figure 7.(b), the start time is
selected to be S3 = S1+S2

2 given T1 < T2. Note that
here the difference between P3 and P2 is even bigger
than the difference of P1 and P2, making each step of
the algorithm robust to the noise of promotion delay
variation.

The process is repeated until we are able to bound
the Si to be very close to the paging occasion. We pick
i to be 8 since it is able to bound the distance to be
less than 2.56s

28 = 10ms. Even though each individual
promotion delay may vary significantly, the average is
expected to be stable, thus collecting multiple samples
of promotion delay is useful. After inferring the paging
occasion, we are able to recover each previous paging
delay Pi, and the corresponding promotion delay can
then be computed simply as Ti − Pi.

Note that it is possible there are background traffic
during the 8 rounds of probing since it spans 8 × 30 =
240 seconds. However, such background traffic only
matters when the measured promotion delay is very
small, indicating the device is already in DCH instead
of IDLE. Such cases can be easily excluded and the
attacker can simply try again in the next round.
Minimum RTT in DCH. Although it has been shown
that cellular network RTT is highly variable, we find the
minimum (over 40 measurements) is surprisingly stable
within the same area (See Figure 10). It is also diverse in
different geographic areas. Our local experiment shows
that the standard deviation of 100 min-RTTs (each is
computed over 40 RTT measurements) measured in
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Figure 7. Illustration of our proposed paging delay elimination method to measure promotion delay.

6 hours is only 2.003. In fact, computing min-RTT
over 30 measurements is also acceptable as its standard
deviation is 2.07. 10 measurements will however
increase the standard deviation to 3.46.

Validation. We thoroughly validate the proposed
methodology using local experiments over two different
UMTS carriers across several types of phones. The
results are consistent and match with those collected
assuming direct access to the phone. For instance,
we verified that the UL/DL queue size threshold
measurements are consistent with or without direct
access to the phone.

5 Evaluation

In this section, we evaluate the effectiveness of
the signature-based localization through empirical data
collected from the MobileApp as well as a large-
scale probing experiment. We focus on three main
evaluations.

1. We quantify the distribution and entropy of each
feature.

2. We compare the signature-based localization with
the state-of-the-art phone-number-based approach.

3. We evaluate the scalability, i.e., time requirement,
to locate enough number IP addresses.
Data collection. We collect data from two main sources.
One is from the periodic test of the MobileApp, which
allows us to obtain ground truth RNC, timestamp,
and signature to evaluate two major UMTS carriers
in the U.S. covering 20 RNCs in Carrier 1 (shown in
Figure 10) and 43 RNCs in Carrier 2 from Nov 8th
to Nov 19, 2010. In this dataset, we collect all five
features except the UL queue size threshold, which can
be measured in the actual attack via UDP probing as
discussed in §4.2.2. The other dataset is from large-
scale probing on Carrier 1 in March 2011, the goal of
which is to understand the signature distribution more
comprehensively without knowing where each IP is
located. The two datasets jointly allow us to evaluate
the accuracy of our localization technique.
RNC ground truth. Even though we run our
MobileApp on the phone, there is still no direct way
to obtain the current RNC the phone is connected to.
As an approximation, we obtain “location area code”
(LAC) — an identifier that covers an area that is usually

              MG
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G∩M

Figure 8. Illustration of coverage and accuracy

comparable to an RNC [9] through standard platform
APIs.
RNC/LAC coverage estimation. To understand the
challenge to distinguish different RNCs, we first need
to estimate the number of RNCs and their coverage. To
do so, we leverage the OpenCellID project [11], an open
source project aimed to create a complete database of
LAC number and Cell IDs worldwide. The data shows
1596 unique LAC numbers for Carrier 1 with about 3/4
of the U.S. covered. A rough estimate based on area
uncovered leads to about 2000 LACs in the entire U.S.
Since the number of GGSN locations is estimated to be
4 (See §4.1), a single GGSN should cover about 500
LACs/RNCs. Typically, a big city such as NYC has
multiple RNCs (to accommodate the load), while a few
small cities may share the same RNC (verified by LAC
and location data from OpenCellID).
Evaluation methodology. As described in §2.2, in the
actual attack, an attacker measures the baseline signature
from his controlled probe phone and then compare it
against signatures of other probed devices in real time.
We simulate this process by considering each signature
sample in the MobileApp as a baseline (where we know
its ground truth RNC) and compare it with other samples
for a similarity match. Static features should have
exactly the same value to be considered a match. For
dynamic features, e.g., average promotion delay and
min-RTT, we allow a signature distance threshold
parameter (SD-threshold in short) to tolerate some
variation. For example, if we set the min-RTT SD-
threshold to 5ms, then all samples within +/- 5ms of the
baseline sample are considered to match the baseline.
For min-RTT and promotion delay SD-threshold, we
select a large range of them from (5ms, 50ms) to (20ms,
400ms). We discuss later how set the SD-threshold to
balance between the coverage and accuracy metrics.
Coverage and Accuracy metrics. As illustrated in
Figure 8, the sets A, G, and M represent different
signature samples. A represents signature samples for



