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Abstract—There are network management, traffic engineering,
and security practices adopted in today’s networking that rely
on the knowledge about what applications’ traffic is passing
through the networks. These practices might fail with mobile
apps whose identity remains hidden in generic HTTP traffic. The
main reason is that unlike traditional applications, most mobile
apps do not use specific protocols or IP ports with distinctive
features. Many enterprises and service providers are in a great
need of regaining control over their networks that increasingly
carry mobile traffic. In this paper we propose FLOWR, a
system that automatically identifies mobile apps by continually
learning the apps’ distinguishing features via traffic analysis.
FLOWR focuses solely on key-value pairs in HTTP headers
and intelligently identifies the pairs suitable for app signatures.
Our system employs a custom supervised learning approach
that leverages a very limited knowledge of app-signature seeds
and autonomously grows its capacity for app identification.
The approach is motivated by a simple but effective hypothesis
that unknown app-identifying features should co-occur with the
known signatures. Our experimental results show a significant
growth in flow identification coverage provided by FLOWR.
Specifically, we show that FLOWR can achieve identification of
86–95% of flows related to their generating apps.

I. INTRODUCTION

The rapid adoption of mobile devices has dramatically
changed the access to various networking services: instead of
using web browsers, mobile users increasingly choose mobile
applications (simply “apps”) as preferred interfaces to the
Internet [1]. Consequently, many stakeholders are becoming
interested in app identification. For example, app market
providers would benefit from knowing real app usage and
promoting the apps accordingly; users can be offered content
based on the interests inferred from the app usage; network
operators may optimize their resources for apps; enterprise
departments can restrict the access to selected apps, thus en-
abling BYOD (bring your own device) without compromising
the security of corporate networks. The problem is that apps
are very difficult to identify, appearing just as a generic HTTP
traffic.

Traditional approaches to identification of desktop appli-
cations and corresponding protocols (e.g., email, news, and
VoIP) [2]–[8] and for discerning P2P traffic [9] are too coarse-
grained for mobile apps. Such approaches cannot differentiate
apps that communicate through generic application-layer pro-
tocols (e.g., HTTP) or contact the same content servers (e.g.,

This research was conducted under the Narus Fellow Research Program.

cloud services and content delivery networks). State-of-the-
art solutions exist to generate signatures for small numbers of
mobile apps either through user studies or app emulation [10]–
[13]. However, such approaches do not come even close to
classifying individual traffic flows generated by hundreds of
thousands of potential apps in real time. An effective approach
to real-time app identification at scale would thus have to
address the following challenges.
• Similarity. HTTP is the protocol of choice for many

app developers to implement communications with remote
servers [14]. Moreover, it is common for several apps to
contact the same servers due to the widespread use of content
delivery networks (CDN) and cloud services. Hence, conven-
tional approaches based on hostnames and transport ports fail.
• Scale. Hundreds of thousands of apps being available in
app markets make any manual or small-scale efforts to app
identification not scalable. Also, relying heavily on supervised
learning to generate app signatures is impractical, because
even providing a sufficient training set is a challenge. More-
over, complicated stateful signatures based on information
gathered across multiple app flows do not scale well when
performing signature matching.
• Coverage. As observed in previous research [14], the top 5K
apps contribute 98% of the mobile traffic volume. However,
the known sophisticated signature generation methods for
these apps [15] do not apply to less popular apps. Identifying
these apps is however crucial because high app-identification
coverage is necessary for security applications as well as for
handling the highly volatile nature of app popularity [16].

To address these challenges, we are guided by several
common behaviors of mobile apps. First, at least some flows
generated by the apps should include some sort of distinctive
information. For example, some of the apps may be related
to a specific web service. In other cases, developers may
include specific and a priori unknown information in the apps
that communicate with CDNs. This would serve as means
to distinguish the apps. It is up to the app-identifying algo-
rithms to discover such information automatically. Secondly,
app identification can benefit from temporal and topological
structure of the traffic, e.g., flows repeatedly observed from
the same devices within short time intervals are likely to come
from the same apps.

Starting from the above observations, we developed a
unique system that automatically discovers app signatures via
on-line traffic analysis. Our solution is based on examining



ties between the unclassified flows and a very small set of
seeds known to originate specific apps. When the occurrence
likelihood of these ties is sufficiently high, the features ex-
tracted from the unclassified flows can be promoted to new
app signatures. We implemented this methodology in FLOWR
(FLOW Recognition). FLOWR is a self-learning system re-
quiring minimal supervised training. Once provided with a
small set of initial app signatures, the system can operate
completely autonomously and grow its signature knowledge.
Consequently, the identification coverage grows consistently
over time.

