
Performance and Power Modeling in a Multi-Programmed
Multi-Core Environment

Xi Chen
EECS Department

University of Michigan
Ann Arbor, MI 48105
chexi@umich.edu

Chi Xu
ECE Department

University of Minnesota
Minneapolis, MN 55455

xuchi@umn.edu
Robert P. Dick

EECS Department
University of Michigan
Ann Arbor, MI 48105

dickrp@eecs.umich.edu

Zhuoqing Morley Mao
EECS Department

University of Michigan
Ann Arbor, MI 48105

zmao@eecs.umich.edu

ABSTRACT
This paper describes a fast, automated technique for accurate
on-line estimation of the performance and power consumption
of interacting processes in a multi-programmed, multi-core en-
vironment. The proposed technique does not require modifying
hardware or applications. The performance model uses reuse dis-
tance histograms, cache access frequencies, and the relationship
between the throughput and cache miss rate of each process to
predict throughput. The system-level power model is derived
using multi-variable linear regression, accounting for cache con-
tention. Both models are validated on multiple real multi-core
systems using SPEC CPU2000 benchmarks; their performance
and power estimates are within 3.5% of measured values on av-
erage. We explain how to integrate the two models for power
estimation during process assignment, helpful for power-aware
assignment.

Categories and Subject Descriptors
C.0 [General]: Modeling of computer architecture

General Terms
Experimentation

Keywords
performance modeling, power modeling, assignment

1. INTRODUCTION AND MOTIVATION
Performance and power modeling in a multi-programmed

single-core environment is challenging due to issues such
as time sharing among processes. The on-going move to
chip multiprocessors (CMPs) permits sharing the last-level
cache among cores on the same die but this aggravates the

This work was supported in part by NSF under awards CCF-
0702761 and CNS-0347941 and in part by SRC under award
2007-HJ-1593.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2010, June 13-18, 2010, Anaheim, California, USA.
Copyright 2010 ACM ACM 978-1-4503-0002-5 ...$10.00.

cache contention problem: processes running simultaneously
on cache-sharing cores contend for the limited space in the
last-level cache, impacting performance and power consump-
tion, which further complicates the modeling problem. Ac-
curately modeling the performance and power consumption
in a multi-programmed multi-core environment is necessary
for design-time architectural optimization and run-time dy-
namic resource management [3, 7].

Performance and power modeling in a multi-programmed
multi-core environment presents several challenges: (1) the
models should be easy to construct without modifications
to existing software or hardware. Exhaustive off-line sim-
ulation of all process combinations is computationally in-
tractable and thus should be avoided; (2) the models should
handle time sharing among processes on the same core and
resource contention among processes on cache-sharing cores;
and (3) to be useful in on-line process assignment, the mod-
els must estimate power and throughput before processes
are assigned. To the best of our knowledge, no existing
performance and/or power models satisfy the requirements
mentioned above.

This paper makes the following contributions: (1) we pro-
pose a modeling framework that generates fast, accurate,
on-line estimates of performance and power consumption for
any process-to-core mapping during runtime; (2) the system-
level power model can handle time sharing among processes
on the same core and cache contention among processes on
cache-sharing cores; (3) this is the first work to estimate the
processor power for any tentative assignment without run-
time information by integrating the performance model and
the power model; and (4) our models are general enough
to accommodate heterogeneous tasks and processors. Both
models have been validated on different machines with dif-
ferent architectures and nominal power consumptions. Note
that although constructing a performance model requires
profiling each process of interest, this does not limit the
generality of our approach because profiling can be done
on-line. When a new application makes up a significant per-
centage of the workload, we force it to run alone on an idle
machine and record profiling information. Therefore, the
approach can be used (in different ways) for both embedded
and general-purpose computing systems.

2. RELATED WORK
This paper builds upon previous work on performance and

power modeling.
Researchers considered addressing the performance pre-

diction problem with the assistance of offline simulation [1]
or modifications to the existing system [9]. However, these
techniques are either time-consuming or require substantial
changes to the hardware or operating system. Other re-
searchers address the performance prediction problem ana-
lytically. Chandra et al. proposed three analytical models
based on the L2 reuse distance or circular sequence profile
of each thread to predict inter-thread cache contention on a
CMP system, assuming no data dependencies exist among
threads [4]. Their work is the closest to ours. However,
their models require a priori knowledge of the L2 cache ac-
cess frequency of a process in the steady state when run-
ning concurrently with other processes. We can think of no
practical way to obtain this information without running or
simulating all potential combinations of concurrent cache-
sharing processes. Our work builds upon the performance
modeling technique proposed by Xu et al. [11], which uses
processor performance counter data to predict the impact
of cache contention on cache partitioning and performance.
However, this prior work was designed for performance pre-
diction and did not consider power modeling and estimation.

