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Abstract

Recently developed techniques have been very success-
ful in accurately estimating intra-Autonomous System (AS)
traffic matrices. These techniques rely on link measure-
ments, flow measurements, or routing-related data to infer
traffic demand between every pair of ingress-egress points
of an AS. They also illustrate an inherent mismatch be-
tween data needed (e.g., ingress-egress demand) and data
most readily available (e.g., link measurements). This mis-
match is exacerbated when we try to estimate inter-AS traf-
fic matrices, i.e., snapshots of Internet-wide traffic behavior
over coarse time scale (a week or longer) between ASs. We
present a method for modeling inter-AS traffic demand that
relies exclusively on publicly available/obtainable mea-
surements. We first perform extensive Internet-wide mea-
surement experiments to infer the “business rationale” of
individual ASs. We then use these business profiles to char-
acterize individual ASs, classifying them by their “utility”
into ASs providing Web hosting, residential access, and
business access. We rank ASs by their utilities which drive
our gravity-model based approach for generating inter-AS
traffic demand. In a first attempt to validate our methodol-
ogy, we test our inter-AS traffic generation method on an
inferred Internet AS graph and present some preliminary
findings about the resulting inter-AS traffic matrices.

1 Introduction

Motivated by recent successes of intra-domain traffic ma-
trix estimation techniques [8, 23, 16], we attempt to obtain
accurate estimates of traffic volume exchanged between in-
dividual ASs. Knowledge of such a global but coarse-scale
spatio-temporal picture of Internet traffic is vital for a num-
ber of practical networking problems, including evaluating
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the impact of emerging technologies such as “intelligent
routing control” (e.g., multi-homing, overlay routing) [3];
identifying or forecasting potential network bottlenecks or
investigating the effectiveness of proposed remedies aimed
at alleviating growing congestion [2]; assessing the perfor-
mance of new protocols or Internet-wide applications such
as new overlay networks; or improving the current under-
standing of how intra-domain traffic engineering (TE) im-
pacts inter-domain TE and vice versa [1, 15, 14]. In the
spirit of the work by Feldman et al. [9], we can use these
inter-domain traffic matrices to partially answer such ques-
tions as “How stable are AS traffic volumes over time?” or
“Which ASs carry most of the traffic, and how much?”

Given the highly competitive nature of today’s Internet
Service Provider (ISP) market, ISPs do not make public
such sensitive data as traffic volume statistics. The task
of capturing the global behavior of AS-level Internet over
long time scale (e.g., days) has been left to experimen-
talists. Due to the immense difficulties in collecting high
volume of traffic data on an Internet-wide scale, research
efforts to model and estimate inter-domain traffic demand
are still in their infancy. With some exceptions [6, 22, 9],
most studies that require knowledge of inter-domain traffic
demand typically employ extremely simple (and untested)
demand models, often assuming uniform traffic demand
between every pair of ASs [2, 21]. Studies that rely on
traces collected from a single vantage point (typically lo-
cated in some stub network) are inherently constrained in
their ability to provide a global view of inter-domain traf-
fic. Nevertheless, an analysis of these traces revealed that
while any given AS may exchange traffic with most of the
Internet, only a small number of ASs are responsible for a
large fraction of inter-domain traffic. In contrast to [6, 22],
Feldmann et al. [9] also use server logs from a large CDN
and develop a methodology for estimating inter-domain de-
mand matrices for Web traffic.

Our model of inter-domain traffic demand encompasses
the overall traffic, with Web traffic representing just one
(though quite significant) component. Considering the



highly restrictive nature of access to proprietary data (such
as server logs of large CDNs), we rely only on pub-
licly available or obtainable data in our modeling of inter-
domain traffic demand. However, the proposed approach
is flexible enough to incorporate proprietary data, should it
become available and should it be relevant to the problem at
hand. In addition, we argue that a useful inter-domain traf-
fic demand model should possess the following two char-
acteristics. First, given the challenging task of obtaining
actual inter-domain traffic matrices, the model should be
flexible enough to allow for a systematic exploration of dif-
ferent traffic scenarios and traffic engineering strategies. At
the same time, the model should be parsimonious enough
to provide an intuitive understanding of the generated traf-
fic demand and allow for a network-grounded interpreta-
tion of its parameters.

Our approach to develop such a model is partly empiri-
cal and partly analytical. We combine information gained
from performing extensive Internet-wide measurement ex-
periments with a modeling framework known as the “gen-
eral gravity model.” The general gravity model has recently
been used in estimating intra-domain traffic matrices [23]
and has a long history in the social sciences, where it has
been applied to describe the movement of people, goods,
and information between geographic regions [17, 7]. To
apply the gravity model to inter-domain traffic modeling,
we first need to define the concepts of “mass” and “dis-
tance” within the context of inter-domain traffic exchange.
To that end, we start by discussing the business model (or
operational characteristics) of individual ASs.

In Section 2 we make the null hypothesis that to a first
approximation, the traffic volume exchanged between two
ASs necessarily reflects the business model of their opera-
tors. For example, an AS in the business of hosting various
web and multimedia content will exhibit a very lopsided
traffic profile (i.e., disproportionately heavy outbound traf-
fic volumes). For another example, if two ASs are mainly
in the business of providing access to residential customers,
with comparable customer bases, traffic demand between
the two networks can be expected to be more symmetric.
By exploiting a range of publicly available data sets and
by relying on information collected from our own Internet-
wide experiments, we develop in Section 3 a combined
measurement and business “profiling” methodology to in-
fer the “utility” of an AS’s physical network. We identify
the utility of an AS as providing Web hosting, residential
access, or business access services. Depending on a sim-
ple high/low classification of these utility values, we infer
seven natural AS business models. In Section 3, we classify
ASs into one of these models, and rank the ASs within each
class by their combined utility. These rankings then consti-
tute the key input data to our general gravity model pre-
sented in Section 5 and determine the generation of inter-
domain traffic volumes exchanged between individual ASs.

In particular, we illustrate that our model, besides being
flexible and parsimonious, is capable of generating realis-
tic traffic demand with different characteristics. As a final
contribution, we focus in Section 6 on model validation and
attempt to partially address this issue, even though inter-
domain traffic matrix estimation is a case where even the
most basic “ground truth” appears elusive. We conclude in
Section 7 with a discussion of unresolved issues and open
problems.

2 AS Business Models

We broadly define an AS’s business model as the utility
of its physical networks, i.e., the primary reason(s) behind
the design, operation, and management of its physical in-
frastructure. We associate a “business model” with each
AS, not with each ISP or company, mainly because some
large ISPs maintain multiple ASs (or domains) and typi-
cally assign these (sub)domains to separate business divi-
sions, each with its own business characteristics or utility.
We avoid the daunting task of identifying and enumerating
the business purposes and operating strategies of all ASs
by restricting our attention to the most generic utilities of
existing networks that clearly affect their resulting traffic
demand. In the following, we identify three such utilities
(i.e., Web hosting, residential access, and business access)
and describe how they can impact inter-domain traffic de-
mand.

