
Towards Automated Network Management:
Network Operations using Dynamic Views

Xu Chen Z. Morley Mao Jacobus van der Merwe
University of Michigan AT&T Labs–Research
{chenxu,zmao}@umich.edu kobus@research.att.com

ABSTRACT
We analyze data from a Tier-1 ISP that reflect the dynamic
operational tasks performed in the ISP network to build a
holistic view of configuration management operations. We
observe that in addition to commands that lead to persistent
configuration changes, virtually all management tasks also
involve status-checking commands that do not change the
configuration, but allow the operator to verify some router
specific state. Based on this observation we model config-
uration modifications using automatically generated deter-
ministic finite automata (DFA), where a state represents the
configured behavior of an interface and an edge indicates the
operations performed on the interface either to fulfill a spe-
cific task or to check the status of the router. The DFA
model captures common configuration tasks derived by our
analysis and their ordering and dependency. We argue that
composing DFAs is a (small) step towards enabling opera-
tors to reason about the operational state of the network, as
well as enabling tools for automated network management.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

General Terms
Management, Measurement

Keywords
TACACS, Network management automation, DFA

1. INTRODUCTION
Managing IP networks is increasingly challenging due

to diverse protocols, growing application requirements and
primitive support from network devices. The state of the art
in network configuration management tends to be template-
driven and device-centric [1], with inadequate focus on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-788-9/07/0008 ...$5.00.

network-wide objectives. These approaches usually focus
exclusively on the configuration management aspects of net-
work management, i.e., the task of generating the persistent
configuration files that dictate the behavior of the network
elements making up the network. Indeed, much of our un-
derstanding of network management stems from analyses
of such static configuration files obtained from operational
networks [2, 3, 4].
We approach this problem by analyzing the TACACS

(Terminal Access Controller Access-Control System) [5] logs
obtained from a Tier-1 ISP. The network is configured to
perform authentication and accounting through TACACS
and as such all configuration commands executed on net-
work elements in the ISP network are logged. We perform a
bottom-up analysis to present a holistic view of the opera-
tional tasks performed in the ISP network over a four-month
period. To our knowledge, it is the first time that such a dy-
namic view of network management has been reported.
In addition to the static view provided by snapshots of

the network configuration files, we analyze the dynamics
presented in the TACACS logs of how the configurations
are modified across time. We perform detailed analysis of
configuration commands by correlating commands using an
interface-centric view. The starting point of our work is to
extract the command sequences that are usually executed to-
gether in a fixed pattern to fulfill management tasks. From
the data we also observe that in addition to commands that
lead to persistent configuration changes, virtually all man-
agement tasks also involve status-checking commands that
do not change the configuration, but allow the operator to
verify some router-specific state.
Based on these observations, we model configuration mod-

ifications using automatically generated deterministic finite
automata (DFA), where a state represents the configured be-
havior of an interface and an edge indicates the operations
performed on the interface either to fulfill a specific task or to
check the status of the network. The DFA model not only
allows us to capture common management tasks, but also
gives us the ordering and dependency information among
those tasks. Containing the information about the temporal
progression of network management under different network
conditions, the DFA model provides a dynamic view of how
large networks are managed today. Based on this under-
standing, better tools for automating network management
can be built. We argue that composing DFAs is a better
network management abstraction, which enables operators
to reason about the operational state of the network.

2. METHODOLOGY
In this section we describe the data sources and the data

processing required to perform our analysis of current oper-
ational practices in the ISP we studied.

2.1 Data Sources
We used three data sources in our study. The main data

source is TACACS logs, containing the commands executed
on the routers across the ISP network. TACACS is a re-
mote authentication protocol used by network devices to
communicate with authentication servers, and, in our case,
to determine whether a user has access to a certain router
and has sufficient privilege to execute a command. As such,
the TACACS logs contain three types of records for login re-
quests (authentication), privilege escalation (authorization)
and commands executed (accounting) respectively.
The second data source we used is daily snapshot of the

configuration of all the routers in the ISP network. TACACS
data capture how the router configuration is modified across
time. We combine the two data sources to form a contin-
uous view of how the configuration of the network evolves
over time. Configuration data follow the same syntax and
structure as TACACS data and can be processed using the
same parser.
Finally, we make use of data derived from configuration

files [2, 6] to augment the first two data sources. Specifically,
because we take an interface-centric view for our analysis,
we use this data to indicate the role of an interface in the
network, e.g., backbone link versus customer link etc.