As a result, FLOWR scales automatically to the size and
growth of entire app markets, each containing hundreds of
thousands of apps. Moreover, the stateless nature of our sig-
natures supports app identification at real time: Using an off-
the-shelf machine, we achieved comprehensive identification
at speeds of up to 5 Gb/s of input traffic. We also devised
a methodology that evaluates false positives with a very
limited ground truth provided by a priori known app identifiers
(seeds). In a 6 day 10 billion flow trace from a nationwide
cellular network, FLOWR was capable of identifying 86–95%
of flows related to the signature seeds with “tolerable” false
positives. In contrast, only 3% of such flows could be identified
without FLOWR.

The rest of this paper is organized as follows. Section II
uses a few examples to illustrate the problem and motivate
the development of FLOWR. The methodology is presented
in Section III. Section IV discusses some of the limitations of
FLOWR in its current form. Tuning of important parameters
of FLOWR is addressed in Section V. FLOWR is evaluated
in Section VI and related work is surveyed in Section VII.
Section VIII concludes this paper.

II. MOTIVATING EXAMPLES

We use several examples to illustrate the app identification
problem. We start by showing that mobile apps in general
have seed identifiers that are uniquely related to them. For
instance, popular Facebook Android app has an identifier
“com.facebook.katana”, which uniquely identifies the app in
the Google Play market as can be checked via https://play.
google.com/store/apps/details?id=com.facebook.katana. Fig. 1
shows an example of another seed, where a unique app
identifier “zz.rings.rww2” is included in HTTP message sent
from its corresponding app. We refer to any individual app
identifier that is unique and appears in the network traffic
as app signature. The signatures can be known a priori or
discovered by a system like FLOWR.

GET /pagead/images/go_arrow.png HTTP/1.1
Host: pagead2.googlesyndication.com
Referer: http://googleads.g.doubleclick.net:80/&...
&msid=zz.rings.rww2&...
User-Agent: Mozilla/5.0 (Linux; U; Android 2.3.3; ...

Fig. 1. Unique app identifier is embeded into the “Referer” field of a HTTP
message sent from an Android app “zz.rings.rww2”.

An approach to app identification could be just to know
few patterns of how seed identifiers occur in the traffic. For
instance, one could know that a key “msid=X” always carries

values that are app identifiers, as shown in Fig. 1. This pattern
alone could identify numerous apps. However, applying this
methodology to a huge number of mobile apps has several
challenges. First, there are numerous ways for each individual
app to embed its identifiers in traffic. The same app sending
out a flow like the one shown in Fig. 1 can send a completely
different flow to some other web service, which does not
have the key-value pair “msid=X” at all. Moreover, it is
simply not feasible to manually examine all existing apps for
such behaviors. This makes both flow- and app-identification
coverages questionable when one knows only a limited set of
the app-identifier embedding patterns. Secondly, it is even not
feasible to gather a priori knowledge of all possible unique
app identifiers. We show such an example in Fig. 2, where
the URL field of the GET message has a key-value pair
“sdkapid=67526”. It could possibly be a proprietary identifier
used by service mydas.mobi to identify some app, although
we cannot be sure about its uniqueness a priori.

GET /getAd.php5?sdkapid=67526&...&country=US
&age=45&zip=90210&income=50000&... HTTP/1.1
Connection: Keep-Alive
Host: androidsdk.ads.mp.mydas.mobi
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

Fig. 2. Potential unique app identifier embedded into a key-value pair in the
URL of a HTTP GET request.

To address these challenges, this paper studies the problem
of automatically learning the mobile app signatures included
in network traffic, and assessing the quality of the learned
signatures.

III. METHODOLOGY

FLOWR does automated learning of app identities: it grows
app signature knowledge from a very small set of a pri-
ori known signatures. Such initial signatures exist and can
be easily identified, as we confirmed by a widely known
doubleclick.net signature in HTTP referer fields that points
to apps via “msid=X” parameter. We grow the set of known
signatures by observing the co-occurrence of temporally close
flows and features in them. This methodology is based on a
simple intuition: if two types of events are intrinsically related,
one should be able to observe them co-occurring repeatedly
over time; on the other hand, if the events are not related,
they may co-occur occasionally, but such co-occurrence should
only be transient.

Let FX be a set of flows that readily match a signature of
app X (either an initial or a learned signature). Then, for each
flow fi in FX , there will be some flows that come from the
same source IP address and co-occur with fi closely in time.
We denote such flows as f̂i and deem them likely to be from
app X . Accordingly, let F̂X be the union of f̂i for each fi in
FX . If some feature F repeatedly appears in flows belonging
to set F̂X , and F rarely appears in any other F̂Y (Y 6= X),
F is likely to be a signature of app X as well. This is how
we learn new app signatures.

