
Toward Automated Network Management and

Operations

by

Xu Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2010

Doctoral Committee :
Associate Professor Zhuoqing Mao, Chair
Associate Professor Robert Dick
Associate Professor Jason Nelson Flinn
Associate Professor Scott Mahlke
Assistant Research Scientist Michael Donald Bailey
Technical Staff Jacobus Van der Merwe, AT&T Labs

c© Xu Chen 2010
All Rights Reserved

To my family.

ii

ACKNOWLEDGEMENTS

First and foremost, I’d like to thank my advisor Professor Morley Mao. I cannot

ask for a better advisor. Her insightful comments and the ability to connect the dots

(and memorizing all the dots in the first place) never cease to amaze and educate me.

Being the unanimous all-time winner of the fierce competition on “who leaves the

CSE building the latest every day”, she is the hardest-working person that I know.

She devotes so much of her time and energy to her students, and always holds our

best interest in mind. Morley has been my role model and always will be.

Internships are very essential pieces of my PhD. I’d like to sincerely thank Dr. Ja-

cobus Van der Merwe for his wise and sincere suggestions, and his enthusiastic attitude

towards building real systems. He picked me up when I was an inexperienced second-

year grad student, and never complained about my silliness throughout the years.

The collaboration with him led to most of the work in this thesis. I am forever grate-

ful for his guidance. I’d also like to thank Dr. Ming Zhang for hosting me in MSR,

during which he taught me so much about designing, building and evaluating network

systems. Dr. Yun Mao helped tremendously on the COOLAID project, which was

only possible because of his masterful Python hacking skills.

I am thankful to Professor Jason Flinn, Robert Dick, Scott Malhke and Michael

Bailey for serving on my thesis committee. Their thoughtful advice and suggestions

helped improve this dissertation. Jason is a great lecturer, and I am glad that I

took his Advanced Operating Systems course, which changed significantly how I view

system research. Robert is a great thinker (and fast talker), and the discussion with

him always intrigues me. Scott is the coolest professor that I know, and I can only

wish to handle everything at ease like him. Michael has always been helpful in guiding

iii

my work. His experience has great influence on many of my projects.

I’d like to thank all my RobustNet group members. In particular, Ying Zhang has

always been a great friend, who kindly offers me help and suggestions in both work

and life. I am grateful to Joseph Xu, Eugene Chai, Bin Liu, Haixiong Wang, Ye Du

and many others, who spent so much wonderful time with me and always were there

when I needed them the most. Hats off to my fellow interns in MSR-112/3001 and

FP-103: you made those summers fun.

Finally, I am forever grateful to my parents, who brought me into this world,

gave me the best possible education, and are always there for me. My wife Wei has

tolerated me so much and given me immense support and joy, making this journey

possible and colorful. This dissertation, and everything else, is dedicated to them.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xi

CHAPTERS

I Introduction . 1
1.1 Challenges in Network Management 2

1.1.1 Managing modern networks 3
1.1.2 Network misconfigurations 5

1.2 Building management support systems 6
1.2.1 Choosing the right abstraction 7
1.2.2 Evaluating proposed designs 8

1.3 Contributions . 9
1.4 Scope and Limitations . 11

II A DFA-view of Network Operations 13
2.1 Motivation for Using a DFA Model 15
2.2 Analysis Methodology . 16

2.2.1 Data Sources . 16
2.2.2 Data Pre-Processing 18
2.2.3 Command Group Generation 19
2.2.4 Interface Correlation 20
2.2.5 Command Sequence Extraction 21
2.2.6 Network-wide Event Correlation 22

2.3 TACACS analysis results . 22
2.3.1 Command Groups . 22
2.3.2 Interface Correlation 25
2.3.3 Command Sequences 26
2.3.4 Network-wide Event Correlation 27

2.4 Modeling Network Operations Using DFAs 28

v

2.4.1 Example DFA . 28
2.4.2 Generating DFAs . 30
2.4.3 Using DFAs . 32
2.4.4 Limitations of DFAs 33

2.5 Summary . 33

III A Petri-net Model for Network Automation 35
3.1 Management Primitives in Current Practice 38

3.1.1 Motivation for Using a Petri-Net Model 40
3.2 The PACMAN Framework 41

3.2.1 Active Documents . 45
3.2.2 Execution Task Composition 48
3.2.3 Execution Engine . 51

3.3 Creating Active Documents 53
3.4 Case studies . 56

3.4.1 Fault Diagnosis . 56
3.4.2 Link Maintenance . 57
3.4.3 IGP Migration . 59

3.5 Implementation . 60
3.5.1 Active Document Creator 61
3.5.2 Execution Tasks and Execution Engine 61
3.5.3 Programming Policy Nodes 63

3.6 Evaluation . 64
3.6.1 Network-awareness Support 64
3.6.2 Automating Network Operations 65
3.6.3 System Constraints 66

3.7 Summary . 67

IV A Declarative System for Automated Network Management 68
4.1 Motivation for Using a Database Abstraction 69
4.2 Managing Networks in COOLAID 71

4.2.1 COOLAID building blocks 72
4.2.2 Network-wide reasoning 74
4.2.3 Misconfiguration prevention 77
4.2.4 Configuration automation 78
4.2.5 Network property enforcement 78
4.2.6 Atomic network operations 79
4.2.7 Summary . 80

4.3 Techniques . 81
4.3.1 Query processing . 81
4.3.2 Updatable view solver 82
4.3.3 Transaction management 84

4.4 Implementation . 86
4.4.1 Master node . 86
4.4.2 RouterDB . 88

vi

4.5 Evaluation . 90
4.5.1 Automating configuration 90
4.5.2 Handling network dynamics 91
4.5.3 Performance . 92
4.5.4 Transaction overhead 93

4.6 Discussion . 94
4.7 Summary . 95

V A Platform for Evaluating Network Systems and Services 97
5.1 Motivation for a Realistic Testing Environment 99

5.1.1 The need for network changes 100
5.1.2 Case study for network testing 102

5.2 ShadowNet overview . 105
5.2.1 ShadowNet architecture 105
5.2.2 The ShadowNet Controller 108

5.3 Network service in a slice . 111
5.3.1 Creating user-level specification 111
5.3.2 Instantiation . 113
5.3.3 Device access & persistent slice state 114
5.3.4 Deactivation . 114
5.3.5 Management support 115

5.4 Physical layer operations . 115
5.4.1 Instantiating slice specifications 116
5.4.2 Achieving isolation and fair sharing 119
5.4.3 Enabling device access 120
5.4.4 Managing state . 121
5.4.5 Mitigating and creating failures 121

5.5 Prototype Implementation 122
5.5.1 Hardware setup . 122
5.5.2 Controller . 123

5.6 Prototype Evaluation . 125
5.6.1 Slice creation time . 125
5.6.2 Link stress test . 126
5.6.3 Slice isolation . 127
5.6.4 Device failure mitigation 130

5.7 Summary . 130

VI Related Work . 132
6.1 Understanding current network management practice 132
6.2 Dirty-slate solutions . 133

6.2.1 Configuration management systems 133
6.2.2 Network operation support 135
6.2.3 Rule-based management systems 136
6.2.4 Declarative systems 136

6.3 Clean-slate solutions . 137

vii

6.4 Network evaluation systems 138

VIIConclusion . 140
7.1 Insights . 141
7.2 Limitations . 142
7.3 Future work . 143

BIBLIOGRAPHY . 145

viii

LIST OF FIGURES

Figure

2.1 The overall processing diagram . 16

2.2 Data processing example . 17

2.3 Correlation among command groups 20

2.4 Interface correlation example . 20

2.5 TACACS data analysis results . 23

2.6 Correlated events across network . 28

2.7 Sample DFA for static-routed interface 29

2.8 Avoiding invalid transitions using a DFA. 32

3.1 The PACMAN framework . 42

3.2 Active document node execution . 46

3.3 Active document design paradigms 47

3.4 An example active document . 47

3.5 Sequential task composition . 49

3.6 Wrapper construct for concurrent traffic disruption detection and state
diffing . 50

3.7 Policy enforcement in parallel composed tasks 51

3.8 AD Creation Framework . 53

3.9 Event extraction from console log . 54

3.10 Example of operator annotation . 55

3.11 Layer-3 VPN diagnostic AD . 56

3.12 Planned maintenance AD . 58

3.13 A simplified ISP Backbone . 59

3.14 Task design for OSPF to IS-IS migration 59

3.15 Execution engine architecture . 62

3.16 Effectiveness of policy enforcement 64

4.1 COOLAID vs. manual management . 71

4.2 Example network with OSPF configuration 74

4.3 Bottom-up view evaluation . 75

4.4 VPLS related view dependency graph 76

4.5 COOLAID primitives and techniques 81

ix

4.6 Solving updatable view operations . 82

4.7 COOLAID system architecture . 86

4.8 RouterDB implementation . 88

5.1 Usage scenario: load-aware anycast CDN. 102

5.2 ShadowNet network viewpoints . 106

5.3 ShadowNet functional architecture 106

5.4 The ShadowNet controller . 109

5.5 The slice life cycle . 111

5.6 Example of user-level API calls . 112

5.7 Network connectivity options. 116

5.8 User slices for evaluation . 125

5.9 Control plane isolation and recovery test. 128

5.10 Data plane isolation test. 129

x

LIST OF TABLES

Table

2.1 TACACS command group types . 24

2.2 Major command sequences . 26

3.1 API calls supported by the execution engine 45

4.1 Query processing time for OSPFRoute 92

4.2 Time to solve view updates . 92

4.3 Network operations with and without COOLAID 93

5.1 Capability comparison between ShadowNet (SN), EmuLab (EL), Plan-
etLab (PL) and VINI (VN) . 103

5.2 Slice creation time comparison . 126

5.3 Cross-node link stress test . 126

xi

CHAPTER I

Introduction

Network management plays a fundamental role in the operation and well-being

of today’s networks. Despite this importance, network management operations still

largely rely on fairly rudimentary technologies: network changes are mostly manu-

ally performed via archaic, low-level command line interfaces (CLIs). As computer

networks become larger-scale, more complex and more dynamic, human operators

are increasingly short-handed. To make matters worse, network operations are usu-

ally driven by tight deadlines, making human errors more likely. As a result, network

misconfigurations are common, causing profound negative impact to the global infras-

tructure and high-value network services. In 1997, a misconfiguration by operators

of Florida Internet Exchange (AS 7007) resulted in an extended period of disruption

throughout the Internet [2]. A more recent example is a BGP misconfiguration by an

ISP in Pakistan that blocked access to YouTube globally for two hours in 2008 [6].

The earliest attempts to better handle network management operations originated

from network operators themselves, by composing and executing various home-brew

scripts. Over time, these scripts become increasingly sophisticated and widely used

with every operator maintaining his/her own “arsenal”. Unfortunately, these scripts

are ad-hoc and task-centric, and thus require significant manual coordination and

domain expertise to accomplish more complicated operations and prevent network-

wide side-effects. Furthermore their development and refinement require significant

expertise and involve much trial-and-error. From the research community, a variety

1

of automation systems are proposed. Notably, a template-driven approach is used

to automatically generate router configurations [53]. However, such systems do not

handle the ordering and dependencies in network operations, where configuration

changes must be guided by dynamic and network-wide conditions. Generating the

templates is also non-trivial to begin with. To address the overwhelming complexities

and increasingly higher demand for reliable networks, better automation systems are

required to assist network management operations by reducing operator workload and

preventing undesired network misconfigurations.

To improve the limited automation support in network management operations,

we propose two automation systems. The first system allows the composition and

execution of automated network operations, and at the same time integrates network-

wide checks to prevent misconfigurations. The second system facilitates more auto-

mated network configurations and misconfiguration prevention, while minimizing op-

erator workload. We contend that the key to achieving both automated and correct

network operations is the use of formal abstractions to capture domain knowledge to

guide management operations and integrate network-wide property checks.

The rest of this chapter is organized as follows. We first describe the key chal-

lenges in network management in general and performing management operations in

particular. We then discuss two important issues in building and evaluating network

management systems. The following section then gives a brief overview of our ap-

proach to addressing the challenges and achieving the requirements. We conclude

this chapter with a discussion over the scope of this dissertation and limitations.

1.1 Challenges in Network Management

This section presents an overview of the challenges involved to better familiarize

the readers with the pressing concerns in network management.

2

1.1.1 Managing modern networks

Network management operations are challenging because modern networks are

complex, large-scale and highly dynamic.

Complexity in network management: Modern computer networks are expected

to deliver a diverse set of services, some of which have competing goals, on a dis-

tributed collection of heterogeneous devices. Best-effort IP transit is the most basic

network functionality, while the increasingly popular VPN service has to satisfy strin-

gent service-level agreements when connecting multiple office sites of large enterprises.

To realize these services, a service provider must manage a diverse set of hardware

devices, including routers, switches, firewalls, etc., which feature different software

designs and expose heterogeneous management interfaces. For example, Cisco alone

has released more than a dozen major versions of their router firmware, not to mention

other major vendors, like Juniper and Avici.

Managing a network is partly about enabling and maintaining the high-level net-

work services and functionalities through the correct low-level configurations to satisfy

the service-level agreements with users and customers. Such activities require oper-

ators to understand voluminous configuration manuals and apply the knowledge to

specific network setups. To fulfill a network change, operators have to translate the

high-level goal into low-level implementation in terms of the lines of configurations

to modify — a process that is becoming increasingly difficult.

A particular complication stems from the fact that network services and features

are commonly dependent on each other, thus enabling a single feature may in fact

require the creation and maintenance of several other services 1. These dependencies

are usually verbally described in documentation and impose a steep learning curve.

Not surprisingly, questions like “Why is my VPN service not configured correctly?”

frequently appear on network management related forums and mailing lists [9].

1For example, as we later show in Figure 4.4, on commodity routers (e.g., from Cisco or Juniper),
setting up a VPLS (Virtual Private LAN Service, a form of VPN to provide layer-2 connectivity)
depends on establishing LSPs (Label-Switching Paths) and BGP signaling, while LSPs in turn
depend on an MPLS- and RSVP-enabled network, and BGP signaling further relies on other factors,
e.g., a properly configured IGP.

3

Scale in network management: Modern networks are massive in size. It is com-

mon for a service provider network to contain thousands of network devices in its

core network alone, with each device requiring hundreds or thousands of lines of

configuration. Even though the provided services and design goals of a network are

embedded in these configuration files, distilling how a network functions, i.e., building

a network-wide view, is very challenging. In particular, understanding each feature

requires not only inspecting individual device configurations but also reasoning about

the distributed protocol execution logic, e.g., how the routes propagate through OSPF

within a network. Furthermore, the protocols and features in a networks are usually

dependent on each other, as we explained previously. As networks continue to ex-

pand in scale and complexity, the capacity of network operators to maintain such a

network-wide view is seriously challenged, e.g., a single line of configuration modi-

fication can result in network-wide functionality change. On the other hand, such

network-wide understanding is extremely important to correctly performing network

operations, e.g., enabling a new service without impacting existing ones. Mistakes in

answering the questions like “What services might be impacted if I shut down router

A’s loopback interface?” might lead to network-wide outages.

Dynamics in network management: Modern networks are increasingly dynamic.

On the one hand, much of the network evolution is driven by growth demands and

feature requests, e.g., adding core or edge routers to handle more customers with

higher throughput and more diverse services. These device introduction, upgrade

and re-purpose activities are commonly performed in today’s large networks, and they

need to be handled correctly and efficiently to ensure continuous service delivery. On

the other hand, various network events happen spontaneously, e.g., device failures and

a variety of network attacks. The ability to mitigate these events while minimizing

user impacts is crucial for the success of service provider networks.

However, such network dynamics impose significant challenges for network man-

agement. Network operators have to overcome the difficulty in quickly building and

indeed rebuilding network-wide views to understand the impact of such events, and

navigate through the complexity in network configurations to identify ways to main-

4

tain the correct functions of network services.

In particular, each network may feature several high-level properties that should

be enforced. For example, all routers must form a BGP full-mesh. Such policies

may be violated during these dynamic network events, e.g., adding a new router

violates the full-mesh property. Because these properties are usually not explicitly

documented, deriving them from the network configurations is difficult and involves

non-trivial reverse-engineering. Taking a step further to enforce them is even more

difficult, given how quickly the network changes. The emerging trend of network

virtualization further raises the bar [98], as the device inventory of a virtualized

network can be dynamically allocated and the topology can be easily modified.

These properties lead to two important but sometimes conflicting concerns about

correctness and timeliness. On the one hand, network operations should be correct,

meaning that they achieve the desired outcome without causing undesired side-effects,

e.g., to perform a router maintenance with minimal impact on traffic. On the other

hand, network operations should be performed in a timely fashion to adapt to the

dynamic changes. These two requirements are conflicting because of the network

operators in the loop. To ensure correctness, it takes human operators a long time

to reason about and verify the network-wide properties of complex networks. To

ensure timeliness, operators are forced to rush management tasks or rely on primitive

automation methods, such as scripts, oftentimes violating network-wide properties

due to insufficient, if any, reasoning support. These properties are confirmed by the

network operator community [26], calling for automated solutions that are “more

reliable, easier to maintain, and easier to scale”.

1.1.2 Network misconfigurations

Misconfigurations occur all the time, not only in computer systems [39, 64] and

networks [81], but also in other reliable systems [48]. Not surprisingly, the major

contributing factor is human operators, who are responsible for 20-70% of system

failures [78].

5

In network management, there are two types of misconfiguration. The first type

renders a related service to be completely non-functional, e.g., a network loses the

capability to exchange network packets with a particular neighboring network. The

second type renders functional but degraded services, e.g., significant traffic rate

reduction over a network link. The latter type is usually caused by the inappropriate

use of resource, e.g., a sub-optimal routing design may route too much traffic on a

single link, thus causing high loss rate. Indeed, these misconfiguration instances are

under the category of performance management. We discuss the scope of this thesis

in Section 1.4.

A common goal of network operators is to minimize the impact of misconfigu-

rations, which depends on a variety of factors, such as network size, time of day,

problem duration, etc. One extreme is to prevent misconfigurations from happening,

rather than identifying them during a-posteriori analyses [54]. For production ser-

vices, this is highly desirable, but not always possible because of dynamic network

changes. For example, a correctly functioning network might become problematic

when physical devices fail, because the assumptions on network conditions based on

which the configurations were developed no longer hold. In these scenarios, operators

are required to fix misconfiguration as quickly as possible, to shorten the duration

of the production network in non-functional or partially functional states. Similarly,

it is preferable if operators can quickly fix misconfigurations during service set up

phase, otherwise they would eventually lead to prolonged service realization time and

reduced revenue. Unfortunately, modern networks are large-scale and complex, as

we previously discussed, thus preventing and fixing misconfigurations are extremely

challenging for network operators.

1.2 Building management support systems

This dissertation investigates building systems that help improve correctness and

timeliness in network management. We advocate the approach of capturing domain

knowledge using formal abstractions for the later integration into operational logic.

6

We choose this approach because significant evidence suggests that the current man-

agement practice relies heavily on human operators, thus time-consuming and error-

prone [81]. Our systems can make direct impact on how networks are managed,

unlike other proposed solutions that are supplementary to the current management

operations and thus require operators’ manual consultant and constant involvement.

Correctness and timeliness are chosen as the main evaluation metrics for our

systems. Unfortunately, modern ISPs or any large networks are closed in nature.

As a result, it is impossible for us to make a direct comparison against the actual

management systems and practices of those networks. Nevertheless, we can infer their

management approaches by distilling various sources of information, e.g., operational

logs, management recipes, and some disastrous events that actually happened in the

past, based on which we extract short-comings of the current best practice. We

then show that our systems can overcome those short-comings in performing real

management tasks.

The inadequacies of current network management and operational procedures have

been widely recognized [81], and many solutions have been proposed. Yet most net-

work operators still tend to stay with primitive command line interfaces and their

home-brew scripts. For the rest of this section, we explain two main concerns caused

this state of affairs.

1.2.1 Choosing the right abstraction

One of the biggest challenges in network management automation is to find the

right level of abstraction. What is needed, on the one hand, is the ability to abstractly

describe operational goals without getting bogged down in the minutiae of how to

achieve those goals. On the other hand, because of the sophistication of modern

networking equipment, the ability to fine tune the details of how an operational task

is performed is in fact critical to achieving the desired effect. This inherent tension

is exacerbated by the fact that network equipment vendors, driven in part by feature

requests from operators, have allowed network configuration languages to evolve into

7

arcane sets of low-level commands. Operators therefore have to become accustomed

to designing and reasoning about their networks in the same low-level nomenclature,

resulting in significant resistance to evolving to new network management paradigms.

We believe that a key requirement for the success of a management system is to

use the right level of abstraction that is both close enough to current management

approach, thus enable quick adoption, general enough to capture the complexity of

existing approaches, and powerful enough to automate and augment them.

Existing supports are usually not sufficient. Scripts are easily adopted, but they

lack the sophistication to capture network complexity. Configuration generation

tools [53, 63] cannot handle dynamic network changes. On the other hand, many

clean-slate proposals [33, 67] deviate drastically from current approach, thus limiting

possibility for adoption.

1.2.2 Evaluating proposed designs

For any network management system or framework, a key challenge is evaluation.

Many of the existing works were evaluated through small-scale simulation or device

emulation with a few lab machines. This is because network changes are fundamen-

tally difficult to make, as modern networks are inherently shared and multi-service in

nature. As a result, any change to the network has the potential to negatively impact

existing services. A tier-one ISP would certainly not adopt a research management

system overnight without significant lab testing. However, the gap between lab equip-

ment and realistic network environments further raises the bar to the introduction of

any new network functionalities.

We believe that the need for a new network testing environment is imminent.

In particular, we need a platform where new management practices can be tested

with real devices and realistic network environments. Such a platform also must not

impact other services in the production network.

8

1.3 Contributions

This dissertation describes a series of efforts to understand, automate, augment

and evaluate network operations. First, we performed one of the largest-scale studies

over the operational log of a tier-one ISP network [45]. We characterized the complex-

ity of network management, including the diversity of customer requirements and the

ordering and dependencies in performed operations. A key observation of our study

was that, underneath the complex nature, there are significant patterns in terms of

network states and operations executed therein. We were able to use a Deterministic

Finite Automaton (DFA) model to capture the dynamics in network operations. An

important insight we gathered from this analysis was that network status checks are

essential to the progression of network operations, motivating the rest of our work.

Second, we describe Active Documents [46], which is based on a Petri-Net model

for capturing and automating network management operations. The key idea behind

Active Documents is to explicitly model network status checks and execution logic

in management operations. As a result, we are able to not only automate network

operations by executing Active Documents (achieving timeliness), but also prevent

misconfigurations by integrating various additional network-wide reasoning steps to

guide operational procedures (improving correctness). We present the design, imple-

mentation and evaluation of a system, called PACMAN, which assists in the creation

of Active Documents and uses them to automate a variety of common network man-

agement tasks.

Third, we take a top-down approach to model a network as a database, where net-

work operations are performed via a database-like interface [44]. The main difference

from previous bottom-up approaches, like PACMAN, is that under such an abstrac-

tion we are able to formally capture domain knowledge of network management using

a declarative language. This fundamentally shifts the complex nature of network

management away from network operators, as the domain knowledge required can

be provided as declarative rules by device vendors and network experts, and seam-

lessly integrated under the same framework to offer new management primitives,

9

such as configuration automation, misconfiguration prevention, network property en-

forcement under dynamic conditions, etc. We describe the design, implementation

and evaluation of COOLAID, a system that fully realizes a database interface and is

capable of managing large-scale networks.

Both PACMAN and COOLAID expose straightforward interfaces for operators

to use, thus facilitate quick adoption. PACMAN allows operators to reason and

perform network operations at task-level, and at the same time automates network-

wide checks and decision logic without a continuous and tedious manual involvement.

COOLAID exposes a simple database interface, while hiding and automating com-

plicated network-wide reasoning behind simple table manipulation operations.

Finally, to address the problem that network management systems are usually

inadequately evaluated, we build a realistic, distributed and shared infrastructure,

called ShadowNet [47] to facilitate the evaluation of the new network management

practices in particular and network services and features in general. The key technical

effort involves a framework that manages a distributed set of virtualization-capable

network devices, creates user-specified network specifications on off-the-shelf devices,

and enforces isolation to the production network and fair resource sharing among

different users. Both PACMAN and COOLAID were partly evaluated on ShadowNet.

