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ABSTRACT

Several route monitoring systems have been set up to helgrund
stand the Internet routing system. They operate by gatheeal-
time BGP updates from different networks. Many studies hrave
lied on such data sources by assuming reasonably good gevera
and thus representative visibility into the Internet ragtisystem.
However, different deployment strategies of route mosittirectly
impact the accuracy and generality of conclusions.

Our work is the first to critically examine the visibility cen
straints imposed by the deployment of route monitors onowesri
applications. We study the difference due to diverse depty
schemes on three important classes of applications: (tpweisy
of relatively stable Internet properties such as the AS lmgpoand
prefix to origin AS mappings, (2) discovery of dynamic rogtin
behavior such as IP prefix hijack attacks and routing inBtgbi
and (3) inference of important network properties such asél&
tionships and AS-level paths. We study several simple sekash
route monitor selection and provide insights on improvingnitor
placement.

Categories and Subject Descriptors: C.2.2 COMPUTER-
COMMUNICATION NETWORKS: Network Protocols

General Terms: Measurement, Experimentation
Keywords: BGP, Internet measurement

1. INTRODUCTION

There exist several public route monitoring systems, such a
Route Views [1] and RIPE [2], which have been deployed to help
understand and monitor the Internet routing system. These m
itoring systems operate by gathering real-time BGP updates
periodic BGP table snapshots from various ISP backbonesetad
work locations to discover dynamic changes of the globadrimt
routing system. Various research studies have been cadivet
lying on these data, including network topology discovedly AS
relationship inference [4, 5, 6, 7, 8], AS-level path préidic [9,
10], BGP root cause analysis [11], and several routing ahode
tection schemes. Most of them process the routing updabes fr
the route monitoring system to study the dynamic routingavedr.
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These studies relying on BGP routing data usually assunte tha
data from the route monitoring systems is reasonably reptasve
of the global Internet. However, no existing work has stddiee
limitations of route monitoring systems and the visibilignstraint
of different deployment scenarios. For example, recenkwsing
these data to detect malicious routing activities, suchdasess
hijacking [12, 13, 14, 15] could potentially suffer from eian
attacks similar to those affecting traffic monitoring syse[16].
The accuracy of such anomaly detection schemes dependyheavi
on the coverage of the route monitoring system. The lindtatf
the route monitor system is critical for any system relyimgRGP
data from multiple vantage points.

It is usually impossible to obtain routing data in real tinnenfi
every network due to the scalability issue and privacy como®b-
taining one feed from one AS often provides a restricted \gexen
there are many routers in an AS, each with a potentially affe
view of routing dynamics. Additional BGP feeds are useful fo
detecting routing anomalies, traffic engineering, topgldgscov-
ery and other applications. But adding an additional feadailg
requires interacting with a particular ISP to set up the rwirg
session. Therefore, an urgent question is to understandehe
erality and representativeness of the given monitor sysssmd to
understand how to select monitor locations to maximize tezal
effectiveness of the route monitoring system.

Some existing work [17, 18, 19] studied the limitation ofstiig
monitor placement and monitor placement algorithms [2@¢ims
of topology discovery. In this work, we study the impact ofmmo
itor network location constraints on various research wiorkhe
Internet routing community. We are the first to examine thstbif-
ity constraints imposed by the deployment of route monjtors
pacting a diverse set of applications. To understand tHerdiice
among current deployment settings, we analyze three deyny/
scenarios: all Tier-1 ISPs only, Route Views and RIPE seind,a
setup combining many public and private vantage points. Wke f
ther study four simple schemes of network monitor selecéind
the resulting impact on multiple metrics based on the appbos
using the data. Our analysis shows that current public raoit
already provide good coverage in various applications weyst

The paper is organized as follows. In Section 2 we introdbee t
methodology of our study, followed by a short discussion pam
ing three deployment scenarios in Section 3. We study inildeta
several different monitor selection schemes in Sectiond!@m-
clude in Section 5.

2. METHODOLOGY

In this section, we describe the methodology of our study, in
cluding the data we used and various metrics for comparingi-no
tor selection schemes motivated by several common but it@pior



applications using BGP data.