Figure 9. Carrier 1’s queue threshold
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Figure 10. Carrier 1’s 20 different RNCs’ dynamic features

all RNCs. G denotes all the signature samples under
the target RNC. M corresponds to the signature samples
inferred to be under the same target RNC (using the
localization technique). Ideally, localization should
output an M that is equivalent to G. However, in
reality, M and G may only partially overlap. Based
on the notations, we define two metrics to evaluate
the performance of the localization: Coverage =
|G

∩
M |

|G| and Accuracy = |G
∩

M |
|M | . Intuitively,

coverage quantifies the fraction of phones that can be
successfully identified under the target RNC. Higher
coverage implies that the attack can impose higher load
on the network. Accuracy quantifies the fraction of
targeted phones that are indeed under the target RNC.
Higher accuracy implies less wasted attack traffic.

5.1 Evaluation using the MobileApp Data

In this section, we mainly discuss the findings
about the characteristics of the features and city-level
properties (e.g., big cities usually have distinct values).
We also briefly discuss how we can compute the
localization coverage metric using just the MobileApp
data.
Static features. We find that although inactivity timer
and queue size threshold do not have many distinct
values, they already show some interesting diversity
patterns even from the limited samples.

For Carrier 1, we observe two main inactivity timer
values: around 3s and 5s. For the queue size threshold,
we also observe two main values: around 480 and 510
bytes. 480 tends to correlate with the 5s inactivity
timer, while 510 tends to correlate with the 3s one.
Besides these, there is one exceptionally large queue size
threshold at around 1000 bytes observed at three places –
Bay Area, Dallas, and Chicago Area (i.e., big cities). In
Figure 9, we can clearly see the distribution of different
queue size threshold values. Marker 1, 2, and 3 represent
480, 510, and 1000 bytes respectively. It is interesting
that Marker 2 and 3 are always at big cities while Marker
1 is often present in small cities. In the cases where
two Markers are closely located (e.g., Marker 1 and 3 in
Dallas), we observe that Marker 1 is in fact at a nearby
small city.

For Carrier 2, we observe similar patterns. Two

main values of inactivity timer: 3s and 8s, and two
main values for queue threshold: around 110 and 300
bytes. However, there is also an exception of 1000
bytes which is only observed in New York City (multiple
LACs in the city and different users consistently show
this value), likely due to its higher load requirement. We
also observe interesting patterns around big cities, e.g.,
Los Angeles is configured with 300 bytes while near-by
California cities are configured with 110 bytes.

Despite the limitations of the small number of
observed values, we note that the features are promising
in distinguish big cities which often have bigger queue
size threshold than their near-by cities. Coupled with
dynamic features, the signatures will be even more
unique.
Dynamic features. Figure 10 shows the distribution
of Carrier 1’s two dynamic features – promotion delay
and min-RTT. Each data point is an average over 8
measurements of promotion delay (after subtracting the
normal RTTs) and 40 measurements of RTT. We employ
95th percentile filtering to exclude outliers of promotion
delay due to measurement noise. Data points with the
same shape indicate that they are from the same LAC.
We can see from Figure 10 that min-RTT is very stable
in most cases, even though a user can move around in
nearby locations connecting to different base-stations
with varying signal strength.

For promotion delay, it is still reasonably stable but
less stable than min-RTT. In Figure 10, we aggregate
enough data points during off-peak hours (3AM - 6AM
where promotion delays should be stable), which have
relatively stable range of values and do show diversity
across different LACs. In the cases where two different
RNCs have similar signatures (e.g., at min-RTTs close
to 150ms in the figure), we may need to combine static
features to distinguish them.
Coverage calculation. Coverage is relatively simple to
calculate using only the MobileApp data. As defined
in §5, Coverage = |G

∩
M |

|G| . G denotes all the
signature samples under the target RNC. We use the
samples collected in MobileApp data (where we know
the ground truth RNCs) to serve as G. G

∩
M is

the signature samples correctly inferred to be under
the target RNC. They both can be derived from the
MobileApp data.



Inact. queue threshold
Prob.

Inact. queue threshold
Prob.

Inact. queue threshold
Prob.