The challenge to this approach is that different apps can
have their flows mixed in the traffic coming from the same
source IP addresses. This is due to multiple mobile devices



being tethered, or mobile OS multi-tasking its apps, or due
to NAT, etc. We leverage the huge amount of diverse traffic
available in mobile networks to cancel the noise cases. Over
time, only the features coming from the same app should
persistently co-occur in many instances.

A. App Features and Signatures

FLOWR leverages metadata information in HTTP headers
to create app features and consequently signatures. We rely
on HTTP because it is the predominant protocol adopted
by mobile apps. Our features are individual key-value pairs
exchanged in HTTP queries. We analyze such pairs per each
distinct HTTP host service (i.e., HTTP hostnames or HTTP
referer hostnames). This type of “feature plus host service”
analysis is based on the fact that meanings of key-value pairs
are tied to specific web services.

As shown in examples in Fig. 1 and 2, the “query” part of
HTTP URIs usually contains a rich set of information in the
form of key-value pairs1.

For practical purposes, FLOWR keeps only the meaningful
parts of service names as a sufficient indicator of the web
services in most cases. Usually, this is two or three right-
most labels in fully qualified domain names. We show in
§VI-A that this type of features provides a sufficient amount
of information to identify apps.

Definition III.1. An app feature is a concatenation of the
name of a web service employed by the app and a key-value
pair in the query part of the service’s HTTP URI, i.e. F =
{name : K = V }.

Definition III.2. An app feature F that identifies app X with
good confidence is a signature of app X .

Let’s exemplify some features and their subset of des-
ignated app signatures: In Fig. 1, “doubleclick.net:msid=zz.
rings.rww2” is an app feature. It is also a signature of the
app whose id is “zz.rings.rww2” because it uniquely identi-
fies the app. In Fig. 2, “mydas.mobi:sdkapid=67526” is an
app feature which may be a signature due to its structure
suggesting that it may be an app ID. On the other hand,
“mydas.mobi:country=US” is also an app feature, but it is
unlikely to be a signature of any app.

B. Counting Co-occurrence of App Features

The basic idea of flow regression, our key method for
producing app signatures, is based on counting the “co-
occurrences” of app features. Let’s consider two app features,
F1 and F2, from two different flows, flow1 and flow2,
generated by the same source IP address. If start time of flow2

is less than T seconds after the end time of flow1 (assuming
flow1 starts before flow2), we consider this event as a co-
occurrence instance between the flows’ features F1 and F2.

1A URI’s syntax is standardized as follows: scheme://authority/path?query\
#fragment [17], where the scheme is HTTP and the authority refers to
the contacted host name. The query consists of a sequence of key-value
(KV) pairs in the format of k1=v1&k2=v2&....

Furthermore, let’s assume that feature F1 is a signature
of app X . Then if F2 persistently co-occurs with F1, we
infer that F2 is likely to be another signature of app X .
We introduce the concept of co-occurrence likelihood, denoted
as P [X|F ], to quantify whether a given feature F co-occurs
persistently with known signatures of app X .

Definition III.3. Feature F’s co-occurrence likelihood with
app X is defined as a ratio of the number of unique IP
addresses for which feature F co-occurs with app X’s sig-
natures, and the total number of IP addresses in which F can
be observed.

The reason for FLOWR to rely on unique IP addresses
for counting the co-occurrence events is that various types
of bias could occur otherwise. For example, the features that
appear very frequently would easily bias the computation
of co-occurrence likelihood. Such features are often present
in advertisement and analytics services (referred to as a*
services) and “fired” frequently from apps by the embedded
ads and analytics libraries. Similarly problematic would be the
counting based on time windows, where all co-occurrences
within a certain window would be counted only ones. This
method remains biased towards the apps that keep running
in the background, e.g., com.accuweather.android.
These background apps would then appear in many time
windows, resulting in their features co-occurring many times
with signatures of potentially different apps.

C. Flow Regression

Flow regression is a process in which FLOWR identifies
app features suitable for app signatures. For a given feature
F , FLOWR consistently updates the feature’s co-occurrence
likelihoods with all apps already having known signatures in
our system. Together with this updating, FLOWR evaluates the
quality of the feature F to become a signature. The promotion
of a feature to a signature can be two fold: First, if F’s
co-occurrence likelihood with app X is significantly higher
than the likelihoods with other apps, F should obviously be
promoted to a new signature of app X . Secondly, if F has
high co-occurrence likelihoods with a set of apps, it should
become the signature for all apps in the set. This helps
reducing ambiguity when the exact apps cannot be identified.
For instance, feature F can be a developer identifier included
in several apps published by the same author. Then, using
F as a signature significantly focuses our identification – as
opposed to being unable to attribute the traffic to any particular
apps in the entire existing app universe.