Therefore, my thesis is:

Operations in network management are inherently and increasingly

challenging to be handled correctly and timely. With the abstractions

like DFA, Petri-Net, and database, we can build new systems that for-

mally capture domain knowledge, automate network management opera-

tions while enforcing network-wide properties, and reduce human involve-

ment. With network virtualization, we can better evaluate these new

systems and allow faster network evolution.

10

1.4 Scope and Limitations

Unlike many existing works that focus on static network snapshots, our work

emphasizes mostly on the dynamic aspect of network management. In particular,

our goal is firstly to understand how operational networks are changed on a daily

basis by network operators to fulfill a variety of tasks, such as service introduction,

attack mitigation and fault diagnosis and resolution. Unlike systems that generate

configuration for networks [53, 63], we emphasize on how such configurations are

integrated into an existing network, usually using well-designed steps and procedures.

We also take a more systematic approach to abstract the protocol dependencies thus

generate configuration through actively reasoning about the network status rather

than simply populating templates [53]. Unlike systems that identify misconfigurations

in configuration snapshots [55, 85], we study how misconfigurations are introduced

during network operations and try to actively prevent this from happening. In this

sense, our work is complementary to these existing works, as we provide the means

for them to express the related domain knowledge using our formal abstractions and

further seamlessly integrate into operational logic.

With respect to many clean slate proposals [34, 67], our proposed solutions are

considered dirty-slate, as we focus on the existing best practice in network manage-

ment and how to build automation systems based on existing infrastructure support.

Network management is a very broad concept, and we do not claim to provide a

panacea for all problems. According to the definition of International Organization

for Standards (ISO), network management has five sub-areas, namely configuration

management, fault management, security management, performance management,

and accounting management. Our work focuses on configuration management, or

more generically all commands executed via the operational interface of network ele-

ments. Indeed these are the primary means through which most network operational

tasks, e.g., service realization, planned maintenance, fault diagnosis and recovery,

performance monitoring and capacity planning, are performed.

In configuration management, COOLAID provides support to automate the gener-

11

ation of network configurations. In particular COOLAID prevents misconfigurations

through network-wide reasoning and automates the configuration changes to adapt

to dynamic network events. More fundamentally, COOLAID’s concept of allowing

domain knowledge to be captured by declarative rules potentially revolutionizes the

way networks are managed by alleviating the reasoning burden on network opera-

tors. PACMAN deals with issues in realizing configuration changes, where network

status must be explicitly checked and reasoned to guide the progression of network

operations. Both PACMAN and COOLAID integrate domain knowledge into oper-

ational logic, in particular, allowing various studies identifying misconfiguration and

optimizing network traffic

In fault management, PACMAN is capable of automating fault diagnosis and fault

recovery operations. COOLAID can potentially perform more detailed cross-protocol

fault diagnosis by tracing the view generation process and compare against network

status tables. However, there are a variety of network faults that cannot be handled

by PACMAN nor COOLAID. In particular, we do not handle the network faults that

are probabilistic or only identifiable through large-scale statistical analysis [89].

Similarly for performance, accounting and security management, our systems can

handle the automation of the operations performed in these areas. However, we do not

handle problems like performance optimization or security vulnerability assessment.

Nevertheless, because of the database abstraction and declarative language used in

COOLAID, such analyses and methods can be easily implemented under COOLAID

and thus used to guide network operations.

12

CHAPTER II

A DFA-view of Network Operations

This dissertation begins with an effort to understand existing network manage-

ment practices. The goal is to deepen the understanding of existing approaches by

establishing formal models to capture the dynamics in management operations. The

knowledge ultimately can guide us to design better management tools and systems.

Managing IP networks is increasingly challenging due to diverse protocols, growing

application requirements and primitive support from network devices. The state of

the art in network configuration management tends to be template-driven and device-

centric [53]. These approaches usually focus exclusively on the configuration aspects

of network management, i.e., the task of generating the persistent configuration files

that dictate the behavior of the network elements making up the network. Indeed,

much of our understanding of network management stems from analyses of such static

configuration files obtained from operational networks [55, 56, 84].

However, network operators seldom re-generate configurations for the whole net-

work. Instead, they make incremental changes to a network, transiting the configu-

rations from one steady state to another for achieving the desired operational goals.

For example, adding or removing a customer is mostly done on an edge router, and

handling DDoS attacks usually involves re-routing a portion of the traffic to scrubber

boxes rather than changing the whole routing settings. Indeed, most of the transient

or long-term misconfigurations causing network disruptions are introduced when the

networks are operated on in this manner.

13

In this chapter, we analyze the complete network operational logs in terms of all

the commands executed via router CLIs, building a dynamic view of how the network

configurations are modified in particular and how the network operations in general

are performed over time. A particular challenge is that the command logs present

the lowest level of details about network operations. Our solution is to build an

interface-centric view of the operational logs, by correlating the commands executed

to an interface via exploiting the referential relationships in network configuration.

We choose this abstraction because interfaces the most common operational unit. For

example, on the edge of a network, an interface is directly connected to a customer,

thus the operations applied on the interface is corresponding to the management

task associated to that customer. We can easily extend to a group of interfaces,

for example a pair of backbone interfaces that form a backbone link, or a group of

customer-facing interfaces that connect to different sites of the same enterprise.

After correlating commands to the related interfaces, we extract sequential pat-

terns, representing combinations of commands that are executed together to fulfill

different management tasks. From the data we also observe that in addition to com-

mands that lead to persistent configuration changes, virtually all management tasks

also involve status-checking commands that do not change the configuration, but

allow the operator to verify network states, which largely determines the follow-up

actions. Such operations are critical in operational procedures, but largely ignored

by existing studies.

Finally, we model network management operations using automatically generated

deterministic finite automata (DFA), where a state represents the configured behavior

of an interface and an edge indicates the operations performed on the interface either

to fulfill a specific task or to check the status of the network. The DFA model not

only allows us to capture common management tasks, but also gives us the ordering

and dependency information among those tasks. Containing the information about

the temporal progression of network management under different network conditions,

the DFA model provides a dynamic view of how large networks are managed today.

Based on this understanding, better tools for automating network management can be

14

built. We argue that composing DFAs is a better network management abstraction,

which enables operators to reason about the operational state of the network.

This rest of this chapter is organized as follows. Section 2.2 describes the data

sources and the initial processing steps taken to facilitate later analysis. In Section 2.3,

we present the main analysis and results. The key method is to exploit the referential

relationships to associate commands related to individual interfaces. Section 2.4

describes how the DFA model is used to capture network dynamics and the potential

usages of such a model. Finally, section 2.5 summarizes this chapter.

2.1 Motivation for Using a DFA Model

DFA stands for deterministic finite automaton [71], which consists of a finite set

of states and transitions that depend on input symbols at each step. A number of

factors imply that DFA is a good abstraction to model network operations:

1. A network usually transits from one state to another after a series of manage-

ment operations are performed on it.

2. The state of the network limits the possible operations to be performed.

3. There are a limited number of network states and operations.

(1) is clearly true when the operations make configuration changes, so that the

resulting network functionality differs from before. Even when the operations are

for checking network status only, (1) is also true from the operator or management

systems’ perspective. Usually, a status-checking operation would reveal certain prop-

erties of the network, e.g., testing if a customer interface is properly configured, or

if a backbone interface still has traffic flowing through. The result of these checking

operations would change the view of the network. (2) is also true because there is

usually ordering and dependency among the operations. For example, an operator

cannot shut down a backbone interface (an operation), unless she confirms that no

traffic is flowing through that link (a state). Our later analysis results confirm this

15

Raw TACACS
 data

Command groups
 for each router

Interface-correlated
command groups

 Command
sequences

Network tasks
across routers

Figure 2.1: The overall processing diagram

claim. (3) is not suitable when considering a whole network, because the configura-

tion states are clearly exponential. However, the number of states is quite limited

when we switch to an interface-centric view, as we explain in detail later.

2.2 Analysis Methodology

In this section we describe the data sources and the data processing required to

perform our analysis to distill current operational practices from low-level logging

information. The analysis steps are illustrated in Figure 2.1, while Figure 2.2 gives a

real example of how a sequence of TACACS logs are processed.

2.2.1 Data Sources

We use three data sources that are commonly available in well-managed networks

in our study. The main data source is TACACS logs, containing the commands

executed on the routers across the ISP network. TACACS is a remote authentication

protocol used by network devices to communicate with authentication servers and

to audit whether a user has access to a certain router and has sufficient privilege to

execute a command. As such, the TACACS logs contain three types of records for

login requests (authentication), privilege escalation (authorization) and commands

executed (accounting). We are particularly interested in the accounting entries, each

of which corresponds to a command executed. Note that TACACS logs are emitted

from individual routers to a few centralized servers, thus the logs in rare occasions

can be incomplete or corrupted due to network problems. Nevertheless, we found

TACACS to be a reliable source.

The second data source we used is the daily configuration snapshots of all the

16

interface serial:16_0_1
 description BLA_BLA

interface INT_NAME
 ip access-group ACL_NAME in

Group template A

interface serial:10_0_1_2
no ip access-group 123 in
no access-list 123
access-list 123 permit 1.2.3.4 255.255.255.0
access-list 123 deny all
interface serial:16_0_1
ip vrf vpn_cust forwarding
no shutdown
interface serial:10_0_1_2
ip access-group 123 in
interface serial:16_0_1
description BLA_BLA

Parsed Raw Data

interface serial:10_0_1_2
 no ip access-group 123 in

no access-list 123
 access-list 123 permit 1.2.3.4 255.255.255.0
 access-list 123 deny all

initial
grouping

no access-list 123
 access-list 123 permit 1.2.3.4 255.255.255.0
 access-list 123 deny all

interface INT_NAME
 ip access-group ACL_NAME in

Group template B

Group template C
sequence
matching

group template A
group template B
group template C

sequence template 1

group template E
group template F

sequence template 2

Cross-router correlation
using similar time-window based data mining
OP means operational pattern.

router 1 ST1 ST2 ST3

router 2 ST1 ST3 ST2

time:

router 3 ST1 ST5 ST3

Network event 1 network event 2 network event 2

Grouped data
Interface correlated data

interface serial:10_0_1_2

interface serial:16_0_1
 ip vrf vpn_cust forwarding
 no shutdown

interface serial:10_0_1_2
 ip access-group 123 in

interface serial:10_0_1_2
 no ip access-group 123 in

no access-list 123
 access-list 123 permit 1.2.3.4 255.255.255.0
 access-list 123 deny all

interface serial:10_0_1_2
 ip access-group 123 in

interface serial:16_0_1

interface serial:16_0_1
 description BLA_BLA

interface serial:16_0_1
 ip vrf vpn_cust forwarding
 no shutdown

Group templates

Group template E

interface INT_NAME
 ip vrf VRF_NAME forwarding
 no shutdown

Group template F

interface INT_NAME
 description DESC_STRING

correlation command sequence
 matching

F
ig
u
re

2
.2
:
D
ata

p
ro
cessin

g
ex
am

p
le

17

routers in the ISP network. We use it as a reference point for the configuration

changes. Since TACACS data capture how the router configuration is modified across

time, combining these two data sources gives us a continuous view of how the config-

uration of the network evolves over time.

Finally, we make use of network-specific databases [41, 56], which store information

regarding physical setups and network configurations, to augment the first two data

sources. Specifically, because we take an interface-centric view for our analysis, we

use this data to indicate the role of an interface in the network, e.g., backbone link

versus customer link etc. This data source helps us to distinguish different operational

targets, and derive common operations on each type.

2.2.2 Data Pre-Processing

We first pre-process the raw TACACS log with the purpose of cleansing the textual

data for later analysis that tries to form structures and correlate them. The steps

involved are detailed below. Each accounting log entry contains several useful fields,

including username, router-id, terminal, timestamp, task-id, command, etc.

Ordering commands sequentially: The raw TACACS logs are in the form of

large text files consisting of the records for all the routers saved by multiple TACACS

servers. The task-id field is a monotonically increasing counter inside each router,

which can be used to uniquely identify an executed command. We first separate the

commands executed on different routers, according to the router-id field. For log

entries about a particular router, we sort the commands based on both the associated

timestamp and the task-id fields, since task-id is initialized to zero when the router

is reset to original factory default settings by command reload.

Extracting login sessions: There can be multiple operators logged into one router

and each operator can have multiple simultaneous login sessions. We first extract out

the commands which have the same username and terminal pair and then demarcate

them according to special entries that flag the creation and termination of login

sessions. In the end, we infer the login session boundaries and the commands executed

18

within each session.

Differentiating command types: Commands that inspect router status are com-

monly performed, and they do not change a router’s configuration or running status.

We call them status-checking commands, e.g., show running-config. The other

type of commands modifies the configuration or behavior of a router, thus we call

them persistent commands. The status-checking commands usually serve as the pur-

pose of condition checking in the current network management practice to determine

whether and how to proceed with the next configuration step, which we will discuss

in detail later.

Parsing commands: We developed a parser for processing configuration com-

mands. In particular, we extract the command itself and the parameters used through

regular expression matching. For example, int serial0/1:0 will be matched to

interface INT_NAME.

2.2.3 Command Group Generation

In router configuration, a complication is that the same command can have dif-

ferent meanings when executed under two execution contexts. For example, the same

shut down command can be used to either disable an interface or stop a BGP session,

depending on the context. Each context is similar to a sub-category under the whole

configuration, representing a particular aspect, e.g., a particular interface, a BGP ses-

sion, or an access control list. We thus group the commands executed consecutively

within the same context to be a command group, as they are likely to be modified

for the same purpose.

Each configuration category has its own context-switch commands, with which a

sequence of commands within a login session are chopped into command groups. For

example, once an operator logs into a router, she is under a normal context, under

which only status-checking commands are allowed. Once configure terminal is

executed, she switches to a configuration context, under which the configuration

modifications are performed. To configure the interface serial1/0:0, she needs to

19

Figure 2.3: Correlation among command groups

access-list 123 permit 1.2.3.0 0.0.0.255

access-list 123 permit 1.2.4.0 0.0.0.255

access-list 123 deny all

interface serial:0_1_1

ip access-group 123 in

service-policy pmap_input in

policy-map pmap_input

class class_input

bandwidth percent 32

queue-limit 2000 packets

class-map class_input

match ip dscp 24

match ip dscp 25

ip prefix-list PL001 permit 1.2.3.0/24

ip prefix-list PL001 permit 1.2.4.0/24

clear ip bgp 10.0.0.2 soft in

interface serial:0_1_2

description CONNETING TO customer

ip address 10.0.0.1 255.255.255.252

router bgp

neighbor 10.0.0.2 activate

neighbor 10.0.0.2 prefix-list PL001 in

neighbor 10.0.0.2 remote-as 64001

neighbor 10.0.0.2 as-override

Configuration snapshotCommand group A

Command group B

Command group C

Command group D

Command group E

Command group F

Figure 2.4: Interface correlation example

execute interface serial1/0:0 first, to switch to an interface configuration context.

2.2.4 Interface Correlation

The dependencies within router configurations have previously been studied by

Feldman et al. [56] to check static configuration errors, e.g., broken references. In

our work, we extend this referential relationship to identify correlated configuration

command groups. We define command groups A and B to be correlated, if one

command in A contains a variable name which is exactly group B’s name. For exam-

20

ple an interface group with command ip access-group 123 in is correlated with

access-list 123 command group, because the interface is configured to apply the

ACL. Figure 2.3 shows some possible correlations across different command groups.

For example, an interface configuration might reference a policy-map for traffic dif-

ferentiating, while the policy-map must reference several class-maps, which define

the traffic classes. The dependency is directly derived from command syntax, which

is well-understood.

We developed an algorithm to correlate command groups to related interfaces.

This interface correlation is trivial for interface command groups. Conceptually, we

want to understand which interface is directly impacted by a given command group.

The key idea is to find a chain of correlation relationships that would eventually link

a command group to an interface. We first identify correlations within TACACS

log only. For example, in Figure 2.4, command group A-D are executed within the

same login session. We can correlate group C to D, because of the ACL setup, and

A to D through B. If a command group cannot directly be linked to an interface,

we further look at network configuration. In the same figure, group E and F are

linked to an interface connected to a BGP-speaking customer, with the help of the

configuration in the snapshots. Note that one command group can be correlated to

multiple interfaces. For instance, modifying an ACL that is used by two interfaces.

2.2.5 Command Sequence Extraction

Command groups that are correlated to one interface are usually executed together

in fixed patterns, which we define to be a command sequence. In Figure 2.4,

command group E and F represent an interesting pattern: changing an ip prefix-list

for a BGP session followed by a BGP session reset. This is a typical operation for

effecting routing policy changes.

We first canonicalize the commands executed by replacing parameters with generic

place-holders, and then transform command groups to group templates. We exclude

commands that are hardware-specific in favor of generating a small number of tem-

21

plates. We combine the group templates that are always executed together as a

sequence template. As a result, a sequence of commands that match a sequence

template is considered as a command sequence.

2.2.6 Network-wide Event Correlation

Managing large networks sometimes requires configuring multiple routers simul-

taneously. For example, inter-domain traffic engineering usually needs to change the

BGP routing policy of two or more BGP sessions between two ASes. We perform a

network-wide timing correlation to extract the sequence templates that are executed

on different interfaces within a short time window. These correlated events give us

ideas on how network-wide operations are performed.

2.3 TACACS analysis results

We analyzed a four-month TACACS log from a Tier-1 ISP network. This reflects

the major operations performed in a large-scale, operational and realistic network. We

here report our main findings, from low-level command group statistics to high-level

network-wide events. Our current implementation focuses on Cisco routers, although

our overall approach is also applicable to other configuration syntax. Our parser is

capable of parsing over 98% of the persistent commands1, and all status-checking

commands observed can be parsed.

2.3.1 Command Groups

Figure 2.5 shows the histogram of the number of commands and the number of

command groups observed in the data respectively, broken down by the command

group categories shown in Table 2.1. The Y-axis is the log-scaled percentage value.

In Figure 2.5(a), we can see that the majority of the commands executed on routers

are ACL (39%) and PLIST (47%), which correspond to access-lists that filter packets

1The remaining 2% of persistent commands are all hardware-specific commands related to specific
interface types in the provider network and are not germane to the focus of our study.

22

(a) The breakdown of configuration commands

(b) The breakdown of configuration command groups

Figure 2.5: TACACS data analysis results

23

ACL
access-list group and ip access-list group
which define ACLs

BGP router bgp group, which define BGP sessions
INT interface group, defining interface configurations
VRF ip vrf group, which defines VRF profiles
CONT controller group, which defines controller setups

PLIST
ip prefix-list group, which defines prefix-list
that is used to filter routes

CMAP class-map group, which defines a class of packets

PMAP
policy-map group, which defines the traffic-
shaping policy of certain classes of packets

RMAP
route-map group, which defines how to
manipulate certain routing messages

MC
map-class group, which encapsulates policy-
maps and can be directly applied to interfaces

IPRV ip route vrf group, defining VRF static routes
IPR ip route group, defining static routes

CLIST
ip community-list group, which defines filters
based on community values for route-maps

ALIST
ip as-path access-list group, which defines
filters based on as-path for route-maps

OSPF router ospf group, defining OSPF routing process
BGPR clear ip bgp group, which resets BGP sessions

RLIST
ip receive list group, which uses an ACL to
filter received packets of the router

Table 2.1: TACACS command group types

24

and prefix-lists that filter BGP routes. This is expected as access-lists and prefix-lists

are the first line of defense for a network’s data plane and control plane respectively,

effectively guarding against source spoofing (often used in DoS attacks [59]) and

wrong route injection (common practice for prefix hijacking [82] and a common cause

for routing misconfiguration.) These command groups tend to have many entries,

especially for a prefix-list that filters routes from a peering ISP, which can contain

thousands of entries. Interface groups contribute to the third largest number of com-

mands and around 60% of the total number of groups. As shown in Figure 2.5(b)

the interface components are the most frequently modified in network management.

This is also expected as many planned and unplanned events may trigger interface re-

lated operations. For example, all the customer provisioning operations must involve

configuring the corresponding customer-facing interfaces, while backbone links are

usually operated for traffic engineering and link maintenance. This partly motivates

our later attempt to use an interface-centric view. The second and third largest num-

ber of groups come from access-list (16%) and policy-map (5.6%). The importance

of policy-map also emerges, since it is used intensively to guarantee QoS.

2.3.2 Interface Correlation

After correlating configuration command groups to interfaces, we have formed

another level of abstraction of the TACACS data, i.e., the configuration commands

that are executed in order with respect to a single interface. Our interface-centric

correlation is very effective: over 99% of the TACACS commands are successfully

correlated to one or more interfaces. Our algorithm is not able to correlate a command

group like policy-map which is defined but not referenced by any interfaces — in this

case, either we should delete such a policy-map, or it means some interfaces are using

some other policy-maps by mistake.

We further analyzed the break-down of the commands executed on different types

of customer-facing interfaces — connecting to VPN, static-route and BGP neighbor.

The results show that the operations performed on these interfaces are dramatically

25

Description
Num. of Pctg of the

occurrences total commands

ACL MOD 58825 36.6%
PREFIX MOD 2677 42.2%
STATIC INIT 10761 6.23%
VRF INIT 4156 1.3%
VRF ENABLE 3982 1.34%
BGP MOD 1795 4.77%
STATIC ENABLE 5605 3.30%
BGP ENABLE 464 0.36%
RECV MOD 638 0.55%
TOTAL 91447 96.7%

Table 2.2: Major command sequences

different: 1) VPN customers are more likely to have policy-maps applied, which

enforce a higher QoS; 2) over 80% of the commands related to BGP neighbors are

prefix-list modifications, indicating routing policy changes characterized by allowed

prefixes to exchange; 3) over 80% of the commands related to static-route customers

are ACL modifications, probably associated to new address allocation.

2.3.3 Command Sequences

Table 2.2 shows the result for the command sequences we extracted. Command

sequence is an interesting level of abstraction for understanding current network man-

agement. Upon manual inspection, a command sequence can be translated to a spe-

cific task performed on a router related to a specific interface. For edge routers in

particular, managing such an interface is conceptually equivalent to managing the

customer site connected to the interface. Note that these nine command sequences

cover almost 97% of the commands executed during our study period, representing

the majority of the network tasks being performed:

• Provision new interfaces neighbor or customer: “STATIC INIT” is a sequence

of commands that initializes an interface (consisting of a controller group that

allocates the sub-interface, an access-list group, and an interface group). The

26

sequence of “VRF INIT” is similar to “STATIC INIT”, but with additional

MPLS VPN related setup.

• Enable or tear down neighbors: “STATIC ENABLE”, “BGP ENABLE” and

“VRF ENABLE” correspond to the sequences that finalize the configuration

for an interface that connects to static-route customer, BGP neighbor or VPN

customer respectively. There are four types of short but important command

sequences not shown in the table - “SHUT DOWN” the interface (shutdown),

“BRING UP” the interface (no shutdown), “REMOVE INT” by deleting the

interface configuration and de-allocating the sub-interface if necessary, and

“DIAG INT” for diagnosing problematic interfaces.

• Handling network changes: “ACL MOD” is an event in which the ACLs of

the interface are modified, while “PREFIX MOD” means modifying the prefix-

list used by a BGP session, followed by a BGP session reset. “BGP MOD”

is the event in which the prefix-list of the BGP session and the ACL of the

correlated interface are modified at the same time.

2.3.4 Network-wide Event Correlation

When extracting command sequences, we also know the interface being configured

and the times when the configuration change happened. We did a preliminary study

by counting the number of appearances of two events happening together within five-

minute time windows. The most frequently occurring pair is the BGP policy change

of two peering links connecting to one neighboring ISP. On one interface the ACL

and prefix-list are modified such that a few prefixes are no longer allowed to transit

the link, while the opposite is performed on another interface. The traffic data near

those events shown in Figure 2.6 clearly shows the combined effect of shifting traffic

from one link to another.

27

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 50 100 150 200 250 300In
co

m
in

g
tr

af
fic

 (
no

rm
al

iz
ed

)

Time (5min)

Link 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

In
co

m
in

g
tr

af
fic

 (
no

rm
al

iz
ed

)

Link 1

Figure 2.6: Correlated events across network

2.4 Modeling Network Operations Using DFAs

In this section, we propose to use DFAs to model dynamic network operations.

