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ABSTRACT
Several route monitoring systems have been set up to help under-
stand the Internet routing system. They operate by gathering real-
time BGP updates from different networks. Many studies havere-
lied on such data sources by assuming reasonably good coverage
and thus representative visibility into the Internet routing system.
However, different deployment strategies of route monitors directly
impact the accuracy and generality of conclusions.

Our work is the first to critically examine the visibility con-
straints imposed by the deployment of route monitors on various
applications. We study the difference due to diverse deployment
schemes on three important classes of applications: (1) discovery
of relatively stable Internet properties such as the AS topology and
prefix to origin AS mappings, (2) discovery of dynamic routing
behavior such as IP prefix hijack attacks and routing instability,
and (3) inference of important network properties such as ASrela-
tionships and AS-level paths. We study several simple schemes of
route monitor selection and provide insights on improving monitor
placement.

Categories and Subject Descriptors: C.2.2 COMPUTER-
COMMUNICATION NETWORKS: Network Protocols

General Terms: Measurement, Experimentation

Keywords: BGP, Internet measurement

1. INTRODUCTION
There exist several public route monitoring systems, such as

Route Views [1] and RIPE [2], which have been deployed to help
understand and monitor the Internet routing system. These mon-
itoring systems operate by gathering real-time BGP updatesand
periodic BGP table snapshots from various ISP backbones andnet-
work locations to discover dynamic changes of the global Internet
routing system. Various research studies have been conducted re-
lying on these data, including network topology discovery [3], AS
relationship inference [4, 5, 6, 7, 8], AS-level path prediction [9,
10], BGP root cause analysis [11], and several routing anomaly de-
tection schemes. Most of them process the routing updates from
the route monitoring system to study the dynamic routing behavior.
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These studies relying on BGP routing data usually assume that
data from the route monitoring systems is reasonably representative
of the global Internet. However, no existing work has studied the
limitations of route monitoring systems and the visibilityconstraint
of different deployment scenarios. For example, recent work using
these data to detect malicious routing activities, such as address
hijacking [12, 13, 14, 15] could potentially suffer from evasion
attacks similar to those affecting traffic monitoring systems [16].
The accuracy of such anomaly detection schemes depend heavily
on the coverage of the route monitoring system. The limitation of
the route monitor system is critical for any system relying on BGP
data from multiple vantage points.

It is usually impossible to obtain routing data in real time from
every network due to the scalability issue and privacy concern. Ob-
taining one feed from one AS often provides a restricted viewgiven
there are many routers in an AS, each with a potentially different
view of routing dynamics. Additional BGP feeds are useful for
detecting routing anomalies, traffic engineering, topology discov-
ery and other applications. But adding an additional feed usually
requires interacting with a particular ISP to set up the monitoring
session. Therefore, an urgent question is to understand thegen-
erality and representativeness of the given monitor system, and to
understand how to select monitor locations to maximize the overall
effectiveness of the route monitoring system.

Some existing work [17, 18, 19] studied the limitation of existing
monitor placement and monitor placement algorithms [20] interms
of topology discovery. In this work, we study the impact of mon-
itor network location constraints on various research workin the
Internet routing community. We are the first to examine the visibil-
ity constraints imposed by the deployment of route monitors, im-
pacting a diverse set of applications. To understand the difference
among current deployment settings, we analyze three deployment
scenarios: all Tier-1 ISPs only, Route Views and RIPE setup,and a
setup combining many public and private vantage points. We fur-
ther study four simple schemes of network monitor selectionand
the resulting impact on multiple metrics based on the applications
using the data. Our analysis shows that current public monitors
already provide good coverage in various applications we study.

The paper is organized as follows. In Section 2 we introduce the
methodology of our study, followed by a short discussion compar-
ing three deployment scenarios in Section 3. We study in detail
several different monitor selection schemes in Section 4 and con-
clude in Section 5.

2. METHODOLOGY
In this section, we describe the methodology of our study, in-

cluding the data we used and various metrics for comparing moni-
tor selection schemes motivated by several common but important



applications using BGP data.

2.1 Route monitor locations
The BGP data we used in our study are collected from around

1000 monitoring feeds, including public data sources such as
Route Views [1] and RIPE [2], feeds from the local ISP, and data
from private peering sessions with many other networks, covering
more than 200 distinct ASes, which are not in the public feeds. In
the remainder of the paper, we use the termmonitoring feed to refer
to a BGP data source from a particular router. We define avantage
point to be a distinct AS from which we collect BGP data from.
Note that feeds from different routers in the same AS may provide
different information, and we leave the study of the difference be-
tween feeds in the same AS for future work. We use one monitoring
feed from one vantage point. For ease of comparison across van-
tage points, we only choose feeds with default-free routingtables
(with entries for all prefixes), and create a data set calledLargeSet
consisting of data from 156 ASes for our subsequent analysis.