We can address the potential over-fitting issue in comput-
ing co-occurrrence likelihoods by using higher threshold on
the number of samples used in the computing. In practice,
considering the large traffic volume in a real world mobile
service provider’s network, FLOWR can easily gather enough
samples to compute the co-occurrrence likelihoods.



D. Seeding the Knowledge Base

FLOWR needs an initial set of seeding app signatures to
bootstrap the learning of new ones. Although the seeding
signatures are not the focus of this paper, we provide some
explanation on how to get a good set of such signatures in
order to maximize FLOWR’s gains.

A good set of seeding signatures is the one that provides
wide app coverage. That is, the signatures should identify at
least some flows, but from a very large number of apps. We
learned that many free mobile apps employ a* services. The
traffic to these services often includes elements feasible for
seeding signatures, i.e., the unique names of apps or names
of app packages published in mobile markets (e.g., com.
instagram.android). The situation is largely similar for paid
apps: While these apps may not use advertisement services,
most of them still rely on analytics to track app usage and
provide troubleshooting data collection.

Examples of a* services that embed app identification
parameters include doubleclick.net, admob.com, airpush.com,
smaato.com, etc. Studying the corresponding app coverage
of these individual services, we found that doubleclick.net
is present in almost half of the free Android apps in our
traffic traces. Hence, one can manually reverse engine a few
popular a* services to study the patterns of how app identifiers
are embedded in the flows sent from apps to these services.
The patterns can serve as a good set of seeding signatures to
FLOWR.

IV. LIMITATIONS

FLOWR has problems in identifying encrypted or hashed
network traffic or traffic originated by apps that do not use a*
services. Here, we discuss these limitations and work-arounds.

A. Apps Using Protocols Other Than HTTP

In its current form, our FLOWR system processes only
HTTP traffic. This is a design decision based on: (1) HTTP
is the preferred protocol for the majority of mobile apps; and
(2) HTTP headers usually provide sufficient app identification
information. Thus, FLOWR needs to examine only the initial
packets of each HTTP flow and parse only their headers
without digging deep into the privacy-sensitive HTTP payload.

We strongly believe that FLOWR’s basic methodology of
tracking co-occurrence for signature building is generic and
can be universally applied to apps that use other protocols.
Choosing the right features for non-HTTP protocols (instead
of using {name : K = V } features currently employed by
FLOWR) needs to be carefully studied.

An especially challenging case are the apps that fully
encrypt all their traffic. Due to the randomness of encryption,
it would be difficult to find any meaningful signatures for
these apps. At best, one could rely on the host names or
SSL certificates employed by the apps as features that hint
app identity. However, we are uncertain how effective such
solutions would be. Thus, if needed, FLOWR can be deployed
together with other techniques providing visibility into the
encrypted traffic, such as the man-in-the-middle tools for

HTTPS. Those deployment related issues are not the focus
of our study, and are out of the scope of this paper.

B. Coverage Bounded by Initial Seeding Signatures

It is very important that the initial set of supplied app
signatures covers a large number of apps. Via its self-learning
logic, FLOWR can then discover many new signatures that
cover more flows generated by the apps. However, the set of
apps that can be identified is usually bounded to the apps
covered by the seeds.

Due to the pervasive adoption of a* services by mobile apps,
we believe that it is feasible to acquire a good set of seeding
app signatures with minimal effort, such as manually reverse
engineer a few popular advertisement services, or conduct
static byte-code analysis of app binaries [18].

It is worthwhile to note that in some cases FLOWR can
learn signatures for “new” apps beyond the ones covered by
the initial signature set. For instance, FLOWR can leverage
flows of a free app A sent to a* services and learn new A
signatures. Then, the learned signatures may also be applicable
to the paid counterpart of A, because paid apps usually have
similar functionality and communications except the ones to
a* services.

V. SYSTEM TUNING

FLOWR system needs proper calibration to realize the full
potential of the methodology presented in §III. To this end,
we employ two datasets to tune key system parameters. Our
first dataset (FlowSet) is a network trace from a nationwide
cellular network provider. The second dataset (AppSet) is a
lab trace generated by running more than 10K most popular
Android apps in software emulators. More details about the
datasets can be found in Appendix A.

A. The Size of Time Windows for Co-occurrence Analysis

One of the key parameters of FLOWR is the co-occurrence
time window T . The window largely impacts the set features
that would be promoted to app signatures. To understand the
importance of tuning the window size, we note that underesti-
mating T results in missing some valid co-occurrence events,
and thus reducing the system’s app identification capabilities.
On the other hand, if T is over-estimated, FLOWR is more
likely to mix flows from different apps, thus inducing noise
and over utilizing system resources. Given that FLOWR is
capable of removing the noise by repeated validation of co-
occurrence events for different users and time periods, we are
inclined to tolerate slight over-estimation in order to prevent
serious implications of underestimating T .