Researchers have also developed simulation-based power
models [3]. However, such models impose significant perfor-
mance overhead and are therefore inappropriate to use dur-
ing runtime. Other researchers have proposed performance-
counter-based power models for on-line power estimation [6,
7]. However, such models only estimate the power con-
sumption of a single application; it is not straightforward to
extend them for power estimation in a multi-programmed,
multi-core environment. Singh et al. proposed a perfor-
mance counter based power model in a multi-programmed
CMP environment [8]. This work is related to ours. How-
ever, their power model construction process is ad hoc and
requires the user manually tune the model parameters and
fitting functions. In addition, their power model cannot han-
dle time sharing among processes on the same core. In con-
trast, the model building process for our power model can
be fully automated. As demonstrated in Section 6, it can
handle time sharing among processes and applies to CMP
systems with different architectures without any changes to
the model construction process.

3. PERFORMANCE MODELING
In this section, we first formulate the performance mod-

eling problem. We then give details on how to derive the
non-linear equilibrium equations for effective cache size pre-
diction. Finally, we describe the automated profiling process
for performance prediction.

3.1 Problem Formulation and Assumptions
The problem of performance prediction in the presence

of cache contention can be formulated as follows: given k
processes assigned to cores sharing the same A-way set-
associative last-level cache, predict the steady-state cache
size occupied by each process during concurrent execution.
Solving this problem is helpful for process assignment and
migration in a CMP environment. However, accurate pre-
diction of process performance is challenging due to the ex-
ponential number of possible process-to-core mappings.

In this paper, we consider a k-core processor with an
L2 cache being the last-level on-chip cache. In the rest
of paper, we refer to L2 cache simply as “cache” whenever
this does not introduce ambiguity. We assume no hardware
prefetching. Hardware prefetching complicates the model by
predictively fetching cache lines based on access patterns.
The model might therefore be inaccurate for systems using
prefetching. However, we argue that prefetching is of limited
value on CMPs with constrained processor–memory band-
width. We evaluated 10 SPEC CPU2000 benchmarks to de-
termine the performance impact of hardware prefeteching.

Our experimental results indicate the average performance
improvement was 3.25%, and only equake benefitted signif-
icantly. We also make the following assumptions: (1) the
cache uses an LRU replacement policy and (2) processes are
single-phased. In the case of multiple non-repeating phases
with distinct memory access patterns, non-repeating phases
should be modeled separately. Although these two assump-
tions simplify model design and explanation, we will later
experimentally evaluate the proposed models when many of
the assumptions are violated.

When multiple processes share a cache, contention may
occur. We define the number of ways occupied by process i
in a set, denoted as Si, as the effective cache size associated
with process i. Therefore,

kX
i=1

Si = A, (1)

where k is the total number of processes sharing the cache.
We define the reuse distance, Ri, of cache line i as the

number of distinct cache lines within the same set accessed
between two consecutive accesses to line i. A reuse distance
histogram represents the distribution of cache line reuse dis-
tances for an entire shared cache. For process i with an
effective cache size of S, all accesses to the cache lines with
a reuse distance larger than S result in cache misses. Hence,
the probability of a cache access resulting in a miss for a
process with an effective cache size of Si, i.e., the misses per
access (MPA), can be expressed as follows.

MPAi(Si) =

Z ∞
Si

histi(x) dx. (2)

We also experimentally determined that SPI, number of
seconds per instruction, can be expressed as a linear function
of MPA,

SPI = α ·MPA + β, (3)

where α and β are parameters that can be obtained during
offline characterization. This observation is re-affirmed by
Choi et al. [5].

