Towards a Next-Generation Inter-domain Routing Protocol

Inter-domain Routing

BGP4 is the only inter-domain routing protocol currently in use world-wide.

- Lack of security.
- Ease of misconfiguration.
- Policy through local filtering.
- Poorly understood interaction between local policies.
- Poor convergence.
- Lack of appropriate information hiding.
- Non-determinism.
- Poor overload behaviour.
What problem does BGP attempt to solve?

- *Global interconnectivity* between Internet providers.
- *Dynamic routing* in the presence of failure.
 - An approximation to *shortest-path* routing.
 - Subject to *local policy* constraints of each ISP.

Policy, policy, and policy

- An ISP’s routing policy is a commercial secret.
 - Don’t want to tell *anyone* else what the policy is.
 - BGP does policy entirely through local filtering of the set of possible alternative routes.

- Need path information to set a useful range of policies.
 - But path information inherently reveals information about routing adjacencies.
 - Can trivially infer many (most?) simple policies from looking at the routing tables.
Local Filtering

Doing policy entirely through local filtering is the root cause of many of BGP’s problems:

- Low-level mechanism for configuring what not to accept is prone to misconfiguration.
- No semantics in the protocol as to why a route is used make it hard to discover errors or attacks.
- No information about alternative routes means BGP must to a lengthy path exploration to figure out which alternatives are feasible.
- No information about which alternatives will work for whom means BGP can’t do effective information hiding.
 - Small changes in one part of the world are frequently globally visible.

Policy Hiding

- It’s not practical to hide most customer/provider routing relationships when using BGP.
 - Customer pays provider to advertise their route to the rest of the world.
- It is practical to hide many private peering relationships.
- Perhaps 95% of the “peerings” visible in route-views and RIPE appear to function as customer/provider links.
 - Note that the flow of money and whether a peering effectively functions as a customer/provider link are not necessarily correlated or revealed by the routing protocols.
Towards a Routing Framework

- Given that:
 - Most links function as customer/provider.
 - Customer/provider links are inherently visible to the world.
 - Additional semantics visible in the routing protocol would allow more informed route calculation, and permit better information hiding.

- Then it seems logical to design a routing protocol that uses this information explicitly.

IP Address Space

- The IP address space is a mess.
 - At best, a poor relationship between topology and address prefixes.
 - Many prefixes per AS.

- Binding between address prefixes and organizations is pretty stable.
 - Routes to a prefix change much more rapidly though due to failure or reconfiguration upstream.
Towards a Routing Framework (2)

Separate dynamic routing from address prefix binding.

- Use one protocol to distribute bindings between an address prefix and an origin AS.
 - Relatively static binding.
 - Can use strong crypto and offline computation to secure this binding.
- Use another protocol to dynamically calculate paths to origin ASes.
 - Dynamic calculation, needs fast reconvergence.
 - Different security mechanisms are appropriate.

Routing Hierarchy
Routing Hierarchy

- Customer/Provider Links
- Other Peering Links

Multiple Routing Hierarchies

- There is more information available within a routing hierarchy than there is between them.
- Different routing algorithms may be appropriate.
Routing Protocol Styles

- **Link-state:**
 - Great convergence properties.
 - Scale fairly well.
 - Can’t easily hide policy information.
- **Path-vector:**
 - Poor convergence properties.
 - Scale well.
 - Can hide policy information and implement today’s routing policies.

Hybrid Link-State/Path Vector (HLP)

Diagram showing the integration of link-state and path-vector routing protocols, with autonomous systems represented at the base.
Hybrid Link-State/Path Vector (HLP)

Within C-P link-state tree:
- Good convergence.
- More information.
 - Eg. alternative route pre-computation.
 - Explicit representation of backup link for multihoming.
- Default policy is simple (reduces misconfiguration errors) and robust.
- Improved default security.
 - Need to be a tier-1 to do much damage.

Hybrid Link-State/Path Vector (HLP)

Between C-P trees:
- Use fragmented path-vector (FPV), rather than full path-vector used by BGP.
 - Number of links routed using FPV decreased drastically.
 - Reduces path-exploration space.
- Degrade gracefully from LS towards PV if ISPs need to use more non-default policies.
- Worst case looks pretty much like BGP.
Hybrid Link-State/Path Vector (HLP)

Isolation and Information Hiding.
- Lots of information with a C-P tree.
- Don’t need to convey all changes into FPV.
 - Local changes that aren’t too critical can be hidden from the wider world because it’s easy to see that similar metric alternatives exist within the C-P tree.
 - Only large-scale changes need to be pushed via FPV.
- Significantly reduce global routing table churn.

HLP Advantages
- **Scalability**: route churn is the issue.
 - Information hiding.
 - Separation of prefix distribution from routing.
- **Convergence**:
 - LS converges fast.
 - FPV converges faster than PV because there are fewer infeasible alternates.
- **Security**:
 - Structure adds security.
 - Secure prefix distribution separately from dynamic routing.
- **Robustness**:
 - Harder to misconfigure, easier to figure out what the intent behind a route is.
HLP: Summary

- Understanding policy is critical to understanding how to change routing.
 - Need broad industry participation to get this right.
- Most policy is simple, some is very complex, some is inherently public, some must be kept private.
 - BGP doesn’t distinguish.
 - HLP tries to take advantage of the common case, and the inherent limitations on what can be kept private.
- Transitioning away from BGP will be really hard.
 - Can’t happen with strong incentive, and good consensus on where we want to get to.

Criteria for Successful BGP Replacement

- Interoperate with BGP without any serious degradation in capability during transition.
- Provide incremental improvement when customers and their providers both switch outside-in deployment.
- Concepts must be familiar to ISPs.
Opportunity for Replacement?

- BGP must be seen to be failing.
 - Security problems being actively exploited?
 - Convergence problems too slow for high-value traffic (VoIP, IP-TV)?
 - Growth of multi-homing causes routing table growth/churn that is unsupportable?