To evaluate an appropriate window size, we first identify
flows (from our FlowSet) that match the seeding app signa-
tures. Particularly, we rely on the flows sent to doubleclick.net
and containing the key-value pair (signature) “msid=X”. We
take a brute-force approach in measuring T and examine
all features co-occurring with the doubleclick seeds. Specif-
ically, for each feature F , we find the temporally closest
doubleclick.net flow coming from the same user (source IP



address). We keep only the features that consistently co-occur
with doubleclick.net flows pointing to the same apps. Finally,
T estimations are measured as the intervals between these
flows and their doubleclick.net references.
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In Fig. 3, we plot the complementary cumulative distribution
function (CCDF) of the measured T window samples. The
results show that 99% of samples are within 300 second
intervals. Accordingly, FLOWR sets T to 300 seconds as the
threshold that covers most relevant co-occurrence events. In
our further evaluation, we discovered marginal benefits from
further increasing T .

B. Threshold for Promoting Features to Signatures

FLOWR promotes a feature F to a new signature of app
X if the feature’s co-occurrence likelihood with the known
signatures of app X (P [X|F ]) is sufficiently high. Obviously,
if P [X|F ] = 1, we can safely say that the feature should be
promoted to a signature. On the other hand, when P [X|F ] ≈
1, the promotion inevitably incurs some false positives in app
identification.
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Therefore, FLOWR sets a threshold p on the co-occurrence
likelihood for feature promotion based on a tolerable rate of
false positives. The threshold can be configured by a system
administrator.

We first study the distribution of co-occurrence likelihoods
for all features. Employing only {doubleclick.net : msid =

...} signature seeds, we run FLOWR on the FlowSet. Our
methodology is the following: Let A be a set of all apps
related to doubleclick.net signatures in FlowSet. Then, for
each feature F , we compute Pmax[X|F ] as the highest co-
occurrence likelihood of F being related to any potential app
in A, i.e.,

Pmax[X|F ] = max
X∈A

(P [X|F ]) .

Having identified apps related to Pmax[X|F ], we then
employ our ground truth knowledge from AppSet to verify
that each F is indeed unique to its identified app X: For
any feature F and its identified app X , we check whether
F appears only in the traffic generated by app X in AppSet.
If this is the case, we say F is unique; otherwise F is non-
unique.

Fig. 4 shows the probability distribution function (PDF)
of unique and non-unique features’ best co-occurrence like-
lihoods. As shown in Fig. 4, the best co-occurrence likelihood
values of unique features are much greater than those of the
non-unique features. The majority of the unique features have
best co-occurrence likelihood greater than 0.5, which sets a
feasible range for a selection of the promotion threshold.

TABLE I
NOTATIONS USED IN DERIVING THE FALSE POSITIVE PROBABILITY.

U feature F is unique
U feature F is not unique
M Pmax[X|F ] > p

Next, to identify a tradeoff between the chosen promotion
threshold and the corresponding rates of false-positive app
identifications, we establish a mapping between the two quan-
tities. Using the notation listed in TABLE. I, we note that the
probability of a false positive app identification corresponds
to a feature F being non-unique and its best co-occurrence
likelihood being larger than the promotion threshold p, i.e.,
Pmax[X|F ] > p. Let P (fp) be the false positive probability
and we have:

P (fp) = P (U |M).

To establish the mapping between the threshold p and
P (fp), we employ Bayes’ theorem:

P (fp) =
P (M |U)× P (U)

P (M |U)× P (U) + P (M |U)× P (U)
.

Given the threshold value p, we can identify two types of
related probabilities from Fig. 4: (1) P (M |U), the probability
that F is unique, but Pmax[X|F ] > p; and (2) P (M |U), the
probability that F is non-unique, but Pmax[X|F ] > p. The
remaining probabilities in Bayes’ formula can be measured:
P (U), the probability that F is unique, can be measured via
the ground truth provided by AppSet. There, we “count” the
percentage of features that appear only in traffic of single apps.
Once P (U) is measured, P (U) = 1− P (U).

With the above derivation, we plot the mapping curve
between the likelihood of false positive app identifications
P (fp) and the selected feature promotion threshold p in Fig. 5.
This plot can be used for tuning the threshold p. According



to our results, guaranteeing false positives lower than 5%,
means setting p higher than 0.8. To avoid any false positives,
according to our extensive datasets, p should be set to 0.97.
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promoting a feature to a signature.