Inact. queue threshold
Prob.

timer DL UL timer DL UL timer DL UL timer DL UL
5s 480 484 41.1% 3s 510 >=534 4.3% 3s 480 244 1.7% 3s 1010 244 1.4%
3s 510 244 28.8% 3s 480 >=504 2.7% 3s <=340 244 1.6% 3s 1010 >=576 1%
5s 480 >=504 6.9% 3s 480 484 2.6% 5s <=340 244 1.5% Others 6.4%

Table 4. Static feature probability distribution from largescale probing

For accuracy, however, using the MobileApp
data alone is not sufficient because it is possible
there are other unknown RNCs which have similar
signatures, i.e., collisions. This motivates our
subsequent measurement on the general distribution of
the signatures in an entire GGSN.

5.2 Evaluation via LargeScale Probing

In this section, we focus on two results. First,
we characterize the signature distribution of all five
features via large-scale probing. Next, based on the
distribution, we calculate the localization accuracy for
the MobileApp data where we have the ground truth
RNC.
Evaluation methodology. In our large-scale probing
data, we measure all 5 features but only 4 features are
measured in the MobileApp data (UL threshold was not
included). When we join two datasets together, we need
to make up for the missing feature in the MobileApp
data. We choose a very conservative way to do this – we
fill in a UL threshold such that the (DL,UL) threshold
combination is the least unique possible. This way, the
signature is never more unique than it should be, thus
the resulting localization accuracy can only be worse.
Signature distribution measurement for Carrier 1.
Previous results only provide a limited view on the
signature distribution. To get a more comprehensive
view, we sample 1

10 of an entire GGSN IP range in
Carrier 1 comprising 20 /16 IP prefixes to measure all
five features.

First, we use Shannon entropy – a metric measuring
the uncertainty associated with a random variable, to
measure how “random” the network signature variable
is and how many RNCs can be distinguished on average
in our context. Entropy is defined as H(X) =
−
∑

x p(x) log2 p(x), where X is the signature variable
and x is a possible value for X . Here we break X
into S and D representing static and dynamic features
respectively. Thus H(X) = H(S,D) = H(S) +
H(D|S), by the law of entropy.

For H(S) = −
∑

s p(s) log2 p(s), we need the s and
p(s) which are both shown in Table 4. There are in total
11 different static feature s with at least 1% probability
(appearance). Plugging in the probability p(s), entropy
H(S) is calculated to be 2.3 bits, indicating that we

can distinguish on average 22.3 = 5 different groups of
RNCs, using static features alone.

A closer examination of the table shows that, despite
the inactivity timer taking on only two distinct values
of 3s and 5s, the queue size threshold values are
much more diverse than those from the MobileApp
dataset (especially when combined with inactivity timer
values). The distribution is biased towards the top two
combinations where DL threshold values are 510 and
480, which match the values observed in our MobileApp
dataset. This means that some RNCs will be harder
to distinguish than others. Specifically, big cities with
smaller inactivity timer and bigger queue size threshold
are typically more distinct, considering that 41.1% of the
static features contain 5s inactivity timer and 480 DL
threshold (likely in small cities). The results indicate
that big cities are more easily identified and targeted.

For H(D|S), it can be computed as Σp(s) ×
H(D|S = s) by enumerating different static feature
s. To compute H(D|S = s), we slice the two-
dimensional dynamic feature space into equal-sized
bins using various threshold choice of min-RTT and
promotion delay (as described in §5). Plugging in
the probability associated with each bin, the computed
H(D|S) varies from 2.5 to 5 bits. This means the
combined entropy H(S,D) is between 4.8 and 7.3 bits,
which can distinguish 28 – 158 different groups of
RNCs on average. Remember this is without including
other potential features in Table 3 which can provide
additional entropy. Using the calculated entropy number
and the estimated RNC number (500 per GGSN), we
know on average there are 500/158 = 3.2 to 500/28 =
17.9 RNCs left indistinguishable to the attacker. Again,
given the distribution is nonuniform, the actual accuracy
will depend on which RNC is targeted.
Accuracy calculation using both the MobileApp and
probing data. We already discussed how to compute
coverage in §5.1. Now we discuss how to calculate
Accuracy = |G

∩
M |

|M | . First, accuracy calculation
requires knowing M — the signature samples inferred
to be under the target RNC. We perform the following
procedure to output M — for each RNC’s signature
sample in MobileApp (termed as baseline sample), we
go through all the probed signature samples (without
knowing their ground truth RNCs), and compare them
against the baseline sample. The signatures that match



LAC
Signature

Location
Phone-number

Coverage Accuracy Coverage Accuracy
11956 52% 41% Queens, NY N/A1

11974 50% 83% Newton, NJ N/A1

26507 50% 3% Ann Arbor, MI N/A1

52704 54% 88% Arlington, TX
15.5% 6%

52818 50% 75% Arlington, TX
52903 51% 77% Fort Worth, TX 0% 0%
1 No such phone number data from MobileApp