2.1 Route monitor locations

include AS connectivity, IP prefix to origin AS mappings, mnde
tifying stub AS information and its provider’s informatipmulti-
homed ASes, and AS path information. Intuitively, incluglivan-

The BGP data we used in our study are collected from around tage points from the core is more beneficial as a larger humber
1000 monitoring feeds, including public data sources sugh a ©f network paths traverse the core networks. Previous waik [

Route Views [1] and RIPE [2], feeds from the local ISP, ancadat
from private peering sessions with many other networksedog
more than 200 distinct ASes, which are not in the public fedas
the remainder of the paper, we use the tenomitoring feed to refer
to a BGP data source from a particular router. We definantage
point to be a distinct AS from which we collect BGP data from.
Note that feeds from different routers in the same AS may igev
different information, and we leave the study of the diffeze be-
tween feeds in the same AS for future work. We use one mongori
feed from one vantage point. For ease of comparison acrass va
tage points, we only choose feeds with default-free routaides
(with entries for all prefixes), and create a data set calgeSet
consisting of data from 156 ASes for our subsequent analysis
The BGP updates are collected from a set of route monitock, ea
of which establishes peering session with one router in e&th
work being monitored. Note that our study is inherently tieal

22, 3] has shown the influence of data sources besides BG® tabl
data,e.g., traceroute data and routing registries, on the complete-
ness of inferred AS topology. We extend this analysis to ttin@o
properties: (1) multihomed stub ASes to understand edgeankt
resilience and potentially increased churn in updates, (2h&S
paths, which are difficult to infer.

2.3 Discovery of dynamic network properties

Dynamic properties of the routing system are of strong inter
est for studying routing instabilities,g., due to misconfigurations,
and detecting anomalies. Understanding such propertigseiful
for troubleshooting and identifying possible mitigatianiinprove
routing performance. We focus on two representative apptins
here: monitoring routing instability and IP prefix hijackaatk de-
tection.

Routing instability monitoring: Routing updates are a result

by the BGP data we have access to and we attempt to draw gen-of routing decision changes in some networks caused by gvent

eral conclusions independent of the data limitation. Alidio the
BGP data from all available monitors is still not the grounath

for the whole network, we study different applications gsdata
from different sampling strategies and compare with trasgeSet.

Developing more intelligent monitor placement algorithimpart
of future work.

To understand static network properties, instead of usisma
gle table snapshot from each feed, we combine multiple $raps
taken at different times with routing updates from each febdn-
ever available. This helps improve the topology completeres
many backup links are only observable during transientimgut

such as configuration modifications, network failures, ayrtbaghic
traffic engineering. Comprehensively capturing Interrmiting
changes is useful for important applications like troubtesting,
routing health monitoring, and improved path selection.

IP prefix hijacking detection: One of the original goals of the
public route monitoring systems in Route Views and RIPEadsir
bleshooting. Nowadays they are increasingly used for thelsi
detection of malicious routing activities such as prefiabljing at-
tacks. Current hijack detection systems in control plarg [12]
rely on detecting inconsistency in observed BGP updatessacr
vantage points. However, the detection system may not tdallec

changes. We use two snapshots of tables from each monitoringattacks due to limited visibility. In this work, we study thmpact

feed including feeds from about 100 ASes, along with six rhent
of updates and tables from Route Views, RIPE and a local I&R fr
May 2006 to Oct. 2006. The resulting network topology camgai
25,876 nodes(ASes) and 71,941 links. We list the propedifes
current peers that Route Views and RIPE have in Table 2.

To compare different deployment strategies, we consthuetet
sets of realistic deployment scenarios. First, to undedsthe visi-
bility of the core of the Internet, we select only 9 well-knoWier-1
ISPs to be monitors, including AS numbers: 1239, 174, 209429
3356, 3549, 3561, 701, and 7018. Second, we use only feads fro

commonly used Route Views and RIPE. Third, we use LargeSet 2.4

to obtain the most complete topology from all available dat&e
denote the three deployment scenarios as Tier-1, RoutesYemud
LargeSet, respectively.

We focus on three types of applications relying on BGP data,

namely (1) discovery of relatively stable Internet properisuch as
the AS topology and prefix to origin AS mappings, (2) discgver
of dynamic routing behavior such as IP prefix hijack attackd a
routing instability, and (3) inference of important netkqroper-
ties such as AS relationships and AS-level paths. Note hiegfirtst
two applications simply extract properties directly fronetrouting

of different monitoring deployment setups on the detectiover-
age.

Intuitively, an attack is missed if no vantage point of theribar-
ing system adopts the malicious route. Thus, we define ageak
sion as follows. For a monitoring systesV/ = m1, ma, ..., mn
with n monitors, given an attacket, a victimV, and the hijacked
prefix p, if Vi, Pref;,q”(p) < Prefn‘; (p), wherePref,ﬁi (p) is
the route preference value fprannounced from as observed by
m;, then attackerl can hijackV’s p without being detected.