Web Hosting (Web). The success of the World Wide
Web has led to an explosion of web sites that host various
web content and streaming media. Powered by sophisti-
cated content distribution technologies, a number of Web
hosting companies have also emerged to host content out-
sourced by popular web sites. So much so that Web hosting
is now a common service included in an AS’s service port-
folio. An AS that hosts popular web content or e-commerce
engines and distributes this content to the global Internet
can be expected to carry voluminous outbound traffic and
relatively little inbound traffic.

Residential Access (RA). Retail Internet business that
directly deals with residential customers has existed since
the inception of the commercial Internet. With advances in
Internet access technologies, along with access speed, the
number of residential users equipped with Internet access
has risen steadily.1With the proliferation of high-speed In-
ternet users, the influence of end-user applications on the
global traffic pattern becomes increasingly pronounced. A
prime example are the bandwidth-demanding peer-to-peer
(P2P) file-sharing applications. ASs populated by a large
pool of residential users can exchange nontrivial amount of
traffic among themselves as well as receive a large amount
of web download traffic from Web content networks.

Business Access (BA). The low barrier of entry into the
ISP market creates an environment whereby wholesaling
and reselling of Internet access is actively pursued by both



Table 1: AS business profiles and models
Utility Profile

Web RA BA
AS Business Model

H H H Tier-1
H H L Retail service
H L H Business service
L H H Network access
H L L Web hosting
L H L Residential access
L L H Business access

incumbent carriers and new market entrants. Customers
of large ISPs with nation- or continent-wide footprints are
often themselves ISPs that resell the purchased Internet ac-
cess to their own customers. For the purposes of this paper,
“business access providers” are ISPs that resell purchased
Internet access. Traffic demand of ASs that are business
access providers can be estimated by the quality of service
these ASs provide. Transit ASs guaranteeing good quality
of service are likely to attract and retain a high number of
customers. In turn, customers with reliable Internet con-
nections can rely on the Internet for a large part of their
business transactions, resulting in high traffic demand.

While the first two of these three utilities are tradition-
ally attributed to stub networks, the third one is typically
associated with transit networks. In today’s ISP market
the service portfolio of large ISPs typically reflect mul-
tiple concurrent utilities (e.g., a business access provider
may also be in the business of providing residential access
or Web hosting services). We therefore do not follow the
traditional classification of ASs into stub and transit net-
works. Instead, we attempt to determine a given AS’s busi-
ness model by inferring from relevant data which of the
three utilities dominate the AS’s operation, and what com-
bination of utilities best characterizes the AS’s business.
Table 1 lists seven AS business profiles based on the three
identified utilities. Whether a given utility is primary or
secondary to an AS’s business profile is denoted by “H”
(high) and “L” (low). We tag each of the seven business
profiles with an appropriately named business model listed
in the right column.

3 Method for Inferring AS Business Model

In the highly competitive ISP market, the business plans of
existing ISPs are generally confidential and cannot be in-
spected. Commercial ISP market research studies, e.g., Pri-
Metrica (telegeography.com), are often dated, cover
only a handful of well-known ISPs, or are based on some
very narrowly-defined criteria. They are in general ill-
suited for inferring business profiles of ASs, as defined in
Table 1, in a comprehensive and coherent manner. As a
viable alternative, we propose a methodology for inferring
an AS’s business model that involves performing extensive
Internet-wide measurement experiments and also involves
collecting data indicative of individual ASs’ utilities. We

Table 2: Computation of Uweb(·)
initialize Uweb(X) to 0 for every AS X .
For each URL u,

let size(u) be the size of a file referred to by u.
extract a web server name N from u.
find the IP address set S that is resolved to N .
For each IP address I ∈ S,

find AS X that I belongs to.
Uweb(X) = Uweb(X) + size(u)

|S|

rely exclusively on publicly available/obtainable data and
assume that we have no access to any proprietary data. We
discuss the limitations imposed by this restriction and com-
ment on how they could be alleviated if different types of
proprietary data (e.g., server logs from a large CDN as used
by Feldman et al. [9]) should become available.

3.1 Web Hosting
Our approach to quantifying web service utility is based
on locating popular content on the Internet. ASs that host
a large amount of popular content are considered to have
high utility as a web service provider. To determine pop-
ular web content, we first consulted the web site Aleksika
(www.skyart.org) and obtained a list of the top 10,000
search keywords most frequently submitted to search en-
gines in the years 2003-2004. For each keyword, we
queried the Google search engine, using the Google Web
Services Application Programmer Interface (API), to re-
trieve a set of most closely matched URLs. For each sub-
mitted query, the Google Web API returned the top-10
matched results (URLs). We collected about 85,000 dis-
tinct URLs from all Google responses. By extracting web
server addresses from these URLs, we inferred the ASs
hosting widely accessed web content. To prevent bias to-
wards discovering English-only content, we repeated the
above experiment six more times, directing the Google
Web Services API to return URLs in Chinese, French, Ger-
man, Japanese, Korean, and Spanish respectively. The
same set of English keywords was used in each experiment.
For each language, we obtained between 80,000 and 90,000
URLs for these keywords. Merging all these results yielded
close to 650,000 distinct URLs.

One source of web traffic not captured by the above mea-
surement experiments is embedded web content, which in-
cludes media files delivered by dedicated media servers
secondary to a web server, private CDNs, or third-party on-
line advertisement objects (e.g., doubleclick.com).
To uncover such web traffic, we crawled the above
keyword-retrieved URLs individually, and extracted from
the crawled pages URLs associated with embedded objects.
Combining keyword-retrieved URLs with embedded-
object URLs increased the total number of our collected
URLs by a factor of three.
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Figure 1: Uweb distribution

Next we extracted a web server IP address from each
URL and mapped it to its corresponding AS. A num-
ber of issues complicated this seemingly straightforward
step. For one, some frequently-accessed web sites employ
DNS-based load balancing, whereby their domain names
are resolved to multiple addresses in a round-robin man-
ner. In more sophisticated cases, a given domain name
is resolved to a set of addresses depending on the query-
ing client’s geographic location, web server availability,
and network condition. CNN and AOL are examples of
two content providers employing such DNS-based web re-
quest routing, and their domain names are typically re-
solved to hundreds of addresses spread out geographically
and administratively over the Internet. To obtain all IP
addresses associated with a given web server’s domain
name, we performed a reverse-DNS lookup of each do-
main name from 96 geographically dispersed PlanetLab
nodes (planet-lab.org), and collected all resulting
addresses. Using BGP routing tables, we then mapped each
resulting IP address to its corresponding AS. In Table 2, we
summarize the steps taken to obtain the web-hosting utility
Uweb(X) for every AS X , where Uweb(X) can be viewed
as an estimate of the byte counts of popular web content
hosted by AS X .

Finally, we sort the ASs by their utility Uweb(·) in de-
creasing order and assign them ranks, denoted Rweb(·). Ta-
ble 3 lists the top-10 Web hosting ASs by rank, in three dif-
ferent geographic regions: North America (ARIN), Europe
(RIPE) and Asia-Pacific (APNIC). As expected, the top-
ranking Web hosting ASs include e-commerce companies
(e.g., Amazon and eBay), telecom companies (e.g., AT&T,
Deutsche Telekom, Korea Telecom), and well-known por-
tal sites (e.g., Yahoo). One notable observation is the dom-
inance of telecom companies in the Web hosting business
in the Asia-Pacific region.