2.2 Data Pre-Processing
The data pre-processing steps involved in our study are

detailed below. We are particularly interested in TACACS
accounting entries, each of which contains several useful
fields: username, router-id, terminal, timestamp, task-
id, command, etc.

Ordering Commands Sequentially: The raw TACACS
logs are in the form of large text files consisting of the records
for all the routers saved by multiple TACACS servers. The
task-id is a monotonically increasing counter inside each
router, which can be used to uniquely identify an executed
command. We first separate the commands executed on
different routers, according to the router-id field. For a
particular router, we sort the commands based on both the
associated timestamp and the task-id fields, since task-

id is initialized to zero when the router is reset to original
factory default settings by command reload.

Login Session Extraction: There can be multiple opera-
tors logged into one router and each operator can have mul-
tiple simultaneous login sessions. We first extract out the
commands which have the same username and terminal pair
and then demarcate them according to special entries that
flag the creation and termination of login sessions. Thus,
we separate the commands executed across different login
sessions on the same router.

Command Differentiation: Commands that inspect
router status are commonly performed. We differentiate the
commands that do not change the router’s configuration or
running status as status-checking, for example show run-

ning-config, as opposed to those persistent commands that
actually modify the configuration or behavior of a router.
The status-checking commands usually serve as the purpose

Raw TACACS
 data

Command groups
 for each router

Interface-correlated
command groups

 Command
sequences

Network tasks
across routers

Figure 1: The overall processing diagram

of condition checking in the current network management
practice to determine whether and how to proceed with the
next configuration step, which we will discuss in detail later.

Command Parsing: We developed a parser for processing
configuration commands. In the current implementation,
we tailor our parser for Cisco router syntax1. We created
regular expressions to match the commands in the data. Al-
though we currently focus on Cisco syntax, our overall ap-
proach is also applicable to other configuration syntax. Our
parser is capable of parsing over 98% of the persistent com-
mands2, and all status-checking commands observed can be
parsed.

2.3 Command Group Generation
Different categories of commands, e.g., related to access-

list, interfaces, or BGP, are executed under different op-
erational contexts. Once an operator logs into a router,
she is under a normal context, under which only status-
checking commands are allowed. Once configure terminal

is executed, she switches to a configuration context, under
which the configuration modifications are performed. To
configure the interface serial1/0:0, she needs to execute
interface serial1/0:0 first, to switch to an interface con-
figuration context. Each category has its own context-switch
commands.
We define a command group to be a sequence of persis-

tent commands that are consecutively executed under the
same context, plus the proceeding context-switching com-
mands. The context-switching commands of a command
group not only specify its category (e.g., interface, access-
list), but also contain variable names (e.g., the interface
name), which together uniquely identify the configuration
component that the command group modifies. Combining
individual consecutive commands into command groups is a
natural representation of the TACACS data, giving the in-
formation about the how different components of the router
configuration are modified. The analysis results are shown
in Section 3.1.

3. DATA ANALYSIS RESULTS
In this section, we first show our analysis results of the

break-down of command groups that appeared in the four-
month TACACS data and then describe the additional pro-
cessing performed. Figure 1 depicts our processing steps.
After command group generation, we associate each com-
mand group to appropriate interfaces, while preserving their
temporal ordering. This gives us the ordered sequence of
command groups executed for each interface, from which
high-level network management tasks can be inferred.

1We also normalized all commands to accommodate differ-
ent variations of the same command, e.g., “int” is parsed to
“interface”.
2The remaining 2% of persistent commands are all
hardware-specific commands related to specific interface
types in the provider network and are not germane to the
focus of our study.