Inference of network properties

The third class of application studied relates to propsriie
ferred from the above basic properties from BGP data.
AS relationship inference: There is much work [6, 7, 4, 8, 5]
on inferring AS relationships from BGP AS paths. Knowing com
mercial relationships among ASes reveals network stractund
is important for inferring AS paths. In this work, we studyeth
commonly-used, Gao’s degree-based relationship inferatgo-
rithm [8].
AS-level path prediction: Accurately predicting AS paths is im-
portant for applications such as network provisioning.hiis tvork,

data. The performance of the third one depends not only on the we compare two path prediction algorithms under variousitoon

data but also the algorithm used for inference. We deschibset
applications in more detail below.

2.2 Discovery of static network properties

BGP data is an important information source for understagdi
the Internet topology. Very basic network properties aiitoed
for understanding the Internet routing system. These pti@se

deployment settings. We use the recent algorithm [9] whickes
use of the inferred AS relationships, and study both prafiteth
and shortest-path-based route selection. For the prafieipol-
icy, the route selection prefers customer routes to peedutes
and over to provider routes. Note that predicted paths foin bp-
proaches need to conform to relationship constraints [8}. &fgo
study the recent work [23] which does not use AS relatiorshigt



[ Category [ Tier-1 | Route Views| LargeSet]

Number of ASes 25732 25801 25876
Number of AS links 51223 56000 71941
Profit-driven prediction | 34% 39% 43%
Length-based predictionn 67% 76% 73%

Table 1: Comparison among three deployment scenarios.
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Figure 1: Distribution of observed links across tiers.

instead exactly matches observed paths.
To improve scalability, we eliminatgub ASnodes, or customer
ASes that do not provide any transit to other ASes. The gragh w

out stub nodes contains only 4426 (16% of all nodes) and 25849

links (15% of all links). For completeness, we also simulite

path prediction to 50 randomly sampled stub ASes. We include

these 50 stub ASes and their links.

3. DEPLOYMENT SCENARIO ANALYSIS

We first analyze the three deployment scenarios, Tier-leRut
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Figure 3: Number of observed links
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are mostly at the edge.

4. MONITOR SELECTION ANALYSIS

In the previous section, we have observed some differenues a
similarities among the three realistic deployment se#inip delve
deeper, we apply four simple schemes to identify the increaie
benefit and even possible negative effects of adding marnitora
wider set of applications.

4.1 Monitor selection schemes

Our candidate set of monitors consists of all BGP feeds we hav
access to. We study the following four ways of adding mositor
Random based monitor nodes are selected randomly.

Degree basedmonitors with the largest node degree are selected
first based on the entire data set. Node degree means the noimbe
neighbors each AS has.

Greedy link based at any time, the next monitor is selected with
the largest number of unobserved links, given the set ofadire
selected monitors.

Address block based without relying on all the data, monitors

Views, and LargeSet defined in Section 2.1. We study the itpac in the ASes that originate the largest number of IP addresses

of these three settings on applications of AS topology disng
AS relationship inference, and AS-level path prediction.

Table 1 summarizes the comparison across the three setaps. C

firming previous studies [17, 19], we find that the largest itayn

set, LargeSet, observes much more links but only slightlyemo

non-private ASes. The additional ASes in the LargeSet arglgno
at the edge. Using Gao's degree-based relationship irderaigo-
rithm, we compare the accuracy of inferred paths compariitg w

paths in BGP data in terms of path length. Note that the imgrov

ment is small for path prediction with increasing vantagafso
Interestingly, using the largest data set lowers the lebgtfed pre-
diction accuracy. These results imply that Gao’s algoriferrea-
sonably stable with changes in the BGP data.

selected with random tie breaking.

4.2 Discovery of static network properties

To fully understand how each scheme works, we study the topo-
logical distribution of the monitors selected based on ibedas-
sification, with the first three tiers shown in Figure 2. We eve
that as expected the address-block-based scheme alwegtssbe
Tier-1 nodes first as they usually announce largest numbad-of
dresses. For Tier 2 and Tier 3, there is little difference agthe
schemes.

We first show that the observed link count increases withagat
point in Figure 3. Confirming previous studies [20], the &ese of
links from 80 vantage points can be twice as the links obskrve

We list the network properties of current peers of both Route from one. The greedy-based scheme performs best as expected

Views and LargeSet in Table 2. We use the tier definition digeti
in previous work [7]: Tier-1 means closest to the core Iné¢and
Tier-5 is associated with stub or pure customer ASes. Weziao
lyze each AS in the aspects of geographic location, the nuwibe
IP addresses it announces, its degree and its customersadiie
tional ASes in LargeSet are mainly Tier-2 ASes in US, witlyéar
number of addresses and degree.