The BGP updates are collected from a set of route monitors, each
of which establishes peering session with one router in eachnet-
work being monitored. Note that our study is inherently limited
by the BGP data we have access to and we attempt to draw gen-
eral conclusions independent of the data limitation. Although the
BGP data from all available monitors is still not the ground truth
for the whole network, we study different applications using data
from different sampling strategies and compare with thisLargeSet.
Developing more intelligent monitor placement algorithmsis part
of future work.

To understand static network properties, instead of using asin-
gle table snapshot from each feed, we combine multiple snapshots
taken at different times with routing updates from each feedwhen-
ever available. This helps improve the topology completeness as
many backup links are only observable during transient routing
changes. We use two snapshots of tables from each monitoring
feed including feeds from about 100 ASes, along with six months
of updates and tables from Route Views, RIPE and a local ISP from
May 2006 to Oct. 2006. The resulting network topology contains
25,876 nodes(ASes) and 71,941 links. We list the propertiesof
current peers that Route Views and RIPE have in Table 2.

To compare different deployment strategies, we construct three
sets of realistic deployment scenarios. First, to understand the visi-
bility of the core of the Internet, we select only 9 well-known Tier-1
ISPs to be monitors, including AS numbers: 1239, 174, 209, 2914,
3356, 3549, 3561, 701, and 7018. Second, we use only feeds from
commonly used Route Views and RIPE. Third, we use LargeSet
to obtain the most complete topology from all available data. We
denote the three deployment scenarios as Tier-1, Route Views, and
LargeSet, respectively.

We focus on three types of applications relying on BGP data,
namely (1) discovery of relatively stable Internet properties such as
the AS topology and prefix to origin AS mappings, (2) discovery
of dynamic routing behavior such as IP prefix hijack attacks and
routing instability, and (3) inference of important network proper-
ties such as AS relationships and AS-level paths. Note that the first
two applications simply extract properties directly from the routing
data. The performance of the third one depends not only on the
data but also the algorithm used for inference. We describe these
applications in more detail below.

2.2 Discovery of static network properties
BGP data is an important information source for understanding

the Internet topology. Very basic network properties are critical
for understanding the Internet routing system. These properties

include AS connectivity, IP prefix to origin AS mappings, iden-
tifying stub AS information and its provider’s information, multi-
homed ASes, and AS path information. Intuitively, including van-
tage points from the core is more beneficial as a larger number
of network paths traverse the core networks. Previous work [21,
22, 3] has shown the influence of data sources besides BGP table
data,e.g., traceroute data and routing registries, on the complete-
ness of inferred AS topology. We extend this analysis to two other
properties: (1) multihomed stub ASes to understand edge network
resilience and potentially increased churn in updates, and(2) AS
paths, which are difficult to infer.

2.3 Discovery of dynamic network properties
Dynamic properties of the routing system are of strong inter-

est for studying routing instabilities,e.g., due to misconfigurations,
and detecting anomalies. Understanding such properties isuseful
for troubleshooting and identifying possible mitigation to improve
routing performance. We focus on two representative applications
here: monitoring routing instability and IP prefix hijack attack de-
tection.
Routing instability monitoring: Routing updates are a result
of routing decision changes in some networks caused by events
such as configuration modifications, network failures, and dynamic
traffic engineering. Comprehensively capturing Internet routing
changes is useful for important applications like troubleshooting,
routing health monitoring, and improved path selection.
IP prefix hijacking detection: One of the original goals of the
public route monitoring systems in Route Views and RIPE is trou-
bleshooting. Nowadays they are increasingly used for the timely
detection of malicious routing activities such as prefix hijacking at-
tacks. Current hijack detection systems in control plane [13, 12]
rely on detecting inconsistency in observed BGP updates across
vantage points. However, the detection system may not detect all
attacks due to limited visibility. In this work, we study theimpact
of different monitoring deployment setups on the detectioncover-
age.