Table 5. Coverage and accuracy comparison
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Figure 11. Phonenumberbased coverage
and accuracy in small cities

the baseline close enough are then included in M . Now
the only unsolved part is |G

∩
M | — the number of

correctly inferred signature samples, which is in fact
semantically equivalent to |G| × coverage — out of all
the signature samples that are under the target RNC, the
covered ones are effectively the ones correctly inferred.
Since we already know coverage, all we need is |G| at
this point. We can estimate |G| based on the population
distribution observed in our MobileApp. Specifically, if
we know the fraction of users that are under a particular
RNC out of all the users, then we can rewrite |G| into
|N | × p where |N | is total number of signature samples
in the GGSN, and p is the fraction of population that
are under the target RNC. Therefore, Accuracy =
|G|×coverage

|M | = |N |×p×coverage
M . Since our dataset is not

complete enough to calculate p that is representative, we
resort to the uniform population distribution where every
p is equal only for the purpose of evaluation.

Coverage and accuracy results. As described in §5,
the SD-threshold for deciding if two samples are close
enough can be tuned according to the desired attack
impact and the resource constraint. The more relaxed the
SD-threshold, the more samples are considered under
the target RNC and thus likely to include more correct
samples (and better coverage and higher attack impact).
However, this is at the cost of lower accuracy (i.e.,
other non-related signature samples will be mistakenly
inferred to be under the RNC). As an example, we
tune the SD-threshold to achieve 50% coverage (which
is equivalent to 2.5 to 3.5 times the normal load), the
corresponding accuracy is shown in Table 5 for the
6 RNCs that are under the probed GGSN from the
MobileApp data.

Here LAC 52704 and 52818 (Arlington) both belong
to the “Dallas-Fort Worth-Arlington” metropolitan area
that has a large population. The accuracy is high
because their DL queue size threshold of 1010 is very
unique. LAC 52903 (Fort Worth) also belongs to the
same metropolitan area. However, its DL threshold is
only 510 bytes. The reason why its accuracy is high
is that its min-RTT is also very unique to distinguish
it from most other LACs. LAC 26507 has a very

bad accuracy because the promotion delay is unstable
and requires a large threshold value to maintain the
coverage rate. Further, its static features are also the
most commonly observed ones, further decreasing the
accuracy. From the attacker’s perspective, he can also
perform such signature distribution sampling offline
regularly to estimate how distinct the target RNC’s
signature is before the attack. To further improve the
accuracy, we discuss an optional step to further filter
IPs that are in other RNCs (in §6). Finally, the last two
columns in Table 5 are the results of the phone-number-
based approach described in the next section.

5.3 Comparison with PhoneNumberBased
Localization

In the state-of-the-art phone-number-based
localization [19, 35], the first seven digits of the
phone number (area code) are used to map out its
corresponding physical location (and carrier name)
using the public NPA/NXX database [8]. The
fundamental difference between signature- and phone-
number-based approach is that phone number is a
static property — users carry the same phone number
to different places, even when they switch network
providers. In contrast, network signature is dynamic
and up-to-date, thus robust to user mobility. Based on
the data we collected (described later), we find 75.4%
of the carrier names returned from NPA/NXX database
are incorrect, leading to extra effort for correction,
assuming there is a way to do so.
Data & evaluation methodology. From our deployed
MobileApp, with user’s permission we collected 15,395
entries consisting of first 7 digits of phone number,
carrier name, GPS location from users all across the
U.S. as ground truth. We use the data to calculate
coverage and accuracy and compare them directly
with the signature-based approach. Ideally we want
to map each GPS location to its RNC and do an
RNC-level comparison on the coverage and accuracy.
However, the NPA/NXX database returns only city-
level location. Thus, we approximate the RNC-level



Category Signature-based localization/IP traffic Phone-number-based localization/MMS
Localization overhead × Scanning large range of IPs X Crawl database, correct carrier name
Localization accuracy − Better in large cities − Better in small cities

Localization technique extensibility X More features to improve accuracy × Difficult to extend
Stealthiness in actual attack X Hard for users to notice × Easy for users to notice or disable
Feedback in actual attack X Immediate feedback × No feedback

Timing control in actual attack X Easy to control × Can get queued and delayed
Current defense effectiveness − Can be hard to traverse NAT − MMS blocked or rate limited
Detectability in actual attack − Probing traffic can be detected − MMS flooding can be detected

Figure 12. Comparison between signaturebased and Phonenumberbased attacks

comparison through city-level comparison instead. To
begin, we map each GPS location to its corresponding
city via a city-to-GPS database, and map the phone
number prefix to its city via the NPA/NXX database. We
term them GPS-city and queried-city respectively.