(a) The breakdown of configuration commands

(b) The breakdown of configuration command groups

Figure 2: TACACS data analysis results

3.1 Command Groups in the TACACS Data
Using our parser we processed four months of TACACS

data containing the commands executed on all the core-
backbone and majority of provider-edge routers within a
Tier-1 ISP network. We extracted commands from different
login sessions and generated command groups according to
the change of context during execution. We excluded from
this analysis a few command categories related to authenti-
cation configuration as well as low-level class-of-service com-
mands. Additionally, we ignore 0.01% of the total number of
TACACS commands for which we are unable to determine
the execution context because of missing context-switching
commands.
Figure 2 shows the histogram of the number of commands

and the number of groups observed in the data respectively,
broken down by the command group types shown in Table 1.
The Y-axis is the log-scaled percentage value for their ap-
pearance. In Figure 2(a), we can see that the majority of the
commands executed on routers are ACL (39%) and PLIST
(47%), which correspond to access-lists that filter packets
and prefix-lists that filter BGP routes. This is expected as
access-lists and prefix-lists are the first line of defense for a
network’s data plane and control plane respectively. These
command groups tend to have many entries, especially for a
prefix-list that filters routes from a peering ISP, which can
contain thousands of entries. Interface groups contribute to
the third largest number of commands and around 60% of
the total number of groups. As shown in Figure 2(b) the
interface components are the most frequently modified in
network management, as most of them are directly connect-
ing to neighboring networks. The second and third largest
number of groups come from access-list (16%) and policy-
map (5.6%). The importance of policy-map also emerges,
since it is used intensively to guarantee QoS.

ACL
access-list group and ip access-list group
which define ACLs

BGP router bgp group, which define BGP sessions
INT interface group, defining interface configurations
VRF ip vrf group, which defines VRF profiles

CONT controller group, which defines controller setups

PLIST
ip prefix-list group, which defines prefix-list
that is used to filter routes

CMAP class-map group, which defines a class of packets

PMAP
policy-map group, which defines the traffic-
shaping policy of certain classes of packets

RMAP
route-map group, which defines how to
manipulate certain routing messages

MC
map-class group, which encapsulates policy-
maps and can be directly applied to interfaces

IPRV ip route vrf group, defining VRF static routes
IPR ip route group, defining static routes

CLIST
ip community-list group, which defines filters
based on community values for route-maps

ALIST
ip as-path access-list group, which defines
filters based on as-path for route-maps

OSPF router ospf group, defining OSPF routing process
BGPR clear ip bgp group, which resets BGP sessions

RLIST
ip receive list group, which uses an ACL to
filter received packets of the router

Table 1: TACACS command group types

Figure 3: Correlation among command groups

3.2 Interface Correlation
The dependencies within router configurations have pre-

viously been studied by Feldman et al. [2] to check static
configuration errors. In our work, we extend this depen-
dency relationship to identify correlations among configura-
tion command groups. We define command groups A and
B to be correlated, if one command in A contains a vari-
able name which is exactly group B’s name. For example an
interface group with command ip access-group 123 in is
correlated with access-list 123 command group. Figure 3
shows some possible correlations across different command
groups. This graph is automatically generated by process-
ing specification of commands in each category. The only
exceptions are the arrows from interface and IP route to
BGP neighbor group - this means the IP addresses used for
BGP peering connections can be reached either by being
directly connected to an interface or via static routes that
point to an interface. We correlate BGP session setup to
interface, based on the assumption that each customer link
is used to connect to only one BGP neighbor.
We developed an algorithm to correlate command groups

in TACACS data to related interfaces. This interface cor-
relation is trivial for interface command groups. For a non-

Description
Num. of Pctg of the
occurrences total commands

ACL MOD 58825 36.6%
PREFIX MOD 2677 42.2%
STATIC INIT 10761 6.23%
VRF INIT 4156 1.3%
VRF ENABLE 3982 1.34%
BGP MOD 1795 4.77%
STATIC ENABLE 5605 3.30%
BGP ENABLE 464 0.36%
RECV MOD 638 0.55%
TOTAL 91447 96.7%

Table 2: Major command sequences

interface command group, we first try to correlate it to inter-
face command groups executed on the same router within a
two-day time window (from one day before to one day after)
in the TACACS data. This is an adjustable heuristic taking
advantage of the fact that closely executed command groups
are very likely to correlate with each other. If this step fails,
we then try to correlate the command group to non-interface
command groups within the same time window, whose cor-
related interface can be determined by recursively calling the
algorithm. If both steps fail, we take into consideration the
command groups in recent configuration snapshot file. For
an interesting pattern like an ip prefix-list group followed by
a BGP session reset, our algorithm is able to identify the
BGP session that uses the prefix-list and further the inter-
face that is used to connect to the BGP neighbor with the
help of configuration snapshot file. Note that one command
group can be correlated to multiple interfaces. For instance,
modifying an ACL that is used by two interfaces.
After correlating configuration command groups to inter-