3.2 Estimating Effective Size After n Accesses
In this section, we use the reuse distance histogram of a

process to derive its effective cache size. To simplify ex-
planation, we will for the moment assume that the cache is
initially empty. This assumption will later be relaxed. Given
that Pi,n is the probability of having an effective cache size of
i after n consecutive cache accesses, the following recursive
equation can be derived:

Pi,n = Pi,n−1·(1−MPA(i))+Pi−1,n−1·MPA(i−1), 1 < i ≤ n.
(4)

This can be explained as follows. The fact that n cache
accesses result in an effective cache size of i can only be
the result of the following two scenarios: (1) the first n− 1
cache accesses lead to an effective cache size of i and the
nth access results in a cache hit. The probability of this
scenario, P (A), is thus Pi,n−1 · (1 −MPA(i)); (2) the first
n − 1 cache accesses lead to an effective cache size of i − 1
and the nth access causes a cache miss. The probability of
this scenario, P (B), is thus Pi−1,n−1 · MPA(i − 1). Since
Pi,n = P (A) + P (B), we can derive Equation 4. Note that
P1,1 = 1 because the first cache access will always occupy
a cache line. Assuming the process reaches its steady state
after n accesses, let G(n) be process k’s effective cache size,
we have

G(n) =

nX
i=1

(Pi,n × i) (5)

3.3 Equilibrium Condition
Given a cache with an LRU-like replacement policy, it is

reasonable to assume that at time t, we can always find a
duration T such that data accessed before time t − T have
been evicted and data accessed during [t−T , t] are preserved
in the cache. Since none of these accesses will evict any
data lines accessed during [t − T , t], it is as if the data
were written to an empty cache with no cache misses during
[t− T , t], which indicates Equation 4 and Equation 5 hold.
Hence, the effective cache size of process i, denoted as Si,
can be written as Gi(APSi · T). Conversely, APSi can be
expressed as G−1

i (Si)/T . From Equation 3, we can derive
an expression for APSi:

APSi = G−1
i (Si)/T = APIi/(αiMPAi(Si) + βi). (6)

Note that Equation 6 holds for any process i, where i =
1, 2, · · · , k, given that k is the total number of processes.
Therefore, we have

G−1
1 (S1)

G−1
i (Si)

− API1 · (αiMPAi(Si) + βi)

APIi · (α1MPA1(S1) + β1)
= 0, ∀k

i=1 (7)

whereG−1(Si) and MPA(Si) are application-dependent non-
linear functions of Si. Combined with Equation 1, we have
k equations that are independent of each other. Newton–
Raphson iteration can therefore be used to solve for each
Si, 1 ≤ i ≤ k.

3.4 Automated Performance Profiling
In this section, we describe a fast approach to extract

reuse distance histograms of processes using hardware per-
formance counters (HPCs). To obtain the reuse histogram
information of each process, we assign the process concur-
rently with a carefully designed benchmark with configurable
cache contention characteristics, which we will refer to as a
stressmark. Based on the information collected from HPCs
and Equation 7, we can calculate the reuse distance his-
togram.

Consider a process (denoted as B) and the stressmark run-
ning on two cores sharing an A-way last-level cache. We
assume if the stressmark occupies i ways in a cache set,
the concurrently running process, B, will occupy A− i ways.
We then obtain the reuse distance histogram of B as follows.
Run the stressmark along with B multiple times. In the ith
run, tune the parameters in the stressmark to change its ef-
fective cache size, denoted as Sstress,i. Record B’s MPA in
each run, denoted as MPAB,i, where i = 1, 2, · · · , A. Given
that SB,i is process B’s effective cache size in the ith run,
considering the ith and the (i+ 1)st runs, Equation 2 indi-
cates

MPAB,j =

Z ∞
SB,j

histB(x)dx, j = i, i+ 1.

Hence, we can estimate the probability of process B having
an effective cache size of SB,i as

histB (SB,i) ≈MPAB,i+1 −MPAB,i. (8)

By varying SB,i from 1 to A, we can estimate the probability
at each effective cache size, thus allowing us to construct
the reuse distance histogram. In reality, we tune Sstress,i to
control SB,i.