Fig. 1 shows the entire Rweb vs. Uweb distribution. Con-
sistent with previous findings [6, 22, 9], Uweb(·) associated
with high-ranking ASs (e.g., up to rank 100 − 400) in all
three geographic regions are characterized by a Zipf-type
law (i.e., Uweb ∼ (Rweb)

c, where c ≈ −0.9 for ARIN and

RIPE, and c ≈ −1.1 for APNIC). The steep fall-off of the
curves in the region of low-ranking ASs is likely due to the
limited coverage our keyword-based crawling process has
of their web content.

The key underlying assumption in our empirical method
is that to infer the popularity of content networks, a feasi-
ble alternative to using actual web traffic measurement is to
rely on data that measures the appearance of web content
in search results. Strictly speaking, this alternative method
can only account for traffic from users actively seeking
specific information, not traffic from users visiting book-
marked pages or links on web pages. However, due to our
decision to use the top 10,000 most popular keywords, we
expect the resulting bias to be small. It is well-known that
Google’s PageRank weighting algorithm carefully consid-
ers web link structures (e.g., links that a page receives) in
calculating link values. As a result, we believe that our
method does implicitly account for some aspects of actual
link traffic.

Ideally, characterizing web service utility should make
use of measured inter-domain web traffic, as is done for
example by Feldman et al. [9]. However, this requires ac-
cess to server logs of widely-deployed private CDNs. Such
data is not publicly available. These data sets are also lim-
ited in their coverage: they capture only web content served
by the CDN, and they do not capture web traffic emanating
from content providers who are not clients of the CDNs.
These difficulties illustrate the technical challenges associ-
ated with accurate estimation of inter-domain web traffic.
Viewing our method as one of many viable approaches to
making progress in this area, it exemplifies how a combi-
nation of publicly obtainable and publicly available data
sets can be used to infer inter-domain traffic volume. At
the same time, the method is flexible enough to incorpo-
rate web server logs from CDNs should such logs become
publicly available.

3.2 Residential Access

To infer an AS’s utility in providing residential Internet
access, we estimate it by the number of P2P file sharing
users of the AS. Besides web browsing, P2P file-sharing
is currently one of the most popular applications on the
Internet (cachelogic.com). To estimate the number
of users per AS, we perform measurement experiments
involving three different file sharing systems: BitTorrent
(bittorrent.com), eDonkey (edonkey2000.com),
and Gnutella (gnutella.com). At the time of our study,
these were among the most popular file sharing systems in
use on the Internet [4].2

Most P2P file sharing systems have built-in mecha-
nisms to discover existing users, which makes estimation
of file sharing population relatively straight forward. The
Gnutella system employs a decentralized approach to file



Table 3: Top-10 web service ASs (As of Sept. 2004)
ARIN RIPE APNIC

Rweb AS# Name AS# Name AS# Name
1 3561 Savvis 8560 Schlund 3786 Dacom
2 2914 Verio 8220 Colt 4766 Korea Telecom
3 16509 Amazon 16276 Ovh 9304 Hutchison
4 21844 ThePlanet 3320 Deutsche Telekom 9318 Hanaro Telecom
5 11643 eBay 559 SWITCH 4808 Chinanet
6 13749 Everyones Internet 680 DFN 4134 China Telecom
7 7018 AT&T WorldNet 1273 C&W 2514 NTT
8 209 Qwest 702 MCI Europe 9848 GNG
9 701 UUNet 12312 Tiscali 4812 China Telecom
10 14134 Navisite 12322 Proxad 23880 Yahoo-KR

searching: individual Gnutella peers form an overlay net-
work to propagate search messages. The eDonkey systems,
on the other hand, relies on dedicated, centralized servers
which peers must contact to search for a file. Similarly,
BitTorrent relies on centralized Trackers from which a peer
can obtain a list of other peers serving a particular file.

To estimate the population of BitTorrent, we down-
loaded about 2,800 torrent files from a well-known
BitTorrent web site (torrentspy.com). A torrent
file contains the meta data of a shared file, among
which is the address of the BitTorrent tracker cog-
nizant of peers sharing the file. Using BTtools
(bagley.org/˜doug/project/bttools), we ob-
tained from each tracker a list of peers in possession of
complete copies of the file (seeds in BitTorrent parlance).
Over a period of four days, we collected about 634,000 dis-
tinct IP addresses of BitTorrent peers.

To estimate the population of eDonkey, we ran a toy
eDonkey server and recorded the IP addresses of all the
peers that contacted our server. eDonkey servers run a gos-
sip protocol among themselves to maintain an up-to-date
list of the server population. Each eDonkey peer maintains
a list of servers and sends them periodic ping messages. In
one day, our eDonkey server collected about 1,014,000 dis-
tinct IP addresses of eDonkey peers from these ping mes-
sages.

Finally, for the purpose of estimating the population of
Gnutella, we ran a Gnutella client application on 20 Plan-
etLab nodes (10 in North America, 5 in Asia-Pacific, and
5 in Europe) and recorded the IP addresses of all Gnutella
peers which exchanged traffic with us. Over a period of one
week, we collected about 542,000 distinct IP addresses of
Gnutella peers.

In total, we collected about 2.19 million distinct P2P
IP addresses, which we subsequently mapped to their cor-
responding AS using BGP routing tables. Denoting by
URA(X) the utility of AS X as a residential Internet ac-
cess provider, we computed this quantity for every AS X
by counting the number of distinct P2P IP addresses as-
sociated with AS X . Of course, some P2P users perform
more active downloads/uploads than others. By aggregat-
ing a sufficient number of IP addresses, we try to mini-
mize any error that may be caused by ignoring such fine-
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Figure 2: URA distribution

grained file sharing activity. We sort ASs by their utility
URA(·) in decreasing order and assign them ranks, denoted
RRA(·). Table 4 lists the top-10 residential access ASs by
region. In the European and Asia-Pacific regions, most of
the high-ranking residential access providers are associated
with telecom companies. In the North American region,
retail Internet access business is more diversely distributed
among telecom carriers and cable companies. Fig. 2 shows
the entire RRA vs. URA distribution, for all three P2P file-
sharing applications individually as well as for their aggre-
gate. In agreement with a recent study based on propri-
etary data set [20], URA(·) associated with the top 100 or
so highest-ranking ASs can be characterized as a Zipf-type
law with parameter -0.9.

One caveat in measuring P2P network usage is that the
user base of different P2P systems is not uniformly dis-
tributed across residential networks [19]. Since several P2P
applications with distinct features and evolving popular-
ity coexist, relying on a single application may introduce
sampling bias in capturing residential population. Our use
of three popular file-sharing systems provides a reasonable
coverage of the current file-sharing population. Our utility
measurements can also be extended to not only cover other
emerging P2P systems as they become popular, but also to
include proprietary data such as per-AS statistics on resi-
dential subscriptions (including the amount of traffic gen-
erated by its connected residential customers), should the
latter become publicly available.