We first explain how DFAs are used, and then discuss how they are generated and

used in practice.

2.4.1 Example DFA

We use a DFA to model the complete life cycle of an interface abstraction, as

illustrated in Figure 2.7. In this model, a state represents a particular configuration

scenario and the perceived network running-status. An edge corresponds to an op-

eration can either change the configuration or change the perceived network status,

thus transiting from one state to another. In the example, all interface starts with

the empty state “no interface”, indicating that the interface is not even configured

on the router. An interface initialization operation (edge STATIC INIT) would pre-

liminarily configure the basic setups for the interface, but the interface is still in a

shut down state. Only when the BRING UP operation is performed does the interface

become operational. The states in the boxes share the same configuration, but are

28

 no
interface

interface initialized
 shutdown

interface bring up
UNTESTED

interface bring up
 TESTED

interface bring up
 FAILURE

interface fully configured
 UNTESTED

interface fully configured
 TESTED

interface fully configured
 shut down

interface fully configured
 FAILURE

STATIC
 INT

BRING
 UP SHUT

DOWN

 PING
-> Good

 PING
-> Bad

STATIC
ENABLE

CHECKING
 -> Good

CHECKING
 -> Bad

DIAG
 INT

REMOVE
 INT

 SHUT
DOWN

ACL MOD

Figure 2.7: Sample DFA for static-routed interface

29

characterized by different perceived status. For example, after being brought up, the

interface is first considered to be “UNTESTED”, meaning the operator has no idea

if it works or not. In this state, a ping check is usually performed, such that a ping

pass would transit the interface to a “TESTED” state, while a ping fail transits to

“FAILURE” state.

2.4.2 Generating DFAs

In Section 2.2.5, we described how command sequences and sequence templates

are generated. The sequence templates are here used as the edges in the DFA.

We generate the DFA states by analyzing network configurations. Given a router

configuration at any time, we can find all the components that are correlated to a

specific interface, using the same correlation algorithm described in Section 2.2.4. All

these correlated configuration groups, which we denote to be interface-correlated

configuration of an interface, exactly define how this interface should work. We

define a configuration state to be one possible interface-correlated configuration.

Ideally, we should reconstruct how the router configuration change over time, and

identify the individual configuration states for all interfaces during steady states. This

requires a network configuration snapshot as a starting point and the complete con-

figuration changes afterward. Since the operation log cannot guarantee completeness

(delivered from individual routers via UDP to a set of collectors), we approximate

this process by analyzing daily configuration snapshot data. The assumption is that

for most interfaces are in a steady state when a snapshot is taken. We ignore those

configuration snapshots if the corresponding router was operated on around the time

the snapshots were taken, since the interfaces could be in an intermediate state. After

extracting configuration states for different interfaces, each consisting of several com-

mand groups, we canonicalize them by ignoring the variable names and parameters of

commands to facilitate comparisons. We denote a canonicalized form of a configura-

tion state to be a state template. This process is fully automated given our parser.

Interestingly, we found that a very small number of state templates can capture all

30

the configuration states, confirming our previous assumptions. A state template is

then considered as a state in the DFA. In Figure 2.7, the lower-cased words within a

state is the high-level description of that state template.

In our design, each edge of the DFA corresponds to either a persistent command

sequence that changes the configuration or running-status, or a status-checking com-

mand sequence that helps determine the actual running-state of the interface. Per-

sistent sequences and status-checking sequences are marked respectively as firm and

dotted arrows in Figure 2.7.

Finally, we need to stitch the states and edges together. We start with state

templates and persistent sequence templates only. We combine the configuration

snapshots and TACACS logs. If the configuration state of an interface transited from

template SA to SB, while only sequence template EC was performed in between, we

then connect the two states with that edge. This process is automated and results

presented for verification. It is possible that we see two or more persistent sequences

after a status check in the same configuration state. In this case, it means the status

check has established different understandings of the network. Note that, TACACS

data is unable to capture the results of status-checking commands. We thus manually

infer those states using domain knowledge. Chapter III discusses a system that allows

such decision logic be formally captured. Here, we manually split the state related to

the configuration state to multiple sub-states, like the ones within the dashed box.

Because of potential data loss in TACACS data, we are unable to evaluate precisely

how well the DFA abstraction captures operational procedures. Yet, we found that

the overwhelming majority of the sequences of operations can be accepted by at least

one of the DFAs we generate. Should there be any violations, they either indicate data

loss in TACACS or an operation that is performed out-of-context, meaning that such

operations may not be appropriate given the network status. Given the sensitivity of

such analysis, we are unable to provide further explanation.

31

Interface fully
working, untested

OSPF change

Interface fully
working, no traffic

Traffic = Y

Interface fully
working, has traffic

Trafic = Ntimer-based

Interface shutdown

shutdown script

timer-based

Figure 2.8: Avoiding invalid transitions using a DFA.

2.4.3 Using DFAs

The DFA model that we developed not only provides a way to visualize all the op-

erations related to a particular interface, but also gives much more information about

the temporal progression in network management. In particular, a DFA concisely cap-

tures the possible operations that can be performed under a specific network state.

This state awareness is missing in the current configlet-based approach [53, 63], as it

relies on operators to manually stay on top of the network states and apply appro-

priate operations. Similarly, operators need to manually understand network states

before executing any scripts to ensure correctness.

We can apply the derived DFAs to assist in network management automation in

the following ways. The persistent command sequences (outgoing edges) of each state

define exactly what can be done given a particular state of the interface, guiding the

next step in configuration. The condition checking can be automatically performed to

immediately verify previous execution results and trigger the subsequent persistent

configuration changes. By encoding possible network running-status into a group

of states with the same configuration state, we can achieve more sophisticated net-

work management automation using the DFA model. For example, in Figure 2.8, we

have two states, “Interface fully-configured, has traffic going through during the last

32

minute”, “Interface fully-configured, no traffic going through during the last minute”.

We can then clearly specify that the command sequence which shuts down the link

can only be executed in the latter state. This can prevent undesired traffic disruption

and ensure that the network maintains a healthy running state.

2.4.4 Limitations of DFAs

While being a succinct model for capturing interface related management opera-

tions, the DFA model has its limitations. First, it is derived from operational logs,

thus cannot handle new devices and new procedures. The PACMAN system over-

comes this problem by introducing a recording system to allow new operational pro-

cedures be accurately modeled (Section 3.3.) Second, it does not model concurrency

among interfaces well. A DFA can be used to regulate and automate the operations

performed on a single interface, but large-scale network operations in many cases

require touching multiple interfaces and have cross-interface dependencies. As such,

we need a better model that is capable of capturing and orchestrating network-wide

concurrency. The PACMAN system addresses this problem by extending the DFA

model to a Petri-Net model, which explicitly models concurrency.

2.5 Summary

In this chapter, we analyzed a TACACS data source consisting of all the commands

executed on many routers within a Tier-1 ISP network. Starting from low-level raw

data abstracted to high-level correlations, we developed a way to summarize the high-

level network operations that are performed on the network. This is the first concrete

study revealing the dynamic network management activities in real networks.

Today’s network management is greatly eased by automatically generated con-

figlets which can be translated from high-level policies and then applied to the routers

directly. However, we found that configlets are usually applied to the routers through

a sequence of carefully designed steps, which are usually causally dependent on each

other or on the network’s running-status. We developed a DFA model to character-

33

ize such dynamics in network management, which we believe is an important step

towards automated network management.

34

CHAPTER III

A Petri-net Model for Network Automation

This chapter describes a system, PACMAN, for automating and augmenting net-

work management operations. The key intuition is to use a Petri-Net model to capture

network operations in a bottom-up fashion.

Despite the existing efforts of building the so-called “holistic” network manage-

ment systems from both research and industry, the lingua franca of network operations

continue to be libraries of method of procedure (MOP) documents. MOPs are text

documents that describe the procedures to follow in order to realize specific oper-

ational tasks. There are two main sources of MOPs. First, device vendors usually

provide manuals regarding how their products can be configured and operated to

realize different functionalities [17, 73], and similarly how diagnostic and recovery

procedures should be performed when network problems occur [11]. Second, experts

in service providers explain in prose and configuration excerpts the best practice

on network service realization and operational procedures. For example, carefully

designed steps are commonly described on performing planned device maintenance

without impacting existing network services. Currently, MOP documents are liter-

ally stored as libraries of text descriptions that are meant for human consumption,

rather than the purpose of automation. As a result, manual operations following

these MOPs are inherently limited by human operators’ ability to consume and carry

out the knowledge described.

In modern network operational environments, parts of MOP-defined procedures

35

are typically automated to a limited extent. For example, configuration actions could

be performed by scripts that push configlets to network elements [38, 53, 63]. How-

ever, for the most part, network operations still require human operators to verify

the result of actions and to navigate through the logic involved in operational proce-

dures, as we have shown by analyzing operational logs from a tier-1 ISP (Section 3.1).

This is especially true in terms of being cognizant of possible interactions among dif-

ferent operational procedures and understanding the network-wide impact of such

actions. For example, multiple backbone link maintenance operations could partition

the network backbone causing undesired dis connectivity periods. Indeed, sophisti-

cated tools have been developed to help operators understand the possible impact

of their actions [57]; however, operators typically consult these tools independently

and then use the information they provide to manually “close the loop” to perform

operational tasks. In other words, such tools are not fully integrated into the process

of network operations.

Towards this end, in this chapter we present our work on the PACMAN sys-

tem, a Platform for Automated and Controlled network operations and configuration

MANagement. Our work builds on two basic observations related to the elements

contained in MOP documents. First, MOP document structure presents a natural

way for operators to think and reason about operational activities. Second, the logic

embedded in the design of these procedures represent the expert knowledge of MOP

designers to ensure that high-level operational goals and conceptual designs are met,

while minimizing unwanted side effects of operational actions. At a high level, PAC-

MAN maintains these desirable properties by allowing experts to define operational

procedures as before with one significant difference: The procedures defined in the

PACMAN framework are not static documents meant for human consumption, but

instead active method of procedures, or simply active documents (AD), meant for ex-

ecution in the PACMAN framework. As we explain in detail later, active documents

follow a Petri-Net model to capture all the critical elements required in the network

management procedures and described in MOP documents, forming a fundamental

building block for the automation of network operations. ADs enable the complete,

36

repeated, programmatic and automated execution of low-level management tasks, but

more importantly enable the construction of more sophisticated tasks. Specifically,

simple active documents can be composed and executed, with network-wide policies

enforced. The policies also fall nicely into the Petri-Net model and are programmable

to realize network-wide management objectives, e.g., prevent network partitioning.

In so doing, PACMAN raises the level of abstraction as the high-level operational

goal becomes part of the composed task, thus being enforced in an automated fash-

ion, eliminating the need for operators to be continually concerned about and actively

involved in how to carry out a goal amongst multiple tasks. Furthermore, the PAC-

MAN framework allows easy interaction with external tools to enable sophisticated

decision making to be naturally integrated into the network operational loop.

In this work, we make the following contributions:

• We analyze method-of-procedure documents from an operational network to

extract the network management primitives associated with network operations.

• We introduce active documents as a concise, composable, and machine-executable

representation of the actions, conditions and workflow logic that operators per-

form during network management tasks.

• We present the design and implementation of the PACMAN framework, an

execution environment that automates the execution of active documents.

• We bridge the gap between current operational practices and our automated en-

vironment with the AD creation framework, a set of tools which allow operators

to work in their native idiom to easily generate active documents.

• We demonstrate the effectiveness of the framework using several case studies

of common configuration tasks such as fault diagnosis, link maintenance, and a

more complicated task of IGP migration.

37

3.1 Management Primitives in Current Practice

To understand current best practice to extract the fundamental primitives and

requirements for performing network management operations in large networks, we

analyze real method of procedure (MOP) documents from a Tier-1 ISP and a major

router vendor. The ISP’s MOPs are propiatary, but an example of a MOP from

the router vendor can be found online [11]. These documents cover a wide variety

of network management tasks, including customer provisioning, backbone link and

customer access link migration, software/hardware upgrade, troubleshooting VPN,

etc.

MOP documents are essentially instruction manuals for performing specific man-

agement tasks. They are usually modularized, consisting of multiple sub-tasks or

steps. For example, a BGP customer provisioning MOP from the ISP contains three

steps of link setup, IP setup and BGP session setup, where each step involves config-

uration changes on a router and verification of the resulting network running status.

A fault diagnosis MOP [11] often contains a sequence of network checks to perform,

such as ping, show bgp, and an instruction on how to interpret and act upon different

check results. These observations are consistent with our previous DFA study.

At a micro level, we categorize the fundamental network management primitives

that make up the MOPs as follows:

Configuration changing: Most of the management tasks involve configuration

modification, which directly leads to network device behavior change. For example,

configure a BGP session, change OSPF link metric etc.

Status acquiring: Network status information is crucial for the progression of net-

work operations. Two types of status are usually obtained: static information, such

as configuration, hardware components; dynamic information, such as BGP session

states, routing tables. The acquired information can either be stored for future use

or processed immediately.

Status processing: Status information is evaluated in a variety of ways, for ex-

ample, check router configuration to identify OSPF-enabled interfaces, verify if a

38

routing table contains a specific route, or even compare the current BGP peer list

with previous captured list. Based on the evaluation, different next steps may be

taken.

External synchronization: Explicit synchronization with other parties, including

field operators, centralized decision engine, etc., is very common. The operator can

either notify an external party indicating operational progress or wait on external

parties for their progress update, for example, wait for a field operator to finish an

on-site physical upgrade.

The lack of automation also manifests as the fact that these primitives need to be

composed together manually. We identify the following composition mechanisms (or

workflow logic):

Sequential: This most basic composition simply perform one sub-task after another.

It is useful for stitching many stand-alone operations into a complex operation.

If-else split: The purpose of status processing is to choose different subsequent sub-

tasks based on an if-else logic. For example, for different OS versions or interface

types, the configuration to change could be different.

Parallel split: In some cases, the operator is required to work on multiple devices

at the same time. In other cases, a monitoring sub-task is spawned on the side. For

example, creating a new terminal session to launch a continuous ping to monitor delay

and jitter of a potentially impacted path.

Iterative processing: Operators may need to process one element at a time, un-

til there is no such element left. For example, to identify all interfaces with IS-IS

configured, and disable them one by one.

Wrapper: Predefined “head” and “tail” sub-tasks can be used to wrap around other

sub-tasks. For example, saving the configuration and running status before and after

the operation for later verification.

Sequential composition is the easiest to automate, but due to the frequent occur-

rence of other cases, the majority of network management tasks cannot simply be

39

represented as a sequential flow. Other composition mechanisms are almost always

handled by human operators.

At a macro level, the descriptive nature of MOPs dictates that the realization of

management tasks have to rely on human operators, who consume the MOPs and

carry them out either manually or via limited automation, resulting in a process

that is known to be time-consuming and error-prone. Based on our analysis, only

configuration changing and network status acquiring are automated, to a limited

extent, through automated tools. The decision logic, for example reasoning about

network status to determine the proper next step, is usually described in high-level

terms and almost always left for human operators to realize. This deficit calls for

an automatable representation of workflow logic, which we integrate into our active

document design.

MOP documents are by necessity limited in scope, typically focusing on a specific

operational task, with little visibility into the network-wide impact of the task or its

interaction with other tasks. In the case of multiple concurrent tasks, the burden of

avoiding undesired network states based on reasoning about global network status

usually falls on human operators, who may not be able to correctly perform such

reasoning due to knowledge deficit or resource constraint. The same problem is valid

for the DFA model, as the execution of each DFA would progress the operation on

an interface, while little support is available to coordinate the progression of multiple

interfaces. This motivates us to design active documents that are composable and

capable for network-aware policy enforcement. On the other hand, while tools are

available to show how some operational tasks (e.g., costing out a link) might impact

the network [57], the interaction with such tools is currently largely left to operations

personal.

3.1.1 Motivation for Using a Petri-Net Model

We argue that a Petri-Net model is suitable for abstracting network management

operations.

40

First, Petri-Net is known to be good for abstracting and automating workflow

logic [70]. Indeed many support systems are made based on the Petri-Net model [29,

92, 117]. Within the context of network management, the execution logic of Petri-Net

naturally maps to that of network management tasks: all the management primitives

identified above can be captured by the two types of nodes in the Petri-Net model.

Second, Petri-Net explicitly handles concurrency. It has been used to model and

reason about multi-threaded programs [79]. For us, instead of modeling individual

interfaces as DFAs and worry about the coordination of DFA progressions, we can

use Petri-Net to explicitly regulate the execution of different parts of the network.

Third, Petri-Net is a graph-based model, containing nodes and edges. As we

show later in Section 3.2.2, it is fairly easy to combine multiple graph representations

together to realize the composition mechanisms mentioned above.

Fourth, Petri-Net allows imposing higher level control logic to regular the execu-

tion of the modeled workflow. In a recent work, Wang et al. proposed to eliminate

deadlocks in multi-threaded programs through modifying the Petri-Net model of the

corresponding programs [115]. In our work, we show that this model can help us

enforce network-wide properties.

3.2 The PACMAN Framework

PACMAN is motivated by the fact that automation is limited in current net-

work management. We tackle this problem by introducing a new abstraction that

incorporates all required operational primitives and compositional mechanisms iden-

tified from MOP documents, allowing natural absorption and formal representation

of the domain knowledge and full automation of the network operations. As a step

further, the abstractions allow multiple tasks to be independently specified but auto-

mated simultaneously with global awareness seamlessly imposed without additional

manual involvement; therefore, they overcome the task-centric nature of MOP doc-

uments. To the contrary, traditional scripts are usually ad-hoc and do not allow

systematic composition, coordination across multiple executions, and integration of

41

Active Document Library

Network
Operator/
Designer

C
o
m
p
o
s
it
io
n

C
re
a
ti
o
n

E
x
e
c
u
ti
o
n

Network
Database

Active
Document

Simple
Execution
Task

Composed
Execution
Task

Network
Elements

Running
Execution
Task

Execution Engine
External
Entities

Network-aware
Policy Mechanism

Figure 3.1: The PACMAN framework

42

network awareness.

PACMAN framework is conceptually divided into three aspects, namely creation,

composition and execution, as shown in Figure 3.1.

Creation is a crucial step which allows network operators or experts to create in-

stances of our abstraction, named Active Document, to describe and further enable the

automation of the workflow of network management tasks in a form that is accurate,

extensible, and composable. Unlike MOPs that are used to guide human operators,

active documents can be executed on different networks to fulfill different manage-

ment tasks. Compared to traditional scripts that at best automate the generation

and modification of configuration on network devices, an active document also en-

capsulates the logical reasoning that guides the workflow of a management task. This

capability enables full automation of network management tasks, minimizing human

involvement. We describe the details regarding active documents in Section 3.2.1.

Active document models the primitives and composition mechanisms derived from

MOP documents in a straightforward fashion, thus can be created by anyone who

understands these documents, enabling our framework to quickly absorb the expert

knowledge from existing MOP documents to form our own active document library.

To illustrate this conversion process, a framework to enable semi-automated active

document creation is described in §3.3. Note that once an AD is generated, it can be

re-used and combined with other ADs for repeated and controlled executions.

Composition is the step when specific management tasks are created from the

abstract active documents. An execution task can be generated in multiple ways: (i)

a simple execution task is generated by selecting an AD from the AD library and

assigning proper parameters either manually or from external network databases; (ii)

a composed execution task is created from one or more execution tasks following a

proper composition mechanism; (iii) a composed execution task can be further en-

hanced by adding network-aware policies, each of which regulates the execution flow

by reasoning about global network conditions, automatically guarantee that the exe-

cution of a collection of task-centric operations would not violate network-wide con-

straints. Note that such policies are pre-defined and can be selected and automatically

43

imposed during composition. These mechanisms provide the means by which opera-

tors can start small and simple (developing task-centric ADs) yet achieve automation

of network-wide coordination. Existing coordination and policy enforcement in man-

agement operations is usually either undocumented or written in high-level terms in

MOP documents, due to the complexity involved. It is mostly done by skilled hu-

man operators, e.g., who can decide when to execute which script so that traffic shift

is minimized. PACMAN, on the other hand, provides a fully automated solution,

enabled by the flexible and generic active document design.

Execution is the stage in which the management operations described by the exe-

cution tasks are actually effected onto the physical network with the support provided

by an execution engine. We envision each network to have such an execution engine,

which carries out the execution tasks in a fully automated fashion, achieving the goal

of each task by reproducing the workflow and decision logic embedded in the ADs.

Illustrated in Figure 3.1, as a result of running the execution tasks, the execution

engine interfaces with devices in the network to perform the configuration change

specified by the execution task, obtain various types of network status, and carry

out the embedded reasoning logic. The execution engine also interacts with entities

external to the PACMAN framework. As shown in the figure, these external entities

might also interact with the network. Examples might include stand-alone network

monitoring tools, or an on-site operator that is signaled that the network has been

readied for the replacement of a router linecard, or some other manual operational

task. The execution engine is also responsible for scheduling multiple tasks to run

concurrently, providing failure handling support, etc., moving closer to its goal of

minimizing human involvement.

Finally, we note that the relationship among active documents, the execution

engine, and running execution tasks is analogous to that among program binaries,

the operating system, and running processes. Similar to what an operating system

does, the execution engine provides the running environment to the execution tasks,

ensuring the correct and automated task execution according to the AD. We now

explain these three aspects in detail in the following sections.

44

Node type API Call Name Functionality

Action
CommitConfigDelta() Commit a configuration change to a

target device.
NotifyEntity() Send messages to external entities.

Condition

QueryDeviceStatus() Obtain physical device status informa-
tion.

QueryEntity() Obtain information from external en-
tities.

QueryExecutionState() Obtain execution task running status.
TaskSucceed(), TaskFail() Notify execution engine that task has

succeeded or failed

Table 3.1: API calls supported by the execution engine

We now consider each of the PACMAN components in detail.

3.2.1 Active Documents

In a nutshell, active documents follow a Petri-Net model [93], whose graph rep-

resentation encodes the required network management primitives and allows flexible

composition mechanisms described in Section 3.1. Like a program binary, an active

document can be executed on the network with sufficient input parameters.

Elements: Petri nets are bipartite directed graphs containing two types of nodes:

places, shown as circles, and transitions, shown as bars. We associate key manage-

ment primitives to these two types of nodes: Action activities (corresponding to bars)

include configuration or state modification and external notification; Condition ac-

tivities (corresponding to circles) are status acquiring followed by status processing.

We abstract receiving information from external parties as a type of status acquiring

as well. This functional division keeps our AD model simple without compromis-

ing its functionality. The edges between nodes encapsulates the workflow of active

documents, as we describe next.

Execution: When executed, a node in the graph effects the corresponding type of

activity embedded. For example, an action node may emit a configuration change

that adds a BGP neighbor setup on a router, while a condition node may check the

45

Figure 3.2: Active document node execution

BGP neighbor status and verify if the session is established. The execution of action

and condition nodes may result in calling a set of APIs provided by the execution

engine, which will be described later, to interact with devices or external parties, as

shown in Table 3.1. For example, an action node should call CommitConfigDelta()

by specifying the target router and configuration to change.

The progression ordering and dependency among these activities is modeled as

the arrows between nodes. An arrow from node a to node b represents a happen-after

relationship during execution. The basic execution mechanisms of active documents

are shown in Figure 3.2. Each arrow is marked as either enabled or disabled.1 An

action node is executed only if all of its incoming arrows are enabled. After execution,

all incoming arrows of the action node are changed to disabled, while all outgoing

arrows are marked as enabled (shown in Figure 3.2-a). A condition node is executed

if one of its incoming arrows are enabled. After executing, one of the enabled in-

coming arrows is switched to disabled, and only one of outgoing arrows is enabled

based on the status processing result performed of the condition activity (shown in

Figure 3.2-b). By using the structural elements [111] shown in Figure 3.3, Petri net is

capable of modeling generic and complex workflows, fully covering the compositional

mechanisms from MOP documents. These paradigms are capable of handling all the

composition mechanisms we discussed in §3.1. We show how to design ADs to enable

the automation of different realistic network management tasks in §3.4.

To allow reuse, the activities associated with the nodes in an AD are stored as tem-

plates. For example, a condition node that checks BGP session establishment would

1Petri net executes by passing tokens between places through transitions, which is equivalent to
enabling and disabling arrows in AD execution.