Process characterization can be automated as follows. We
first run the stressmark along with the process A times, vary-
ing the effective cache size. After A runs, API is recorded,
α and β in Equation 3 can be estimated using linear re-
gression, and the reuse distance histogram can be estimated
using Equation 8. These four parameters form the feature
vector of a process. Given the feature vectors of several pro-
cesses, we can predict the effective cache size of each process

when they run on cores sharing the same (last-level) cache,
which in turn can be translated to SPIs through Equation 2
and Equation 3. Hence, given k processes to be assigned
to k cores, we only need to obtain k feature vectors (O (k)
complexity) to predict the performance of any subset of the
k processes for assignment (2k − 1 combinations).

4. POWER MODELING
In this section, we first formulate the power modeling

problem. We then explain the model construction process.
Finally, we describe how we handle time sharing among pro-
cesses sharing cores and cache contention among processes
running on multiple cores.

4.1 Problem Formulation
The power modeling problem in a multi-programmed multi-

core environment can be formulated as follows: given k pro-
cesses running on N cores with some of the cores having
multiple processes and some of them being idle, estimate
the core and processor power consumption during concur-
rent execution.

It is natural to decompose core power consumption into
idle power consumption and the active power consumptions
of individual architectural blocks. Given that there are M
components in a system, the total power consumption is P =
Pidle +

PM
i=1 Pi, in which Pidle is the idle power consumption

when no process is actively using the core and Pi is the
power consumption of component i. In order to make online
estimates of Pi, we again use HPCs: by carefully choosing
the HPC-detected hardware events monitored, we can map
an event rate, i.e., number of events per second, to the power
consumption of the corresponding architectural block. We
first choose the HPC event rates that are most correlated
to core power consumption. We omit the details here due
to space limitations. The top 5 event rates with the highest
correlation coefficients are L1RPS, L2RPS, L2MPS, BRPS,
and FPPS, which represent the number of L1 data cache
references per second, number of L2 cache references per
second, number of L2 cache misses per second, number of
floating point instructions retired per second, and number
of branch instructions retired per second, respectively.

It remains unclear how to map the event rates to the cor-
responding component power: the power consumption of a
component may be nonlinearly dependent on the event rate
associated with it. We first wrote a micro-benchmark with 6
phases, each of which lasts 80 s. In the first phase, the core
idle power is recorded, whereas one of the aforementioned
5 architectural blocks are explicitly accessed in each of the
following 5 phases. Note that the access frequency is the
highest at the start of a phase and reduced to a lower level
every 10 s, i.e., there are 8 different access frequencies for one
component in one phase. We then use 8 SPEC CPU2000
benchmarks (see Section 6) and the micro-benchmark for
model construction. Given an N -core processor, we run N
instances of one benchmark on N cores (one instance per
core) and gather the HPC values along with the processor
power throughout the execution, assuming each core has the
same power and HPC values. We then evaluate the modeling
results based on two different algorithms, the multi-variable
linear regression (MVLR) algorithm and a three-layer sig-
moid activation function neural network (NN). Experimen-
tal results indicate that the MVLR-based model achieves
an accuracy of 96.2% while the NN-based model reaches an
accuracy of 96.8%. Given an accuracy comparable to NN-
based model and the simplicity in model construction and
evaluation, MVLR-based model is chosen. Hence, the core
power Pcore can be expressed as

Pcore = Pidle + c1 · L1RPS + c2 · L2RPS + c3 · L2MPS +

c4 · BRPS + c5 · FPPS, (9)

where Pidle and c1 through c5 are coefficients determined
from MVLR.

4.2 Handling Context Switching and Cache
Contention

The proposed power model can accurately estimate the
core power consumption when a single process is running.
However, there are usually multiple processes running on the
same core in a multi-programmed environment, limiting the
usability of the power model. We define process power con-
sumption as the core power consumption when this process
is running. Since we assume there are no data dependencies
among processes, the major interactions among processes
on the same core are contention for resources such as cache.
We experimentally determined the average amount of time
required to fill the cache after a context switch is only 1%
of the timeslice length given a 20 ms timeslice, which indi-
cates the impact of context switches on performance and
power is negligible. Therefore, the core power consumption
is the linear weighted sum of all process power consumptions
with the timeslice length of each process being its weight.
In reality, we make the simplifying assumption that every
process has the same weight. Hence, assuming there are k
processes running on the single core with process i’s power
consumption being Pi, the core power consumption is simply
Pcore = 1

k

Pk
i=1 Pi.