Table 4: Top-10 residential access ASs (Oct. 2004–April 2005)
ARIN RIPE APNIC

URA AS# Name AS# Name AS# Name
1 1668 AOL 3320 Deutsche Telekom 4134 China Telecom
2 7132 SBC 3352 Telefonica España 4837 China Network
3 6478 AT&T WorldNet 3215 France Telecom 3462 HiNet
4 22909 Comcast Cable 12322 Proxad 4788 TMnet
5 577 Bell Canada 5617 Polish Telecom 1221 Telstra
6 22773 Cox 3269 Telecom Italia 4804 Microplex
7 812 Rogers Cable 5089 NTL 10091 SCV
8 7843 Adelphia 2856 BTnet 4812 Chinanet
9 6327 Shaw 6739 Cableuropa 9506 Magix
10 6128 Cablevision 3209 Arcor 7545 TPG

3.3 Business Access

Our approach to infer an AS’s utility in providing busi-
ness access relies on publicly available BGP routing ta-
bles to estimate the AS’s bandwidth distribution. From a
BGP routing table, one can infer provider-customer rela-
tionship among different ASs [10], and a naive estimate
of an AS’s bandwidth distribution would be the number of
its customer ASs. However, this lump-sum measure does
not distinguish between customer ASs of different sizes.
A more meaningful measure of an AS’s bandwidth distri-
bution is the number of downstream ASs that are reach-
able from the AS, following the provider-customer rela-
tionship chains. A large transit customer AS with a high
bandwidth requirement will then be properly weighted by
its number of downstream customers. If a customer AS is
multi-homed, i.e., obtaining its Internet access from several
providers, it would typically impose lower bandwidth re-
quirements on each provider than if it were single-homed.
To infer UBA(X), the utility of AS X of providing busi-
ness access, we assume that every AS has a unit bandwidth
requirement. We then percolate each AS’s bandwidth re-
quirement up the provider-customer relationship hierarchy.
When an AS is multi-homed, its per-provider bandwidth re-
quirement gets divided by the number of its providers. We
estimate UBA(X) in terms of the bandwidth distribution of
AS X , computed as shown in Table 5.

Table 5: Computation of UBA(·)
for every AS X ,

unmark X .
UBA(X) = 0.
C(X) = # of X’s customer ASs.
P (X) = # of X’s provider ASs.

while (1)
for each unmarked X with C(X) = 0,

mark X .
for each provider Y of X ,

UBA(Y ) = UBA(Y ) + UBA(X)+1.0
P (X)

decrement C(Y ) by one.
if no AS has C(·) > 0, exit.

We then sort those ASs with UBA(·) > 0 in decreasing
order and assign them ranks, denoted RBA(·). When dif-
ferent ASs have the same UBA(·) value, we break ties by

the size of the ASs’ BGP-advertised address space. Ta-
ble 6 lists the top-10 bandwidth reseller ASs. Most of
them are associated with well-known tier-1 ISPs that op-
erate continent-wide backbone networks. Note that in the
European and Asia-Pacific regions, many top-ranking ASs
are telecom companies.

We caution that our assumption of unit bandwidth re-
quirement per AS may be too simplistic. For example,
business customers which are not assigned public AS num-
bers are ignored in the computation of the UBA(·) value. A
more precise estimate of such intra-AS business customers
could be obtained by examining intra-AS router-level con-
nectivity, which, unfortunately, is not easy to discover from
passive measurements. We rely here on an AS’s address
space size to partially account for the presence of such
“hidden” customer ASs. Having access to proprietary in-
formation on intra-AS business customers would simplify
this problem considerably.

3.4 Discussion

In the absence of readily available information about AS
business models, our proposed methodology for inferring
an AS’s business model is based on the following assump-
tions: (1) ASs’ web service utilities can be gleaned from the
usage patterns of a popular web search engine, (2) utilizing
widely adopted file sharing applications, an AS’s residen-
tial access utility can be inferred from the size of its file
sharing population, and (3) an AS’s business access utility,
as measured by its bandwidth distribution, can be estimated
by counting its downstream AS customers. A careful study
of the robustness of the proposed methodology to viola-
tions of these assumptions (e.g., a more URL-dependent
network usage, non P2P-based residential access, a more
cost-driven approach to providing business access) is nec-
essary, but is left for future work.

Our measurement method identified about 40% of all
BGP-advertised ASs as providing some form of Web host-
ing service, about 30% as providing residential access, and
about 15% as providing business access.3 The union of
all identified ASs covers about 56% of all BGP-advertised
ASs. Although close to 50% of all ASs are not categorized
by our method, these are typically small ASs generating
negligible traffic volume. For example, according to Net-



Table 6: Top-10 business access ASs (As of Sept. 2004)
ARIN RIPE APNIC

RBA AS# Name AS# Name AS# Name
1 701 UUNet 1299 TeliaNet 4637 Reach
2 1239 SprintLink 702 MCI Europe 10026 ANC
3 3356 Level3 3320 Deutsche Telekom 2516 KDDI
4 7018 AT&T WorldNet 8220 Colt 3786 Dacom
5 209 Qwest 5511 France Telecom 703 UUNet AP
6 2914 Verio 1273 C&W 4766 Korea Telecom
7 3549 Global Crossing 6762 Telecom Italia 7474 Optus
8 3561 Savvis 3292 TDC 9225 Level3 AP
9 174 Cogent 6849 UKR Telecom 2764 Connect

10 3491 Beyond The Network 5400 BT Europe 7473 SingTel

Flow statistics obtained from a regional ISP,4 the 56% iden-
tified ASs were responsible for 99% of all traffic observed
by this ISP. This suggests that our methodology works well
for the set of ASs that are responsible for the bulk of Inter-
net traffic, but is of limited use for the many small ASs that
contribute little to the overall traffic volume.

As the Internet continues to evolve, so does an AS’s busi-
ness model. However, since our proposed methodology re-
lies mainly on being able to (1) identify the most “generic”
business elements shared by existing ASs, and (2) infer
each of these business elements by relying on appropri-
ate “surrogate” measurements (or direct measurements, if
available), we argue that our approach will remain applica-
ble under changing Internet conditions (e.g., emergence of
new “killer” applications), at least as long as generic busi-
ness elements can be defined and viable surrogate measure-
ments can be identified.

4 AS Business Characterization

From Tables 3, 4, and 6, one can see that some ASs
rank very high with respect to more than one utility (e.g.,
Deutsche Telekom appears in all three), whereas other ASs
rank high in only one category (e.g., Amazon in Web host-
ing, and Comcast in residential access). To compare these
multi-variate AS utility profiles, and to associate each AS
with one of the seven profiles listed in Table 1, we in-
troduce the following quantitative metric. We first con-
vert the ranks Rweb(X), RRA(X), and RBA(X) of an AS
into their normalized counterparts, denoted by rweb(X),
rRA(X), and rBA(X), respectively. More specifically,
we set rweb(X) = Rweb(X)/max{Rweb(i), i ∈ set of
all ASs}, so that 0 ≤ rweb(X) ≤ 1.0. If Rweb(X) is
unknown, we set it to max{Rweb(i)}, reflecting our in-
tuition that X has negligible web utility, so that in this
case, rweb(X) = 1.0. Likewise for rRA(X) and rBA(X).
We then define the rank vector R(X) corresponding to AS
X as R(X) , (rweb(X), rRA(X), rBA(X)). Note that
R(X) can be interpreted as a point in the 3-dimensional
hypercube, with the seven business models listed in Ta-
ble 1 representing the extreme or corner points (i.e.,
(0, 0, 0), (0, 0, 1), (0, 1, 0), . . . , (1, 1, 0)) of this hypercube,
where 0 and 1 corresponds to “H” and “L” respectively.