VI. EVALUATION

We evaluate FLOWR’s identification performance via (i)
FlowSet, as a source of real-world traffic, and (ii) AppSet
which provides us with ground truth of app-identifying fea-
tures. We focus on two crucial topics: First, we demonstrate
that service names and key-value pairs are indeed suitable for
app identification. Subsequently, we evaluate FLOWR’s app-
and flow coverage, provided by a significant amount of new
signatures discovered by flow regression.

Before we start, it is important to understand the overar-
ching idea of our experiments. For practical purposes, we
characterize only the identification of apps that have some
seeding signatures as sources of ground truth. Specifically, our
evaluation focus on the apps related to one type of seeds, the
doubleclick plus “msid=X” signatures. We rightfully assume
that FLOWR would behave similarly in growing its app
identification knowledge around any other seeds. Therefore,
it is fair to extrapolate the results presented in this section to
the general app identification.

A. Feature Quality

We start feature evaluation by testing the persistence of
feature values. The persistence means that the values would not
change over time or different app runs, which is the crucial
for app identification. To this end, we exploit AppSet. Our
experiment employs 8 independent app runs in which we ask
the KVs to stay persistent (as indicated in TABLE. III); four
runs are on the Gingerbread platform and the rest on Ice Cream
Sandwich.

In Fig. 6, we show the distributions of persistent features,
conditioned on observations after each app run. On average, in
a single run there will be about 50 persistent features per app
(see g1 curve). Aggregating two Gingerbread runs (see g(1−2)

curve), the number of features that are persistent in both runs
reduces significantly to about 15 per app. With further runs, the
number of persistent features remains relatively stable (from 8
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to 15 features per app). This result provides us with confidence
that mobile apps usually produce sufficient persistent features
for app identification.
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Next, we measure the entropy of persistent features in order
to evaluate whether the features contain enough information
to identify all apps. Given a service S that appears in AppSet,
we first find all apps in AppSet that visit S as well as all
persistent features related to this service. In principle, each
app would correspond to a set of such features (denoted
as Appi{KV }). Let’s suppose that the number of distinct
feature sets identified in AppSet is K, and the sets are
{KV }1, {KV }2, . . . , {KV }K . The entropy can be evaluated
as:

E = −
K∑
i=0

P [{KV }i] log2 P [{KV }i].

The corresponding probabilities can be measured as ratios of
the number of apps related to the distinct feature set {KV }i
over the total number of apps in AppSet, i.e., P [{KV }i] =
count(Appi{KV } ⊃ {KV }i)/count(apps).

We also identify the upper bound of entropy that would
grant identification of all apps. Suppose that S is visited by N
apps, the upper-bound of its feature entropy is then log2(N).
The bound is achieved only if each of the N apps has its own
unique set of persistent features. A k-bit difference from the



upper-bound indicates that N apps have only N
2k

unique and
persistent feature sets. This in turn implies that such features
can only identify 2k < N “groups” of apps.

Fig. 7 shows the entropy of features as a function of the
percentage of apps related to them. The results show that most
features are related to very few apps. Moreover, the entropy is
predominantly close to its upper-bound. Given the diversity of
apps in our AppSet, we are confident that the observed result
also applies to the real settings. We thus conclude that features
composed of service names and HTTP URI parameters have
very good app-identification properties.

B. Coverage Benefit Provided by FLOWR

The coverage of flows and apps that can be identified by
FLOWR depends on the system’s knowledge initial of app
signatures. The key role of flow regression is to grow that
knowledge base through a continual identification of new
features suitable for app signatures.

In order to determine the growth of flow coverage during
FLOWR’s learning process, we iterate FlowSet in rounds
through the flow regression. In each round, FLOWR updates
the knowledge base by capturing the co-occurrences between
yet uncharacterised features and the existing signatures, asking
for a near-zero false positive identification rate (according to
the settings presented in § V-B).

Flow coverage. We evaluate the flow coverage based on
the real-world FlowSet traffic and verify the findings via
the lab-generated AppSet. Given that features differ in their
app-identification quality, FLOWR classifies the features in 5
categories listed in TABLE. II. Four categories correspond to
the features that offer unique app identification: 100% true
positive (“t100”), 99% true positive (“t99”), 95% true positive
(“t95”), and 90% true positive (“t90”). To determine a category
of a feature, we refer to Fig. 5 for a setting of the categorization
threshold based on the feature’s co-occurrence likelihood. We
also introduce another feature category (“n5”) that shrinks the
identification indications to 2–5 apps with less than 1% false-
positives.
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Fig. 8. The flow coverage seeded with doubleclick flows.