We now define the processor power consumption as the
sum of all core power consumptions in a multi-core multi-
programmed environment, in which cache contention prob-
lem becomes more severe. On one hand, increased cache con-
tention leads to lower processor power consumption because
c3 is negative in Equation 9. On the other hand, increased
resource utilization implies higher processor power consump-
tion. The amount of increase in processor power consump-
tion depends on the balance between the two factors. This
is consistent with our experimental results (see Section 6).
Therefore, the proposed power model can handle the multi-
core environment without any modifications. If there is more
than one process per core, given core 1 through core N share
the last-level cache and Si is the set of processes running on
core i, the average power consumption of these cores Pcore-set

can be calculated as

Pcore-set =

P
p1∈S1

· · ·
P

pN∈SN
P (p1, p2, · · · , pn)QN

i=1 |Si|
, (10)

where P (p1, p2, · · · , pn) is the sum of power consumptions
of core 1 through core N when processes p1, p2, · · · , pn run
simultaneously.

5. COMBINING PERFORMANCE AND
POWER MODELS

In this section we describe how to combine the proposed
performance and power models for use in optimization. One
such application is power-aware assignment. More specif-
ically, if we can accurately estimate the processor power
consumption for each tentative assignment decision, we can
choose the one that optimizes power or energy usage. How-
ever, such power estimation is usually impossible because
the HPC values needed for power estimation are unknown
until the processes are assigned. Nonetheless, by integrat-
ing the performance model and the power model, we are
able to estimate the process power consumption for each
assignment, as explained below.

Given the power model in Equation 9, we can decompose

Incoming task K,

Target core C

Core C

idle?

PSc idle?

No

Yes

No

PSc idle?
Compute the weighted average

of core C’s current power and

P_{k,alone}, update core C’s

power

Compute the average power of
process combinations including

K as P_{in}, use P_{in} to update

core C and PSc’s power

No

Yes

Yes

Performance

model and

power model

Process
profiles

Compute the average power of

process combinations including

K as P_{in}, use P_{in} to
update core C and PSc’s power

Set core C’s power to

P_{k,alone}

Figure 1: Algorithm for power estimation for pro-
cess assignment.

the process power Pprocess into two parts:

P1 = Pidle + (c1 · L1RPI + c2 · L2RPI +

c4 · BRPI + c5 · FPPI)/SPI,

P2 = c3 · L2MPS = c3 · L2MPR · L2RPI/SPI, and

Pprocess = P1 + P2.

Here, Pidle is the power consumption of an idle core, L1RPI
represents the number of L1 data cache accesses per instruc-
tion, L2RPI represents the number of L2 cache references per
instruction, BRPI represents the number of branches per
instruction, FPPI represents the number of floating point
instructions retired per instruction, and L2MPR represents
the number of L2 cache misses per L2 cache reference. We
define a instruction-related event rate as the number of events
per instruction. L1RPI, L2RPI, BRPI, and FPPI in P1

are process properties: given the same input data, these
instruction-related event rates are fixed and not affected by
the execution of other processes. Therefore, the impact of
cache contention is only reflected in the change of SPI. How-
ever, P2 is not only influenced by SPI but also L2MPR. For-
tunately, both SPI and L2MPR can be determined by the
performance model given enough profiling information, as
explained in Section 3. Hence, if we record the instruction-
related event rates during profiling for each process and use
performance model in Section 3 to predict SPI and L2MPR
whenever cache contention exists, we can estimate P1, P2,
and thus the process power.

We first assume the performance and power model are
built as described in Section 3 and Section 4. We also assume
for each process i, the profiling vector PFi, i.e., (Pi,alone,
L1RPIi, L2RPIi, BRPIi, FPPIi) is recorded during profil-
ing. Note that Pi,alone represents process i’s average power
consumption when it runs alone with no other active pro-
cesses. Figure 1 illustrates how to combine the performance
model, power model, and process profiles for power estima-
tion during assignment. Suppose we want to evaluate the
resulting power consumption by assigning process K to core
C. We denote the set of cores that share the last-level cache
with core C as core C’s partner set PSC . Depending on
the states of core C and PSC , there are four different out-
comes: (1) both C and PSC are idle, (2) C is busy and PSC