Intuitively, the business model of an AS X is determined
by the minimal distance between its rank vector R(X) and
the seven corner points. For example, as the rank vector
R(X) gets closer to (1, 0, 1), the business model of AS X
is considered to be increasingly that of a residential access
provider.

In Table 7, we list the top 10 North American ASs for
each of the seven business models presented in Table 1.
The top-10 ASs in the “Tier-1” category are those whose
rank vectors are closest to the (0, 0, 0) point in the 3D hy-
percube. Likewise for the remaining six categories. We
observe that, first, ASs that are dominant in all three util-
ity categories are indeed well-known tier-1 ASs. Second,
in the “Network access” category where the primary utili-
ties of the ASs are to provide Internet access to both busi-
ness and residential customers, several of the high-ranking
ASs are telecom companies. Third, the business profile
of educational institutions falls under the “Retail service”
category, where the primary utilities of an AS are to pro-
vide both Web hosting and residential access. Networks
belonging to educational institutions usually host various
academic web sites and at the same time provide Inter-
net access to students living in university-owned housing.
Fourth, several educational and research ASs are catego-
rized under “Business access.” These ASs serve purely as
backbone networks connecting other smaller institutions’
networks.

Next, we examine the correlation between the three utili-
ties of an AS, for example, is an AS hosting a large volume
of popular web content likely to serve a large number of
residential customers as well? We use Kendall’s rank cor-
relation coefficient [12] to quantify these pairwise correla-
tions. For samples (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from
a bivariate distribution, Kendall’s (sample) τ coefficient is
defined as

∑

i

∑

i<j

(

n
2

)−1
[sign(Xj−Xi)·sign(Yj−Yi)],

where sign(x) = 1 if x > 0, and −1 if x < 0. Kendall’
τ provides a distribution-free measure of the strength of
the association between two variables (i.e., monotonicity
between two variables). The traditional Pearson product-
moment correlation coefficient is less useful if Gaussian
assumptions do not hold for the random variables at hand,
as is the case for Uweb, URA, and UBA. To visualize the re-
lationships between the three inferred utilities, we show in



Table 7: Top-10 ASs in different business categories (North American region)
Tier-1 Retail service Business service Network access

AS# Name AS# Name AS# Name AS# Name
3356 Level3 87 Indiana Univ. 14742 Internap 6383 BellSouth
7018 AT&T WorldNet 18566 Covad 297 NASA 6385 BellSouth
7132 SBC 1249 Univ. of Massachusetts 6922 Texas Backbone 13675 Verizon
209 Qwest 23504 Speakeasy 19782 Indiana Univ. 19158 USCarrier
1239 Sprint 2637 Georgia Tech. 5663 EDCnet 19752 Hydro One
3561 Savvis 14 Columbia Univ. 18695 Arbinet 22573 Northwestel
701 UUNet 25 UC Berkeley 5693 InteleNet 7776 Mebtel
852 Telus 4130 PSC 12179 N/A 25899 NOAnet
577 Bell Canada 18 Univ. of Texas 11588 El Dorado 7843 Adelphia
5650 ELI 20001 RoadRunner 4436 nLayer 10796 RoadRunner

Web hosting Residential access Business access
AS# Name AS# Name AS# Name

16509 Amazon 7757 Comcast 11537 UCAID
11643 eBay 20231 RoadRunner 6347 Savvis
14134 Navisite 13367 RoadRunner 1784 Global NAPs
8070 Microsoft 29737 WideOpenWest 6020 DCInet
7224 Amazon 27699 TSP 19151 IBIS7

11305 Interland 19115 Charter 2548 DIGEX
6432 Doubleclick 22269 Charter 3643 Sprint

26101 Yahoo 21508 Comcast 6509 Canarie
7859 Pair 11683 Earthlink 293 Energy Science Net

11443 OLM 4999 Sprint 2153 CSU
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Figure 3: Pairwise utility correlation

Table 8: Pairwise Kendall’s τ for (Uweb, URA, UBA)
Kendall’s τ ARIN RIPE APNIC All

Uweb vs. URA 0.1562 0.1540 0.1820 0.1540
Uweb vs. UBA 0.2332 0.1439 0.2032 0.1856
URA vs. UBA 0.1864 0.2088 0.2483 0.2068

Fig. 3 pairwise scatterplots for Uweb, URA, and UBA. The
graphs show that there exists non-negligible correlation be-
tween each pair of utilities.

Table 8 lists the resulting Kendall’s (sample) τ values
for pairwise correlations between Uweb, URA, and UBA.
By calculating the pairwise correlation for the three geo-
graphic regions separately, we find that in the European and
Asia-Pacific regions, the correlation between “residential
access” and “business access” is higher than the other two
pairwise correlations. As hypothesized earlier, this higher
correlation may be due to dominance of the ISP market in
these regions by incumbent telecom carriers. Since the ISP
market in the Asia-Pacific countries, in particular, is highly
regulated by the government, it is to be expected that the
entire ISP business in this region is dominated by a few
large telecom carriers. In the North American region, on
the other hand, the correlation between “residential access”
and “business access” is relatively low, reflecting a less reg-
ulated environment.

5 Inter-AS Traffic Demand Model

The proposed traffic demand model builds on our AS busi-
ness characterization by using as key input the ASs’ in-
ferred utility profiles (i.e., Uweb, URA and UBA). We show
how the new model can be used in conjunction with a given
AS graph to generate realistic inter-domain traffic demand.

5.1 Modeling Framework

For describing inter-domain traffic demands, we postulate a
general gravity model (see for example [23] and references
therein), where traffic flow from body i to body j (denoted
Xij) is assumed to satisfy

Xij ∝
Si × Tj

Fij

, (1)

where:
• Si: repulsive factor associated with “leaving” i,
• Tj : attractive factor, “approaching” j,
• Fij : friction factor from i to j.

Si, Tj , and Fij are defined appropriately for each environ-
ment under study. For example, in applying the model to



urban transportation networks, Si and Tj typically repre-
sent the populations in areas i and j, with Fij being in gen-
eral a function of the distance between the two areas. When
applying the model in the context of modeling intra-domain
traffic demand, Zhang et al. [23] take Si as the traffic vol-
ume entering at location i and Tj as the amount of traffic
exiting at location j, and assume a common friction fac-
tor Fij that does not depend on i and j [23]. They show
that this model works remarkably well and yields traffic de-
mand that is consistent with measured intra-domain traffic
volumes. To put the gravity model to good use for describ-
ing inter-domain traffic demand, we need to define Si, Tj ,
and Fij within our context so as to reflect the specifics the
Internet’s AS environment.