We treat big cities and small cities differently. For
each big city big, which is defined to have multiple
RNCs (or LACs from OpenCellID), we compute its city-
level coverage as X

Y 1 where X is the number of cases
where GPS-city = queried-city = big, and Y 1 is the
number of cases where GPS-city = big. Similarly,
we compute accuracy as X

Y 2 where X is the same as
before, and Y 2 is the number of cases where queried-
city = big. Note that since a phone number can only
map to a city-level location, its RNC-level coverage and
accuracy need to be divided further by n — the number
of RNCs in that city. The coverage and accuracy are then

X
Y 1×n and X

Y 2×n . Here we conservatively use n = 2 to
account for any inaccuracy when mapping from LAC to
RNC. In reality, n is likely bigger and makes their results
even worse. For small cities that may share a single
RNC with other cities, we need a different method.
Specifically, if the GPS-city and queried-city are within
a certain physical distance, we consider them to be under
the same RNC.

Coverage and accuracy results. For big cities, the
average coverage and accuracy are 18.8% and 18.4%
respectively for phone-number-based approach. Both
values are much lower than the signature-based results
in Table 5. In comparison with our signature-based
localization, if we set the SD-threshold to allow the same
accuracy, the coverage of the two big cities in Table 5
can increase to 60% – 80%, which is equivalent to 3
to 4 times the normal load. For small cities, Figure 11
illustrates how average coverage and accuracy over all
cities change with different distance threshold. At 10
miles, which is our locally observed distance to observe
two different RNCs in small-city area, the coverage and
accuracy are about 30% and 40% respectively. At 30
miles, they are around 56% and 60%, indicating that the
phone-number-based approach can perform better in the
small city case as the signature-based approach has less

distinct signatures in small cities.
As a more direct comparison, we look at the

intersection between the phone-number-based results
and signature-based results from MobileApp, arriving at
these following cities: Arlington and Fort Worth. As we
can see in Table 5, the phone-number-based coverage
and accuracy are much worse than the the signature-
based approach. For Arlington, coverage = X

Y 1×2 =
11

46×2 ; accuracy = X
Y 2×2 = 11

92×2 . For Fort Worth,
coverage = X

Y 1×2 = 0
30×2 ; accuracy = X

Y 2×2 =
0

3×2 (X,Y 1, Y 2 are defined earlier). Surprisingly for
city “Fort Worth”, both metrics are 0%, showing how
ineffective phone-number-based approach can be. Other
cities do not have enough phone number data points in
MobileApp, thus are marked as N/A.
Other aspects.

Note that NPA/NXX database does not provide
mappings from phone numbers to IPs. Therefore,
the only way to attack the data channel using phone
numbers is through MMS messages, as SMS uses
control channel instead. To launch the attack, a large
number of MMS messages must be sent regularly.

Different from sending direct IP traffic, sending
MMS has a number of short-comings (shown in
Table 12). We illustrate a few of them: 1). Repeated
MMS messages are easy for users to notice and disable
or even report to their carriers as abuse. In contrast,
sending direct IP traffic is much less noticeable to
users. 2). We find that sending MMS through the
email interface (e.g., 123456789@mms.att.net) provides
no feedback on the success of message delivery,
thus potentially wasting significant effort by attacking
phones that received no MMS at all (e.g., no MMS
capability). 3). The timing of MMS delivery is
very unpredictable, making the attack coordination
difficult. In our local experiment, we sent MMS
messages repeatedly every 30 seconds over 4 hours
at night, which presumably should incur little delay.
In contrast, we observe significant delays, causing the
phone 22.7% of the time to be idle and making the attack
significantly less effective. In a real attack where the
MMS gateway/server is more loaded, it is expected to



observe even longer delays. In fact, since MMS still
uses SMS to push the notification [10], it is likely that
the control channel is overloaded first.

5.4 Attack Scalability Analysis

An important question is how fast the attacker can
scan a sufficient number of IPs. If it takes too long, the
collected IP address may change (e.g., users may power
off the phone). With a simple analysis, we estimate that
it takes 1.2 hours to scan enough IPs with 800kbps of
bandwidth. The duration can be significantly shortened
using more attack machines and bandwidth.
Input. The prefix ranges found to be allocated
for a target location under a GGSN: X.128.X.X –
X.147.X.X.(§4.1) are used as input. This corresponds
to 1,300,500 IPs.
Min-RTT probing. The attacker can first use min-
RTT measurements to filter irrelevant IPs as min-RTT
has the smallest probing bandwidth requirement and the
highest entropy. Although in total we need 30 – 40
probes (as described in §4.2.2) to determine the min-
RTT, we need only 1 probe to first check if the IP
is assigned or not. Probing one IP with one probe
requires bandwidth of 40byte∗8bit

