
getMobile July 2015 | Volume 19, Issue 310

[highlights]

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m

W e propose an alternative
approach for improving user-
perceived performance on

mobile devices. Our approach is based
on replication rather than partitioning.
Instead of predicting which parts of the code
should run on the mobile device and which
parts should run in the cloud, our system,
called Tango, replicates the application
and executes it on both the client and the
server. Since either the client or the server
execution may be faster during different
phases of the application, Tango allows
either replica to lead the execution and

Mark s. gordon, david ke hong, peter M. chen,
Jason flinn, scott Mahlke and Zhuoqing Morley Mao
University of Michigan, Ann Arbor

tango: Accelerating
Mobile Applications
through Flip-Flop Replication
Mobile devices have less computational power and poorer Internet
connections than other computers. Computation offload [1, 2, 3, 4],
in which some portions of an application are migrated to a server, has
been proposed as one way to remedy this deficiency. Yet, partition-
based offload is challenging because it requires applications to
accurately predict whether mobile or remote computation will be
faster, and it requires that the computation be large enough to
overcome the cost of shipping state to and from the server. Further,
offload does not currently benefit network-intensive applications.

11July 2015 | Volume 19, Issue 3 getMobile

[highlights]

are deterministic, logging and replaying a
(relatively) small amount of information
ensures replica equivalency.

Third, in contrast to traditional deter-
ministic replay, Tango shares the role of
logging nondeterministic inputs from external
sources between computers. Tango also shares
the role of externalizing outputs from the
replicated computation. For example, in the
domain of mobile computing, some input
sources are inherently tied to the mobile
device (e.g., user input), while others are best
tied to a remote server (e.g., network input,
since the remote server usually has a better
connection). Tango splits roles according to
the type of I/O. The mobile device logs user
input and sensor data, and it externalizes
screen output. The remote server logs network
input and externalizes network output.

Fourth, Tango replicates some I/O
sources to reduce the amount of non-
determinism that needs to be logged and to
improve performance. Tango replicates data
storage functionality, such as the file system
and databases. It also replicates substantial
portions of the user interface stack.

Fifth, Tango allows either replica to
log internal sources of non-determinism,
which include thread scheduling, time
queries and asynchronous event scheduling.
Unfortunately, prior uses of deterministic
replay forced one computer (the follower)
to always lag behind the other (the leader)
to log such events. This a-priori designation
limits performance in instances where the
leader replica runs slower than the follower.
Thus, Tango allows the role of leader to
float between the two replicas: a technique
we call flip-flop replication. When Tango
predicts that the follower would be the faster
replica, it flips the leader and follower roles.
The role of leader may change many times
during the execution of an application, e.g.,
due to alternation between periods of user
interaction and periods of computation
and/or network communication.

The Tango approach has many
benefits. First, Tango achieves interactive
performance that is very close to a system
that always chooses the fastest location
for execution. It does so without needing
to predict resource availability, profile
applications, or predict user behavior.
Second, Tango supports low-overhead
control transfer. In contrast to offloading,
it does not need to ship all data used in

attempts to reduce user-perceived application
latency by predicting which replica will be
faster and allowing it to lead execution and
display output, leveraging the better network
and computation resources of the server
when the application can benefit from it.

Tango targets unmodified interactive
applications that run in the Dalvik VM on
the Android platform. Tango harnesses
a trusted remote server to accelerate an
application running on a mobile Android
device. The server could be managed,
for example, by a trusted cloud service
provider and be located in a data center.
Tango splits an application into a replicated
portion and a non-replicated portion. The
entire replicated portion runs on both the
mobile computer and remote server. Tango
uses techniques inspired by deterministic
replay to keep the two replicas in sync,
and it uses flip-flop replication to allow
leadership to float between replicas. In
contrast, different components of the non-
replicated portion run on either the mobile
computer or the remote server.

approach
Tango uses five main techniques to improve
user-perceived performance. First, Tango
allows either replica to send output to the
user. This is the fundamental property that
reduces user-perceived latency, a Tango
application will ideally appear to be running
the faster replica — whichever replica that
happens to be at the moment. For example,
output from the remote server can be
displayed on the mobile screen even before
the mobile computation reaches the point in
its execution where the output is produced.