faces, we have formed another level of abstraction of the
TACACS data - i.e., the configuration commands that are
executed in order with respect to a single interface. Our
interface-centric correlation is very effective: over 99% of
the TACACS commands are successfully correlated to one
or more interfaces. Our algorithm is not able to correlate
a command group like policy-map which is defined but not
referenced by an interface within the two-day time-window.
This limitation accounts the 1% commands that are uncor-
related. We further analyzed the break-down of the com-
mands executed on different edge interfaces - connecting to
VPN, static-router and BGP neighbor. The notable differ-
ences are: 1) VPN customers are more likely to have policy-
maps applied; 2) over 80% of the commands related to BGP
neighbors are prefix-list modifications; 3) over 80% of the
commands related to static-route customers are ACL mod-
ifications.

3.3 Command Sequence Extraction
Command groups that are correlated to one interface are

usually executed together in fixed patterns, which we define
to be a command sequence. It is likely that the operators
have some automated ways of executing them together to
fully or partially fulfill a single operational task. From the
data we automatically generate frequently executed com-
mand sequences and then infer their purpose using domain
knowledge.
Table 2 shows the result for sequence extraction. The

major sequence “ACL MOD” is an event in which the ACLs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 50 100 150 200 250 300In
co

m
in

g
tra

ffi
c

(n
or

m
al

ize
d)

Time (5min)

Link 2

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 50 100 150 200 250 300

In
co

m
in

g
tra

ffi
c

(n
or

m
al

ize
d) Link 1

Figure 4: Correlated events across network

of the interface are modified, while “PREFIX MOD”means
modifying the prefix-list used by a BGP session, followed by
a BGP session soft reset. “BGP MOD” is the event in which
the prefix-list of the BGP session and the ACL of the cor-
related interface are modified at the same time. “STATIC
INIT” is a sequence of commands which initializes an inter-
face (consisting of a controller group that allocates the sub-
interface, an access-list group, and an interface group). The
sequence of “VRF INIT” is similar to “STATIC INIT”, but
with additional MPLS VPN related setup. “STATIC EN-
ABLE”, “BGP ENABLE” and “VRF ENABLE” correspond
to the sequences that finalize the configuration for an inter-
face that connects to static-route customer, BGP neighbor
or VPN customer respectively. There are four types of short
but important command sequences not shown in the table -
“SHUT DOWN”the interface (shutdown), “BRING UP” the
interface (no shutdown), “REMOVE INT” by deleting the
interface configuration and de-allocating the sub-interface if
necessary, and “DIAG INT” for diagnosing problematic in-
terfaces.
Command sequence is an interesting level of abstraction

for understanding current network management. Accord-
ing to our domain knowledge, a command sequence can be
translated to a specific task performed on a router related to
a specific interface. For edge routers in particular, manag-
ing such an interface is conceptually equivalent to managing
the customer site connected to the interface. Note that these
nine command sequences cover almost 97% of the commands
executed during our study period, representing the majority
of the network tasks being performed.

3.4 Network-wide Event Correlation
Managing large networks sometimes requires configuring

multiple routers simultaneously. For example, inter-domain
traffic engineering usually needs to change the BGP rout-
ing policy of two or more BGP sessions between two ASes.
Reflected in TACACS logs, BGP MOD sequences on those
interfaces are likely to co-occur.
When extracting command sequences, we also know the

interface being configured and the times when the configu-
ration change happened. We did a very preliminary study
by counting the number of appearances of two events hap-
pening together within five-minute time windows. The most
frequently occurring pair is the BGP policy change of two

 no
interfaceinterface initialized

 shutdown

interface bring up
UNTESTED

interface bring up
 TESTED

interface bring up
 FAILURE

interface fully configured
 UNTESTED

interface fully configured
 TESTED

interface fully configured
 shut down

interface fully configured
 FAILURE

STATIC
 INT

BRING
 UP SHUT

DOWN

 PING
-> Good

 PING
-> Bad

STATIC
ENABLE

CHECKING
 -> Good

CHECKING
 -> Bad

DIAG
 INT

REMOVE
 INT

 SHUT
DOWN

ACL RESET

Figure 5: Sample DFA for static-routed interface

peering links connecting to one neighboring ISP. The traffic
data near those events shown in Figure 4 clearly shows the
combined effect of both command sequences.