is idle, (3) C is idle and PSC is busy, and (4) both C and
PSC are busy. We only analyze scenario (1) and scenario
(4) since scenarios (2) and (3) are special cases of scenario
(4). In scenario (1), we set core C’s power consumption to
PK,alone, fetched from profiling vector PFK . The processor
power consumption is also increased by PK,alone. In sce-
nario (4), we assume there are N cores in PSC numbered
from 1 to N , among which core 1 through core m have pro-
cesses running on them and core m+ 1 through core N are
idle. For convenience, we use Si to represent the set of pro-
cesses running on core i. We define a process combination
as an ordered tuple (PCC , PC1, PC2, · · · , PCm) where
PCC ∈ SC , PC1 ∈ S1, · · · , PCm ∈ Sm, indicating processes
PCC , PC1, PC2, · · · , PCm run simultaneously on core C

Table 1: Performance Model Validation
Benchmark gzip vpr mcf bzip2 twolf art equake ammp Avg.

MPA
E (%) 0.16 2.54 1.33 2.97 1.91 1.33 0.42 3.48 1.76

>5% (%) 0 0 0 25 0 0 0 12.5 4.69

SPI
E (%) 0.58 5.58 2.15 2.06 4.54 5.51 1.89 3.80 3.38

>5% (%) 0 50 0 0 37.5 50 12.5 25 21.9

and its partners core 1 through core m. For the set of pro-
cess combinations that do not include process K, denoted
as Sex, the average power consumption, denoted by Pex, is
the sum of current power consumptions of core C and cores
in PSC . On the other hand, if we use Sin to represent the
set of process combinations that include process K, for each
item I in Sin, we use the performance model to predict the
SPI and L2MPS for each process that belongs to I, which are
then fed into the power model to calculate the corresponding
power consumption for the process combination I. We use
Pin to denote the average power consumptions for all com-
binations in Sin. Hence, the processor power consumption
Pprocessor can be written as

Pprocessor = (N −m) · Pidle +
Pex · |Sex|+ Pin · |Sin|

|Sex|+ |Sin|
+ Prest,

(11)
where Prest is the current power consumption of cores that
do not share cache with core C. Therefore, by profiling each
process individually, we are able to estimate the processor
power consumption for any process-to-core mapping, reduc-
ing the exponential time complexity for a simulation based
approach to linear time complexity.

6. EXPERIMENTAL RESULTS
In this section, we first describe the experimental setup for

model validation. We then present the validation results for
the performance model, the power model, and the combined
model.

6.1 Experimental Setup
We use PAPI 3.6.2 [2] to sample the HPCs. The sampling

period is 30 ms. Our testsuite includes 8 SPEC CPU2000
benchmarks that compiled on the test system using gcc 4.1.
This set contains both memory-intensive and CPU-intensive
benchmarks. We record the program phase information for
each benchmark during profiling. Experimental results indi-
cate all but two benchmarks have only one significant phase,
as defined by our parameters of interest. The longest phases
in art and mcf were used (refer to Tam et al. [10] for details).

To determine power consumption, we use a Fluke i30
current clamp on one of the 12 V processor power supply
lines, the output of which is sampled by an NI USB6210
data acquisition card. An on-chip voltage regulator con-
verts this voltage to the actual processor operating voltage.
We assume a fixed regulator efficiency of 90%. Therefore,
P = 0.9V ·I = 10.8 ·I, where P is the processor power and I
is the measured current. The data acquisition card samples
at a frequency of 10 kHz in our experiments.

6.2 Performance Model Validation
We first validate the performance model on an Intel Core2

Quad core Q6600 processor with two dies (and two cores
per die) and 8 MB 16-way set-associative L2 cache in total,
which runs Linux 2.6.28 (denoted as “4-core server”). As ex-
plained in Section 3.4, we first obtained the feature vectors
of all 8 benchmarks using the stressmark. The performance
model then takes the feature vector of each process for per-
formance prediction. We measured all 36 possible pairwise
combinations of 8 benchmarks: each benchmark is paired
with every other benchmark (including another instance of

 40

 45

 50

 55

 60

 65

 70

 0 5 10 15 20 25 30 35 40 45

P
o
w

e
r

(W
)

Time (s)

Max_estimation
Max_measurement

Min_estimation
Min_measurement

Figure 2: Power model validation on 4-core server.