Repulsive, attractive factors. We assume that a ma-
jority of inter-domain traffic in today’s Internet can be at-
tributed to two kinds of interactions: (i) communication
between web servers and clients (called “web” traffic),
and (ii) communication between two clients (called “inter-
residential” traffic). Web surfing and media streaming be-
long to the first category, Email and file sharing belong to
the second category.

A typical web transaction is an asymmetric two-way
communication: client’s request for web resource, and the
corresponding response from the server. Thus, web traf-
fic from AS i to AS j can be attributed to either a server
in AS i returning web content requested by a client in AS
j, or a client in AS i sending a request for web content
served by a server in AS j. In the context of the gravity
model, we model the volume of web traffic as a function
of an AS’s client population size and web content popu-
lation size. Let PRA(X) be the client population size of
AS X and Pweb(X) the web content population size of the
AS. The volume of “web” traffic from AS i to AS j is then
quantitatively expressed as the weighted sum of two prod-
ucts: Pweb(i)·PRA(j)+κw·PRA(i)·Pweb(j). The first term
corresponds to the “response” traffic from AS i (of popu-
lation size Pweb(i)) to clients in AS j (of population size
PRA(j)). The second term corresponds to the “request”
traffic from clients in AS i for web content in AS j. The
parameter κw is the ratio of request traffic over response
traffic, usually significantly less than 1.

The symmetric inter-residential traffic from AS i to AS j
is modeled as κr · PRA(i) · PRA(j). The parameter κr is a
normalization factor that determines the relative weight of
web traffic and inter-residential traffic. Combining web and
inter-residential traffic, the total traffic volume from AS i to
AS j can be estimated as: Pweb(i) ·PRA(j)+κw ·PRA(i) ·
Pweb(j) + κrPRA(i) · PRA(j).

A key factor in specifying our traffic demand model
concerns the issue of modeling the quantities Pweb(·) and
PRA(·). However, as seen earlier in Section 4, the empiri-
cally derived quantities Uweb(·) and URA(·) are in fact esti-
mates of the population of web content and the population

of clients, respectively, and are thus natural drivers of our
gravity model. More generally, Pweb(i) and PRA(i) can be
modeled as f1(Rweb(i)) and f2(RRA(i)), where f1(·) and
f2(·) are monotonically decreasing rank-size functions; for
example, in the case where Uweb(·) follows roughly a type-
1 Pareto distribution, f1(x) = x−ω .

Friction factor. In urban transportation studies, the fric-
tion factor of the gravity model is typically a function of the
distance between two regions. In estimating intra-domain
traffic demand using the gravity model, Zhang et al. [23]
assume a common, constant friction factor. In the inter-
AS environment, such an assumption may not be realistic.
For example, an over-provisioned path between two ASs
may increase traffic flow between them, whereas an under-
provisioned path is likely to decrease traffic flow between
them.

Based on this observation, we define the friction factor
between AS i and AS j as RBA(i, j)β , where RBA(i, j) =
max{RBA(X) | X ∈ path(i, j), X 6= i, j} and path(i, j)
denotes the set of transit ASs in the path between AS i
and AS j. As defined in the previous section, RBA(X)
is the rank of AS X among all business access providers.
RBA(i, j) is thus the maximum rank of a transit AS be-
tween AS i and AS j. Assuming that an AS with higher
transit rank is more likely to maintain a well-provisioned
network, this definition of the friction factor captures the
transit quality of the bottleneck AS of a given path. By
tuning the parameter β, we can study the sensitivity of traf-
fic demand as a function of the transit network quality (a
smaller β means lower variability in transit quality).

Remarks: Note that the original gravity model postu-
lates that interactions between nodes are independent. On
the one hand, this assumption seems reasonable for model-
ing highly aggregated quantities such as inter-domain traf-
fic flows, where the latter are, in general, sufficiently ag-
gregated so that possible dependencies among finer-grained
traffic flows can be safely ignored. On the other hand, by
defining the friction factor in terms of RBA(·), we may
introduce subtle dependencies among inter-domain traffic
flows, as RBA(X) is not independent of RBA(Y ) if X is a
downstream customer of Y , or vice versa. In this sense, the
proposed “general gravity model” is not a gravity model in
the strict sense, but allows for dependencies that may be
genuine at the Internet’s AS level, where inter-dependent
traffic engineering is not uncommon.

5.2 Generation of Inter-AS Traffic Demand

Given an AS graph with N nodes and using the above grav-
ity model, we can express the traffic demand from i to j as

Xij ∼
Tw(i, j) + κr · Tr(i, j)

RBA(i, j)β
, (2)

where



• Tw(i, j) = f1(Rweb(i)) · f2(RRA(j)) + κw ·
f2(RRA(i)) · f1(Rweb(j)), and

• Tr(i, j) = f2(RRA(i)) · f2(RRA(j)).

To produce the resulting inter-domain traffic demand
matrix, we first generate for each node (AS X) in the
graph its rankings in terms of the three utilities we iden-
tified (R̂web(X), R̂RA(X), R̂BA(X)). When generating
these rank vectors, we must account for the pairwise cor-
relation between the rankings as reported in Section 4.
By definition, the ranking R̂BA(·) is determined solely by
the topology of a given graph. Given a graph, R̂BA(·)
can be computed independent of the other two rankings.
Using R̂BA(·) as an anchor, we next generate R̂web(·)
and R̂RA(·) based on a well-known method for generat-
ing multi-variate normal random numbers [18]. Our rank
generation algorithm is described in Table 9. The input pa-
rameters to our algorithm are the AS graph and a 3×3 rank
correlation matrix Στ = {τij}.

Table 9: Generation of R̂web(·), R̂RA(·), and R̂BA(·)

Input: AS graph with N nodes, Στ = {τij}
Algorithm:
// generation of R̂BA(·)
Compute UBA(·) by the method shown in Table 5.
Assign R̂BA(·) to ASs in a decreasing order of UBA(·).

// generation of R̂web(·) and R̂RA(·)
Convert Στ = {τij} into Σr = {rij},

where Σr is product moment correlation matrix
with rij = sin( π

2 · τij ) (due to Kruskal [13]).
Compute a lower-triangular matrix L,

such that Σr = L · LT .
Generate (x̂i, ŷi, ẑi) for each AS i,

where x̂i = R̂BA(i)
N

, and
ŷi and ẑi = uniform random numbers ∈ [0,1]

Obtain (xi, yi, zi)T = L· (x̂i, ŷi, ẑi)T .