4. MODELING NETWORK CONFIGURA-
TION MODIFICATIONS USING DFAS

In this section, we propose a DFA model to create a unique
view of network management. Our model is able to inte-
grate the essential operational tasks, in terms of command
sequences, as well as the ordering and dependency among
them. We argue that this is a neat and compact way of
modeling current network management practice and repre-
sents a step towards network management automation. We
will briefly explain the generation of the DFA model and
discuss its properties and usage.

4.1 DFA Model
DFA stands for deterministic finite automaton [7], which

consists of a finite set of states and transitions that depend
on input symbols at each step. We use DFA to model the
status of an interface - how it is being configured and how
it actually works. Figure 5 gives a simple example of our
automatically generated DFA for an interface connecting to
a static routed customer.
Given a router configuration at any time, we can find all

the components that are correlated to a specific interface, us-
ing the same correlation algorithm described in Section 3.2.
All these correlated configuration groups, which we denote
to be interface-correlated configuration of an interface,
exactly define how this interface should work.
We define a configuration state to be one possible

interface-correlated configuration. We analyzed the router
configuration snapshot data to identify those configuration
states. Given that a snapshot file can be generated at any
time, we do not consider an interface-correlated configura-
tion in that file if the corresponding interface was being con-
figured across the time when that particular snapshot file
was taken, since the interface is likely to be in an interme-
diate state. After extracting configuration states, each con-
sisting of several command groups, we canonicalize them by
ignoring the variable names and parameters of commands

to facilitate comparisons. We denote a canonicalized form
of a configuration state to be a state template. Interest-
ingly, we found that a very small number of state templates
can capture all the configuration states for interfaces con-
necting to a particular type of customer, e.g., static-route
customer. In Figure 5, the lower-cased words within a state
is the high-level description of that state template.
In our design, each edge of the DFA corresponds to ei-

ther a persistent command sequence that changes the con-
figuration or running-status, or a status-checking command
sequence that helps determine the actual running-state of
the interface. Persistent sequences and status-checking se-
quences are marked respectively as firm and dotted arrows
in Figure 5.
Status-checking commands are very important in network

management as they reveal the actual running-status of the
router or an interface. Similar to persistent commands,
status-checking commands are executed together in fixed
patterns. We thus use similar techniques to generate status-
checking command sequences. Note that status-checking
commands can be executed periodically to inspect network
running-status. We ignore those periodically executed com-
mands by using a simple heuristic of ruling out commands
that are executed roughly at the same time every day. In-
stead, we focus our study on the ones that are closely coupled
with the execution of persistent command sequences.
An operator may proceed with different persistent com-

mands, after observing different results of status-checking
commands. In the example we have, after an interface is ini-
tialized (STATIC INIT) and brought up (BRING UP), the
operator will continue to execute the finalization sequence
(STATIC ENABLE), if the status-checking sequence reveals
the interface is working properly, but shut down the inter-
face (SHUTDOWN) instead if the interface is found to be
not working properly. As we can see in Figure 5, the states
within one dashed block have the same state template, while
it is the status-checking commands that determine how the
interface actually works. ACL MOD is a command sequence
that changes the traffic filter of an interface. It does not
change the canonicalized form of the configuration state, so
the edge connects two states with the same state template
as well.
We define three main types of running-status (marked in

capitalized words): 1) UNTESTED, which means a config-
uration change has just been made, while the interface is
pending some status-checking sequence; 2) TESTED, which
means the result of the status-checking command sequence
reveals that the interface is running properly; 3) FAILURE,
which means the interface is not working properly. How-
ever, such information can only be obtained by interpreting
status-checking commands’ results, which are not logged by
the TACACS data. There are still two ways that we can
estimate these states: i) according to the subsequent config-
uration sequence - for different states with different running-
status, the next-step configuration is likely to be different;
ii) using our domain knowledge to estimate these possible
states.