46

Figure 3.3: Active document design paradigms

Figure 3.4: An example active document

47

be specified as “Check BGP session to PARA_PEER_IP on router PARA_TARGET_DEVICE”,

where the two placeholders are replaced during execution with actual values specified

in the execution task.

Besides choosing a follow-up action, an executed condition node can decide that

the management task has succeeded or failed. In these cases, the API functions

TaskSucceed() and TaskFail() are called respectively, similar to exit() statement

in C programs. The execution engine stops the execution task and handles the failure

if TaskFail() is called.

Example: Figure 3.4 shows an active document that can be used to set up a BGP

session between two routers. Action A0 is not performing any activities, except to

create two parallel branches to operate on two routers. Conditions C0 and C1 launch

a ping on both routers to see if the other end is reachable. The task fails if either ping

fails. Otherwise, actions A1 and A2 are executed to add the actual BGP neighbor

configurations on both routers. Then, conditions C2 and C3 check if the configured

BGP session is up on both ends; only if both condition checks succeed, can the

action in A3 be executed. A dummy action node is used at the head and a dummy

condition node at the tail of the active document, if necessary. For example, the

bottom condition node in the example does not perform any activities but directly

calls TaskSucceed().

3.2.2 Execution Task Composition

While active documents describe the workflow of management tasks in the ab-

stract, simple execution tasks are used to specify specific instantiations of ADs by

replacing all template placeholders with appropriate parameter assignments, as shown

in Figure 3.1. For example, an active document to configure an IP address on a par-

ticular interface of a router needs the parameters of router IP address, interface name

and IP address to set. The parameters are usually generated from external network

related databases [41, 53]. A practical concern is that the database could be out-

of-sync with the actual network state, which is a problem for existing management

48

Figure 3.5: Sequential task composition

methods as well. To alleviate the potential negative impact, ADs can be designed to

always perform in-sync checks at the start of execution.

We describe three composition mechanisms for generating composed execution

tasks in detail next.

Sequential: Figure 3.5 shows how we apply a sequential ordering onto two tasks

(failures are not shown for simplicity), namely the link setup task as Task 0 and the

BGP configure task as Task 1, resulting in a “BGP peering session setup” task as

the composed task. A strict ordering is enforced: a task is only executed when the

previous task succeeds; the composed task succeeds if the last task succeeds. Note

that node C_0_4 originally calls TaskSucceed() if task succeeds. This API call is

replaced with an edge pointing to A_1_0 to stitch the two tasks together.

Meta structure: Figure 3.6 shows an example meta structure for automating op-

erations before, during and after an execution task. The composed task starts by

taking a snapshot of the running status of the target device. At the same time, a

loop structure (shown on the right) is used to continuously monitor network running

status via ping or dedicated traffic generation engine. If a network disruption is de-

tected, TaskFail() is called to perform roll back immediately. When the wrapped

task finishes, another snapshot of the network status is taken and compared with the

49

Figure 3.6: Wrapper construct for concurrent traffic disruption detection and state
diffing

previous one. Failure is reported if certain criteria are not met, e.g., some BGP ses-

sions fail to establish. This is particularly useful for supporting software or hardware

upgrade tasks.

Parallel with policy enforced: Figure 3.7 shows how several tasks are composed

to execute in parallel but with a network-aware policy enforced. Each dotted box

contains the original AD of each task for composition (only one action node and one

condition node are shown for simplicity). A policy condition node (or policy node)

is added to point to every action node in each task. Once imposed, the policy node

becomes an additional condition to satisfy for each action node, thus it can embed a

network-aware decision logic that goes beyond individual tasks. We show later how

generic policies, like “prevent network partitioning” and “prevent link overloading”,

can be implemented. Policy nodes are usually written by network experts and can

be directly used to regulate generic execution tasks. This further lowers the bar for

AD creation, as existing policies can be applied to carry out the more complicated

decision logic.

The policy node does not simply serialize the actions in each tasks. There are

multiple arrows pointing from the dummy start action node to the policy node. This

effectively adds multiple enabled arrows to the policy node, so that the policy node

50

Figure 3.7: Policy enforcement in parallel composed tasks

does not need to wait for an action to finish before enabling another action, allowing

multiple action nodes to be executed concurrently, if permitted by the policy. As

shown in Figure 3.7, when the action node is done, it would enable the added arrow

pointing back to the policy node, such that the policy node can launch again to select

the next action node to run, if there is any.

The active document design together with the sophisticated composition support

completes the picture of PACMAN’s capability for fulfilling automated network man-

agement. It fully satisfies the requirements of automating MOP documents, but also

goes beyond that by imposing network awareness without additional manual work.

3.2.3 Execution Engine

An execution engine runs all execution tasks like separate programs, by providing

three main functions:

Provide execution environment: Like an operating system, the execution engine

allows each running execution task to interact with physical devices or external enti-

51

ties through a set of API calls. The execution state of an execution task is maintained

as a collection of enabled arrows by the execution engine. To start an execution task,

a dummy condition node is added with an enabled outgoing arrow pointing to the

start action node. This effectively allows the start action node to activate the whole

execution task. The enabled arrows for each execution task is updated after a node

execution finishes. An execution task finishes by calling TaskSucceed().

Handle API calls: To support the most common CommitConfigDelta() and

QueryDeviceStatus() calls, the configuration delta or status query template is first

parametrized, based on the input parameters to the execution task, and then fed

into the proper device, which is usually indicated in the input parameters as well. If

the configuration change is accepted by the device, the API call is done. A config-

uration delta may not be accepted by the target device for various reasons, e.g.,

command syntax error, missing reference links, or device errors. In these cases,

TaskFail() is called by the execution engine for the execution task. NotifyEntity()

and QueryEntity() are invoked based on the node specification. The message or

query should be parametrized as well. QueryExecutionState() returns the list of

enabled arrows and the current nodes to the calling condition node, mostly used in

policy nodes that need to reason about the execution state.

Handle failures: An execution task fails if TaskFail() is called. The execution

task is stopped immediately, and a snapshot of the execution status is taken, which

consists of the result for QueryExecutingState() along with the condition node that

reports the failure. These are recorded for future manual inspection. The execution

engine allows different failure mitigation strategies. By default, the effect of the

whole execution task is rolled back. To support this, the execution engine maintains

an execution history for each task. The rollback action is done by undoing all the

configuration changes made based on history information. If external entities are

notified in any form, revoke messages are sent. Other mitigation strategies may be

also be used, such as no-rollback, partial rollback or redo.

52

AD
Editor

ADADADAD
AD

Active
Document Library

Extractor

MOP/
Common

Best Practice

Network
Element

Manual
Configuration

RecorderOperator

Convert

Verify

Figure 3.8: AD Creation Framework

3.3 Creating Active Documents

In Section 3.2 we abstractly described the creation of active documents and their

derived execution tasks. We now describe a practical framework to assist the rapid

creation of ADs. This AD creation framework is depicted in Figure 3.8. There are

two requirements for building this creation framework: i) high usability, which can

lead to quick adoption; ii) high expressiveness, so that the generated ADs describe

management tasks accurately. The creation can be assisted from network operational

logs, like TACACS. As shown in Chapter II, we can indeed extract out performed

command sequences. Such creation framework, however, is still necessary, because

operational logs may not capture all the necessary information, for example the results

of status checking commands. An AD is created via the following three steps, allowing

quick transformation from MOPs to ADs, forming an AD library:

Task observation: An operator or AD designer, guided by the MOP documents

or with a common best practice in mind, performs a network management task on a

set of network elements, typically in a testbed environment, for example, ShadowNet

as we describe in Chapter V. Operators directly operate on a set of target devices

using their familiar tools and mechanisms, e.g., spawn multiple SSH sessions to CLI,

while we use a recorder to transparently capture the full interaction. We record: i)

53

Figure 3.9: Event extraction from console log

performed activities through CLI, e.g., modify configuration, change protocol state

(such as BGP session reset), acquire network status; ii) device response and internal

states, e.g., displayed network status, emitted SNMP trap messages and device log

messages. The recordings are tagged with timestamps.

Event extraction: Action and condition activities are extracted from the recordings

automatically by an extractor. Contiguous configuration changes are grouped together

as a single event, as long as there are no condition activities in the middle, as shown in

Figure 3.9. Similarly, repetitive condition checks with the same result are combined.

When device status is inspected in the CLI, we correlate logs from other sources, such

as SNMP or device log message, to augment the condition event. That is, we allow

the operator to specify the decision logic based on those information sources as well.

Operator annotation: The events extracted from previous step are presented as

action or condition nodes in an AD editor, pending operators’ annotation to complete

the AD generation. The operator has to specify i) the parameters that are specific to

tasks, so that we abstract them as placeholders for future re-use, ii) the workflow logic

by drawing arrows between nodes, e.g., identify two parallel branches, iii) the infor-

mation source and decision logic in each condition node, iv) external synchronization

events, since they are not recorded, v) additional events for hypothetical scenarios,

e.g., failure detection (condition) and response (action).

Figure 3.10 shows an example of operator annotation. The left side shows the

processed CLI log by events generation. C indicates a condition checking, followed

by the response (R) from the device; A indicates an action performed by the user. On

54

Figure 3.10: Example of operator annotation

the right side, the annotation result is shown: all IP addresses and interface names

are replaced by generic placeholders, such as INT_NAME; the nodes are connected by

arrows, indicating execution flow; for each condition nodes, the actual decision process

is formally specified in the form of a sequence of if-then-else statements, which

process the retrieved status information and determines a follow-up action. The same

framework for annotation can be used to directly create or modify ADs, e.g., by a

skilled designer. This creation process only needs to be done once, as the generated

ADs can be re-used and composed in the future to fulfill similar or even more complex

tasks.

One limitation of this creation framework is that the recorded AD reflects the

operations on a fixed amount of devices. As such, tasks like “to enable IS-IS on all

routers” cannot be captured by a single AD, because the number of routers in the

creation environment does not match that in the production environment. To over-

come this problem, it is advised that the operators create ADs that are smaller and

more specialized, e.g., “to enable IS-IS on a single router”, and use the composition

55

Figure 3.11: Layer-3 VPN diagnostic AD

mechanisms to stitch multiple ADs together. For more sophisticated tasks, e.g., “op-

erate on all the routers that meet a certain criterion”, the AD designer can design

ADs to operate on one device, while encoding the selection criteria into the beginning

of the AD, so that the operator can simply compose an execution task that works on

all routers. Another solution is to leverage on external databases to determine the

set of devices to operate on.

3.4 Case studies

In this section, we use several realistic examples to show how active documents are

used to perform complex yet automated network operations in the PACMAN frame-

work. Since a quantitative measurement of improvement is hard, we qualitatively

evaluate the benefit of PACMAN comparing to existing approaches.

3.4.1 Fault Diagnosis

Active document is an ideal candidate for automating the fault diagnosis process.

Condition nodes can be used to retrieve relevant information from various devices and

then reason about the symptom. The outgoing arrows of condition nodes correspond

to different diagnosis results and may lead to additional steps.

Figure 3.11 shows a portion of an active document that is used to diagnose layer-3

VPN connectivity. This AD is converted from a MOP provided by a major router

56

vendor [11]. The whole diagnosis procedure checks multiple routers to see if VPN

routes can properly propagate from a local customer edge (CE) router, through the

local provider edge (PE) router, and reach the remote PE router and remote CE. The

example shows the portion that diagnoses if routes propagate correctly from local PE

to remote PE. C0 logs into the remote PE router to check if the loopback IP address

of the local CE router is seen on its layer-3 VPN routing table. If true, it means

that routes from the local CE correctly propagate to remote PE, thus this portion of

AD can be bypassed. Otherwise, A0 is executed to spawn multiple tests to further

diagnose the problem: e.g., C2 checks on remote PE if the iBGP session to the local

PE is properly established; if not, the problem is found, leading to the execution of

A2 which either starts another sub-task to automatically fix the BGP session or calls

NotifyEntity() to contact an operator about the diagnosis result.

The flexible composition capability provided by active documents allows network-

wide fault detection, fault diagnosis and fault recovery in a closed loop by stitching

appropriate ADs, reducing human involvement significantly, as such composition is

only done once and can be reused in the future. The state of the art in automated

fault diagnosis relies on router vendor support [10] to execute diagnosis scripts auto-

matically when certain condition is met. This support is limited to a single device,

while PACMAN can easily correlate and reason about status from devices across the

network.

3.4.2 Link Maintenance

Figure 3.12 shows a planned maintenance task with enhancement by applying a

network-aware policy. The dashed box contains part of the original active document:

action node A0 increases the OSPF metric of the target link to cost it out; A1 brings

the link down by changing configuration and, at the same time, notifies field operators,

signaling them to start the on-site maintenance on related physical interfaces. The

link bring-up procedure is similar thus ignored for brevity.

This task involves OSPF weight change and interface shut down thus has the

57

A0

C0

A1

FO: Field Operator

A0: CommitConfigDelta(...) // OSPF link cost-out

C0: Dummy node

A1: CommitConfigDelta(...) // shut down interface
 NotifyEntity("FO", "proceed with PARA_INT_NAME ")

P0: delay action that will cause predicted link overload,
 delay shut down a link when there is still traffic...

P0

Figure 3.12: Planned maintenance AD

potential of negatively impacting live traffic. Current solutions rely on operators to

manually predict and avoid negative impact, a usually slow and unreliable process,

which is particularly undesired for such tasks with stringent requirements on timing

and reliability. In PACMAN, we can impose a policy node, like P0, to enforce a

high-level policy that automates a network-aware decision process for minimizing

traffic disruption. P0 is composed with the original AD with added arrows pointing

to all action nodes. In essence, P0 is a condition node that reasons about network-

wide states, such as traffic demand matrix, existing OSPF weights, etc., and makes

decisions by enabling the arrows to appropriate action nodes. In effect, P0 will not

allow A0 (OSPF cost-out) to proceed, unless the estimated traffic shift caused by A0

would not overload other links; P0 will not allow A1 (interface shut down), unless i) the

routing has converged and ii) indeed no traffic is flowing through the link. Given the

composition capability, P0 can be used to regulate arbitrary tasks without additional

manual work. This is especially useful for carrying out simultaneous maintenance

tasks, which are hard to coordinate by operators and may cause significant network

downtime, e.g., a partitioned network.

Besides using network-aware policy control, this maintenance job can also take

advantage of external reasoning platforms, such as a traffic engineering planner [57].

For example, C0 can query the planner if it is permitted to shut down the interface.

This allows PACMAN to take full advantage of existing infrastructures.

58

Figure 3.13: A simplified ISP Backbone

Figure 3.14: Task design for OSPF to IS-IS migration

3.4.3 IGP Migration

Many ISP networks have performed IGP migration for a variety of reasons [37].

IGP migration is a challenging task as IGP is deep down the dependency stack —

many other network services and protocols depend on it. Let us consider the task of

migrating a network from running OSPF to IS-IS (actually performed by two large

ISPs previously [19, 61].)

The migration process first enables IS-IS (with a lower preference) in the network

and then disables OSPF. One of the challenges is to prevent transient forwarding

loops. Consider a simplified ISP topology in Figure 3.13. After IS-IS is enabled and

59

running together with OSPF, it is possible that link CR1 → CR2 has a high weight

in OSPF and CR2 → CR3 has a high weight in IS-IS. The traffic from BR1 to BR2

goes from BR1 − CR1 − CR3 − CR2 − BR2, as OSPF is still the preferred IGP.

If OSPF is disabled first on CR3, CR1 still forwards traffic to CR3 because CR1

still runs and prefers OSPF, and the shutdown of CR3’s OSPF will not be detected

after a timeout. CR3, on the other hand, switches to IS-IS immediately, thus starts

to forward traffic via the path CR3 − CR1 − CR2 − BR2. As a result, packets

would bounce between CR1 and CR3, until OSPF re-converges. A simple solution

to prevent this in common ISP setups is to disable OSPF on all edge routers first and

then on all core routers [19]. This enforcement, however, is unreliable and requires

much manual effort in existing approach.

PACMAN automates this process using a composed execution task, with two

major stages, as shown in Figure 3.14:

Stage 1: for each router, i) configure iso layer on all interfaces; ii) verify iso is

enabled; iii) configure IS-IS protocol to run with a lower preference than OSPF; iv)

verify the IS-IS protocol has learned all the routes as OSPF does.

Stage 2: for each router, i) deactivate OSPF; ii) verify no loss of routes; iii) remove

OSPF config, adjust IS-IS preference.

Both stages are also composed tasks, executed in sequential order. For stage1, all

sub-tasks are executed in a simple parallel fashion, because they do not interfere with

each other. For stage2, all sub-tasks are executed in parallel, with additional policy

enforcement (ordering constraint) to avoid forwarding loops. We will illustrate in the

§3.6.1 the effectiveness and correctness of this composition.

3.5 Implementation

In this section, we briefly describe our implementation of the PACMAN frame-

work. Two major components are the AD creation framework and the execution

engine. All implementations were performed in Java, and we mostly focus on Juniper

60

routers due to availability in our test environment, but our methodology extends to

other network devices.

3.5.1 Active Document Creator

Our implementation of AD creator contains several pieces, some of which leverage

existing software packages. We customize screen and script Linux commands such

that SSH sessions can be made simultaneously to the same or different devices while

each session interaction being recorded with timing information. SNMP messages and

device log messages are constantly being monitored and later retrieved to correlate

with console commands based on timing. The annotation is done in a Java-based

GUI. For each action or condition node, a pop-out window allows the operator to

specify the parameters. For condition nodes, a chain of tests is specified to represent

an if-then-else decision making. Each test need to specify: an information source,

which could be the result of a status-checking command, SNMP or device logs, or

previously saved information; a predicate as test body, which can be as simple as

string matching, or as complicated as an XML query — Juniper routers support

XML-based interaction for retrieving device status; a test result, which can be an

arrow to enable or calling an API.

3.5.2 Execution Tasks and Execution Engine

A simple execution task is created from an AD and a parameter assignment. A

quick sanitization process is performed to make sure that enough parameters are

specified and the values conform to the parameter types. When composing execution

tasks together, the node names and parameter names used in ADs of different sub-

tasks are renamed to avoid confusion. For example, node M is renamed as N_M where

N_ is a prefix added for all the nodes of the sub-task. (This renaming effect can be

seen in Figure 3.5.)

Figure 3.15 shows the high-level architecture for our execution engine. Each run-

ning execution task is associated with a list of enabled arrows. The execution engine

61

Figure 3.15: Execution engine architecture

scans all execution tasks periodically. Based on the enabled arrows, the nodes that

are ready to execute in each executed task is added into a queue waiting for execution.

A node processor is responsible for actual execution of the nodes. Multiple worker

threads are spawned to handle concurrency. If a worker thread is available, a node

is fetched from the waiting queue. Rather than picking nodes from the head of

the queue, a node is randomly selected from the queue, to ensure fairness and avoid

potential live lock. To execute a node, parameter values are copied from the execution

task to replace the parameter placeholders in the node.

To handle CommitConfigDelta() and QueryDeviceStatus() in a node, the worker

thread contacts physical devices specified via either CLI or NetConf interface. Con-

nections to recently contacted physical devices are cached and reused to reduce con-

nection establishment overhead. Configuration changes made to the same device

are serialized to avoid potential conflicts. QueryEntity() and NotifyEntity() are

simple wrappers to external scripts. For example, executing ”NotifyEntity(’mail’,

’a@b.com’, ’done’)” invokes a shell command ”./mail.sh a@b.com done”.

62

3.5.3 Programming Policy Nodes

Algorithm 1 Implementation of the prioritization policy node
Require: AdSpec AS, ExecutionState ES, NetworkState NS, DemandMatrix DM

1: W ← GenWaitingNodeList(AS,ES)
2: for action n in W do

3: NewState ← NS applies action of n
4: calculate connectivity matrix and traffic on each link based on NewState and DM

5: if in NewState network is not partitioned and no overloaded link then

6: return n

7: end if

8: end for

9: return null

Policy nodes can be much more complicated than the regular condition nodes

created via the AD creator. In fact, we allow policy nodes to be written in Java and

handled using the same execution engine. When executed, a policy node first identifies

a set of action nodes that have all other pre-conditions satisfied and are waiting for

its permission to proceed. Among these nodes, the policy node can choose one from

them to allow its execution by enabling the final arrow. It is possible for the policy

node to decide that none of those actions should proceed at the moment. On the

other hand, a policy node sometimes need to consider the action nodes that might

be executed in the future, because it might be a better choice to execute them rather

than currently ready nodes. Determining these two sets of nodes can be done via flow

analysis based on the graph structure of the composed AD and execution state. We

provide generic helper functions to ease the development process.

Here we describe the sketch of a policy node, which specializes in avoiding network

partitioning and traffic overloading caused by arbitrary simultaneous network tasks,

shown in Algorithm 1. The first line uses a provided function to generate a list

of action nodes that are waiting for permission. Line 2-8 iterate through all such

nodes. For each action node being considered, the resulting network state NewState,

including reachability and routing table, is calculated based on the current network

state and the configuration change embedded in the action node. If a partitioned

network is detected, the action node will not be permitted. Combining the traffic

demand matrix and new routing table, an action is permitted if it does not cause

63

0 5 10 15 20 25 30
Ping fail

Ping pass

IS−IS to OSPF Migration with Policy Enforcement

Time (second)

0 5 10 15 20 25 30
Ping fail

Ping pass

IS−IS to OSPF Migration without Policy Enforcement

Time (second)

Change
 made

Task
 start

Figure 3.16: Effectiveness of policy enforcement

other links to overload or exceed some pre-defined threshold, e.g., 90% utilization

ratio.

3.6 Evaluation

We evaluated our prototype implementation to demonstrate its effectiveness in

preventing operational errors and ensuring efficient configuration management, which

scales well with network size.

3.6.1 Network-awareness Support

To exemplify the effectiveness of policy enforcement, we perform stage 2 of the

IGP migration task (disabling OSPF on all routers) in two different ways: i) Through

multiple individual tasks, each of which disables OSPF on one router, processed by

the execution engine concurrently, mimicking the effect of several operators work-

ing on different part of the network simultaneously, yet unaware of the potential

problem. Note that such concurrent and collaborative management is very common

in large ISPs, as we studied in Chapter II. ii) Through one composed task, using

64

the prioritization policy to ensure edge routers are first updated before changing the

configuration of any core routers.

We used six Juniper routers on our evaluation platform described in Chapter V,

connected as shown in Figure 3.13. The experiments were performed on the network

state after stage 1 of IGP migration had finished (IS-IS was configured as the less-

preferred IGP, while OSPF was still running as the preferred IGP). One machine

connected to BR1 was sending ping to another machine connected to BR3 during

the migration period. Link weights of OSPF and IS-IS were intentionally tweaked to

create the situation discussed in §3.4.3.

Figure 3.16 shows the result. When individual tasks were executed in parallel,

repeating this experiment multiple times showed that when the task working on

CR3 is executes first a forwarding loop was indeed created as shown in the top

figure: the connectivity was temporarily lost for a few seconds (the amount of time

to commit configuration changes on Juniper routers) after the task started. The

connectivity was resumed and lost again before it eventually stabilized, mostly due

to the complex interaction of the two IGP protocols. In contrast, the composed task

using prioritization policy did not experience any problems, as shown in the bottom

figure.

3.6.2 Automating Network Operations

We again use the IGP migration task in an ISP depicted in Figure 3.14 to estimate

the time saving by using PACMAN to automate network operations. For comparison

purposes, one of the authors who is proficient in network management and router

configuration performed the migration task. That author performed the task several

times beforehand for training purposes and then reported the lower-bound estimate

of how long a sub-task would take when executed manually (we expect the actual

performance numbers from real operators to be quite similar).

The amount of time to manually perform configuration change on the routers takes

less than 2 minutes each, thus ideally 12 minutes to finish six routers. Interestingly,

65

the total amount of time to finish the migration task for all routers takes no less than

25 minutes, due to additional network status verification and inter-device synchro-

nization. In contrast, PACMAN finishes the whole migration task within 2 minutes -

90% of time on effecting configuration change and acquiring status via NetConf and

the rest on internal processing. If we extrapolate to a network of 100 routers, the

manual operation time is over 400 minutes, exceeding an entire maintenance window,

which typically lasts for at most three to four hours. Even worse, when the operated

network is considerably larger, the manual operation time is unlikely to scale linearly,

despite the potential use of automated scripts, due to more complicated network sta-

tus verification and additional synchronization between involved human operators. In

fact, the IGP migration processes documented online [19] took several maintenance

windows across 3-5 days to finish. Automated scripts can offer limited help, as they

cannot be easily coordinated. For PACMAN, since all the verification process are ac-

curately modeled and automatically carried out, it can easily scale with the network

size.