Table 2: Power Model Validation on a 2-Core Work-
station

Scenarios
Number of Avg./max. error for Avg./max. error

assignments power samples (%) for avg. power (%)

1 proc./core 36 5.32 / 14.12 3.63 / 13.83

2 proc./core 24 6.65 / 8.84 2.47 / 4.05

itself) and assigned to two cache-sharing cores. The mea-
sured performance data are then compared to those pre-
dicted by our performance model.

Table 1 presents the average prediction error in MPA and
SPI for each benchmark when it runs simultaneously with
each of the 8 benchmarks. Row 2 shows the average abso-
lute estimation error in MPA based on our model. Row 4
indicates the average relative estimation error in SPI. Row 3
and 5 present the percentage of test cases with an estimation
error larger than 5% among all 8 test cases for each bench-
mark. The last column corresponds to the average result of
all 8 benchmarks, i.e., 36 testcases. As indicated in Table 1,
our technique has an average of 3.38% SPI estimation error
across all 8 benchmarks with only 21.9% of the cases hav-
ing an estimation error greater than 5%. The performance
model is also validated on another Intel Core 2 Duo P6800
processor with two cores and 3 MB 12-way associative L2
cache using 55 combinations of 10 SPEC benchmarks. The
average SPI estimation error is 1.57%.

6.3 Power Model Validation
We validated our power models on (1) a Pentium Dual

Core E2220 processor with 1 MB L2 cache, which runs Linux
2.6.25 and (2) a 4-core server. For each machine, we first
build the power model using 8 SPEC CPU2000 benchmarks
and the customized micro-benchmark as explained in Sec-
tion 4.1. We then validate the power model by assigning a
combination of several SPEC CPU2000 benchmarks to some
or all of the cores and compare the real power consumption
with the power estimations using HPC values gathered dur-
ing runtime. Note that we only analyze the duration in
which all processes assigned are running concurrently.

Figure 2 illustrates the sample-based power model valida-
tion on the 4-core server for the assignments with the maxi-
mum and the minimum average power among all test cases.

Table 3: Power Model Validation on a 4-Core Server

Scenarios
Number of Avg./max. error for Avg./max. error

assignments power samples (%) for avg. power (%)

1 proc./core 24 4.09 / 8.52 3.26 / 7.71

2 proc./core 3 5.51 / 6.25 4.47 / 5.95
4 proc. with

10 3.39 / 4.73 2.54 / 4.14
unused cores

Table 4: Validating the Combined Model on a 4-
Core Server

Scenarios
Number of Avg./max. error

assignments for avg. power (%)

1 proc./core 32 2.84 / 5.78

2 proc./core 10 1.92 / 6.29

4 proc., 1 core unused 16 2.68 / 5.48

4 proc., 2 core unused 16 2.53 / 5.99

4 proc., 3 core unused 9 0.49 / 1.95

The X axis is time and the Y axis is the power consumption.
The solid lines represent power estimations, while the dotted
lines represent measured values. They generally overlap, in-
dicating good estimation accuracy. The average estimation
errors are 2.46% and 2.51% for the maximum-power scenario
and the minimum-power scenario, respectively.

Table 2 and Table 3 show the validation results for the
power model on the 2-core workstation and 4-core server,
respectively. Column 1 shows the testing scenario, e.g., “1
proc./core” refers to assignment schemes in which all cores
are used with one SPEC program per core. Column 2 rep-
resents the number of different assignments evaluated given
the testing scenario indicated in Column 1. Note that the
processes in each assignment are chosen randomly in order
to test the model on a wide range of scenarios. Column
3 presents the average and maximum error resulting from
comparing the estimated processor power with the mea-
sured power for all power estimation samples. Column 4
presents the average and maximum error resulting from com-
paring the estimated average power with the measured av-
erage power.

On the 2-core workstation, we tested 36 different assign-
ments with 1 process per core and 24 assignments with 2
processes per core. For a sample-based comparison, the av-
erage error for both scenarios are 5.32% and 6.65%, with
maximum errors of 14.12% and 8.84%. For an average-
power–based comparison, the average error for both scenar-
ios are 3.63% and 2.47%, with maximum errors of 13.83%
and 4.05%.