4.2 Discussion
The DFA model that we developed not only provides a

way to visualize all the operations related to a particular
interface, but also gives much more information about the
temporal progression in network management. The current

configlet-based approach [1, 8] does not provide the whole
picture of network management. As we are able to derive
directly from TACACS data, there exists interesting order-
ing and causal dependency in the execution of configuration
commands.
The DFA model is currently inferred from the data analy-

sis results; however, we can design similar DFAs to assist in
network management automation. The persistent command
sequences (outgoing edges) of each state define exactly what
can be done given a particular state of the interface, guiding
the next step in configuration. The condition checking can
be automatically performed to immediately verify previous
execution results and trigger the subsequent persistent con-
figuration changes. By encoding possible network running-
status into a group of states with the same configuration
state, we can achieve more sophisticated network manage-
ment automation using the DFA model. For example, we
can define two states, “Interface fully-configured, has traf-
fic going through during the last minute”, “Interface fully-
configured, no traffic going through during the last minute”.
We can then clearly specify that the command sequence
which shuts down the link can only be executed under the
latter state. This can prevent undesired traffic disruption
and ensure that the network maintains a healthy running
state. We leave designing such a system as future work.

5. RELATED WORK
Managing networks through router configuration is a chal-

lenging task and a significant contributor to lack of high net-
work availability [9]. Many existing studies in this area of
configuration management in IP networks focus on diagnos-
ing network-wide misconfigurations from router configura-
tion files [3, 10, 2, 4]. Our work is different from previous
work in that we analyze data capturing continuous changes
of the configuration of most routers in the network. Our ap-
proach provides more fine-grained analysis and reveals many
interesting issues that are impossible to be discovered by
studying static configuration snapshots.
Researchers have also worked on automatically generat-

ing configuration commands that can be directly applied
to routers to ensure peering policies or fulfill network man-
agement tasks [6, 8, 11, 1]. Those generated configlets are
highly related to the command sequences that we automat-
ically extracted from the TACACS data. In our work, we
develop the DFA model to capture how these configuration
modifications are applied to the routers, identifying the es-
sential steps and the dependencies among the steps. This
contributes to understanding requirements for automated
network management.

6. CONCLUSION
In this paper, we analyzed a TACACS data source con-

sisting of all the commands executed on many routers within
a Tier-1 ISP network. Starting from low-level raw data ab-
stracted to high-level correlations, we developed a way to
summarize the high-level network operations that are per-
formed on the network. This is the first concrete study re-
vealing the dynamic network management activities in real
networks.
Today’s network management is greatly eased by auto-

matically generated configlets which can be translated from
high-level policies and then applied to the routers directly.

However, we found that configlets are usually applied to
the routers through a sequence of carefully designed steps,
which are usually causally dependent on each other or on the
network’s running-status. We developed a DFA model to
characterize such dynamics in network management, which
we believe is an important step towards automated network
management.

7. REFERENCES
[1] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerrel,
A. Greenberg, S. Rao, and W. Aiello, “Configuration
Management at a Massive Scale: System Design and
Experience,” in Proceedings of Usenix Annual
Technical Conference, 2007.

[2] A. Feldmann, “Netdb: IP Network Configuration
Debugger/Database,” tech. rep., AT&T Research, July
1999.

[3] N. Feamster and H. Balakrishnan, “Detecting BGP
Configuration Faults with Static Analysis,” in 2nd
Symp. on Networked Systems Design and
Implementation (NSDI), (Boston, MA), May 2005.

[4] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb,
“Minerals: Using Data Mining to Detect Router,” in
ACM Sigcomm Workshop on Mining Network Data
(MineNet), September 2006.

[5] C. Finseth, “An Access Control Protocol, Sometimes
Called TACACS.” RFC 1492, July 1993.

[6] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg,
G. Hjalmtysson, and J. Rexford, “The Cutting EDGE
of IP Router Configuration,” in Proc. Workshop on
Hot Topics in Networks (HotNets), 2003.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman,
Introduction to Automata Theory, Languages, and
Computation. July 2006.

[8] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang,
“Automated provisioning of BGP customers,” IEEE
Network Magazine, 2003.

[9] D. Oppenheimer, “The Importance of Understanding
Distributed System Configuration,” in Proceedings of
CHI, April 2003.

[10] G. Xie, X. Jibin, Z. David, A. Maltz, H. Zhang,
A. Greenberg, G. Hjalmtysson, and J. Rexford, “On
static reachability analysis of IP networks,” in Proc.
IEEE INFOCOM, 2005.

[11] H. Boehm, A. Feldmann, O. Maennel, C. Reiser, and
R. Volk, “Network-Wide Inter-Domain Routing
Policies: Design and Realization,” in draft, April 2005.