Assign R̂web(·) to ASs in a decreasing order of yi.
Assign R̂RA(·) to ASs in a decreasing order of zi.
Output: (R̂web(X), R̂RA(X), R̂BA(X)) of all ASs

6 Toward Model Validations

Recall that our empirical approach to determining the in-
put data (i.e., utility profile-based AS business models) that
drives the gravity model proposed in Section 5 is based
exclusively on publicly obtainable/available data sets and
does not use any actual traffic volume measurements. Thus
a natural starting point for attempting to validate many as-
pects of our inter-domain traffic demand model is to gain
access to traffic volume-related AS-specific data sets which

are in general not publicly available. We follow this strat-
egy by relying on a week’s worth of (sampled) NetFlow
measurements from a regional ISP. The data sets were
collected from one of its access routers around the same
time when we performed our own measurement experi-
ments described in Section 3 (i.e., Oct. 2004). The cap-
tured traffic originates from or is destined to the ISP’s net-
works, and the data sets contain, among other information,
source/destination IP address prefixes of length at most 24
(due to anonymization), source/destination port numbers,
and size of each traffic flow. We use these actual traf-
fic measurements (i) to check a basic assumption under-
lying our gravity model, namely that the inter-domain traf-
fic demand is determined by “web” and “inter-residential”
traffic, (ii) to explore the adequacy of our key decision to
use “surrogate” traffic measurements (e.g., data measuring
the appearance of web content in search results, estimates
for the number of P2P file-sharing users) instead of ac-
tual traffic volume estimates, and (iii) to provide a prelim-
inary comparison between actual inter-domain traffic de-
mand and those generated by our model.

6.1 Traffic Classification

To check the assumption explicit in Equation (2) that inter-
AS traffic demand consists of the two components, “web”
traffic and “inter-residential” traffic, we classify the flows
in our NetFlow data set into “web” traffic and “inter-
residential” traffic, using an up-to-date list of well-known
port numbers. Given a traffic flow, if either source or desti-
nation port number is assigned to well-known web service
(e.g., http, nntp, streaming), the flow is marked as “web”
traffic. If either source or destination port number is asso-
ciated with a well-known P2P file sharing application, the
flow is marked as “inter-residential” traffic. However, an
increasing number of applications do not use well-known
port numbers, which makes it difficult to fully identify net-
work traffic type based on port numbers alone. To improve
upon the above naive traffic classification, for flows we
cannot identify by source/destination port pair, we exam-
ine their source and destination address prefixes to heuris-
tically infer its application type. More specifically, we ran-
domly choose two IP addresses, one from each the source
address prefix and destination address prefix, and perform
a reverse DNS lookup. If either one of them has web-
service related domain names (e.g., www* or web*), then
we mark the flow as “web” traffic. If both IP addresses
are resolved to well-known residential network domains
(e.g., reshall.umich.edu or comcast.net), we mark the flow
as “inter-residential” traffic.

Table 10 reports our traffic classification result. The re-
ported percentages are based on total volumes of traffic.
Although applying our heuristic reduces the amount of un-
known traffic by 8%, uncategorized traffic still accounts for



Table 10: Inter-AS traffic classification
Classification Web Inter-residential Unknown

Port-based 30.2% 28.8% 40.0%
Port-based + Heuristic 31.6% 36.0% 32.4%

one-third of all traffic, consistent with other available num-
bers [4]. We thus observe that with currently available traf-
fic classification methods, our model appears to capture at
least two thirds of actual inter-AS traffic. Improvements of
state-of-the-art traffic classification techniques (e.g., [11])
can be expected to show a more accurate coverage of inter-
AS traffic by our model.

6.2 Measurement Methodologies

Our methodology described in Section 3 for inferring an
AS’s utility profile and determining in turn its business
model avoids on purpose actual traffic volume-related mea-
surements. Instead, we rely on “surrogate” traffic measure-
ments such as appearances of web content in search results
or estimates of an AS’s P2P file sharing population and as-
sume that the latter are viable substitutes for the largely
inaccessible actual traffic data. To check this assumption,
we rely again on our NetFlow data sets and extract from
them three distinct traffic volume measurements for each
AS X : Tweb(X), TRA(X), and TBA(X), which corre-
spond to “web-hosting” traffic, “residential access” traffic,
and “business access” traffic, respectively. Using our clas-
sification of traffic in Section 6.1 into “web” and “inter-
residential” traffic. we compute Tweb(·) and TRA(·), as de-
scribed in Table 11.

Table 11: Computation of Tweb(·) and TRA(·)
Tweb(·) = TRA(·) = 0 for every AS.
for each traffic flow f ,

if f is web traffic,
let X = web hosting AS for f
let Y = client AS for f
Tweb(X) = Tweb(X) + size(f)
TRA(Y ) = TRA(Y ) + size(f)

else if f is inter-residential traffic,
let X = client AS 1 for f
let Y = client AS 2 for f
TRA(X) = TRA(X) + size(f)
TRA(Y ) = TRA(X) + size(f)

The “business-access” traffic TBA(X) captures the vol-
ume of traffic going through AS X . To compute TBA(X),
we use Gao’s heuristics [10] to construct an AS-level rout-
ing path for each source-destination pair. We then in-
crement TBA(·) of every transit AS between the source-
destination pair by the size of each flow.

Table 12: Pairwise Kendall’s τ for (Tweb, TRA, TBA)
Kendall’s τ ARIN RIPE APNIC All

Tweb vs. TRA 0.2490 0.1816 0.2752 0.2410
Tweb vs. TBA 0.1970 0.2467 0.2826 0.2440
TRA vs. TBA 0.1973 0.2489 0.2157 0.2371

Fig. 4 shows how well our inferred utilities (i.e., Uweb,
URA and UBA) compare to their actual traffic-derived
counterparts (i.e., Tweb, TRA and TBA). We observe that
in all three cases, ASs with high inferred utilities also have
high measured traffic volumes. In Table 12, we quantify
the pairwise correlation of Tweb, TRA, TBA, just as we did
earlier in Table 8 with the inferred utilities Uweb, URA, and
UBA. Comparing Tables 8 and 12, we note that the pair-
wise correlation values are slightly underestimated by our
methodologies, more so in the North American region than
in the other regions. Overall, while the actual values differ,
the generally low degree of pairwise correlations in Tweb,
TRA, and TBA is consistent with what we observed earlier
for the inferred utilities Uweb, URA, and UBA, which sug-
gests that our assumption of using appropriate “surrogate”
traffic measurements instead of actual traffic measurements
is not obviously unreasonable. However, there is clearly
room for significant improvements.

6.3 Traffic Demand Model

Ultimately, any inter-domain traffic demand model will be
judged by how well the results compare to actual Internet
data. In our attempt to provide such an initial compari-
son, we check whether our model, when combined with an
inferred Internet AS graph and when appropriately param-
eterized, is capable of generating realistic traffic demand,
consistent with actual demand measured in the Internet. To
this end, we use an inferred Internet AS graph consisting
of 18,221 nodes and 39,558 edges, and since our NetFlow
data sets were collected from a single vantage point on
the Internet, we compare model-generated traffic demand
of a single source node against NetFlow traffic informa-
tion, where the source node is chosen to be an AS S that
has a business model comparable to that of the AS from
which the NetFlow measurements were collected. We also
present some preliminary result concerning the sensitivity
of the generated inter-domain traffic matrix to the choice of
model parameters.