Fig. 8 shows the percentage of flows identified by each
feature category in each flow regression round. Without the
flow regression, FLOWR can only identify apps (and flows)

suggested by our seeding doubleclick signatures. This accounts
only for 0.7% of the flows in FlowSet. This is also the
identification percentage for “t100” feature category which
remains consistent across the flow regression iterations. On the
other hand, flow regression easily increases the identification
for about 6–7% of flows in FlowSet with no more than 5%
false positives. Relaxing further the false positive requirement
does not significantly improve FLOWR’s flow coverage since
“t90” only contributes 1% to the coverage as compared to
“t95”. On the other hand, if the unique app identification is
not required, “n5” covers additional 14% of flows, reaching
the total of 21% of identified flows in FlowSet.
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Next, we need to put these results in perspective and extrap-
olate them according to things that can be ideally discovered
via the initial set of seeding signatures. In the presented evalua-
tion, we employed only one type of seeds, the doubleclick plus
“msid=X” signatures. Doing that, we significantly grew the
flow coverage within the certain false-positive requirements.
Let’s next consider whether the achieved coverage is good.
To this end, if the 21% of characterized flows is close to
the total number of flows produced by the apps that employ
doubleclick, it is safe to assume that flow regression came
close to identifying everything it could. Consequently, if a
larger set of seeding signatures were employed, the system
would perform at least equally well.

To estimate the percentage of flows generated by “dou-
bleclick” apps, we refer to the finding that most apps are used
continually up to 30 minutes by the mobile users [14], [19]. In
this interval, doubleclick would be contacted at least once (as
we learned by analyzing AppSet). Therefore, we counted the
number of flows in FlowSet whose closest doubleclick sessions
were not more than 30 minutes away. We found that only 23%
of flows matched, i.e., only this percentage of flows could be
related to “doubleclick” apps. Consequently, scaling the flow
regression’s results to the “universe” of 23%, we can say that
FLOWR uniquely identified 26–30% (i.e., 6–7% in 23%) of
feasible flows and narrowed down 60–65% (i.e., 14–15% in
23%) flows to 2–5 candidate apps. Overall, the percentage of
identified feasible flows is around 90%. Without FLOWR, only
3% (i.e., 0.7% in 23%) can be characterized.



TABLE II
THE CATEGORIES OF FLOW SIGNATURES. THE “T100”, “T99”, “T95”, AND “N5” KVS ARE CONSIDERED AS IDENTIFIED.

Tag Condition Accuracy Description

t100 ∃KV, id(KV ) ≥ 0.97 FP = 0
The best co-occurrence likelihood is at least 0.97. This leads to FLOWR’s true positive in
labeling the flow with 100%.

t99,
t95,t90

∃KV, id(KV ) ≥
0.93, 0.80, 0.68

FP ≤ 1,5,10% Similar to “t100”, the best co-occurrence likelihood is at least 0.93, 0.80, or 0.68. This leads
to true false positive of 99%, 95%, or 90%.

n5
∃KVi, i = 1 . . . 5,∑5

i=1 id(KVi) ≥ 0.99
FP ≤ 1% FLOWR cannot classify the flow to a single app“t100”, but can narrow down it to 2–5 apps

with true positive >99%.

App coverage. Next, we try to evaluate the percentage of
“doubleclick” apps that our system is able to discover. We first
limit the scope to apps that are used by more than 100 users
(i.e., more than 100 IP addresses) in one day. As shown in
Fig. 9, on July 4th the total number of such apps was around
3000, while FLOWR identified around 2700 apps, i.e., 90%,
without relying on seed signatures. Increasing the limit to apps
used by at least 200 or 400 users, FLOWR identified 1500
from 1700 apps, and 700 from 900 apps respectively. Our
results also show that the flow regression is capable of growing
its app identification coverage over time.

VII. RELATED WORK

There have been numerous previous effort in investigating
mobile apps from different aspects. Among the previous
work, mobile or smartphone app profiling has yielded insights
in the mobile community benefiting users, developers, OS
vendors, network operators, and content partners. To our best
knowledge, none of the prior studies have proposed any online
approach to trace network traffic back to individual apps,
which is essential in many practical scenarios. We broadly
classify previous studies and position our study as follows.
App profiling: There have been studies focusing on profil-
ing apps at the granularity of app types (e.g., email, social
networking, music, and gaming) [4]–[6], [14], [20], [21]. or
groups of apps (e.g., P2P vs. non-P2P) [9]. Compared with
identifying individual apps, identifying app types or groups
is easily accomplished with the port number, the hostname,
and the application-level protocol. Identifying individual apps
has different usage scenarios such as app-based policy en-
forcement, anomaly detection. Thus, FLOWR is a further
step along the path of profiling apps. In app-based profil-
ing, NetworkProfiler [15], ProfileDroid [10], PowerTutor [22],
TaintDroid [23], and App Profiles [24] perform individual app
profiling via instrumented devices or emulators, which limit
themselves to small scales. Unlike these studies, FLOWR is
an attempt to identify individual apps at a large scale targeting
the majority of apps on mainstream app markets. Without on-
device information, FLOWR aims at identifying the network
traffic originated by apps. Thus, FLOWR is complementary to
previous on-device app profiling approaches.
Traffic profiling: Diverse information inside network traffic
has been explored by previous studies from many aspects,
e.g., user browsing pattern [4], [20], content diversity [14],
[25], privacy leakage [26]–[29]. Standing on the shoulder of
previous studies, FLOWR leverages the rich information inside
traffic that can reveal app identities to construct flow signa-
tures. Rather than investigating the user-centric information, it