RTT = 1kps (assuming
RTT = 0.3s). Probing 800 IPs simultaneously requires
1kbps × 800 = 800kbps. Probing each IP once takes
about 1,300,500

800 × 0.3s = 8min.
Since many IPs are not allocated at run time, they can

be dropped easily upon the first probe. Considering the
online IP ratio of 22% (§3.3), around 286,110 IPs are
left. Probing the remaining IPs with additional 29 back-
to-back measurements will take 286,110

800 × (0.3s×29) =
51min. In total, it takes roughly 59 minutes to scan the
entire GGSN IP range.
Static feature probing. After min-RTT probing, on
average 1

8 of IPs (around 35,763) remain since the
entropy of min-RTT is 3 bits. The attacker can then
measure the static features to further narrow down IPs to
probe. Given that the attacker knows the exact inactivity
timer and the queue size threshold in the target location
from the probe phone in that area, it can directly look for
these values during scanning. Depending on the timer
and queue size threshold, a complete round to measure
both values takes a large packet (1200 bytes) to trigger
state promotion to DCH, a small packet (40 bytes) to test
the inactivity timer, and a packet with size matching the
queue size threshold (suppose it is 500 bytes) to see if it
forces the state to go back to DCH. The time to finish
such a round would be the promotion delay(2s) +
inactivity timer(5s) = 7s. The throughput
requirement is then (1200+40+500)∗8bits

7 = 1.94kbps.
Scanning 412 IPs simultaneously would require
1.94kbps×412 = 800kbps bandwidth and 35,763

412 ×7s =

10min to finish.
Promotion delay probing. After the static feature
probing, there are on average 1

5 IPs (around 7,152)
remaining for entropy of 2.3 bits. Then the promotion
delay can be measured. It takes only 10.7bps uplink
on the server side, since it only needs to send and
receive one 40-byte packet every 30 second. It takes
4min to complete 8 rounds of probing (8 rounds is
selected in §4.2.2). The attacker can easily target the
rest simultaneously using 7, 152 × 10.7bps = 76kbps
bandwidth. The estimated time to finish probing should
be 4min since all of them can be done in parallel.

In total, the time to complete the measuring of all
features is 59 + 10 + 4 = 73min. Considering 80% of
IPs keep their IPs for more than 4 hours (Figure 3), the
attacker has enough time to launch the attack thereafter
for at least several hours.

6 Discussion and Defense

Impact of device difference on dynamic features.
Ideally, end-devices should have little impact on the
dynamic features such as RTT and promotion delays.
However, we do realize that different phones supporting
different technologies may co-exist. For instance, some
phones may support only HSDPA while their network
supports both HSUPA and HSDPA (i.e., HSPA). This
means that these “older” phones may experience slower
network performance (e.g., longer RTT and promotion
delay) thus exhibiting different network signatures. In
practice, however, it is likely that there will always be
one or two “dominating” technologies that are most
widely used in the end-devices and can be considered
as the target for an attacker. For instance, devices are
frequently updated given that smartphones are becoming
cheaper and quickly out-dated. Regardless, such phone
differences do not impact the static features such as
queue length threshold and inactivity timer.
Impact of base-station difference on dynamic
features. Besides device differences, different base-
stations can also impact the measured RTTs or
promotion delays, with bounded noise. Indeed, from
the MobileApp data, we find that in a short duration
(e.g., peak hours), the measured promotion delays do
not vary significantly under the same RNC considering
the samples are collected across multiple base-stations
already. We do find one instance where the promotion
delay can vary more significantly in different base-
stations. This means that we either have to relax the
SD-threshold to cover enough signature samples, or
need some way to account for it. As a preliminary
investigation, we find that the difference could be caused
by different base-stations under different load, indicated
by significantly differing average RTTs (min-RTTs are



still the same) which can be used for calibration. We
leave for future work to systematically address this.

Optional final step to narrow down RNCs. In cases
where the attacker wants to ensure that the inferred
IPs indeed belong to the target RNC, an optional step
that the attacker can take is to actually try these IPs
out. More specifically, the attacker can choose a subset
of the total IPs and launch a mini-attack against the
RNCs (which should increase the processing delay on
the RNC) and observe the changed baseline promotion
delay from his probe phone. If the promotion delays of
the tested IPs match the perturbed baseline promotion
delay, it is likely that they indeed belong to the same
RNC. The attacker can repeat this step multiple times to
perform more fine-grained filtering.