3.6.3 System Constraints

The execution engine directly interacts with physical devices. Out-of-band access,

which is standard in ISP environment, provides a more reliable connectivity channel,

but the bandwidth is limited, ranging from 9.6kbps serial console, 56Kbps modem

line to 1.5Mbps T1 connection. Router configuration in XML format is usually tens

or hundreds of kilobytes. Assuming a T1 connection, it may take around hundreds of

milliseconds to transfer a complete configuration file. Fortunately, most management

activities can be performed in-band where bandwidth is not an issue.

We performed some micro-benchmarks to investigate resource constraints the

server that runs the execution engine. On a server with 2.5G Intel core 2 duo CPU, it

takes about 360µs to load a 2KB XML file with 86 lines, describing 10 routes in the

routing table. It takes about 950µs to perform an XPath query to count the number

of routes described in the XML file. The processing time should be on the order of

66

hundreds of milliseconds to handle 10000s routes. The processing power may become

a bottleneck when the reasoning activity becomes significantly more complicated.

This can either be mitigated by using multiple execution engines for load-balancing,

or offloading some reasoning logic to programmable routers.

3.7 Summary

In this chapter, we proposed the PACMAN platform, aiming to automate exist-

ing network management operations and enabling the adoption of new network-wide

operational practices. The key intuition behind our work is to use the right level of

abstraction which is both close enough to current management approach, thus enable

quick adoption, general enough to capture the complexity of existing approaches, and

powerful enough to automate and augment them.

Towards the goal of building automated network management system, PACMAN

uses the Active Document abstraction to systematically capture the dynamics of

network management tasks. This abstraction allows the composition and execution

at task level, thus raising the level of abstraction. The ability to integrate network-

wide policies distinguishes PACMAN from device-centric support from vendors and

task-oriented nature of MOPs.

We described the design and implementation of the PACMAN framework, and

used realistic usage scenarios to show its effectiveness. As future work, we plan to

corroborate with network operators for feedback and comments in order to further

improve the usability and practicality of PACMAN. In particular, we aim at allowing

more flexible creation and more programmable composition of active documents by

improving the interaction between human operators and our system.

67

CHAPTER IV

A Declarative System for Automated Network

Management

In the previous two chapters, we start from the low-level management practices,

in terms of the actual commands executed in a network and the method of procedure

documents that guide those executions, and build abstractions (DFA and Petri-Net)

on top of them with the goal to automate and augment network management opera-

tions. In this chapter, we take a top-down approach to satisfy the same goal. Starting

with the well-defined database model, we explore how the data model and database

operations fit network management purpose.

The traditional usage of databases in network management is predominantly for

archiving snapshots of network-related information to facilitate subsequent analysis,

such as data mining for misconfigurations [84] or traffic patterns [83]. In contrast,

we use the database notion as an abstraction layer that sits on top of the actual

network. We build a system, called COOLAID (COnfiguring cOmpLex and dynamic

networks AutomatIcally and Declaratively), which interacts with the underlying phys-

ical network and provides a database-like interface to facilitate network management

operations.

While the database model provides a clean and unified abstraction to capture

network-wide information and control network devices, the true power of our ap-

proach comes from a declarative logic-based language that we use to capture the

68

domain knowledge in network management. In particular, the configuration require-

ments for distributed protocols, the dependencies among network functionalities, and

the constraints for network-wide properties, can all be expressed accurately and suc-

cinctly in such a language. The captured domain knowledge can then be used in

a seamless and automated fashion to manage the data in our database abstraction,

which translates to the management of the physical network, while exposing simple

database interfaces to network operators. We show that new network management

primitives can be enabled, including network-wide reasoning, network configuration

automation, and misconfiguration prevention, allowing operators to better manage

their networks without being exposed to the overwhelming details.

Unlike PACMAN that captures and in some sense replays operational procedures,

COOLAID represents an approach that captures domain knowledge in abstract, while

leveraging an underlying system to reason and operate on a network following the ab-

stracted knowledge. We expect COOLAID to enable a move towards higher formalism

in representing domain knowledge from different stakeholders and role players (e.g.,

device vendors, service providers, network management tool developers), so that such

knowledge can be captured within the same framework and combined systematically

to automate network operations by systems like COOLAID, fundamentally relieving

the excessive burden on human operators.

We describe the design and implementation of COOLAID, and demonstrate the

effectiveness and scalability of COOLAID in a realistic distributed network testbed

and on other simulated large-scale topologies.

4.1 Motivation for Using a Database Abstraction

In this section, we explain in detail why database model is a good abstraction for

network management.

First, the database model allows a unified abstraction to view and manipulate the

network management related data. As we describe in Section 4.2.1, the database op-

erations in COOLAID capture configuration manipulation and status checking, which

69

are currently performed through a variety of interfaces. Operators have to deal with

the troublesome details of CLI, NetConf [15], SNMP [43], device logs, etc. Each of

these traditional management interface requires significant domain expertise to ma-

nipulate, while in COOLAID everything is done through database table queries and

updates, which are straightforward and convenient.

Second, this abstraction allows a single access point for all the network manage-

ment related data. Traditional management practice requires the operators to act

as an aggregation unit for accessing, interpreting and reasoning across multiple data

sources, which are usually in different formats and accessed with significantly dif-

ferent methods. Putting everything together not only simplifies network access, but

also, and more importantly, allows management tools to combine and reason about

multiple data sources without the need to explicitly dealing with the details. Note

that single access point does not mean single-point failure. We explain in Section 4.6

how such an abstraction can be realized in a robust fashion.

Third, recent advances in declarative systems [86] make database abstraction more

attractive. In particular, declarative languages are shown to be accurate and succinct

in expressing network policies [68] and distributed protocols [88]. Rather than using

declarative systems to replace how current network devices work [88], we use declar-

ative language to build a knowledge plane that sits on top of the existing network

infrastructure, and use the knowledge derived from declarative reasoning to guide

management practice.

Finally, modern databases follow the famous ACID properties [66], i.e., atomicity,

consistency, isolation, and durability. We argue that these properties are actually

very desirable in network management as well. In COOLAID, consistency translates

to the network-wide properties that should always hold if the network is functioning

correctly, such as all backbone nodes should be connected to each other. We show that

by enforcing consistency, we can prevent misconfigurations (Section 4.2.3) and handle

network dynamic events (Section 4.2.5). We provide detailed discussion regarding all

four properties in Section 4.3.3.

70

Human

Rules

Data Model

Controller

Domain Knowledge

Service providerVendor

StatusFacts Configurations

Physical Network

Manual

Interaction

COOLAID

Interaction

COOLAID

Component

Figure 4.1: COOLAID vs. manual management

4.2 Managing Networks in COOLAID

Our key observation about the current network management practice is that the

required domain expertise is unfortunately not captured in a systematic manner for

the purpose of re-use and automation. Therefore, the current practice is inherently

limited by human capability. As illustrated in Figure 4.1 with solid lines, human

operators play a central role to absorb a tremendous amount of domain knowledge

and directly interact with the underlying physical networks via a variety of rudimen-

tary interfaces, e.g., router CLIs. In particular, operators need to interpret network

facts (e.g., the list of routers, how they are connected, and customer service agree-

ments), the current configurations and up-to-date network status (e.g., if a BGP

session is indeed established), based on which to reason about existing network-level

functionalities (e.g., if a VPN service is correctly configured for a customer) or realize

additional features by changing configurations, and enforce network-wide constraints

(e.g., there must be a BGP full-mesh on core routers).

To minimize human involvement, a management system must satisfy three re-

quirements: (i) it must systematically and formally capture the domain knowledge,

in particular protocol dependencies and network-wide properties; (ii) the resulting

representations should allow the system to expose high-level management primitives

71

for automating management tasks; (iii) the system can re-use the knowledge base to

assist operators and other network management tools in a network-wide (cross-device)

manner.

In this section, we describe COOLAID, a network management system that satis-

fies these requirements. We first overview three key building blocks of the system,

and then unfold the new network management primitives enabled by COOLAID. The

enabling techniques for these primitives are described in §4.3, and our system imple-

mentation in §4.4.

4.2.1 COOLAID building blocks

Conceptually, COOLAID models a network of inter-connected devices as a dis-

tributed but centrally managed database, exposing an intuitive database-style inter-

face for operators to manage the entire network. Figure 4.1 depicts the COOLAID

building blocks with rounded-boxes, and their interaction with operators and the

network using dotted lines.

Data model: The data model creates a logically centralized database abstraction and

access point to cover all the traditional network management interfaces, which largely

include reading and modifying router configurations, checking network status and

provisioning data. The abstraction is designed to work with commodity devices, and

interoperable with existing management tools. We define three types of base tables1:

(i) Regular tables store fact-related data that naturally fit into a conventional database

(e.g., MySQL). (ii) Config tables store the live network configurations, in particular,

router states that are persistent across reboots, e.g., IP addresses and protocol-specific

parameters. (iii) Status tables represent the volatile aspect of device/network state,

such as protocol running status, routing table entries, or other dynamic status relevant

to network health, for example, ping results between routers. We describe how to

enable this abstraction on commodity network devices in §4.4.2.

Regular tables are only modified when necessary to reflect network changes, e.g.,

1We use the following naming convention: names of regular, config and status tables begin with
T, C, S respectively.

72

when new devices are introduced and new customer agreements are reached. Con-

fig tables are always in-sync with the network devices, and modifying these tables

causes actual configuration changes. Status tables are read-only, and table entries

are generated on-demand from traditional management interface, such as CLI and

SNMP2.

Rules: COOLAID represents network management domain knowledge, in particu-

lar protocol dependencies and network-wide requirements, as rules in the form of a

declarative query language. Each rule defines a database view table (or view in short),

which is derived from a query over other base tables or views. Intuitively, a view de-

rives higher-level network properties (e.g., if a feature is enabled) based on lower-level

information (e.g., the availability of the required configurations and other dependent

services). Formalizing domain knowledge as declarative rules has two benefits. First,

view querying is a well-defined procedure that hides intermediate steps and presents

meaningful end-results to the operators. Comparing to a manual reasoning process,

which is inherently limited by human operators, COOLAID can handle an expanding

knowledge base and network size with ease. Second, the rules can be re-used, as

they can be queried many times even on different networks. Note that operators do

not need to write any such rules. Specifically, we envision an environment where (i)

device vendors provide rules to capture both device-specific capabilities and network-

wide protocol configuration and dependency details (§4.2.2, §4.2.4) and (ii) service

providers define rules on how these vendor capabilities should be utilized to reliably

deliver customer services (§4.2.3, §4.2.5), and more importantly these rules operate

within the same framework.

Controller: As the “brain” of COOLAID, the controller acts as a database engine to

support straightforward database operations, like table query, insertion and deletion.

We will explain in the following sections about how these operations correspond to

a set of new management primitives. Fundamentally, the controller relieves majority

of the workload from the operators, by applying the rule-based domain knowledge

2Status tables contain important information for various management operations (e.g., fault
diagnosis). However, because this chapter primarily focuses on the configuration management, we
leave exploiting status tables as future work.

73

SF LASJ

SF:lo0
192.168.1.9/32

SJ:lo0
192.168.1.10/32

LA:lo0
192.168.1.11/32

SF:fe0 SJ:fe1 SJ:ge3 LA:ge0

Interface w/ OSPF Configured

Interface w/o OSPF Configured

Route
learned
locally

Route
Propagation Doesn’t

Propagate

Figure 4.2: Example network with OSPF configuration

onto the network state stored in the data model. The operators can stay at a high-

level of interaction, without touching the low-level details of the network. From

the database perspective, the controller supports recursive query processing, global

constraint enforcement, updatable views, and distributed transaction management.

Listing IV.1: Rules for OSPF Route Learning

R0 EnabledIntf(ifId, rId) :- TRouterIntf(ifId, rId),

CInterface(ifId, "enabled");

R1 OspfRoute(rId,prefix) :- EnabledIntf(ifId,rId),

CIntfPrefix(ifId,prefix),

CIntfOspf(ifId);

R2 OspfRoute(rId1,prefix) :- OspfRoute(rId2,prefix),

TIntfConnection(ifId1,rId1,ifId2,rId2),

EnabledIntf(ifId1,rId1), CIntfOspf(ifId1),

EnabledIntf(ifId2,rId2), CIntfOspf(ifId2);

4.2.2 Network-wide reasoning

COOLAID achieves the primitive of automated network-wide reasoning through

materializing the views by distributed recursive queries on top of the data model

74

TRouterIntf("SF:lo0","SF")

CInterface("SF:lo0","enabled")

CIntfPrefix("SF:lo0","192.168.1.9/32")

CIntfOspf("SF:lo0")

OspfRoute("SF", "192.168.1.9/32")

OspfRoute("SJ", "192.168.1.9/32")

Apply

R2

Apply

R1

Figure 4.3: Bottom-up view evaluation

presented in §4.2.1. We use a simple example to demonstrate how the knowledge

regarding OSPF route learning can be written as three rules in Listing IV.1. The

rules are written in a declarative language based on Datalog [100]3, where each rule

is defined as

rule name rule head :- rule body;

The rule head contains exactly one predicate as the view to be defined, and the rule

body contains predicates and Boolean expressions that derive the view. A rule is

intuitively read as “if everything in the body is true, then the head is true.”

Rule R0 defines a view EnabledIntf for identifying the list of enabled interfaces

in the network. It first joins a regular table TRouterIntf that contains the router

interface inventory and a config table CInterface with interface setups, and then

selects the interfaces that are configured as "Enabled". Rule R1 captures how a router

imports local OSPF routes, by stating that if an interface on a router is enabled (as

in EnabledIntf) and configured to run OSPF (as in CIntfOspf), then the prefix of its

IP address should be in the OSPF routing table of the router (OspfRoute). We are

ignoring some details, such as OSPF areas, for brevity. Finally, rule R2 expresses how

routes are propagated across routers, by stating that any OspfRoute on router rId2

can propagate to router rId1 if they have directly connected interfaces and both are

enabled and OSPF-speaking. Note that R2 is both distributed and recursive, as the

3We choose Datalog with stratified negation as our query language for its conciseness in repre-
senting recursive queries and negations and its tight connection to logic programming. Other query
languages, such as SQL and XQuery, if augmented with necessary features, such as recursion, are
also suitable to our framework.

75

CLogicalRouter

CProtocolOSPF

CRSVPInterface

CLogicalInterface CBGPNeighbor

CRoutingInstanceCOSPFInterfaceCMPLSInterface

CLSPConfig

LoopbackConstraint

ActiveLSP

LSPLinkByRSVP

EnabledRSVPInterface

LogicalTunnelInterface

EnabledOSPFInterfaceEnabledMPLSInterface EnabledVPLSInterface

ConfiguredBGPSession

ConnectedOspfPrefix

PairedLogicalTunnel

ConnectedLogicalInterface

OSPFLinkMPLSLink RSVPLink

OSPFPath

ActiveBGPSession

VPLSSignaling

MPLSPath RSVPPath

ActiveVPLSLink

VPLSLinkTransitiveConstraint VPLSLinkReflectiveConstraint

VPLS

OSPF

iBGP

RSVP

MPLS

LSP

Interface Setup Details

view

constraint

config table

legends:This dependency graph is for complexity

demonstration only. The texts in the little

boxes are not meant to be legible.

Figure 4.4: VPLS related view dependency graph

query touches multiple devices and the rule head is part of the rule body.

Figure 4.2 shows a small network with three routers. The interfaces connecting

routers SF and SJ, as well as their loopback interfaces, are OSPF-speaking and en-

abled, so that the loopback IP "192.168.1.9/32" configured on router SF should prop-

agate to router SJ, according to how OSPF works. Figure 4.3 illustrates how the en-

tries in the view tables are generated in a bottom-up fashion based on R0-R2, and even-

tually the entry OspfRoute("SJ","192.168.1.9/32") shows that “prefix 192.168.1.9/32

in the OSPF route table of router SJ.” On the other hand, there is no

("LA","192.168.1.9/32") entry, because the dependencies are not met.

Effectively, a simple query over OspfRoute can reveal the OSPF routes on all

routers to the operators without requiring them to understand how the route propa-

gation works across distributed network devices. Figure 4.4 shows that the knowledge

regarding complicated services like VPLS can be modeled with a stack of dependent

views. Operators only need to query the top view ActiveVPLSLink to acquire a list

of enabled VPLS connections, without understanding the details of all the dependent

protocols, such as MPLS, RSVP, etc.

76

4.2.3 Misconfiguration prevention

COOLAID uses constraints to detect and prevent misconfiguration. The constraints

dictate what data should not appear if the database is in a good state. That is,

COOLAID rejects an operation (e.g.,made by operators that may not fully estimate the

network-wide impact) if the outcome would violate the given constraints, before the

changes take effect on the routers. As a result, COOLAID can help prevent undesired

properties, such as network partitioning, service disruption, or large traffic shift.

Constraints exist in traditional relational database management systems (RDBMS),

but are usually limited to uniqueness of primary keys and referential integrity of

foreign keys. In contrast, COOLAID allows more expressive constraints capable of

checking and reasoning about multiple devices at different layers across the network

in an efficient fashion.

Specifically, in COOLAID, a constraint is defined the same way as views by a set

of rules. A constraint is satisfied if and only if the associated view is evaluated to an

empty list. Conceptually, each entry in a non-empty constraint view corresponds to

a violation to a desired network property.

Constraints help prevent the misconfigurations that are captured using constraints,

when combined with our new transaction primitive (described in §4.2.6.) In essence,

a group of network intended changes are declared as a transaction and executed in

an all-or-nothing fashion. The changes are effective only if the transaction commits.

Before committing a transaction, COOLAID checks if any constraints are violated by

the changes, and if so aborts the transaction. For example, an access router has

two interfaces connecting to the core network, and one of them is shut down for

maintenance. If an operator mistakenly attempts to shut down the other link, such

an operation (on CInterface table) would not be committed, because it violates the

constraint that an access router must be connected to the core. Such support auto-

mates a network-wide “what-if” analysis, avoiding erroneous network operations due

to operators’ lack of understanding of complex network functions or their inability to

reason at a large scale.

77

Note that COOLAID clearly is unable to prevent the misconfigurations that are

not captured in any constraint rules. This is similarly true for the current manage-

ment practice, as operators try to prevent a misconfiguration only after it occurs and

is understood. COOLAID provides a more systematic way of assisting the formal

specification of misconfigurations and automated prevention in the future.

4.2.4 Configuration automation

COOLAID supports a new primitive of automating network configuration by al-

lowing writes to view tables. Specifically, COOLAID allows the operators to specify

intended network changes as insert/delete/update to view tables, then automatically

identifies a set of low-level changes to config tables that can satisfy the given inten-

tion. For example, an operator can express goals, like establish a VPLS connection

between two interfaces, by a simple view insert statement:

ActiveVPLSConnection.insert("intA","intB")

The traditional mindset for configuration management is that operators (i) change

the configurations on one or more devices and (ii) check if a network feature change is

effected. These two steps are repeated until the check succeeds. For a failed network

check, the operators reason about the symptom and fulfill the missing dependencies

based on domain knowledge. In COOLAID, to the contrary, operators can stay un-

aware of how to realize certain network functions, instead they specify at a high-level

what functions they need. In the previous example, the operator only needs to deal

with ActiveVPLSConnection view, rather than fiddling with all the dependent network

functionalities.

4.2.5 Network property enforcement

COOLAID allows the operators to specify certain properties to enforce on the net-

work. For example, a network may be required to configure loopback IP address on

every router, and establish full-mesh iBGP sessions. We model a desired network

property also using constraint views, while an empty constraint means that the asso-

78

ciated property is valid on the network. When the underlying network changes, e.g.,

with a new router introduced, constraint violations may occur, meaning that certain

network-wide properties no longer hold. COOLAID takes advantage of deletion oper-

ations on a view to automatically resolve the constraint violations. For example, by

calling LoopbackAddressConstraint.remove all(), COOLAID automatically changes

related configuration tables, say modifying CIntfPrefix table to configure the loop-

back interfaces in question, so that the constraint view becomes empty. This means

that the operator only needs to specify the desired properties, and COOLAID can

automatically enforce them in the face of dynamic network changes.

4.2.6 Atomic network operations

Device failures during network operations are not uncommon, especially in large-

scale networks. If not handled properly, they often put the network in an inconsistent

state. For example, a network operation involving configuring several routers might be

abandoned midway because of unforeseen circumstances, such as an unexpected tran-

sient network failure, or overloaded routers. Current operational procedures would

attempt a manual rollback; however, that may be incomplete, leaving some “or-

phaned” configuration excerpts, which might lead to security holes or unintended

network behavior.

The problem in the above example is due to the lack of “all-or-nothing”, or atomic-

ity, in network management primitives. In fact, we argue that the ACID properties of

transactional semantics (§4.3.3), namely atomicity, consistency, isolation, and dura-

bility, are all highly desirable as primitives to compose network operations. They are

provided naturally in COOLAID by the database abstraction.

We note that modern routers already allow atomic configuration changes on a per-

device basis. In contrast, COOLAID not only extends such semantics to a network-wide

fashion, but also supports additional assertions on network-wide states, by checking

constraint views, to validate transactions.

In COOLAID, a network operation is defined as a procedure of a series of database

79

read and write commands, from and to the tables and views. We introduce a transac-

tion primitive for various reasons. First, as described previously, certain constraints

may be violated by the operations. These operations should be voided to prevent

misconfigurations. Second, certain operations are no longer desired when the under-

lying physical network changes. For example, during an operation, a physical link

may suddenly fail, invalidating some previous view query results. We abort on-going

transactions if any of those conditions occur.

Unfortunately, the ACID properties are difficult to achieve without a global ex-

clusive control over a network. As a result, COOLAID assumes a single control entity.

However this level of control is difficult to acquire, especially in early experimental

stage. A more likely scenario is that our system is given an increasing portion of the

devices in a network, following an incremental deployment. In this case, COOLAID

may have incomplete control over a network, thus unable to guarantee ACID. Never-

theless the support of network reasoning still stands, as long as COOLAID can “read”

from all the network elements. At the same time, misconfiguration prevention and

configuration automation are valid for the network portion under control. We provide

more discussions in Section 4.6.

4.2.7 Summary

In this section, we have presented an overview of the COOLAID framework. COOL-

AID builds on a database abstraction that captures all aspects of the network and its

operations in a data model, consisting of regular, config, and status tables. COOLAID

allows vendors and providers to collaboratively capture domain knowledge in the form

of rules, in a declarative query language. By leveraging such knowledge, COOLAID pro-

vides new network management primitives to network operators, including network-

wide reasoning, misconfiguration prevention, configuration automation, network prop-

erty enforcement, and atomic network operations, all in the same cohesive framework.

80

Query

Processing (§4.1)

Updatable View

Solver (§4.2)

Transaction

Management (§4.3)

Network-wide

Reasoning (§3.2)

Misconfiguration

Prevention (§3.3)

Atomic

Operations (§3.6)

Configuration

Automation (§3.4)

Property

Enforcement (§3.5)

COOLAID Primitives

COOLAID Techniques

enables

Figure 4.5: COOLAID primitives and techniques

4.3 Techniques

In this section, we explain key techniques that COOLAID utilizes to enable the net-

work management primitives described in §4.2. Figure 4.5 shows their relationships.

4.3.1 Query processing

Query processing is essential for network-wide reasoning (§4.2.2) and misconfigu-

ration prevention (§4.2.3). We highlight a few design choices in building the query pro-

cessor efficiently, despite the differences between COOLAID and conventional RDBMS.

First, besides traditional database-style queries, COOLAID heavily relies on re-

cursive queries due to the distributed nature of network protocols. Recursive query

evaluation and optimization is a well-studied area in databases [100]. Recent work has

also examined recursive queries in a distributed environment with a relaxed eventual

consistency model [86].

Second, COOLAID manages a much smaller amount of data, but these data are

distributed. The largest portion come from configurations. If we assume that a con-

figuration file is 100KB on average, and there are a thousand routers in a network,

then we need roughly a hundred megabytes of space to store the raw data. On the

other hand, the configuration data on different routers might require hundreds of

milliseconds of round-trip time to access for a typical ISP with national footprints.