emphasizes on app-centric information. FLOWR attempts to
determine which part of the network traffic originated by apps
can best identify apps.
Endhost profiling: Similar to the problem that FLOWR at-
tempts to address, identifying users and devices is challenging
due to the hardly manageable number of users, devices, or
apps. In a small scale, the mobile users and smartphone
devices have been characterized in a range of domains [13],
[19], [30]. In a large but limited scale, MobiPerf [31] is
developed to test network performance for users with their
apps installed. FLOWR’s approach can potentially shed light
on studies on endhost profiling.

VIII. CONCLUSION

In this study, we developed FLOWR, a system automatically
learns new signatures of mobile apps from a small set of
initial seeding app identification signatures. FLOWR exploits
the information in HTTP header fields as app features and
infers new app signatures by observing the co-occurrence of
app features.

Using a set of seeding signatures related to advertisement
service doubleclick.net, we show that FLOWR can accurately
associate 86–95% of flows to their generating apps. More
specifically, with a false positive rate lower than 1%, FLOWR
uniquely identifies the generating apps of 26–30% of the flows;
for another 60–65% of the flows FLOWR narrows down the
generating app of each flow to 5 or fewer candidates.
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APPENDIX A
DATASETS

We utilize network traffic from two data sources in our
study to evaluate FLOWR, referred to as FlowSet and AppSet,
respectively. TABLE. III provides an overview of the datasets.

TABLE III
DATASETS OVERVIEW.

Dataset Source Scalability Availability Duration

FlowSet network >22K apps real-time 07/04/20xx∼
07/09/20xx

AppSet emulator 5K apps 4+4 runs N/A
10K apps 4+4 runs N/A

FlowSet is an anonymized packet trace provided by a
nationwide cellular network provider. It contains six days’ of
traffic traversing a gateway of the network provider in July
20xx2, which has more than 10 billion traffic flows. This
packet trace is dominated by traffic from Android devices and
has a fraction of traffic from Windows Phone, Blackberry, and
iOS devices as well. We observe 22K distinct apps in FlowSet
just by counting the KVs of msid= in the HTTP requests
sent to doubleclick.net. However, this dataset does not have
the ground truth of the app identity for every network flow.

AppSet is produced by executing Android apps in emulators
provided by Android SDK. Before installing an app into the
emulator, we make sure that the emulator instance is in a clean
state, in which no other apps are installed or running. We
capture traffic from the emulator when running the app. In
this way, we can have the ground truth of the originating app
for every flow in this dataset. We use the Android monkey
tool to automatically drive the execution of apps. Although
the Android monkey cannot comprehensively emulate user
interaction with apps, in our study as long as the emulated
traffic covers some traffic that can be potentially observed in
FlowSet, it is sufficient for our evaluation purpose.
Determining target apps: Given that it is prohibitive to crawl
all apps on Google Play, we first download the most popular
apps. At the time when we conducted our experiments, only
the top 5K apps popular were directly accessible through
a simple web query on Google Play. Those top 5K apps
on Google Play can reasonably well represent the dominant
apps in FlowSet. Previous study [14] shows that the total
contribution of the top 5K apps consistently cover 98% of
total traffic volume, regardless of how apps are ordered. To
improve the app coverage, we also discover and crawl another
10K apps by automating random searches on Google Play
website, in addition to the top 5K apps.
Crawling installation packages: In order to download the
installation packages from Google Play website, we modify
a Chrome browser extension named “APK Downloader” [32]
to download the target installation packages in parallel.
Emulating apps: We run the crawled apps on two different
Android OS emulators, i.e., Gingerbread and Ice Cream Sand-
wich. We use Android monkey too to interact with apps by
injecting random clicking and typing events. On average, we
can emulate 10K apps once every 24 hours via 10 Linux virtual
machines on an off-the-shelf server, where one run of an app
uses 600 random events.

2We obfuscate the exact year for privacy reasons.