To understand which links are identified using a larger data s
we plot in Figure 1 the topological location of links in eadtalset.
The X-axis indicates the link level, defined by the tier vadfi¢he
two ASes associated with the link sorted in increasing oréfer
example, there are 10 links observed from LargeSet betwedem
in tier-1 and tier-4 at the X value d#4. The hierarchy level for each
node is assigned according to the relationship inferreagusil the
data available. As expected, the additional benefit of alesHinks

followed by the the degree-based one. Interestingly, tfiresd
block based scheme is no better than random selection. Fhis i
likely due to the fact that most ASes in our candidate setrimrie

a similar number of links.
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Figure 4: Number of observed multi-homing stub ASes



[ Data | Tier Geographic location Address Degree Customer |
[ [1 2 3 4] Europe Asia Africa  Americal Min  Avg Max | Min Avg Max [ Min Avg Max |

Route Views| 9 40 58 12 37 4 1 77 156 65313 1561473 3 247 2922 0 112 2899

LargeSet | 9 82 60 5 46 4 1 105 156 116989 1561473 1 344 2922 O 177 2899
Table 2: Statistics of the monitors.
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Figure 2: Monitor distribution in each tier for different mo nitor selection schemes.

Next, we study the prevalence of multi-homing at edge ndtaior

link failure can trigger routing updates from many network&e

for network redundancy as shown in Figure 4. The greedyéase study how to monitor as many routing events occurring on the |

selection again performs best as additional edge links faltim
homed stub ASes are more likely discovered. The differerze b

ternet as possible. Figure 6 shows the fraction of BGP rgutin
events observed by the set of vantage points selected.eNbce

tween random and greedy can be up to several hundred, indicat is a huge difference between random selection and the dthess t
ing that we may not have a complete set of multi-homed custome schemes, indicating that vantage points associated with roet-

ASes.

6e+06 T

5.5e+06 ?;’Eﬁ 1

5e+06

1%

5 45e+06

5 4e+06

3 3.5e+06

° 3e+06

Q

o 25e+06

s i

2 Seroe éﬁ’é& andom —Gi— ]
1.5e+06 tana i
1e+06 g Gr:e y —— |
500000 Address block —<—

0 20 40 60 80 100 120 140 160

Number of vantage points

Figure 5: Observed AS path count (including subpaths)

As we have shown, accurate AS path prediction is still quitd-c
lenging. One way to lower the difficulty is to collect as mamg-e
pirically observed AS paths as possible, as depicted inrEigu
Greedy performs the best, followed by the degree-basedvszhe
Note that the absolute difference in observed paths for dmees

works (.e., with high degree and many links, and originating many
addresses) are more likely to observe network instatslitie
IP prefix hijacking detection: Intuitively, more monitors enable
more diverse paths to be observed. Therefore, the IP prgéigkai
ing detection system has a higher chance of detecting altksj
However, based on our simulations, we observe there stigit ex
attacker-victim pairs that can evade detection even usinthe
monitoring feeds we have access to. Studying to what extent a
tackers can evade detection is important for knowing thédition
of current detection systems due to visibility constraints

The main metric we study is the number of attacker-victintpai
that can evade detection. As shown in Figure 7(a), with 1@&god
deployed in the random scheme, 0.35% of all possible attacke
victim pairs can evade the detection, which is the worst ease
observe from our simulation. We also show changes in theageer
number of evading attackers for each victim in Figure 7(by &
the average number of victims an attacker can attack witheig
detected in Figure 7(c). Overall, address block schemeopagf
similar to the random scheme, while greedy performs the inest

number of vantage points among various schemes can be as larg most cases.

as one million.

4.3 Discovery of dynamic network properties

We study two applications relying on monitoring of dynamic
routing events.
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Routing instability monitoring : A single network event such as

4.4 Inference of network properties

In the following we analyze the effect of vantage point sttec
on inference of AS relationships and AS-level paths. Weystud
algorithms for path inference.

4.4.1 ASrelationship inference and path prediction

We first study commonly used path inference algorithms ngjyi
on AS relationships as indicated in Table 1. In particulag, ap-
ply Gao's degree-based relationship inference schemenf8itzen
predict paths enforcing the AS relationships. Figure 8 shtivat,
surprisingly, as the number of monitors increases, theracgumay
decrease compared with observed AS paths.