Therefore, we always first aggregate all data to the main memory of a centralized

master node (§4.4.1) before query evaluation. Centralized processing is also preferred

81

View1(x,y) :- View1(x,z), View2(y,z)

Propagation

Exploration

View2(y,z) :- Config1(z), Regular1(y,z)

Constrain possible values

Bound

Figure 4.6: Solving updatable view operations

in order to enforce a strong consistency model as opposed to the eventual consis-

tency model [86]. Once all data are available, we apply the semi-näıve evaluation

algorithm [100], which is both efficient and generic, to evaluate recursive queries.

We further apply the technique of materialized view maintenance to speed up

query performance. The entire contents of all views are cached in memory once

computed, rather than generated on-demand at each query evaluation. Each view

has the meta data that describe which base tables it depends on. Once the base

tables of a view are updated, the view is incrementally updated by only computing

the differences to reduce overhead.

4.3.2 Updatable view solver

Updatable view operations, like view insertions or deletions, enable configuration

automation (§4.2.4) and network property enforcement (§4.2.5). Underneath the

simple APIs called by operators, COOLAID controller finds the config table entries to

change to realize the intended view changes.

We explain two techniques to update views with different trade-offs. In practice,

we use a combination of both to achieve the best performance and usability. First,

we designed an automatic updatable view solver, using standard techniques from

Prolog, such as exploration and propagation. As illustrated in Figure 4.6, to insert

an entry (x,y) into View1, we need to recursively guarantee tuples (x,z) and (z,y)

are in View1 and View2. If there are no such combination, a recursive view insertion

is attempted. For the value of x and y, we can directly propagate from the left-

82

hand side to the right-hand side. But we have to enumerate the possible values for

z and try them one-by-one: some guessed values may not be possible to insert into

View2, for example. For non-recursive rules, the recursion in this solving process is

bounded by the level of dependencies. For recursive rules, this solving process might

be expensive: for example, to insert tuple (x,y) into View1, we need to further insert

(x,z) into View1, and this may go on many times. There are two key factors that

keep this process feasible. (i) We do not change regular tables, because the values

are treated as facts of the network. As a result, regular tables bound the domain for

many fields in views. For example, View2 is defined by joining a config table and a

regular table, so the tuples in View2 can only possibly come from Regular1. In this

case, COOLAID can bound the exploration for literal z, when inserting to View1. (ii)

Network functionalities are almost always cumulative, so that negations rarely occur

in the rules. This greatly reduces the search space.

Note that COOLAID prunes the solutions that violate constraints. The key benefit

of this approach is that COOLAID only needs a single solver to handle all protocols and

features. The main downside, however, is that the results provided by the solver may

not always be preferred. The is because many solutions can be found to satisfy the

same updatable view operation. For example, if we want to establish IGP connectivity

on a set of ISP core routers, we can use OSPF, IS-IS, or simply static routes. With

OSPF, we can configure a subset of the interfaces to establish a spanning tree touching

all routers, still enabling all-pair connectivity, although this is clearly undesired for

reliability concerns. In practice, we assign customizable preference values to different

rules, so that the solver prioritizes accordingly.

Second, an alternative solution is to allow the rule composers to customize res-

olution routines for view insertion and deletion. For example, when an insertion is

called on a view, the corresponding resolution routine is executed based on the value

of the inserted tuple. The key benefit is that rule composers have better control over

the resulting changes to the network. Such resolution routines can explicitly encode

the best practice. For example, to enable OSPF connectivity, we can customize the

routine to configure OSPF on all non-customer interfaces in the core network, com-

83

paring to the generic solver that may give a partial configuration. The flip side is

the extra work on rule composers to develop these routines, comparing to using a

generic solver to automatically handle the intended changes. Based on our experi-

ence, however, such resolution functions are very simple to develop, largely thanks

to the unified database abstraction. Also, this requires one-time effort by vendors or

network experts, while the operators can stay unaware of such details.

4.3.3 Transaction management

Misconfiguration prevention (§4.2.3) and atomic network operations (§4.2.6) both

rely on the transaction processing capability in COOLAID. We describe the transac-

tional semantics and our design choices.

In the context of databases, a single logical operation on the data is called a trans-

action. Atomicity, consistency, isolation, and durability (ACID) are the key properties

that guarantee that database transactions are processed reliably. In COOLAID, a net-

work operational task is naturally expressed as a distributed database transaction

that may span across multiple physical devices. In our data model, the regular tables

inherit the exact ACID properties from a traditional RDBMS. Interestingly, we find

that ACID properties naturally fit config tables as follows:

Atomicity: The configuration changes in an atomic operation must follow an “all-

or-nothing” rule: either all of the changes in a transaction are performed or none are.

COOLAID aborts a transaction if failure is detected, and rolls back to the state before

the transaction started. Note that we can only guarantee the configuration states

(tables), because status tables can change dynamically and take time to converge to

stationary values. This holds true for the rest of the three properties. Note that

atomicity also applies in a distributed transaction where config changes involve mul-

tiple devices. The atomic feature greatly simplifies the management logic in handling

device and other unexpected failures.

Consistency: The database remains in a consistent state before the start of the

transaction and after the transaction terminates regardless of its outcome. The con-

84

sistency definition in COOLAID is that all constraints must be satisfied. Before each

commit in a transaction, COOLAID checks all the constraints. In case of constraint

violations, an operator can simply instruct COOLAID to roll-back thus abort the trans-

action, or resolve all violations and still proceed to commit. The database ends up in

a consistent state in both cases.

Isolation: Two concurrent network operations should not interfere with each other

in any way, i.e., as if both transactions had executed serially, one after the other. This

is equivalent to the serializable isolation level in a traditional RDBMS. For example,

an operation in an enterprise network might be to allocate an unused VLAN in

the network. Two of such concurrent operations without isolation might choose the

same VLAN ID because they share the same allocation algorithm. Such a result is

problematic and can lead to security breach or subtle configuration bugs. COOLAID

provides transaction isolation guarantees to prevent such issues.

Durability: Once the user has been notified of the success of a transaction com-

mit, the configurations are already effective in the routers. Most commodity routers

already provide this property.

Note that COOLAID assumes to be the only management entity in order to deliver

ACID — any configuration changes that do not go through our system undermine

all guarantees. To implement the ACID transactional semantics in COOLAID, we use

the Two-Phase Commit protocol for atomicity due to its simplicity and efficiency;

we use Write-Ahead-Logs for crash recovery; and we use Strict Two-Phase Lock-

ing for concurrency control [99]. These design decisions are customized for network

management purposes. For example, we favor conservative, pessimistic lock-based

concurrency control because concurrent network management operations occur much

less frequently than typical online transaction processing (OLTP) workload, such as

online banking and ticket booking websites. Once two concurrent network opera-

tions have made conflicting configuration changes, it is very expensive to roll back

and retry one of them. We choose to prevent conflicts from happening, even at the

cost of limiting parallelism. We discuss the detailed implementations of transaction

management in §4.4.1.

85

4.4 Implementation

Queries Operations

Rules
Transaction

Manager
Query

Processor
Meta-data
Manager

Controller

Tables

Global
Config
Tables

Global

Tables

Global
Status
Tables

Data
Model

Tables

Global
Regular
Tables

Master
Node

Router1

ConfigConfig
Tables

Regular
Tables

Status
Tables

RouterDB

Router2

PostgreSQL

ConfigConfig
Tables

Status
Tables

RouterDB

Figure 4.7: COOLAID system architecture

The overall system architecture of COOLAID is depicted in Figure 4.7. We have

implemented a prototype system in roughly 13k lines of Python code with two major

software pieces described next.

4.4.1 Master node

The master node unifies all data sources and manages them as a centralized

database. We use PostgreSQL as the backend to manage regular tables. Each physical

router is managed by a RouterDB (§4.4.2) instance, which exports the corresponding

config tables and status tables. The config tables on RouterDBs are aggressively com-

bined and cached on the master node for performance improvement. When an entry

in a config table is modified, the appropriate RouterDB instance will be identified

and notified based on the primary key of the entry, which has the physical router ID

encoded. This technique is known as horizontal partitioning in data management.

86

The controller on the master node has three components:

Query processor: The query processor first parses the declarative rules and rewrites

them in expressions of relational algebra (set-based operations and relational oper-

ators such as join, selection and projection). We implemented a library in Python,

with a usage pattern similar to Language INtegrated Query (LINQ) in the Microsoft

.NET framework [12], to express and evaluate those relational expressions. The li-

brary is capable of integrating queries from Python objects, tables in PostgreSQL (by

an object-relational mapper [23]), and XML data. We implemented the algorithm de-

scribed in §4.3.1 for query evaluation and view maintenance and an updatable view

solver described in §4.3.2.

Meta-data manager: Meta-data, such as the definitions of all tables, views and

constraints, are managed in the format of tables as well. In particular, the controller

manages the meta-data by keeping track of the dependencies between the views,

which is used by the view maintenance algorithm (§4.3.1) for caching and incremental

updates, and updatable view operations (§4.3.2).

Transaction manager: The master node serves as a distributed transaction coor-

dinator, and passes data records to and from the underlying local database engines.

It does not handle any data storage directly, and achieves the transactional ACID

properties as follows:

Atomicity and durability are achieved by realizing the two-phase commit protocol

(2PC) [99] among the underlying database participants (i.e., PostgreSQL and Rou-

terDB instances): In phase 1, the master node asks all of the participants to prepare

to commit. The transaction aborts if any participant responds negatively or fails to

reply in time. Otherwise, in phase 2, the master node flushes the commit decision to

a log on disk, then asks all nodes to commit.

Consistency is enforced by checking all constraints after the commit request is

received. Unless all constraints are satisfied (directly or through violation resolution),

the 2PC protocol starts to complete the transaction.

Isolation is enforced by a global lock among transactions in the current prototype.

Effectively, this only allows a single transaction at a time—the most conservative

87

scheme. While it clearly limits the parallelism in the system, serializing them is

acceptable as backlog is unlikely even in large networks. Using finer-grained locks

for higher parallelism could introduce distributed deadlocks, which could be costly to

resolve. We leave exploring this trade-off as future work.

To recover from a crash of the master node, the transaction manager examines

the log recorded by the 2PC protocol. It will inform the participants to abort pend-

ing transactions without commit marks, and recommit the rest. If the master node

cannot be restarted, it is still possible for network operators to directly interact with

individual RouterDBs. This allows raw access and control over the network for emer-

gency and manual recovery. We talk about removing master node as a single point

of failure in §4.6.

4.4.2 RouterDB

NETCONF

API
XML

schema

mapper

config tables

status tables
RouterDB

Figure 4.8: RouterDB implementation

RouterDB provides a 2PC-compliant transactional database management inter-

face for a single router device. Our current prototype works for Juniper routers, but

can be easily extended to other router vendors. RouterDB utilizes the programmable

APIs standardized by the Network Configuration Protocol (NETCONF) [15] to in-

stall, manipulate, and delete the configuration of network devices over XML.

When a RouterDB instance starts, it uses a given credential to initiate a NET-

CONF session over ssh with the corresponding router, and fetches the currently

running configuration in XML format. Then a schema mapper is used to convert

configurations from the tree-structured XML format into relational config tables.

Transaction APIs: To update config tables, a transaction must be started by call-

88

ing the begin txn RouterDB API. It saves a snapshot of the current configuration

in XML, and returns a transaction context ID. Further data manipulation operation

calls, such as insert, update, delete to the config tables must use the ID to indicate

its transaction affiliation. Once a manipulation call is received, the schema mapper

converts it back to an XML manipulation snippet, and uses the edit-config NET-

CONF API to change the configuration on the router. Note that this change is made

to a separate target, called the candidate target, so that it does not interfere with the

running configuration of the router. Then, the updated configuration in the candidate

target is fetched, and the change is propagated to the config tables via the schema

mapper.

To be compliant with the two-phase commit protocol used by the master node,

RouterDB implements the prepare, commit, and rollback APIs. When executing

prepare(), the configuration in the candidate target is validated by the router. An in-

validated configuration will raise an exception so that the transaction will be aborted.

During commit(), the configuration in the candidate target is first made effective by

issuing a commit NETCONF call, and then the saved snapshots are freed. During

rollback(), the candidate target is discarded on the router.

Placement: Technically, a RouterDB instance might be hosted anywhere between

the master node and the router. We chose to host RouterDB close to the router and

assume the node has reliable network access to the dedicated management interfaces

on the managed router. The placement is advantageous over hosting RouterDB on

the physical router itself because (i) Data processing on RouterDB is isolated from

other tasks on the router, and it is guaranteed not to compete for router resources

(e.g., CPU and memory); (ii) When RouterDB is separated from the router, it is much

more likely to differentiate failures between RouterDB and the physical router from

the master node, and treat them differently; (iii) Only selected high-end commercial

routers provide enough programmability to build RouterDB [80]. On the other hand,

by placing RouterDB close to the router instead of the master node, we have the

opportunity to reduce the amount of data transferred from RouterDB to the master

node, by pushing some database operators, such as filters, into RouterDB.

89

Handling failures: Following the Write-Ahead-Log protocol [99], RouterDB records

every operation in a log file on persistent storage. When recovering from a previous

crash, RouterDB locates all ongoing transactions at the time of crash, rolls back the

ones that are not committed, and re-commits those transactions that the master node

has issued commit commands.

During the downtime of a RouterDB instance, the master node still has the con-

figuration data in its cache so that it is readable. However, any write requests will be

denied. The data in corresponding status tables become unavailable too.

Physical router failures detected by RouterDB are reported to the master node,

which temporarily marks the related entries in the regular table caches as “offline”

so that they do not show up in query results, until the physical router comes back

online. Operators cannot change configuration or check status on the router during

the offline time.

4.5 Evaluation

We evaluated several key aspects of COOLAID to show that it effectively reduces

human workload and prevents misconfigurations in realistic network management

tasks, at the same time scales to large networks. In all experiments, we used Juniper

M7i routers running JUNOS V9.5. The Linux servers, which host master nodes and

RouterDB instances, were equipped with Intel Dual Core 2.66GHz processors and

4GB RAM.

4.5.1 Automating configuration

We created the network topology of Abilene core network [21] with 10 routers and

13 links on top of the ShadowNet platform [47] for network experimentation. The

actual router instances are distributed across Texas, Illinois and California. Besides

the links in the topology, each router has another interface connecting a local virtual

machine, simulating a customer site. We run one RouterDB for each router and a

single master node in Illinois. All routers in this experiment started with minimum

90

configurations that only describe interface-level physical connectivity.

Our goal is to configure a VPLS service connecting two customer-facing interfaces

on two different routers. This is a heavily involved procedure as operators need to

deal with IP allocation for interfaces, configuring OSPF or IS-IS routing, establish

iBGP sessions, configure MPLS network with RSVP signaling, establish LSPs, and

configure VPLS instances.

If an operator were to manually perform the task entirely, she must start with

executing at least 25 lines of configuration commands on average on all routers, and 9

additional lines on the two customer-facing routers, in total 268 lines. For larger net-

works with more routers and links, this number should increase linearly. The lines of

configuration changes is measured by show configuration | display set on JUNOS,

which displays the current configuration with minimum number of commands. In re-

ality, the actually executed commands are usually more. Besides, this number does

not reflect the manual reasoning effort to realize this VPLS service, which commonly

requires multiple iterations of trial-and-test and accessing low-level CLIs.

In COOLAID, enabling such a complicated service requires a single operation by

the operator, calling ActiveVPLSConnection.insert(int1 id,int2 id). This stays the

same no matter how large the network is. Also, the operator does not have to deal

with any of the dependencies.

4.5.2 Handling network dynamics

In contrast to the previous setup, we started with a well-configured 9-router sub-

set of the Abilene network topology on ShadowNet. The intention is to study how

COOLAID enforces network properties when new, barely configured routers are intro-

duced in an existing network. When the regular tables were updated to include the

10th router and the associated links, several network properties that were specified

as constraints were immediately flagged as violated. For example,

LoopbackAddressConstraint showed that the new router did not have an loopback in-

terface configured with a proper IP address and BGPFullMeshConstraint reported that

91

the new router had no iBGP sessions to other routers. COOLAID checks constraints

for property enforcement whenever there is a network change, and automatically tries

to resolve the violations. In this case, the customized view solver was used to produce

26 lines of config changes on the new router, and 9 lines on the existing routers for

iBGP sessions, such that specified network properties are enforced automatically.

4.5.3 Performance

In this section we isolate the DB processing capability from device access overhead

to evaluate the performance of the view query processor and the view update solver.

Network Abilene 3967 1755 1221 6461 3257 1239

Router # 10 79 87 108 141 161 315
Link # 13 147 161 153 374 328 972

Time (ms) 0.3 20 24 28 73 116 592

Table 4.1: Query processing time for OSPFRoute

Processing queries: To evaluate the query processing performance, we chose the

recursive view OspfRoute because it is one of the most expensive queries, where the

complexity grows quadratically with the network size. We use the topologies of Abi-

lene backbone and five other ASes inferred by Rocketfuel [106]. The config tables

were initialized such that all interfaces on each router are OSPF enabled, including

the loopback interfaces. Then we queried OspfRoute to get the OSPF routes on all

routers for each topology. The query time is showed in Table 4.1. It only took 0.3ms

to complete the query for Abilene. For the largest topology on AS1239 with 315

routers and 972 links, it took less than 600ms. This suggests that processing queries

has negligible overhead compared with device related operations, such as physically

committing config to routers (on the order of tens of seconds on the Juniper routers).

Case 1: OSPF Case 2: iBGP Case 3: iBGP w/ OSPF

14.112s 14.287s 0.025s

Table 4.2: Time to solve view updates

Solving view updates: We tested our view update solver in three cases with the

92

Abilene topology. We picked a pair of routers (r1 and r2) that are farthest from each

other in the topology. In Case 1, starting with the minimal configuration, we inserted

two tuples into OspfRoute, intending to have the loopback IPs of r1 and r2 reachable

to each other via OSPF. In Case 2, also starting with the minimum configuration,

we inserted a single tuple in ActiveIBgpSession, intending to create an iBGP session

between r1 and r2. In Case 3, we started with a network with OSPF configured

on all routers, and performed the same operation as in Case 2. As captured by

the rules, active iBGP sessions depend on IGP connectivity, so in Case 2 the solver

automatically configured OSPF to connect r1 and r2 first and then configured BGP

on both routers.

Table 4.2 shows the running time for each case. We observe that (i) Case 3

was much faster, because the solver was able to leverage existing configurations; (ii)

Case 1 and Case 2 took about the same amount of time, because the OSPF setup

dominated. The OSPF setup in Case 1 is slow because it starts with a network

without configuration and requires multiple levels of recursion to solve this view

insertion. While 14 seconds is not short, in practice, one only needs to configure

OSPF for a network once, and most of the common tasks, including configuring a

new router to run OSPF, are incremental to existing configurations, thus can be done

quickly, like in Case 3.

We also evaluated the same tasks using the rules with customized resolution rou-

tines. In this case, view update operations are achieved by calling a chain of hard-

coded resolution routines, thus the reasoning overhead is zero.

4.5.4 Transaction overhead

Step 1 Step 2 Outcome

w/o COOLAID 8.4s 8.4s Disconnected network
w/ COOLAID 8.4s Rejected Disruption avoided

Table 4.3: Network operations with and without COOLAID

To study the device-related performance and transaction overhead, we use the

93

following setup. First, we assume 3 routers r1-r3 with pair-wise links, and all routers

are configured with OSPF. In step 1, we shut down the link between r1 and r2 (by

disabling one of its interfaces). Such operations are common for maintenance purpose

and benign, because the network is still connected. In step 2, we try to shut down

the link between r1 and r3 to emulate a misconfiguration that would cause a network

partition.

We compare the experience of using COOLAID to perform such operations with us-

ing a script that directly calls NETCONF APIs, and then show the result in Table 4.3.

Without COOLAID, the two steps took 8.4 seconds each, ending with a disconnected

network. The time is mostly spent by the router internally to validate and commit the

new configuration. With COOLAID, step 1 takes the same amount of time, suggesting

a negligible overhead in constraint checking or any other extra overhead introduced

by COOLAID. Because we specified a constraint that every router’s loopback IP must

be reachable to all other routers, step 2 is rejected by COOLAID before it could take

effect on the actual routers.

4.6 Discussion

Feasibility: One critical question is how feasible it is to create the database ab-

straction and the declarative rules. First, network databases are common for modern

ISPs [41]. The emerging trend of XML-based configuration files further reduces the

effort, since XML files can be directly queried. The rules indeed take much effort to

derive according to our experience. However, the time-consuming part is to derive

the correct dependency information by reading documentations and performing field

tests. Once the dependency is known, which is the case for vendors and network

experts, it takes little time to express it in the declarative language.

Deployment: While COOLAID is designed to take over managing the whole network,

we note that it is amenable to a variety of partial deployment scenarios. For example,

COOLAID can initially work in a read-only mode to assist network reasoning. When

operators are comfortable enough about using the new database primitives, they can

94

gradually enable write permission to config tables. Note that configuring certain

network features do not require touching all routers.

Availability: In the current centralized implementation, the system is not available

when the master node is offline. To remove this single point of failure, we can adopt

the replicated state machine approach [104] where multiple copies of the COOLAID

controller are running simultaneously as primary node and backup nodes. Another al-

ternative is to adopt a fully decentralized architecture, where all query processing and

transaction management is handled in a distributed fashion by RouterDB instances.

There are sophisticated algorithms and protocols, such as Paxos commit [65], that

are designed for this scenario. How they compare with the centralized architecture in

performance and ease of maintenance is an interesting direction for our future work.

Limitations: We note two potential problems of COOLAID by deriving the trans-

actional semantics over the network configuration. (i) Routing protocols are not

transaction-aware, as they require time to converge upon configuration changes. The

order and timing of such changes are important in determining the consequences,

e.g., temporary routing loops and route oscillations. Therefore, transaction rollback

support for handling failures in such tasks is usually inadequate without creating

case-specific handlers to deal with failure exceptions. (ii) It is possible that some

resources are released during the transaction execution and cannot be re-acquired in

the case of rollback. The problem could be addressed through a locking mechanism to

hold the resources until the transaction finishes. Finally, COOLAID currently does not

address the issues of protocol optimization, say tweaking the OSPF link weights for

traffic engineering [57]; however, existing techniques can be invoked in the customized

view solvers to integrate their results with our data model.

4.7 Summary

We presented COOLAID as a unifying data-centric framework for network man-

agement and operations, where the domain expertise of device vendors and service

providers can be systematically captured, and where protocol and network dependen-

95

cies can be automatically exposed to operational tools. Built on a database abstrac-

tion, COOLAID enables new network management primitives to reason and automate

network operations while maintaining transactional semantics. We described the de-

sign and implementation of the prototype system, and used case studies to show its

generality and feasibility. Our future plan is to improve the design and implementa-

tion of COOLAID by adding new management primitives, increasing concurrency, and

improve reliability. While COOLAID currently covers a variety of dominant network

operations that rely on configuration changes, we also plan to explore COOLAID’s

applicability in other management areas such as fault diagnosis and performance

management.

96

CHAPTER V

A Platform for Evaluating Network Systems and

Services

Effecting network change is fundamentally difficult. This is primarily due to the

fact that modern networks are inherently shared and multi-service in nature, and

any change to the network has the potential to negatively impact existing users and

services. Historically, production quality network equipment has also been proprietary

and closed in nature, thus further raising the bar to the introduction of any new

network functionality. The negative impact of this state of affairs has been widely

recognized as impeding innovation and evolution [98]. Indeed at a macro-level, the

status quo has led to calls for a clean slate redesign of the Internet which in turn has

produced efforts such as GENI [5] and FEDERICA [4].

At a more modest micro-level, the fact that network change is inherently difficult,

is a major operational concern for service providers. Specifically, the introduction

of new services or service features typically involves long deployment cycles: con-

figuration changes to network equipment are meticulously lab-tested before staged

deployments are performed in an attempt to reduce the potential of any negative

impact on existing services. This is especially true for network management tools,

whose success and failure directly determine how well a network runs.

In this chapter we address these concerns through a platform called ShadowNet.