Next generation LTE networks. As discussed earlier,
LTE networks still have the built-in radio resource
control mechanism with associated configurable
parameters [5]. For instance, they allow various timers
such as inactivity timer, discontinuous reception (DRX)
cycle timer to be configured [5]. Fundamentally,
due to the scarce nature of the radio resource, the
corresponding radio resource control protocol has to
provide mechanisms for sharing the resource smartly
and flexibly among a large number of users. It is
conceivable that network signatures exist for LTE
networks as well since different network locations
may again use a different set of configurations to
accommodate the load difference.

Defense. The network signatures can be considered as
a type of side channel that leaks information about the
network location. A common defense is to eliminate
such side channel. For instance, instead of using the
fixed configuration parameter for all devices at all times,
carriers can assign parameters probabilistically within a
range, which makes it significantly harder for an attacker
to infer the actual parameter. However, this may reduce
the effectiveness of the parameter for accommodating
workload and still requires scrutinization. As network
defenses, the carrier can disallow direct probing from
the Internet or other phones. However, it also has
negative impact as discussed. As host-based defenses,
one simple solution is to use host firewall that drops
unsolicited probing packets to prevent information
leakage. This could be an effective solution in the short
term. As smartphones evolve, however, they may open
more ports to accept incoming connections, making host
firewall protection less effective. We leave for future
work to systematically study how to defend against such
information leakage in critical infrastructures such as
cellular networks.

7 Related work

The wide adoption of cellular networks increasingly
draws attention to study their vulnerabilities. Various
forms of attacks have been revealed in the past few
years. Serror et al. [32] found malicious traffic from the
Internet can overload the paging channel in CDMA2000
networks. Traynor et al. [35] presented two attacks on
GPRS/EDGE networks by abusing the radio resource
setup and teardown process. Lee et al. [25] showed well-
timed attack traffic can trigger excessive radio resource
control messages, which in turn overburden RNCs in
UMTS networks. The success of all these attacks
hinges on the ability to identify many target devices in
a particular cellular network region, e.g., under a RNC
(which is the focus of this paper).

Our work draws on earlier cellular network
measurement studies. Balakrishnan et al. [15] found
IP address alone cannot be used to determine the
geographic location of mobile phone in AT&T’s 3G
network. Latency measurement appears to be more
informative. However, their observations are drawn
from latency samples of only three locations.

Prior work leveraged phone numbers to create a
hit list for the purpose of launching targeted attacks.
Enck et al. [19] generated a hit list of phone numbers
through a combination of sources such as NPA/NXX
database and web scraping. However, its effectiveness
is not thoroughly evaluated. Moreover, sending SMS or
MMS has a number of limitations compared to sending
IP traffic directly to phones.

There have been extensive studies on geolocating
IP addresses in the Internet. Most of them assume
a list of landmarks with well-known geographic
location, extracted from manually-maintained sources
like DNS names [28, 33, 12]. They then use latency
constraints to multiple landmarks to geolocate an IP
address [22]. Unfortunately, these techniques are ill-
suited for geolocation in cellular networks because a
phone is often far from its first IP hop (e.g., GGSN) not
only in terms of geographic distance but also in terms
of network latency. Given this, instead of attempting to
infer the exact location of a phone, we solve a slightly
different (but easier) problem, i.e., determining if two
phones are under the same RNC.

There are also studies for localizing mobile devices
such as Escort [18], VOR [27], Virtual Compass [16],
PlaceLab [17], and Radar [14]. The key difference is
that they all require participation and cooperation from
the phone, which is not assumed in the attack.



8 Conclusion

Motivated by the recent attacks against cellular
network infrastructure at a particular target region (e.g.,
signaling attack), we focus on a simple but important
question of how to create a hit-list of reachable mobile
IP addresses associated with the target location to
facilitate such targeted DoS attacks. Our approach
uses network signatures through active probing and is
applicable for a large set of current cellular networks we
studied. This exposes a new attack vector that cannot be
easily eliminated. From a thorough empirical analysis,
we offer suggestions on how to defend against such
reconnaissance effort by attackers.

References

[1] 3GPP TS 25.133: “Requirements for support of radio
resource management”.

[2] 3GPP TS 25.331: “RRC Protocol Specification”.
[3] AT&T: 80 percent of network now upgraded to HSPA+.

http://www.engadget.com/2010/11/17/
atandt-80-percent-of-network-now-
upgraded-to-hspa/.

[4] AT&T: wireless capacity upgrades complete in
Hillsborough, Pasco. http://www.bizjournals.
com/tampabay/stories/2010/10/11/
daily38.html.

[5] Evolved universal terrestrial radio access (e-utra);
radio resource control (rrc); protocol specification.
http://www.3gpp.org/ftp/Specs/html-
info/36331.htm.

[6] Extended icmp to support multi-part messages. http://
tools.ietf.org/html/rfc4884.