Second, Tango uses deterministic replay
to ensure the replicas perform the same
computation and (importantly) produce
the same output [5]. This guarantee is what
lets Tango safely use the output of the first
replica: the trailing replica will always
produce the same result, so it does not
matter which replica’s output is externalized.
Deterministic replay typically designates
one replica as the leader. The leader logs
all non-deterministic events (e.g., network
input, user input and thread scheduling).
The other replica is the follower — it
supplies non-deterministic results from
the log rather than re-executing such
operations. Since the vast majority of
operations performed by an application

offloaded computations because such data
is automatically produced by the remote
replica. This is particularly important
because the amount of state reachable
by offloaded computation can often be
quite large. Third, Tango can provide fault
tolerance by running multiple replicas.
Importantly, by persisting its deterministic
log within the cloud, Tango allows remote
components to safely communicate over
the network, so it hides the latency of
multiple round trips over high-latency
mobile networks. Finally, Tango can
achieve these properties without modifying
applications or profiling their executions.

eXaMple scenario
We illustrate how Tango works by
describing how it would accelerate an
example application. The scenario begins
with the user interacting intensively with
the application user interface. Events such
as button and screen presses are broadcast
to both replicas, but the client replica
receives them first because communication
with the server replica is subject to a
network round trip. Thus, the client replica
is the leader and decides when these
events are scheduled into the application
execution. The application may execute
many synchronous native methods that
query UI state; the leading client replica
receives a quick response because of its
co-location with the UI. In a standard thin

We propose an
alternative
approach for
iMproving
user-perceived
perforMance on
Mobile devices.
our approach
is based on
replication
rather than
partitioning.

GetMobile July 2015 | Volume 19, Issue 312

client solution, the server replica would lag
far behind during this stage since it would
initiate many synchronous UI requests and
each would be subject to a full round-trip
delay over a high-latency mobile network.
In Tango, however, the UI events, the
asynchronous scheduling decisions, and the
result of synchronous native methods are all
pushed to the server before the server asks
for the results. Thus, all the information the
server will need for its execution is sent in
pipeline fashion, before the server even asks
for the data, and the server replica lags only
a one-way network delay behind the client
replica at the end of this phase.

The application next enters a compute-
intensive phase of execution triggered by
the user’s input (Figure 1a). Since the server
has a faster processor than the client, the
server replica quickly catches up and Tango
switches leadership to the server. Note that
because the server replica has followed the
same execution as the client, it has the same
state as the client replica and no state needs
to be sent during the leader switch. During
the compute-intensive phase of execution,
the server replica calls UI methods that send
output directly to the client native thread.
The client displays this output even though
the local replica on the mobile computer is
lagging behind the server because it is still
working through the computation that was
just externalized by the client native thread.
This allows the user to experience the faster

responsiveness of the server replica during
this phase. After receiving the output, the
user spends some time thinking about his/
her response to this output. While the user is
thinking, the client replica catches up to the
current state of the server.

When the user interacts with the UI,
the client again becomes the leader. In the
event that the client does not have time to
catch up before the next user interaction,
the server will continue to operate as leader
until the client does catch up. During this
time Tango will be operating like a thin
client, with all user interactions being
routed through the server.

The next phase of the application involves
frequent network communication with an
external computer (Figure 1b). The network
operations are best done on the server,
since it has a lower latency connection to
the network. The server therefore assumes
leadership. The network communication
involves several rounds of synchronous
message exchanges with the external
computer. Each round involves sending a
message to the external computer, waiting
for its response, then computing the next
step in the message exchange (e.g., an SSL
handshake followed by several database
queries with data dependencies). In an
unmodified client, this phase is slow since it
involves many round trips over the high-
latency wireless network. However, the server
replica interacts with the external computer

much faster because it runs in a data center
and has an excellent Internet connection. In
a mirror image of the first phase, network
input, asynchronous scheduling decisions
from the leading server replica and responses
to network methods are all sent to the client
in pipeline fashion. Even with a slower
processor, the client remains only a one-way
network delay behind the server. Although
the client takes longer to perform the small
amount of computation in this phase, it
catches up during network communication.
The server waits for the remote computer
to respond to each message, while the
slightly-lagging client replica already has the
response in its log. Thus, either the server or
the client replica can quickly display output
at the end of this phase. This multiphase
execution may repeat indefinitely. For
example, the application may next interact
heavily with the user and so on. In each
phase, Tango allows external components
(i.e., the user and other computers) to
experience the faster responsiveness of the
replica that executes most quickly during
that phase, while the slower replica can
catch up to the faster replica during idle
periods (e.g., when the application waits for
the user and other computers). These two
phases, compute-intensive and network-
intensive, can be combined to get further
benefits from Tango.