ShadowNet is designed to be an operational trial/test network consisting of Shad-

97

owNet nodes distributed throughout the backbone of a tier-1 provider in the conti-

nental US. Each ShadowNet node is composed of a collection of carrier-grade equip-

ment, namely routers, switches, and servers. Each node is connected to the Internet

as well as to other ShadowNet nodes via a (virtual) backbone. ShadowNet has been

utilized to test and evaluate PACMAN and COOLAID, described in the two previous

chapters.

ShadowNet provides a sharable, programmable, and composable infrastructure to

enable the rapid trial or deployment of new network services or service features, or

evaluation of new network management tools in a realistic operational network envi-

ronment. Specifically, via the Internet connectivity of each ShadowNet node, traffic

from arbitrary end-points can reach ShadowNet. ShadowNet connects to and in-

teracts with the provider backbone much like a customer network would. As such

the testing and experimentation that take place within ShadowNet can be isolated

from the “regular” provider backbone, just like how it would protect itself from any

other customers. In the first instance, ShadowNet provides the means for testing ser-

vices and procedures for subsequent deployment in a (separate) production network.

However, in time we anticipate ShadowNet-like functionality to be provided by the

production network itself to directly enable rapid but safe service deployment.

ShadowNet has much in common with other test networks [35, 97, 118]: (i) Shad-

owNet utilizes virtualization and/or partitioning capabilities of equipment to enable

sharing of the platform between different concurrently running trials/experiments;

(ii) equipment in ShadowNet nodes are programmable to enable experimentation and

the introduction of new functionality; (iii) ShadowNet allows the dynamic composition

of test/trial topologies.

What makes ShadowNet unique, however, is that this functionality is provided in

an operational network on carrier-grade equipment. This is critically important for our

objective to provide a rapid service deployment/evaluation platform, as technology or

service trials performed in ShadowNet should mimic technology used in the provider

network as closely as possible. This is made possible by recent vendor capabilities

that allow the partitioning of physical routers into subsets of resources that essentially

98

provide logically separate (smaller) versions of the physical router [74].

In this chapter, we describe the ShadowNet architecture and specifically the Shad-

owNet control framework. A distinctive aspect of the control framework is that it

provides a clean separation between the physical-level equipment in the testbed and

the user-level slice specifications that can be constructed “within” this physical plat-

form. A slice, which encapsulates a service trial, is essentially a container of the service

design including device connectivity and placement specification. Once instantiated,

a slice also contains the allocated physical resources to the service trial. Despite this

clean separation, the partitioning capabilities of the underlying hardware allows vir-

tualized equipment to be largely indistinguishable from their physical counterparts,

except that they contain fewer resources. The ShadowNet control framework provides

a set of interfaces allowing users to programmatically interact with the platform to

manage and manipulate their slices.

We make the following contributions in this work:

• Present a sharable, programmable, and composable network architecture which

employs strong separation between user-level topologies/slices and their physical

realization (§5.2).

• Present a network control framework that allows users to manipulate their slices

and/or the physical resource contained therein with a simple interface (§5.3).

• Describe physical-level realizations of user-level slice specifications using carrier-

grade equipment and network services/capabilities (§5.4).

• Present a prototype implementation (§5.5) and evaluation of our architecture

(§5.6).

5.1 Motivation for a Realistic Testing Environment

In this section, we explain the main drivers for network changes in general and

argue for the need of a more realistic testing environment.

99

5.1.1 The need for network changes

There are primarily three drivers for changes in modern service provider networks

(also apply to any large networks):

Growth demands: Fueled by an increase in broadband subscribers and media rich

content, traffic volumes on the Internet continue to show double-digit growth rates

year after year. The implication of this is that service providers are required to

increase link and/or equipment capacities on a regular basis, even if the network

functionality essentially stays the same.

New services and technologies: Satisfying customer needs through new service

offerings is essential to the survival of any network provider. “Service” here spans the

range from application-level services like VoIP and IPTV, connectivity services like

VPNs and IPv4/IPv6 transport, traffic management services like DDoS mitigation

or content distribution networks (CDNs), or more mundane (but equally important

and complicated) service features like the ability to signal routing preferences to the

provider or load balancing features.

New operational tools and procedures: The increasing use of IP networks for

business critical applications is leading to growing demands on operational proce-

dures. For example, end-user applications are often very intolerant of even the small-

est network disruption, leading to the deployment of methods to decrease routing

convergence in the event of network failures. Similarly, availability expectations,

in turn driven by higher level business needs, make regularly planned maintenance

events problematic, leading to the development of sophisticated operational methods

to limit their impact.

As we have alluded to already, the main concern of any network change is that it

might have an impact on existing network services, because networks are inherently

shared with known and potentially unknown dependencies between components. For

example, a traffic engineering tool and a network maintenance tool might conflict

with each other if not coordinated properly — in the worst case, traffic might be

100

shifted to a link that is actively maintained. Another example would be the multi-

protocol extensions to BGP to enable MPLS-VPNs or indeed any new protocol family.

The change associated with rolling out a new extended BGP stack clearly has the

potential to impact existing IPv4 BGP interactions, as bugs in new BGP software

could negatively impact the BGP stack as a whole.

Note also that network services and service features are normally “cumulative”

in the sense that once deployed and used, network services are very rarely “switched

off”. This means that over time the dependencies and the potential for negative

impact only increases rather than diminishes.

A related complication associated with any network change, especially for new

services and service features, is the requirement for corresponding changes to a va-

riety of operational support systems including: (i) configuration management sys-

tems (new services need to be configured typically across many network elements),

(ii) network management systems (network elements and protocols need to be mon-

itored and maintained), (iii) service monitoring systems (for example to ensure that

network-wide service level agreements, e.g., loss, delay or video quality, are met),

(iv) provisioning systems (e.g., to ensure the timely build-out of popular services).

ShadowNet does not address these concerns per se. However, as described above,

new operational solutions are increasingly more sophisticated and automated, and

ShadowNet provides the means for safely testing out such functionality in a realistic

environment.

Our ultimate goal with the ShadowNet work is to develop mechanisms and network

management primitives that would allow new services and operational tools to be

safely deployed directly in production networks. However, as we describe next, in the

work presented here we take the more modest first step of allowing such actions to be

performed in an operational network that is separate from the production network,

which is an important transitional step.

101

ServerServer

PE

Switch

PE

C

Cache

Route

Control

ServerServer

PE

Switch

PE

Cache

PE

PE
PE

CC

C

C

End-user
requests End-user

requests

End-user
requests

Figure 5.1: Usage scenario: load-aware anycast CDN.

5.1.2 Case study for network testing

In this section we briefly describe an example usage scenario that illustrates the

type of sophisticated network services that can be tested using the ShadowNet in-

frastructure. The example we use is an infrastructure-assisted network service, which

requires testing changes to both the network core and end-hosts and is more gen-

eral. We discuss the requirements for testing these services and explain why existing

platforms fall short in these scenarios.

We consider the customer trial of a load-aware anycast content distribution net-

work (CDN) [32]. Figure 5.1 depicts how all the components of such a CDN can be

realized on the ShadowNet platform. Specifically, a network, complete with provider

edge (PE) and core (C) routers, can be dynamically instantiated to represent a small

backbone network. Further, servers in a subset of the ShadowNet nodes can be allo-

cated and configured to serve as content caches. A load-aware anycast CDN utilizes

route control to inform BGP selection based on the cache load, i.e., using BGP, traffic

102

SN EL PL VN

Production grade devices Y N N N
Realistic workloads Y N Y Y
High capacity backbone Y N N Y
Geographical coverage Y N Y Y
Dynamic reconfiguration Y N N N

Table 5.1: Capability comparison between ShadowNet (SN), EmuLab (EL), Planet-
Lab (PL) and VINI (VN)

can be steered away from overloaded cache servers. In ShadowNet, this BGP speaking

route control entity can be instantiated on either a server or a router depending on the

implementation. Appropriate configuration/implementation of BGP, flow-sampling,

and server load monitoring complete the infrastructure picture. Finally, actual end-

user requests can be directed to this infrastructure, e.g., by resolving a content URL

to the anycast address(es) associated with and advertised by the CDN contained in

the ShadowNet infrastructure.

Using this example we can identify several capabilities required of the ShadowNet

infrastructure to enable such realistic service evaluation (see Table 5.1): (i) to gain

confidence in the equipment used in the trial it should be the same as, or similar to,

equipment used in the production network (production-grade devices); (ii) to thor-

oughly test load feedback mechanisms and traffic steering algorithms, it requires par-

ticipation of significant numbers of customers (realistic workloads); (iii) this in turn

requires sufficient network capacity (high capacity backbone); (iv) realistic network

and CDN functionality require realistic network latencies and geographic distribution

(geographic coverage); (v) finally, the CDN control framework could dynamically ad-

just the resources allocated to it based on the offered load (dynamic reconfiguration).

While ShadowNet is designed to satisfy these requirements, other testing plat-

forms, with different design goals and typical usage scenarios, fall short in providing

such support, as we describe next.

Emulab achieves flexible network topology through emulation within a central testbed

environment. There is a significant gap between emulation environments and real pro-

103

duction networks. For example, software routers typically do not provide the same

throughput as production routers with hardware support. As EmuLab is a closed

environment, it is incapable of combining real Internet workload into experiments.

Compared to EmuLab, the ShadowNet infrastructure is distributed, thus the resource

placement in ShadowNet more closely resembles future deployment phases. In Emu-

Lab, an experiment in a slice is allocated a fixed set of resources during its life cycle

— a change of specification would require a “reboot” of the slice. ShadowNet, on

the other hand, can change the specification dynamically. In the CDN example, ma-

chines for content caches and network links can be dynamically spawned or removed

in response to increased or decreased client requests.

PlanetLab has been extremely successful in academic research, especially in dis-

tributed monitoring and P2P research. It achieves its goal of amazing geographical

coverage, spanning nodes to all over the globe, obtaining great end-host visibility.

The PlanetLab nodes, however, are mostly connected to educational networks with-

out abundant upstream or downstream bandwidth. PlanetLab therefore lacks the

capacity to realize a capable backbone between PlanetLab nodes. ShadowNet, on the

other hand, is built upon a production ISP network, having its own virtual backbone

with bandwidth and latency guarantees. This pushes the tested service closer to the

core of the ISP network, where the actual production service would be deployed.

VINI is closely tied with PlanetLab, but utilizes Internet2 to provide a realistic

backbone. Like EmuLab and PlanetLab, VINI runs software routers (XORP and

Click), the forwarding capacity of which lags behind production devices. This is

mostly because its focus is to use commodity hardware to evaluate new Internet

architectures, which is different from the service deployment focus of ShadowNet.

VINI and PlanetLab are based on the same control framework. Similar to EmuLab,

it lacks the capability of changing slice configurations dynamically, i.e., not closing

the loop for more adaptive resource management, a functionality readily available in

ShadowNet.

104

5.2 ShadowNet overview

We present ShadowNet which serves as a platform for rapid and safe network

change. The primary goal of ShadowNet is to allow the rapid composition of dis-

tributed computing and networking resources, contained in a slice, realized in carrier-

grade facilities which can be utilized to introduce and/or test new services or network

management tools. The ShadowNet control framework allows the network-wide re-

sources that make up each slice to be managed either collectively or individually.

In the first instance, ShadowNet will limit new services to the set of resources

allocated for that purpose, i.e., contained in a slice. This would be a sufficient solution

for testing and trying out new services in a realistic environment before introducing

such services into a production network. Indeed our current deployment plans espouse

this approach with ShadowNet as a separate overlay facility [109] connected to a

tier-1 production network. Longer term, however, we expect the base functionality

provided by ShadowNet to evolve into the production network and to allow resources

and functionality from different slices to be gracefully merged under the control of

the ShadowNet control framework.

In the remainder of this section, we describe the ShadowNet architecture and show

how it can be used to realize a sophisticated service. Several experimental network

platforms are compared against it, and we show that ShadowNet is unique in terms

of its ability to provide realistic network testing. Finally we describe the architecture

of the primary system component, namely the ShadowNet controller.

5.2.1 ShadowNet architecture

Different viewpoints of the ShadowNet network architecture are shown in Fig-

ures 5.2(a) and (b). Figure 5.2(a) shows the topology from the viewpoint of the tier-1

provider. ShadowNet nodes connect to the provider network, but are essentially sep-

arate from it. Each ShadowNet node has connectivity to other ShadowNet nodes

as well as connectivity to the Internet. As shown in Figure 5.2(b), connectivity to

other ShadowNet nodes effectively creates an overlay network [109] to form a virtual

105

Tier-1 ISP

ShadowNet

Node
ShadowNet

Node

ShadowNet

Node ShadowNet

Node

 Internet connectivity

ShadowNet
Backbone
Connectivity

(a) ISP View

(b) ShadowNet View

ShadowNet

Node

ShadowNet

Node

ShadowNet

Node

ShadowNet Network

ShadowNet

Node

Figure 5.2: ShadowNet network viewpoints

Persistent storage

ShadowNet

Controller

Portal

Programatic

Access

User
ShadowNet NodesControl

Monitor

InternetShadowNet

Backbone

User
User
Users

User API

RouterServer

Server

Server

Server

Server

Router

Router

Router

Router

Switch

Figure 5.3: ShadowNet functional architecture

106

backbone among the nodes. Via the provided Internet connectivity, the ShadowNet

address space is advertised (e.g., using BGP) first to the provider network and then

to the rest of the Internet. Thus ShadowNet effectively becomes a small provider

network itself, i.e., a shadow of the provider network.

The ShadowNet functional architecture is shown in Figure 5.3. Each ShadowNet

node contains different types of computing and networking devices, such as servers,

routers, and switches. Combined with the network connectivity received from the

ISP, they complete the physical resource for ShadowNet. ShadowNet manages the

physical resources and enables its users to share them. The devices provide virtual-

ization/partitioning capabilities so that multiple logical devices can share the same

underlying physical resource. For example, modern routers allow router resources to

be partitioned so that several logical routers can be configured to run simultaneously

and separately on a single physical router [74]. (Note that modern routers are also

programmable in both control and data planes [76].) Logical interfaces can be multi-

plexed from one physical interface via configuration and then assigned to different log-

ical routers. We also take advantage of virtual machine technology to manage server

resources [27]. This technology enables multiple operating systems to run simultane-

ously on the same physical machine and is already heavily used in cloud computing

and data-center environments. To facilitate sharing connectivity, the physical devices

in each ShadowNet node are connected via a configurable switching layer, which

shares the local connectivity, for example using VLANs. The carrier-supporting-

carrier capabilities enabled by MPLS virtual private networks (VPNs) [50, 73] offer

strong isolation and are therefore an ideal choice to create the ShadowNet backbone.

As depicted in Figure 5.3, central to ShadowNet functionality is the ShadowNet

Controller. The controller facilitates the specification and instantiation of a service

trial in the form of a slice owned by a user. It provides a programmatic applica-

tion programming interface (API) to ShadowNet users, allowing them to create the

topological setup of the intended service trial or deployment. Alternatively users can

access ShadowNet through a Web-based portal, which in turn will interact with the

ShadowNet Controller via the user-level API. The ShadowNet Controller keeps track

107

of the physical devices that make up each ShadowNet node by constantly monitor-

ing them, and further manages and manipulates those physical devices to realize the

user-level APIs, while maintaining a clean separation between the abstracted slice

specifications and the way they are realized on the physical equipment. The user-

level APIs also enable users to dynamically interact with and manage the physical

instantiation of their slices. Specifically, users can directly access and configure each

instantiated logical device.

ShadowNet allows a user to deactivate individual devices in a slice or the slice as a

whole, by releasing the allocated physical resources. ShadowNet decouples the persis-

tent state from the instantiated physical devices, so that the state change associated

with a device in the specification is maintained even if the physical instantiation is

released. Subsequently, that device in the specification can be re-instantiated (assum-

ing that sufficient resources are available), the saved state restored and thus the user

perceived slice remains intact. For example, the configuration change made by the

user to a logical router can be maintained and applied to a new instantiated logical

router, even if the physical placement of that logical device is different.

5.2.2 The ShadowNet Controller

The ShadowNet controller consists of a user-level manager, a physical-level man-

ager, a configuration effector and a device monitor, as shown in Figure 5.4. We

describe each component below. The current ShadowNet design utilizes a centralized

controller that interacts with and controls all ShadowNet nodes.

5.2.2.1 User-level manager

The user-level manager is designed to take the input of user-level API calls. Each

API call corresponds to an action that the users of ShadowNet are allowed to perform.

A user can create a topological specification of a service trial (§5.3.1), instantiate the

specification to physical resources (§5.3.2), interact with the allocated physical re-

sources (§5.3.3), and deactivate the slice when the test finishes (§5.3.4). The topology

108

Figure 5.4: The ShadowNet controller

specification of a slice is stored by the user-level manager in persistent storage, so that

it can be retrieved, revived and modified over time. The user-level manager also helps

maintain and manage the saved persistent state from physical instantiations (§5.3.3).

By retrieving saved states and applying them to physical instantiations, advanced

features, like device duplication, can be enabled (§5.3.5).

The user-level manager is essentially a network service used to manipulate con-

figurations of user experiments. We allow the user-level manager to be accessed from

within the experiment, facilitating network control in a closed-loop fashion. In the

example shown in Figure 5.1, the route control component in the experiment can

dynamically add content caches when user demand is high by calling the user-level

API to add more computing and networking resource via the user-level manager.

5.2.2.2 Physical-level manager

The physical-level manager fulfills requests from the user-level manager in the form

of physical-level API calls by manipulating the physical resources in ShadowNet. To

do this, it maintains three types of information: 1) “static” information, such as the

devices in each ShadowNet node and their capabilities; 2) “dynamic” information,

109

e.g., the online status of all devices and whether any interface modules are not func-

tioning; 3) “allocation” information, which is the up-to-date usage of the physical

resources. Static information is changed when new devices are added or old devices

are removed. Dynamic information is constantly updated by the device monitor. The

three main functions of the physical-level manager is to configure physical devices to

spawn virtualized device slivers (§5.4.1) for the instantiation of user-level devices

(§5.4.1.1) and user-level connectivities (§5.4.1.2), to manage their states (§5.4.4) and

to delete existing instantiated slivers. A sliver is a share of the physical resource,

e.g., a virtual machine or a sliced physical link. The physical-level manager handles

requests, such as creating a VM, by figuring out the physical device to configure and

how to configure it. The actual management actions are performed via the configu-

ration effector module, which we describe next.

5.2.2.3 Configuration effector

The configuration effector specializes in realizing configuration changes to phys-

ical devices. Configlets are parametrized configuration or script templates, saved in

the persistent storage and retrieved on demand. To realize the physical-level API

calls, the physical-level manager decides the appropriate configlet to use and gener-

ates parameters based on the request and the physical resource information. The

configuration effector executes the configuration change on target physical devices.

5.2.2.4 Device monitor

A device monitor actively or passively determines the status of physical devices

or components and propagates this “dynamic” information to the physical-level man-

ager. Effectively, the device monitor detects any physical device failures in real time.

As the physical-level manager receives the update, it can perform appropriate ac-

tions to mitigate the failure. The goal is to minimize any inconsistency of physical

instantiation and user specifications. We detail the techniques in §5.4.5. Device or

component recovery can be detected as well, and as such the recovered resource can

again be considered usable by the physical-level manager.

110

Figure 5.5: The slice life cycle

5.3 Network service in a slice

A user of ShadowNet creates a service topology in the form of a slice, which is

manipulated through the user-level API calls supported by the ShadowNet controller.

The three layers embedded in a slice and the interactions among them are depicted

in Figure 5.5 and detailed below. In this section, we outline the main user-exposed

functionalities that the APIs implement.

5.3.1 Creating user-level specification

To create a new service trial, an authorized user of ShadowNet can create a slice.

As a basic support, and usually the first step to create the service, the user specifies

the topological setup through the user-level API (a in Figure 5.5). As an example,

Figure 5.6 depicts the intended topology of a hypothetical slice and the API call

sequence that creates it.

The slice created acts like a placeholder for a collection of user-level objects, includ-

ing devices and connectivities. We support three generic types of user-level devices

(UsrDevice): router (UsrRouter), machine (UsrMachine), and switch (UsrSwitch).

Two UsrDevices can be connected to each other via a user-level link (UsrLink). User-

111

S1

NY

Internet

R3

M5 M6

L5 L6

TX

Internet

R2

M3 M4

L3 L4

CA

Internet

R1

M1 M2

L1 L2

L7

L10

L8 L9

L11 L12 L13 L14 L15

$SL = AddUsrSlice();

$S1 = AddUsrSwitch($SL);

$R1 = AddUsrRouter($SL,"CA");

$M1 = AddUsrMachine($SL,"CA","Debian");

$M2 = AddUsrMachine($SL,"CA","Windows");

$L1 = AddUsrLink($M1,$R1); # similar for M2

$L10 = AddUsrLink($M1,$S1); # similar for M2

$L7 = AddToInternet($R1, "141.212.111.0/24");

similar for "TX" and "NY"

Figure 5.6: Example of user-level API calls

level interfaces (UsrInt) can be added to a UsrDevice explicitly by the slice owner;

however, in most cases, they are created implicitly when a UsrLink is added to connect

two UsrDevices.

Functionally speaking, a UsrMachine (e.g., M1 in Figure 5.6) represents a generic

computing resource, where the user can run service applications. A UsrRouter (e.g.,

R1) can run routing protocols, forward and filter packets, etc. Further, UsrRouters

are programmable, allowing for custom router functionality. A UsrLink (e.g., L1)

ensures that when the UsrDevice on one end sends a packet, the UsrDevice on the

other end will receive it. A UsrSwitch (e.g., S1) provides a single broadcast domain to

the UsrDevices connecting to it. ShadowNet provides the capability and flexibility of

putting geographically dispersed devices on the same broadcast domain. For example,

M1 toM6, although specified in different locations, are all connected to UsrSwitch S1.

112

Besides internal connectivity among UsrDevices, ShadowNet can drive live Internet

traffic to a service trial by allocating a public IP prefix for a UsrInt on a UsrDevice.

For example, L7 is used to connect R1 to the Internet, allocating an IP prefix of

141.212.111.0/24.

Besides creating devices and links, a user of ShadowNet can also associate proper-

ties with different objects, e.g., the OS image of a UsrMachine and the IP addresses

of the two interfaces on each side of a UsrLink. As a distributed infrastructure,

ShadowNet allows users to specify location preference for each device as well, e.g.,

California for M1, M2 and R1. This location information is used by the physical

layer manager when instantiation is performed.

5.3.2 Instantiation

A user can instantiate some or all objects in her slice onto physical resources (b

in Figure 5.5). From this point on, the slice not only contains abstracted specifica-

tion, but also has associated physical resources that the instantiated objects in the

specification are mapped to.

ShadowNet provides two types of instantiation strategies. First, a user can design

a full specification for the slice and instantiate all the objects in the specification

together. This is similar to what Emulab and VINI provide. As a second option,

user-level objects in the specification can be instantiated upon request at any time.

For example, they can be instantiated on-the-fly as they are added to the service

specification.This is useful for users who would like to build a slice interactively and/or

modify it over time, e.g., extend the slice resources based on increased demand.

Unlike other platforms, such as PlanetLab and EmuLab, which intend to run as

many “slices” as possible, ShadowNet limits the number of shares (slivers) a physical

resource provides. This simplifies the resource allocation problem to a straightforward

availability check. We leave more advanced resource allocation methods as future

work.

113

5.3.3 Device access & persistent slice state

ShadowNet allows a user to access the physical instantiation of the UsrDevices and

UsrLinks in her slice, e.g., logging into a router or tapping into a link (c in Figure 5.5).

This support is necessary for many reasons. First, the user needs to install software on

UsrMachines or UsrRouters and/or configure UsrRouters for forwarding and filtering

packets. Second, purely from an operational point of view, operators usually desire

direct access to the devices (e.g., a terminal window on a server, or command line

access to a router).

For UsrMachines and UsrRouters, we allow users to log into the device and make

any changes they want (§5.4.3). For UsrLinks and UsrSwitches, we provide packet

dump feeds upon request (§5.4.3). This support is crucial for service testing, debug-

ging and optimization, since it gives the capability and flexibility of sniffing packets

at any place within the service deployment without installing additional software on

end-points.

Enabling device access also grants users the ability to change the persistent state

of the physical instantiations, such as files installed on disks and configuration changes

on routers. In ShadowNet, we decouple the persistent states from the physical instan-

tiation. When the physical instantiation is modified, the changed state also become

part of the slice (d in Figure 5.5).