We conjecture this may be caused by the nature of the degree-
based relationship inference algorithm. The algorithnedeines
the AS relationships based on the relative degree valuesSof A
nodes within an AS path. The topology obtained from the \gata
points tends to be quite complete already in terms of redategree
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paths

information. As more vantage points are added, more noisebma
introduced causing inaccuracies in inferred AS relatigosh

To further understand this, we analyze the changes in the top
degree node per path to explain why the increase in numbersf v
tage points does not always result in increased accuracgeBa
on the degree of each node observed in the topology usingtall d
available, we identify the top degree AS for each observeg#ts.
From each set of vantage points we also locate the top-dagdse
We then examine for each monitor data set, the fraction ot heat
top ASes for all AS paths compared with the case for the comple
topology, as shown in Figure 9. The fluctuation in the gragmli-in
cates that additional BGP data does not consistently ineptog
estimation of the top-degree nodes in each path.

We emphasize that we have made an important observation:
BGP data from more vantage points may not necessarily iserea
the accuracy of inferred network properties. The inferealgmo-
rithm [8] is based on degree, which may vary in different st
of monitors: the further away an AS is to the monitor, the more
incomplete the observed degree is. We point out that devejop
inference algorithms that are less sensitive to availabta feeds
but also more fully utilize the data available is importanttiis
area. We also observe that profit-driven path predictionhasva
in Figure 8 actually performs worse than length-driven jmgon.
This can be possibly explained by the fact that profit-dripaith
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Figure 10: Sampled path prediction accuracy: exact matchig
(new algorithm)

selection is more sensitive to the impact caused by inate#8
relationship inference.

Besides accuracy, we also perform other sanity checks for i
ferred relationships. Two metrics are used: first, some wiske
paths are considered as invalid based on the inferredoadtips.
The fraction of such invalid paths can be used as an indicatfo
inaccurate AS relationship inference. We found that the lmem
of observed invalid paths slightly decreases as the nuntbham
tage point increases. Second, for some node pairs no vatis pa
are predicted. Such disconnected node pairs can be usedtasan
metric of relationship inference inaccuracy. The numbeneadlid
paths generally decreases with more vantage points astexpec
similarly, the number of AS pairs with valid paths increaseth
vantage point. Greedy is again observed to be the best fotifige
ing valid paths.

4.4.2 ASrelationship-independent path prediction

In the following, we study the behavior of a recent proposaithp
prediction algorithm [23] that does not rely on AS relatibips for
prediction. For each deployment scenario, we use all obsehAS
paths to construct an initial topology model, and then usenked
AS paths of50 random prefixes to iteratively train the topology
model using the refinement algorithm specified. The trainedeh
is used to predict the paths from any AS to the sémerefixes.

To evaluate the accuracy of the predicted paths, we consider
three sets of paths. The first segtal, is the AS paths to the
50 prefixes observed from the total default-fre&s vantage point
ASes. The second sebserved is the AS paths to thg0 prefixes
observed from all the monitors a particular deployment aden
The third setunobserved is the complementary set observed
in total. The algorithm always produces a perfect match on the
observed set. Therefore, we use the other two sets for evalua-
tion. Note that the path prediction in Section 4.4.1 is eatdd on
observed instead.

Figure 10 shows the fraction of pathstintal andunobserved
that match the predicted paths. Overall, all schemes atyiare-
dict 28% ~ 60% of the unobserved paths in all scenarios. This

n



number is lower than those in [10] because we do not inclufie su
fix subpaths in the evaluation sets, and hence do not giveapart
credits to the paths that partially match the predictione fatch
percentage omnobserved generally does not increase with more
monitors. The above observations show the difficulty of pgat
diction: predicting an unobserved path does not benefit nfrach
observing its subpaths or its reverse path. The figure alsash
that the accuracy on thivtal set improves with more monitors,
which is a result of more paths being observed. Greedy pagor
best on theotal set because this scheme observes most paths.

[11]

[12]

[13]

5. CONCLUSIONS

In this work we illustrate the importance of route monitor se
lection on various applications relying on BGP data: diseg\wof
static network properties, discovery of dynamic networkpar-
ties and inference of network properties. For the first ¢lassre
vantage points generally improve completeness and agcafalce
topological properties studied. We show that it is importartake
into consideration possibility of evasion due to visilyilitonstraints
for detecting routing attacks. The coverage of routingahaity
monitoring varies significantly across different monit@lection.
Finally, we take the first step at analyzing how various AShpat
inference algorithms and a commonly used AS relationsHigrin
ence algorithm are impacted. Our work motivates future wark
the area of identifying algorithms less sensitive to thaitnputing
data set.

[14]
[15]
[16]

[17]

(18]
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