Given the Internet-like pairwise rank correlation (i.e., τij

taken from the “All” column of Table 8), we assign ranks
to each node based the method described in Section 5.2,
considering the special case where the quantities Pweb(·)
and PRA(·) are given by type-1 Pareto distributions, i.e.,
Pweb(X) = Rweb(X)−ω and PRA(X) = RRA(X)−ρ,
with ω, ρ > 0. Using this model, we then generate the
traffic demand TX that each node X maintains with our
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Figure 5: Single-source traffic demand comparison (ω = ρ = 1.0, β = 0.1, κw ∈ [0, 0.5], κr ∈ [0, 1.0])

chosen source node S (i.e., TX = TSX + TXS). At the same
time, relying on the NetFlow data sets, we also obtain the
measured traffic demand between each AS and the NetFlow
collector AS, the regional ISP from which the NetFlow data
was obtained.

Fig. 5(a) compares model-generated traffic volumes
with NetFlow-derived traffic volumes by showing volume
vs. rank distributions.5 In the case of the NetFlow-derived
volume measurements, the traffic demand starts to fall
steeply after rank 1000 or so, while the model-generated
demand does not. This deviation is likely due to a de-
ficiency of the type-1 Pareto distribution (used to model
Pweb and PRA) as suggested by Figs. 1 and 2. In Fig. 5(b),
we plot the cumulative traffic demand ratio; i.e., we ex-
amine what percentage of the total traffic demand the top-
x percent ASs are responsible for. The actual traffic de-
mand ratios of the top-ranking ASs (up to rank 30 or so)
are matched well by our model, but for the same reason as
before, the generated demand ratios start to deviate consid-
erably from their actual counterparts when we include the
lower-ranking ASs.

Finally, to compare model-generated and actual demand
in terms of outbound and inbound traffic profiles, we plot
in Fig. 6 for each node or AS X on the x-axis the volume

of traffic from X to S, and on the y-axis the volume of
traffic from S to X . Since we already know that our model
is inadequate for predicting small ASs’ traffic demand, we
focus in the figure on the large ASs (i.e., top-1000 ASs in
terms of their total traffic demand) to get an idea about how
well our model predicts the inbound/outbound traffic for
the critical large ASs. Fig. 6(a) shows the profile obtained
from using NetFlow measurements, while Fig. 6(b) de-
picts the profile resulting from our model-generated inter-
domain demand. As the traffic profile of an AS moves fur-
ther below the diagonal line, its business profile becomes
increasingly that of a web service provider. Conversely, an
AS whose traffic profile is located above the diagonal line
is a typical residential access provider. Comparing the two
profiles in Fig. 6, we see that the NetFlow-derived values
are comparable to their model-generated counterparts, with
less concentration around the diagonal, though.

To illustrate the effect of parameterization of our gravity
model (2), we consider the parameter β. which determines
how variable the transit quality of different networks is. A
high value of β means that the transit quality of the higher-
tier ASs is significantly better than that of the lower-tier
ASs, and a low value of β implies a more uniform transit
quality. In an extreme case where β = 0, the transit quality
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Figure 7: Topological distribution of traffic (ω = ρ = 1.0)

of all transit networks is considered the same. As described
in Section 5, the friction factor Fij , which is a function of
β, reflects the transit quality of the path bottleneck and is
thus a topological metric that depends on graph connectiv-
ity. To examine the effect of β in terms of its impact on the
topological distribution of traffic demand, for a given path
length l, let Sl denote the total sum of traffic exchanged
between every pair of ASs that are distance l apart. We are
interested in understanding how, depending on the param-
eter β, Sl changes with different path length l.

Fig. 7 shows the probability density functions of Sl for
different values of β. As β increases, the entire density
function is shifted to the left. Intuitively, in a high-β set-
ting, the total traffic demand is more likely to be dominated
by the demand between close-by source-destination pairs;
demand between far-away pairs becomes negligible, (long
paths are more likely to encounter a bottleneck than short
paths and will be avoided). In short, a high-β setting im-
itates an Internet environment where traffic demand tends
to be highly localized [22]. In contrast, in a low-β setting,
traffic demand tends to be less sensitive to the bottleneck
quality between source and destination, resulting in distant
source-destination pairs exchanging non-negligible amount
of traffic.

Besides the parameter β, we also examine the pairwise
rank correlation matrix Στ = {τij} and study the traffic
profiles resulting from different degrees of rank correlation.
As expected, increasing pairwise rank correlation results
in higher correlation between outbound traffic associated
with web hosting utility and inbound traffic attributed to
residential access utility. Due to space limitation, we do
not include the detailed results.

7 Conclusions

The Internet AS environment is a setting where establish-
ing “ground truth” is notoriously difficult. For example,
while it is relatively easy to infer AS maps of the Internet
from publicly available BGP-derived data, the underlying
measurements are known to provide only a very incomplete
picture of Internet connectivity at the AS-level [5]. In turn,
this creates significant challenges for accurately modeling
the Internet’s AS topology and large unresolved problems
as far as validating the resulting models is concerned.

In this paper, we are concerned with an even more elu-
sive aspect of the Internet’s AS environment, namely the
AS-level traffic matrix giving the traffic demand between
any pair of connected ASs. For one, there exists no equiva-
lent of the publicly available BGP-derived data, and this
has led researchers to pursue a mostly model-based ap-
proach. Even worse, for fear of losing competitive ad-
vantage, ASs are very reluctant to provide any AS-related
data. As a result, AS-specific traffic data is by and large
not publicly available, causing researchers to look for “sur-
rogate” measurements that are publicly available or obtain-
able (i.e., via measurement experiments that can be per-
formed by anyone connected to the Internet) and that may
shed some light on the nature of the actual inter-AS traffic
demand. As far as model validation is concerned, this sit-
uation causes nightmares, because on top of examining the
validity of a proposed model, it first requires checking that
the considered surrogate measurements are indeed suitable
and relevant as substitutes for the largely unavailable data.



By developing a flexible approach to generating inter-AS
traffic matrices, we make four specific contributions:

1. Identification of relevant surrogate measurements that
are publicly obtainable/available;

2. Derivation of AS-specific statistics from the measure-
ments in 1 that are the key inputs to a general gravity
model for inter-domain traffic demand;

3. Generation of inter-domain traffic demand from the
gravity model in 2 that are not obviously inconsistent
with actual demand;

4. Methodology for validating AS-level traffic demand
models that puts to good use the few and rare pro-
prietary data sets that some ISP have been willing to
share with the networking research community.

While many of the specific details of our approach can
be questioned and much room for improvements exist,
we have demonstrated that overall, it is not only feasible,
but also generates realistic inter-AS traffic demand with
Internet-like characteristics. The chosen parameterization
makes our model an attractive object for exploring “what-
if” scenarios; by relating it to recent successful attempts at
modeling intra-AS traffic demand, our model provides an
initial framework within which one can start exploring the
impact of intra-AS traffic engineering on inter-AS traffic
engineering and vice versa.
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Notes
1Recent years have seen accelerated migration of dialup modem users

to broadband subscription and, according to some recent statistics, DSL
subscription in the US nearly doubled in 2003 (point-topic.com).

2Since traffic on the FastTrack/KaZaA network has declined sharply
in the past few years and continues to decline, we did not include it in our
study.

3 The collected measurement data sets are available at
http://topology.eecs.umich.edu/traffic/.

4We thank Manish Karir for making the NetFlow data available to us.
5The random parameterization of κw and κr reflect AS-dependent

variations of traffic components.