Intuitively, an attack is missed if no vantage point of the monitor-
ing system adopts the malicious route. Thus, we define attackeva-
sion as follows. For a monitoring systemSM = m1, m2, . . . , mn

with n monitors, given an attackerA, a victimV , and the hijacked
prefix p, if ∀i, PrefA

mi
(p) < PrefV

mi
(p), wherePrefA

mi
(p) is

the route preference value forp announced fromA as observed by
mi, then attackerA can hijackV ’s p without being detected.

2.4 Inference of network properties
The third class of application studied relates to properties in-

ferred from the above basic properties from BGP data.
AS relationship inference: There is much work [6, 7, 4, 8, 5]
on inferring AS relationships from BGP AS paths. Knowing com-
mercial relationships among ASes reveals network structure and
is important for inferring AS paths. In this work, we study the
commonly-used, Gao’s degree-based relationship inference algo-
rithm [8].
AS-level path prediction: Accurately predicting AS paths is im-
portant for applications such as network provisioning. In this work,
we compare two path prediction algorithms under various monitor
deployment settings. We use the recent algorithm [9] which makes
use of the inferred AS relationships, and study both profit-driven
and shortest-path-based route selection. For the profit-driven pol-
icy, the route selection prefers customer routes to peeringroutes
and over to provider routes. Note that predicted paths for both ap-
proaches need to conform to relationship constraints [8]. We also
study the recent work [23] which does not use AS relationships but



Category Tier-1 Route Views LargeSet

Number of ASes 25732 25801 25876
Number of AS links 51223 56000 71941
Profit-driven prediction 34% 39% 43%
Length-based prediction 67% 76% 73%

Table 1: Comparison among three deployment scenarios.
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Figure 1: Distribution of observed links across tiers.

instead exactly matches observed paths.
To improve scalability, we eliminatestub AS nodes, or customer

ASes that do not provide any transit to other ASes. The graph with-
out stub nodes contains only 4426 (16% of all nodes) and 25849
links (15% of all links). For completeness, we also simulatethe
path prediction to 50 randomly sampled stub ASes. We include
these 50 stub ASes and their links.

3. DEPLOYMENT SCENARIO ANALYSIS
We first analyze the three deployment scenarios, Tier-1, Ruter

Views, and LargeSet defined in Section 2.1. We study the impact
of these three settings on applications of AS topology discovery,
AS relationship inference, and AS-level path prediction.

Table 1 summarizes the comparison across the three setups. Con-
firming previous studies [17, 19], we find that the largest monitor
set, LargeSet, observes much more links but only slightly more
non-private ASes. The additional ASes in the LargeSet are mostly
at the edge. Using Gao’s degree-based relationship inference algo-
rithm, we compare the accuracy of inferred paths comparing with
paths in BGP data in terms of path length. Note that the improve-
ment is small for path prediction with increasing vantage points.
Interestingly, using the largest data set lowers the length-based pre-
diction accuracy. These results imply that Gao’s algorithmis rea-
sonably stable with changes in the BGP data.

We list the network properties of current peers of both Route
Views and LargeSet in Table 2. We use the tier definition specified
in previous work [7]: Tier-1 means closest to the core Internet and
Tier-5 is associated with stub or pure customer ASes. We alsoana-
lyze each AS in the aspects of geographic location, the number of
IP addresses it announces, its degree and its customers. Theaddi-
tional ASes in LargeSet are mainly Tier-2 ASes in US, with large
number of addresses and degree.

To understand which links are identified using a larger data set,
we plot in Figure 1 the topological location of links in each data set.
The X-axis indicates the link level, defined by the tier valueof the
two ASes associated with the link sorted in increasing order. For
example, there are 10 links observed from LargeSet between nodes
in tier-1 and tier-4 at the X value of14. The hierarchy level for each
node is assigned according to the relationship inferred using all the
data available. As expected, the additional benefit of observed links
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Figure 3: Number of observed links

are mostly at the edge.

4. MONITOR SELECTION ANALYSIS
In the previous section, we have observed some differences and

similarities among the three realistic deployment settings. To delve
deeper, we apply four simple schemes to identify the incremental
benefit and even possible negative effects of adding monitors for a
wider set of applications.

4.1 Monitor selection schemes
Our candidate set of monitors consists of all BGP feeds we have

access to. We study the following four ways of adding monitors.
Random based: monitor nodes are selected randomly.
Degree based: monitors with the largest node degree are selected
first based on the entire data set. Node degree means the number of
neighbors each AS has.
Greedy link based: at any time, the next monitor is selected with
the largest number of unobserved links, given the set of already
selected monitors.
Address block based: without relying on all the data, monitors
in the ASes that originate the largest number of IP addressesare
selected with random tie breaking.