This scenario helps identify the specific
instances in which we expect Tango to show

[highlights]

figure 1(a). Compute-Intensive figure 1(b). Network-Intensive

13July 2015 | Volume 19, Issue 3 GetMobile

[highlights]

figure 3. Energy Usage

figure 2. User-Perceived Latency

[highlights]

the most benefit. First, to benefit from use
of a remote server, the application should
include at least one computation-heavy
phase or network phase with multiple
communication round-trips. Second, for
Tango to outperform a thin-client solution,
the application should have a phase that
interacts with the user or other I/O on
the client. Finally, if the application has
compute-heavy phases, there should also
be phases with user think time or I/O
during which the client computation can
catch up with the server. We believe that
many mobile applications share these exact
characteristics, in other words they combine
user interaction with computation and/or
network communication.

evaluation
To provide support for a variety of mobile
platforms, we implemented Tango on top
of the CyanogenMod 10.1 code base. Its
implementation details are discussed in
[6]. We tested Tango on seven unmodified
applications from Google Play to evaluate
the performance benefits of Tango. Two
of these applications, Sudoku and Poker,
are compute-intensive, and the other
five, Hoot, TapTu, E-mail, Instagram and
Pinterest are network-intensive. Experiment
results demonstrated that Tango achieves
significant latency reduction with
reasonable energy and communication
overhead for both compute-intensive and
network-intensive applications.

user-perceived latencY
For each application, we configured
Tango to connect its mobile client and
replay server over USB for simulating
typical network latencies and selected a
representative latency-sensitive interaction
to measure user-perceived latency. We
recorded the time difference between the
user input that triggered the interaction and
the externalization of the final screen update
as their user-perceived latency. Figure 2
shows the relative latency of Tango against
the baseline for each application. For 100-
ms round-trip network latency, which is
the typical delay for current LTE networks,
Tango reduced user-perceived latency for
Sudoku by 0.6 seconds (50%) and Poker
by 1.9 seconds (68%). Tango also achieved
speedup of 1.3–2.6x under different network
latencies for most network-intensive

applications. Furthermore, the difference of
speedup under 100ms and 500ms network
latency indicates that the benefit of Tango
increases with network latency for network-
intensive applications and decreases for
compute-intensive applications.

energY usage
We also measured the difference in energy
usage caused by using Tango with each
application in a WiFi network. We assume
that a user will pause for a fixed think-
time after seeing each screen update
before beginning the next iteration of the
benchmark. We used a user think-time of
3 seconds for Poker and 1 second for all
other applications (in the case of Poker, this
ensures that the client catches up during the
designated user think time). Each energy
measurement includes the time to finish all
computation on both the client and server,
as well as the fixed user think-time after
displaying the result. Figure 3 shows the
relative energy usage against the baseline for
each application. Compared to the baseline,
Tango uses less energy for most, but not all,
benchmarks. n

references
[1] R. Balan, J. Flinn, M. Satyanarayanan, S.

Sinnamohideen, and H.-I. Yang. The Case for
Cyber Foraging. In the 10th ACM SIGOPS
European Workshop, Saint-Emilion, France,
September 2002.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and
A. Patti. CloneCloud: Elastic Execution between
Mobile Device and Cloud. In Proc. of the 6th ACM
European Conference on Computer Systems,
Salzburg, Austria, April 2011.

[3] E. Cuervo, A. Balasubramanian, D.ki Cho, A.
Wolman, S. Saroiu, R. Chandra, and P. Bahl.
MAUI: Making Smartphones Last Longer with
Code Offload. In Proc. of the 8th International
Conference on Mobile Systems, Applications and
Services, pages 49-62, San Francisco, CA, June 2010.

[4] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z.
M. Mao, and X. Chen. Comet: Code Offload by
Migrating Execution Transparently. In Proc. of the
10th Symposium on Operating Systems Design
and Implementation, 2012.

[5] T. C. Bressoud and F. B. Schneider. Hypervisor-
based Fault Tolerance. ACM Trans. on Computer
Systems, 14(1):80–107, February 1996.

[6] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn,
S. Mahlke and Z. M. Mao. Accelerating Mobile
Applications through Flip-Flop Replication. In
Proc. of the 13th International Conference on
Mobile Systems, Applications and Services,
pages 137-150, Florence, Italy, May 2015.