On the 4-core server, we tested 24 different assignments
with 1 process per core, 3 assignments with 2 processes per
core, and 10 assignments with 1 or 2 cores unused. For a
sample-based comparison, the average error for the three
scenarios are 4.09%, 5.51%, and 3.39%, with maximum er-
rors of 8.52%, 6.25%, and 4.73%. For an average power
comparison, the average errors for the three scenarios are
3.26%, 4.47%, and 2.54%, with maximum errors of 7.71%,
5.95%, and 4.14%. Therefore, we conclude the proposed
power model is accurate and is sufficiently general to be
used for different architectures, although the limited num-
ber of architectures considered is not sufficient to determine
the were the limits on generality are located.

6.4 Combined Model Validation
We validated the combined performance and power model

for average power estimation during assignment on the 4-
core server. We first built the performance model and the
power model as explained in Section 3 and Section 4. We
then estimated the power consumption of an assignment fol-
lowing the algorithm in Figure 1. Note that only profiling
information are used for estimation. The estimated average
power is then compared to the measured average power to
determine the accuracy of the combined model.

We tested 32 assignments with 1 process assigned to each
core, 10 assignments with 2 processes assigned to each core,
16 assignments with 4 processes assigned to 3 cores, 16 as-
signments with 4 processes assigned to 2 cores, and 9 as-
signments with 4 processes assigned to a single core. The
average errors for the 5 scenarios were 2.84%, 1.92%, 2.68%,

2.53%, and 0.49%, while the maximum errors were 5.78%,
6.29%, 5.48%, 5.99%, and 1.95%. We thus conclude that
the combined model is effective in estimating the processor
power consumption during assignment.

7. CONCLUSIONS
Accurately modeling the performance and power consump-

tion in a multi-programmed multi-core environment is chal-
lenging but essential for optimizing process assignment and
migration. This paper describes an on-line performance and
power modeling framework that rapidly and accurately es-
timates the power consumption and performance implica-
tions of particular process-to-core mappings. This process
requires no changes to existing operating system or hard-
ware. The individual models and the combined model have
been validated on multiple CMP machines with distinct ar-
chitectures and nominal power consumptions. We conclude
that the proposed framework is effective for performance
and power estimation during both process assignment and
execution.

8. REFERENCES
[1] Dinero IV trace-driven uniprocessor cache simulator.

http://www.cs.wisc.edu/˜markhill/DineroIV.
[2] PAPI 3.6.2. http://icl.cs.utk.edu/papi/.
[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A

framework for architectural-level power analysis and
optimizations. In Proc. Int. Symp. Computer
Architecture, pages 83–94, June 2000.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin.
Predicting inter-thread cache contention on a chip
multi-processor architecture. In Proc. Int. Symp.
High-Performance Computer Architecture, pages
340–351, Feb. 2005.

[5] K. Choi, R. Soma, and M. Pedram. Fine-grained
dynamic voltage and frequency scaling for precise
energy and performance tradeoff based on the ratio of
off-chip access to on-chip computation times. In IEEE
Trans. Computer-Aided Design of Integrated Circuits
and Systems, pages 18–28, Dec. 2004.

[6] G. Contreras and M. Martonosi. Power prediction for
Intel XScale processors using performance monitoring
unit events. In Proc. Int. Symp. Low Power
Electronics & Design, pages 221–226, Aug. 2005.

[7] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and
M. Martonosi. An analysis of efficient multi-core
global power management policies: Maximizing
performance for a given power budget. In Proc. Int.
Symp. Microarchitecture, pages 78–88, Dec. 2006.

[8] K. Singh, M. Bhadhauria, and S. McKee. Real time
power estimation and thread scheduling via
performance counters. ACM SIGARCH Computer
Architecture News, pages 46–55, May 2008.

[9] G. E. Suh, S. Devadas, and L. Rudolph. A new
memory monitoring scheme for memory-aware
scheduling and partitioning. In Proc. Int. Symp.
High-Performance Computer Architecture, pages
117–128, Feb. 2002.

[10] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: Approximating L2 miss rate curves on
commodity systems for online optimizations. In Proc.
Int. Conf. Architectural Support for Programming
Languages and Operating Systems, pages 121–132,
Mar. 2009.

[11] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao. Cache
contention and application performance prediction for
multi-core systems. In Proc. Int. Conf. Performance
Analysis of Systems and Software, Mar. 2010. To
appear.