4.2 Discovery of static network properties
To fully understand how each scheme works, we study the topo-

logical distribution of the monitors selected based on the tier clas-
sification, with the first three tiers shown in Figure 2. We observe
that as expected the address-block-based scheme always selects the
Tier-1 nodes first as they usually announce largest number ofad-
dresses. For Tier 2 and Tier 3, there is little difference among the
schemes.

We first show that the observed link count increases with vantage
point in Figure 3. Confirming previous studies [20], the increase of
links from 80 vantage points can be twice as the links observed
from one. The greedy-based scheme performs best as expected,
followed by the the degree-based one. Interestingly, the address
block based scheme is no better than random selection. This is
likely due to the fact that most ASes in our candidate set contribute
a similar number of links.
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Figure 4: Number of observed multi-homing stub ASes



Data Tier Geographic location Address Degree Customer

1 2 3 4 Europe Asia Africa America Min Avg Max Min Avg Max Min Avg Max

Route Views 9 40 58 12 37 4 1 77 156 65313 1561473 3 247 2922 0 112 2899
LargeSet 9 82 60 5 46 4 1 105 156 116989 1561473 1 344 2922 0 177 2899

Table 2: Statistics of the monitors.
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Figure 2: Monitor distribution in each tier for different mo nitor selection schemes.

Next, we study the prevalence of multi-homing at edge networks
for network redundancy as shown in Figure 4. The greedy-based
selection again performs best as additional edge links for multi-
homed stub ASes are more likely discovered. The difference be-
tween random and greedy can be up to several hundred, indicat-
ing that we may not have a complete set of multi-homed customer
ASes.
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Figure 5: Observed AS path count (including subpaths)
As we have shown, accurate AS path prediction is still quite chal-

lenging. One way to lower the difficulty is to collect as many em-
pirically observed AS paths as possible, as depicted in Figure 5.
Greedy performs the best, followed by the degree-based scheme.
Note that the absolute difference in observed paths for the same
number of vantage points among various schemes can be as large
as one million.

4.3 Discovery of dynamic network properties
We study two applications relying on monitoring of dynamic

routing events.
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Figure 6: Fraction of observed routing events
Routing instability monitoring : A single network event such as

link failure can trigger routing updates from many networks. We
study how to monitor as many routing events occurring on the In-
ternet as possible. Figure 6 shows the fraction of BGP routing
events observed by the set of vantage points selected. Notice there
is a huge difference between random selection and the other three
schemes, indicating that vantage points associated with core net-
works (i.e., with high degree and many links, and originating many
addresses) are more likely to observe network instabilities.
IP prefix hijacking detection: Intuitively, more monitors enable
more diverse paths to be observed. Therefore, the IP prefix hijack-
ing detection system has a higher chance of detecting all hijacks.
However, based on our simulations, we observe there still exist
attacker-victim pairs that can evade detection even using all the
monitoring feeds we have access to. Studying to what extent at-
tackers can evade detection is important for knowing the limitation
of current detection systems due to visibility constraints.

The main metric we study is the number of attacker-victim pairs
that can evade detection. As shown in Figure 7(a), with 10 nodes
deployed in the random scheme, 0.35% of all possible attacker-
victim pairs can evade the detection, which is the worst casewe
observe from our simulation. We also show changes in the average
number of evading attackers for each victim in Figure 7(b), and in
the average number of victims an attacker can attack withoutbeing
detected in Figure 7(c). Overall, address block scheme performs
similar to the random scheme, while greedy performs the bestin
most cases.

4.4 Inference of network properties
In the following we analyze the effect of vantage point selection

on inference of AS relationships and AS-level paths. We study two
algorithms for path inference.

4.4.1 AS relationship inference and path prediction
We first study commonly used path inference algorithms relying

on AS relationships as indicated in Table 1. In particular, we ap-
ply Gao’s degree-based relationship inference scheme [8] and then
predict paths enforcing the AS relationships. Figure 8 shows that,
surprisingly, as the number of monitors increases, the accuracy may
decrease compared with observed AS paths.

We conjecture this may be caused by the nature of the degree-
based relationship inference algorithm. The algorithm determines
the AS relationships based on the relative degree values of AS
nodes within an AS path. The topology obtained from the vantage
points tends to be quite complete already in terms of relative degree
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(a) Number of attacker-victim pairs (b) Number of attackersper victim (c) Number of victims per attacker

Figure 7: IP prefix hijacking evasion under different monitor selection schemes.
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Figure 8: Profit-driven path prediction accuracy (length
match).
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Figure 9: Number of matched top degree AS in all observed AS
paths

information. As more vantage points are added, more noise may be
introduced causing inaccuracies in inferred AS relationships.