[7] iPhone Troubles Might Go Beyond Signaling. http://
www.lightreading.com/document.asp?
doc_id=190764&piddl_msgid=226225#msg_
226225.

[8] Local Calling Guide. http://www.
localcallingguide.com/index.php.

[9] Mobility management. http://en.wikipedia.
org/wiki/Mobility_management.

[10] Multimedia Messaging Service. http://
en.wikipedia.org/wiki/Multimedia_
Messaging_Service.

[11] OpenCellID. http://www.opencellid.org/.
[12] Whois ip address/domain name lookup. http://

whois.domaintools.com.
[13] UE “Fast Dormancy” behavior. 3GPP discussion and

decision notes R2-075251, 2007.
[14] P. Bahl and V. N. Padmanabhan. Radar: an in-building

rf-based user location and tracking system. In Proc. of
INFOCOM, 2000.

[15] M. Balakrishnan, I. Mohomed, and
V. Ramasubramanian. Where’s That Phone?: Geolocating
IP Addresses on 3G Networks. In Proc. of IMC, 2009.

[16] N. Banerjee, S. Agarwal, P. Bahl, R. Chandra,
A. Wolman, , and M. Corner. Virtual Compass: relative
positioning to sense mobile social interactions. In IEEE
Pervasive Computing, 2010.

[17] Y. Chen, Y. Chawathe, A. LaMarca, and J. Krumm.
Accuracy characterization for metropolitan-scale wi-fi
localization. In Proc. of Mobisys, 2005.

[18] I. Constandache, X. Bao, M. Azizyan, and R. R.
Choudhury. Did You See Bob?: Human Localization
using Mobile Phones. In Proc. of MobiCom, 2010.

[19] W. Enck, P. Traynor, P. McDaniel, and T. La Porta.
Exploiting open functionality in SMS-capable cellular
networks. In Proc. of CCS, 2005.

[20] H. Galeana, R. Ferrus, and J. Olmos. Transport capacity
estimations for over-provisioned utran ip-based networks.
In WCNC, 2007.

[21] M. Gruteser, D. Grunwalddepartment, and C. Science.
Anonymous usage of location-based services through
spatial and temporal cloaking. In Proc. of Mobisys, 2003.

[22] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida.
Constraint-based Geolocation of Internet Hosts. In Proc.
of IMC, 2004.

[23] H. Holma and A. Toskala. HSDPA/HSUPA for UMTS:
High Speed Radio Access for Mobile Communications.
John Wiley and Sons, 2006.

[24] H. Kaaranen, A. Ahtiainen, L. Laitinen, S. Naghian, and
V. Niemi. UMTS Networks: Architecture, Mobility and
Services (2E). John Wiley & Sons, 2005.

[25] P. P. C. Lee, T. Bu, and T. Woo. On the Detection of
Signaling DoS Attacks on 3G Wireless Networks. In
Proc. of INFOCOM, 2007.

[26] O. D. Mey, L. Schumacher, and X. Dubois. Optimum
Number of RLC Retransmissions for Best TCP
Performance in UTRAN. In Proc. of Annual IEEE
International Symposium on Personal Indoor and Mobile
Radio Communications (PIMRC), 2005.

[27] D. Niculescu and B. Nath. VOR base stations for indoor
802.11 positioning. In Proc. of MobiCom, 2004.

[28] V. Padmanabhan and L. Subramanian. An Investigation
of Geographic Mapping Techniques for Internet Hosts. In
Proc. of SIGCOMM, 2001.

[29] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Characterizing radio resource allocation
for 3G networks. In Proc. of IMC, 2010.

[30] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen,
and O. Spatscheck. TOP: Tail Optimization Protocol
for Cellular Radio Resource Allocation. In Proc.
International Conference on Network Protocols, 2010.

[31] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu. Investigation of
triangular spamming: a stealthy and efficient spamming
technique. In In Proc. of IEEE Security and Privacy,
2010.

[32] J. Serror, H. Zang, and J. C. Bolot. Impact of Paging
Channel Overloads or Attacks on a Cellular Network. In
WiSe, 2006.

[33] N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP Topologies with Rocketfuel. In Proc. of SIGCOMM,
2002.



[34] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger,
P. McDaniel, and T. La Porta. On Cellular Botnets:
Measuring the Impact of Malicious Devices on a Cellular
Network Core. In Proc. of CCS, 2009.

[35] P. Traynor, P. McDaniel, and T. La Porta. On Attack
Causality in Internet-connected Cellular Networks. In
Proc. of USENIX Security, 2007.

[36] Q. Xu, J. Huang, Z. Wang, F. Qian, A. Gerber,
and Z. M. Mao. Cellular data network infrastructure
characterization and implication on mobile content
placement. In Proc. of SIGMETRICS, 2011.