To further understand this, we analyze the changes in the top
degree node per path to explain why the increase in number of van-
tage points does not always result in increased accuracy. Based
on the degree of each node observed in the topology using all data
available, we identify the top degree AS for each observed ASpath.
From each set of vantage points we also locate the top-degreenode.
We then examine for each monitor data set, the fraction of matched
top ASes for all AS paths compared with the case for the complete
topology, as shown in Figure 9. The fluctuation in the graph indi-
cates that additional BGP data does not consistently improve the
estimation of the top-degree nodes in each path.

We emphasize that we have made an important observation:
BGP data from more vantage points may not necessarily increase
the accuracy of inferred network properties. The inferencealgo-
rithm [8] is based on degree, which may vary in different selection
of monitors: the further away an AS is to the monitor, the more
incomplete the observed degree is. We point out that developing
inference algorithms that are less sensitive to available data feeds
but also more fully utilize the data available is important in this
area. We also observe that profit-driven path prediction as shown
in Figure 8 actually performs worse than length-driven prediction.
This can be possibly explained by the fact that profit-drivenpath
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Figure 10: Sampled path prediction accuracy: exact matching
(new algorithm)

selection is more sensitive to the impact caused by inaccurate AS
relationship inference.

Besides accuracy, we also perform other sanity checks for in-
ferred relationships. Two metrics are used: first, some observed
paths are considered as invalid based on the inferred relationships.
The fraction of such invalid paths can be used as an indication of
inaccurate AS relationship inference. We found that the number
of observed invalid paths slightly decreases as the number of van-
tage point increases. Second, for some node pairs no valid paths
are predicted. Such disconnected node pairs can be used as another
metric of relationship inference inaccuracy. The number ofinvalid
paths generally decreases with more vantage points as expected;
similarly, the number of AS pairs with valid paths increaseswith
vantage point. Greedy is again observed to be the best for identify-
ing valid paths.

4.4.2 AS-relationship-independent path prediction
In the following, we study the behavior of a recent proposed path

prediction algorithm [23] that does not rely on AS relationships for
prediction. For each deployment scenario, we use all observed AS
paths to construct an initial topology model, and then use observed
AS paths of50 random prefixes to iteratively train the topology
model using the refinement algorithm specified. The trained model
is used to predict the paths from any AS to the same50 prefixes.

To evaluate the accuracy of the predicted paths, we consider
three sets of paths. The first set,total, is the AS paths to the
50 prefixes observed from the total default-free165 vantage point
ASes. The second setobserved is the AS paths to the50 prefixes
observed from all the monitors a particular deployment scenario.
The third setunobserved is the complementary set ofobserved

in total. The algorithm always produces a perfect match on the
observed set. Therefore, we use the other two sets for evalua-
tion. Note that the path prediction in Section 4.4.1 is evaluated on
observed instead.

Figure 10 shows the fraction of paths intotal andunobserved

that match the predicted paths. Overall, all schemes accurately pre-
dict 28% ∼ 60% of the unobserved paths in all scenarios. This



number is lower than those in [10] because we do not include suf-
fix subpaths in the evaluation sets, and hence do not give partial
credits to the paths that partially match the prediction. The match
percentage onunobserved generally does not increase with more
monitors. The above observations show the difficulty of pathpre-
diction: predicting an unobserved path does not benefit muchfrom
observing its subpaths or its reverse path. The figure also shows
that the accuracy on thetotal set improves with more monitors,
which is a result of more paths being observed. Greedy performs
best on thetotal set because this scheme observes most paths.

5. CONCLUSIONS
In this work we illustrate the importance of route monitor se-

lection on various applications relying on BGP data: discovery of
static network properties, discovery of dynamic network proper-
ties and inference of network properties. For the first class, more
vantage points generally improve completeness and accuracy of the
topological properties studied. We show that it is important to take
into consideration possibility of evasion due to visibility constraints
for detecting routing attacks. The coverage of routing instability
monitoring varies significantly across different monitor selection.
Finally, we take the first step at analyzing how various AS path
inference algorithms and a commonly used AS relationship infer-
ence algorithm are impacted. Our work motivates future workin
the area of identifying algorithms less sensitive to the input routing
data set.
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