5.3.4 Deactivation

The instantiated user-level objects in the specification of a slice can be deactivated,

releasing the physical instantiations of the objects from the slice by giving them back

to the ShadowNet infrastructure. For example, a user can choose to deactivate an

under-utilized slice as a whole, so that other users can test their slices when the

physical resources are scarce. While releasing the physical resource, we make sure

the persistent state is extracted and stored as part of the slice (f in Figure 5.5).

As a result, when the user decides to revive a whole slice or an object in the slice,

new physical resources will be acquired and the stored state associated with the

114

object applied to it (e in Figure 5.5). Operationally speaking, this enables a user to

deactivate a slice and reactivate it later, most likely on a different set of resources but

still functioning like before.

5.3.5 Management support

Abstracting the persistent state from the physical instantiation enables other use-

ful primitives in the context of service deployment. If we instantiate a new UsrDevice

and apply the state of an existing UsrDevice to it, we effectively duplicate the existing

UsrDevice. For example, a user may instantiate a new UsrMachine with only the ba-

sic OS setup, log into the machine to install necessary application code and configure

the OS. With the support provided by ShadowNet, she can then spawn several new

UsrMachines and apply the state of the first machine. This eases the task of creating

a cluster of devices serving similar purposes. From the ShadowNet control aspect,

this separation allows sophisticated techniques to hide physical device failures. For

example, a physical router experiences a power failure, while it hosts many logical

routers as the instantiation of UsrRouters. In this case, we only need to create new

instantiations on other available devices of the same type, and then apply the states

to them. During the whole process, the slice specification, which is what the user

perceives, is intact. Naturally, the slice will experience some downtime as a result of

the failure.

5.4 Physical layer operations

While conceptually similar to several existing systems [35, 118], engineering Shad-

owNet is challenging due to the strong isolation concept it rests on, the production-

grade qualities it provides and the distributed nature of its realization. We describe

the key methods used to realize ShadowNet.

115

Figure 5.7: Network connectivity options.

5.4.1 Instantiating slice specifications

The slice specification instantiation is performed by the ShadowNet controller in

a fully automated fashion. The methods to instantiate on two types of resource are

described as follows.

5.4.1.1 User-level routers and machines

ShadowNet currently utilizes VirtualBox [27] from Sun Microsystems, and Logical

Routers [74] from Juniper Networks to realize UsrMachines and UsrRouters respec-

tively. Each VM and logical router created is considered as a device sliver. To instan-

tiate a UsrRouter or a UsrMachine, a ShadowNet node is chosen based on the location

property specified. Then all matching physical devices on that node are enumerated

for availability checking, e.g., whether a Juniper router is capable of spawning a new

logical router. When there are multiple choices, we distribute the usage across devices

in a round-robin fashion. Location preference may be unspecified because the user

does not care about where the UsrDevice is instantiated, e.g., when testing a router

configuration option. In this case, we greedily choose the ShadowNet node where that

type of device is the least utilized. When no available resource can be allocated, an

error is returned.

116

5.4.1.2 User-level connectivity

The production network associated with ShadowNet provides both Internet con-

nection and virtual backbone connectivity to each ShadowNet node. We configure a

logical router, which we call the head router of the ShadowNet node, to terminate

these two connections. With the ShadowNet backbone connectivity provided by the

ISP, all head routers form a full-mesh, serving as the core routers of ShadowNet.

For Internet connectivity, the head router interacts with ISP’s border router, e.g.,

announcing BGP routes.

Connecting device slivers on the same ShadowNet node can be handled by the

switching layer of that node. The head routers are used when device slivers across

nodes need to be connected. In ShadowNet, we make use of the carrier-supporting-

carrier (CsC) capabilities provided by MPLS enabled networks. CsC utilizes the VPN

service provided by the ISP, and stacks on top of it another layer of VPN services,

running in parallel but isolated from each other. For example, layer-2 VPNs (so called

pseudo-wire) and VPLS VPNs can be stacked on top of a layer-3 VPN service [73].

This approach has three key benefits. First, each layer-2 VPN or VPLS instance

encapsulates the network traffic within the instance, thus provides strong isolation

across links. Second, these are off-the-shelf production-grade services, which are much

more efficient than manually configured tunnels. Third, it is more realistic for the

users, because there is no additional configuration needed in the logical routers they

use. The layer-2 VPN and VPLS options that we heavily use in ShadowNet provides

layer-2 connectivity, i.e., with router programmability, any layer-3 protocol besides

IP can run on top of it.

Figure 5.7 contains various examples of enabling connectivity, which we explain

in detail next.

UsrLink: To instantiate a UsrLink, the instantiations of the two UsrDevices on the

two ends of the UsrLink are first identified. We handle three cases, see Figure 5.7a).

(We consider the UsrLinks connected to a UsrSwitch part of that UsrSwitch, which

we describe later):

117

1) Two slivers are on the same physical device: for example, VM1 and VM2

are on the same server; LR2 and Head1 are on the same router. In this case, we use

local bridging to realize the UsrLink.

2) Two slivers are on the same ShadowNet node, but not the same device:

for example, VM1 and LR1, LR1 and LR2. We use a dedicated VLAN on that node

for each UsrLink of this type, e.g.,, LR1 will be configured with two interfaces, joining

two different VLAN segments, one for the link to VM1, the other one to LR2.

3) Two slivers are on different nodes: for example, LR2 and LR3. In this case,

we first connect each sliver to its local head router, using the two methods above.

Then the head router creates a layer-2 VPN to bridge the added interfaces, effectively

creating a cross-node tunnel connecting the two slivers.

In each scenario above, the types of the physical interfaces that should be used to

enable the link are decided, the selected physical interfaces are configured, and the

resource usage information of the interfaces is updated.

MPLS-VPN technologies achieve much higher levels of realism over software tun-

nels, because almost no configuration is required at the end-points that are being

connected. For example, to enable the direct link between LR2 and LR3, the layer-2

VPN configuration only happens on Head1 and Head2. As a result, if the user logs

into the logical router LR2 after its creation, she would only sees a “physical” inter-

face setup in the configuration, even without IP configured, yet that interface leads

to LR3 according to the layer-2 topology.

User-view switches: Unlike for UsrMachines and UsrRouters, ShadowNet does

not allocate user-controllable device slivers for the instantiation of UsrSwitches, but

rather provide an Ethernet broadcasting medium. (See Figure 5.7b).)

To instantiate a UsrSwitch connecting to a set of UsrDevices instantiated on

the same ShadowNet node, we allocate a dedicated VLAN-ID on that node and

configure those device slivers to join the VLAN (i.e., LR5 and LR6). If the device

slivers mapped to the UsrDevices distribute across different ShadowNet nodes, we

first recursively bridge the slivers on the same node using VLANs, and then configure

118

one VPLS-VPN instance on each head router (i.e., Head3 and Head4) to bridge all

those VLANs. This puts all those device slivers (i.e., VM3, LR5, LR6) onto the same

broadcast domain. Similar to layer-2 VPN, this achieves a high degree of realism, for

example on LR5 and LR6, the instantiated logical router only shows one “physical”

interface in its configuration.

Internet access: We assume that ShadowNet nodes can use a set of prefixes to com-

municate with any end-points on the Internet. The prefixes can either be announced

through BGP sessions configured on the head routers to the ISP’s border routers, or

statically configured on the border routers.

To instantiate a UsrDevice’s Internet connectivity, we first connect the UsrDevice’s

instantiation to the head router on the same node. Then we configure the head router

so that the allocated prefix is correctly forwarded to the UsrDevice over the established

link and the route for the prefix is announced via BGP to the ISP. For example, a

user specifies two UsrRouters connecting to the Internet, allocating them with prefix

136.12.0.0/24 and 136.12.1.0/24. The head router should in turn announce an

aggregated prefix 136.12.0.0/23 to the ISP border router.

5.4.2 Achieving isolation and fair sharing

As a shared infrastructure for many users, ShadowNet attempts to minimize the

interference among the physical instantiation of different slices. Each virtual machine

is allocated with its own memory address space, disk image, and network interfaces.

However, some resources, like CPU, are shared among virtual machines, so that one

virtual machine could potentially drain most of the CPU cycles. Fortunately, virtual

machine technology is developing better control over CPU usage of individual virtual

machines [27].

A logical router on a Juniper router has its own configuration file and maintains

its own routing table and forwarding table. However, control plane resources, such

as CPU and memory are shared among logical routers. We evaluate this impact in

§5.6.3.

119

The isolation of packets among different UsrLinks is guaranteed by the physi-

cal device and routing protocol properties. We leverage router support for packet

filtering and shaping, to prevent IP spoofing and bandwidth abuse. The correspond-

ing configuration is made on head routers, where end-users cannot access. For each

UsrLink, we impose a default rate-limit (e.g., 10Mbps), which can be upgraded by

sending a request via the user-level API. We achieve rate limiting via hardware traffic

policers [77] and Linux kernel support [24].

5.4.3 Enabling device access

Console or remote-desktop access: For each VM running on VirtualBox, a port

is specified on the hosting server to enable Remote Desktop protocol for graphical

access restricted to that VM. If the user prefers command line access, a serial port

console in the VM images is enabled and mapped to a UNIX domain socket on the

hosting machine’s file system [27]. On a physical router, each logical router can be

configured to be accessible through SSH using a given username and password pair,

while confining the access to be within the logical router only.

Though the device slivers of a slice can be connected to the Internet, the man-

agement interface of the actual physical devices in ShadowNet should not be. For

example, the IP address of a physical server should be contained within ShadowNet

rather than accessible globally. We thus enable users to access the device slivers

through one level of indirection via the ShadowNet controller.

Sniffing links: To provide packet traces from a particular UsrLink or UsrSwitch,

we dynamically configure a SPAN port on the switching layer of a ShadowNet node

so that a dedicated server or a pre-configured VM can sniff the VLAN segment that

the UsrLink or UsrSwitch is using. The packet trace can be redirected through the

controller to the user in a streaming fashion or saved as a file for future downloading.

There are cases where no VLAN is used, e.g., for two logical routers on the same

physical router connected via logical tunnel interfaces. In this case, we deactivate the

tunnel interfaces and re-instantiate the UsrLink using VLAN setup to support packet

120

capture. This action, however, happens at the physical-level and thus is transparent

to the user-level, as the slice specification remains intact.

5.4.4 Managing state

To extract the state of an instantiated UsrMachine, which essentially is a VM,

we keep the hard drive image of the virtual machine. The configuration file of a

logical router is considered as the persistent state of the corresponding UsrRouter.

Reviving stored state for a UsrMachine can be done by attaching the saved disk

image to a newly instantiated VM. On the other hand, UsrRouter state, i.e., router

configuration files, need additional processing. For example, a user-level interface

may be instantiated as interface fe-0/1/0.2 and thus appear in the configuration

of the instantiated logical router. When the slice is deactivated and instantiated

again, the UsrInt may be mapped to a different interface, say ge-0/2/0.1. To deal

with this complication, we normalize the retrieved configuration and replace physical-

dependent information with user-level object handles, and save it as the state.

5.4.5 Mitigating and creating failures

Unexpected physical device failures can occur, and as an option ShadowNet tries

to mitigate failures as quickly as possible to reduce user perceived down time. One

benefit of separating the states from the physical instantiation is that we can replace

a new physical instantiation with the saved state applied without affecting the user

perception. Once a device or a physical component is determined to be offline, Shad-

owNet controller identifies all instantiated user-level devices associated to it. New

instantiations are created on healthy physical devices and saved states are applied if

possible. Note that certain users are specifically interested in observing service behav-

ior during failure scenarios. We allow the users to specify whether they want physical

failures to pass through, which is disabling our failure mitigation functionality. On

the other hand, failure can be injected by the ShadowNet user-level API, for example

tearing down the physical instantiation of a link or a device in the specification to

121

mimic a physical link-down event.

For physical routers, the device monitor performs periodic retrieval of the current

configuration files, preserving the states of UsrRouters more proactively. When a

whole physical router fails, the controller creates new logical routers with connectivity

satisfying the topology on other healthy routers and applies the saved configuration,

such as BGP setup. If an interface module fails, the other healthy interfaces on the

same router are used instead. Note that the head router is managed in the same

way as other logical routers, so that ShadowNet can also recover from router failures

where head routers are down.

A physical machine failure is likely more catastrophic, because it is challenging to

recover files from a failed machine and it is not feasible to duplicate large files like

VM images to the controller. One potential solution is to deploy a distributed file

system similar to the Google file system [60] among the physical machines within one

ShadowNet node. We leave this type of functionality for future work.

5.5 Prototype Implementation

In this section, we briefly describe our prototype implementation of the ShadowNet

infrastructure, including the hardware setup and management controller.

5.5.1 Hardware setup

Currently, a four node ShadowNet instance is deployed as an operational network

with nodes in Texas, Illinois, New Jersey and California. Each node has two gigabit

links to the production network, one used as regular peering link and the other used

as the dedicated backbone.

In this section, we use our original local two-node deployment as evaluation. Each

prototype node has two Juniper M7i routers running JUNOS version 9.0, one Cisco

C2960 switch, as well as four HP DL520 servers. The M7i routers are equipped with

one or two Gigabit Ethernet PICs (Physical Interface Cards), FastEthernet PIC, and

tunneling capability. Each server has two gigabit Ethernet interfaces, and we install

122

VirtualBox in the Linux Debian operating system to host virtual machines. The

switch is capable of configuring VLANs and enabling SPAN ports.

In the local deployment, two Cisco 7206 routers act as an ISP backbone. MPLS

is enabled on the Cisco routers to provide layer-3 VPN service as the ShadowNet

backbone. BGP sessions are established between the head router of each node and its

adjacent Cisco router, enabling external traffic to flow into ShadowNet. We connect

the network management interface fxp0 of Juniper routers and one of the two Eth-

ernet interfaces on machines to a dedicated and separate management switch. These

interfaces are configured with private IP addresses, and used for physical device man-

agement only, mimicking the out-of-band access which is common in ISP network

management.

5.5.2 Controller

The ShadowNet controller runs on a dedicated machine, sitting on the manage-

ment switch. The controller is currently implemented in Perl. A Perl module, with all

the user-level APIs, can be imported in Perl scripts to create, instantiate and access

service specifications, similar to the code shown in Figure 5.6. A mysql database is

running on the same machine as the controller, serving largely, though not entirely,

as the persistent storage connecting to the controller. It saves the physical device

information, user specifications, and normalized configuration files, etc. We use a dif-

ferent set of tables to maintain physical-level information, e.g.,, phy_device_table,

and user-level information, e.g.,, usr_link_table. The Perl module retrieves infor-

mation from the tables and updates the tables when fulfilling API calls.

The configuration effector of the ShadowNet controller is implemented within the

Perl module as well. We make use of the NetConf XML API exposed by Juniper

routers to configure and control them. Configlets in the form of parametrized XML

files are stored on the controller. The controller retrieves the configuration of the

physical router in XML format periodically and when UsrRouters are deactivated.

We wrote a specialized XML parser to extract individual logical router configurations

123

and normalize relative fields, such as interface related configurations. The normal-

ized configurations are serialized in text format and stored in the mysql database

associating to the specific UsrRouter.

Shell and Perl scripts, which wrap the VirtualBox management interface, are

executed on the hosting servers to automatically create VMs, snapshot running VMs,

stop or destroy VMs. The configuration effector logs into each hosting server and

executes those scripts with the correct parameters. On the servers, we run low-priority

cron jobs to maintain a pre-configured number of default VM images of different OS

types. In this case, the request of creating a new VM can be fulfilled fairly quickly,

amortizing the overhead across time. We use the following steps to direct the traffic of

an interface used by a VM to a particular VLAN. First, we run tunctl on the hosting

server to create a tap interface, which is configured in the VMM to be the “physical”

interface of the VM. Second, we make use of 802.1Q kernel module to create VLAN

interfaces on the hosting server, like eth1.4, which participates in VLAN4. Finally

we use brctl to bridge the created tap interface and VLAN interface.

Instead of effecting one configuration change per action, the changes to the phys-

ical devices are batched and executed once per device, thus reducing authentication

and committing overheads. All devices are manipulated in parallel. We evaluate the

effectiveness of these two heuristics in §5.6.1.

The device monitor module is running as a daemon on the controller machine.

SNMP trap messages are enabled on the routers and sent over the management

channel to the controller machine. Ping messages are sent periodically to all devices.

The two sources of information are processed in the background by the monitoring

daemon. When failures are detected, the monitoring module calls the physical-level

APIs in the Perl module, which in response populates configlets and executes on

the routers to handle failures. An error message is also automatically sent to the

administrators.

124

L1

L2 L3

L4

LA NY

M1 R1 M2R2

L5

L6 L8

M3 M4R3 R4

Slice1

Slice2

Internet

L7

Vlan3

Vlan1

LTs

ge-0/1/0

LR1

Head
Internet

VPN

JuniperRouter1

Vlan4

Vlan2

LTs

ge-0/1/0

Internet

VPN

JuniperRouter2

Internet

VPN

Internet

VPN

VM3

VM1

Eth1.3

Eth1.1

Server1

Eth1
VM4

VM2

Eth1.4

Eth1.2

Server2

Eth1

SwitchISPSwitch

LR3 LR4

LR2

Head

LTs stands for Logical Tunnels

For L2VPN that connects LR1 to LR2For L2VPN that connects LR3 to LR4

For Internet access to LR1/LR2

Slice specif ication Actual instant iat ion

Figure 5.8: User slices for evaluation

5.6 Prototype Evaluation

In this section, we evaluate various aspects of ShadowNet based on two example

slices instantiated on our prototype. The user specifications are illustrated on the

left side of Figure 5.8; the physical realization of that specification is on the right.

In Slice1, two locations are specified, namely LA and NY. On the LA side, one

UsrMachine (M1) and one UsrRouter (R1) are specified. R1 is connected to M1

through a UsrLink. R1 is connected to the Internet through L2 and to R2 directly

via L5. The setup is similar on NY side. We use minimum IP and OSPF configuration

to enable the correct forwarding between M1 and M2. Slice2 has essentially the same

setup, except that the two UsrRouters do not have Internet access.

The right side of Figure 5.8 shows the instantiation of Slice1 and Slice2. VM1

and LR1 are the instantiation of M1 and R1 respectively. UsrLink L1 is instantiated

as a dedicated channel formed by virtualized interfaces from physical interfaces, eth1

and ge-0/1/0, configured to participate in the same VLAN. To create the UsrLink

L5, ShadowNet first uses logical tunnel interfaces to connect LR1 and LR2 with their

head routers, which in turn bridge the logical interfaces using layer-2 VPN.

5.6.1 Slice creation time

Table 5.2 shows the creation time for Slice1, broken down into instantiation of

machine and router, along with database access (DB in the table.) Using a naive ap-

proach, the ShadowNet controller needs to spend 82 seconds on the physical routers

125

Router Machine DB Total

Default (ms) 81834 11955 452 94241
Optimized (ms) 6912 5758 452 7364

Table 5.2: Slice creation time comparison

bandwidth packet Observed Delta
(Kbps) size bandwidth (%)

56
64 55.9 .18
1500 55.8 .36

384
64 383.8 .05
1500 386.0 .52

1544
64 1537.2 .44
1500 1534.8 .60

5000 1500 4992.2 .16
NoLimit 1500 94791.2 NA

Table 5.3: Cross-node link stress test

alone by making 13 changes, resulting a 94-second execution time in total. For ma-

chine configuration, two scripts are executed for creating the virtual machines, and

two for configuring the link connectivity. With the two simple optimization heuris-

tics described in §5.5.2, the total execution time is reduced to 7.4 seconds. Note

that the router and machine configurations are also parallelized, so that we have

total = DB + max(Routeri,Machinej). Parallelization ensures that the total time

to create a slice does not increase linearly with the size of the slice. We estimate

creation time for most slices to be within 10 seconds.

5.6.2 Link stress test

We perform various stress tests to examine ShadowNet’s capability and fidelity.

We make L5 the bottleneck link, setting different link constraints using Juniper

router’s traffic policer, and then test the observed bandwidth M1 and M2 can achieve

on the link by sending packets as fast as possible. Packets are dropped from the head

of the queue. The results are shown in Table 5.3, demonstrating that ShadowNet can

126

closely mimic different link capacities.

When no constraint is placed on L5, the throughput achieved is around 94.8Mbps,

shown as “NoLimit” in the table. This is close to maximum, because the routers we

used as ISP cores are equipped with FastEthernet interfaces, which have 100Mbps

capacity and the VM is specified with 100Mbps virtual interface. Physical gigabit

switches are usually not the bottleneck, as we verified that two physical machines on

the same physical machines connected via VLAN switch can achieve approximately

1Gbps bandwidth.

As we are evaluating on a local testbed, the jitter and loss rate is almost zero,

while the delay is relatively constant. We do not expect this to hold in our wide-area

deployment.

5.6.3 Slice isolation

We describe our results in evaluating the isolation assurance from the perspectives

of both the control and data plane.

5.6.3.1 Control plane

To understand the impact of a stressed control plane on other logical routers, we

run software routers, bgpd of zebra, on both M1 and M3. The two software routers

are configured to peer with the BGP processes on LR1 and LR3. We load the software

routers with BGP routing tables of different sizes, transferred to LR1 and LR3. The

BGP event log on the physical router is analyzed by measuring the duration from the

first BGP update message to the time when all received routes are processed.

In Figure V.9(a), the bottom line shows the processing time of the BGP process

on LR1 to process all the routes if LR3 is BGP-inactive. The top line shows the pro-

cessing time for LR1 when LR3 is also actively processing the BGP message stream.

Both processing times increase linearly with the number of routes received. The two

lines are almost parallel, meaning that the delay is proportional to the original pro-

cessing time. The difference of receiving 10k routes is about 13 seconds, 73 seconds

127

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000
P

ro
ce

ss
in

g
tim

e
(s

ec
on

d)
Routes to receive

w/o impact
w/ impact

(a) Impact of shared control planes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 (

kb
ps

)

Time (second)

Packet rate

(b) Hardware failure recovery

Figure 5.9: Control plane isolation and recovery test.

for 50k routes. We have verified that the CPU usage is 100% even if only LR1 is

BGP-active. We have also used two physical machines to peer with LR1 and LR3

and confirmed that the bottleneck is due to the Juniper router control processor. If

these limitations prove to be problematic in practice, solutions exist which allow a

hardware separation of logical router control planes [75].

5.6.3.2 Data plane

L1 and L6 share the same physical interfaces, eth1 on Server1 and ge-0/1/0 on

JuniperRouter1. We restrict the bandwidth usage of both L1 and L6 to be 1Mbps

128

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200 1400

R
ec

ei
vi

ng
 r

at
e

on
 M

2
(k

bp
s)

Sending rate on M1 (kbps)

L1

(a) Variable packet rate (L6’s rate is maxed)

 900

 920

 940

 960

 980

 1000

 0 200 400 600 800 1000 1200 1400

R
ec

ei
vi

ng
 r

at
e

on
 M

2
(k

bp
s)

Sending rate on M3 (kbps)

L1

(b) Max packet rate (L6’s rate is variable)

Figure 5.10: Data plane isolation test.

by applying traffic policer on the ingress interfaces on LR1 and LR3. From the

perspective of a given UsrLink, say L1, we evaluate two aspects: regardless of the

amount of traffic sent on L6, (1) L1 can always achieve the maximum bandwidth

allocated (e.g., 1Mbps given a 100Mbps interface); (2) L1 can always obtain its

fair share of the link. To facilitate this test, we apply traffic policer on the ingress

interfaces (ge-0/1/0) on LR1 and LR3, restricting the bandwidth of L1 and L6 to

1Mbps. Simultaneous traffic is sent from M1 via L1 to M2, and from M3 via L6 to

M4.

129

Figure 5.10(a) shows the observed receiving rate on M2 (y-axis) as the sending rate

of M1 (x-axis) increases, while M3 is sending as fast as possible. The receiving rate

matches closely with the sending rate, before reaching the imposed 1Mbps limit, This

demonstrates that L1 capacity is not affected, even if L6 is maxed out. Figure 5.10(b)

shows the max rate of L1 can achieve is always around 980kbps no matter how fast

M2 is sending.

5.6.4 Device failure mitigation

We evaluate the recovery time in response to a hardware failure in ShadowNet.

While Slice1 is running, M1 continuously sends packets to M2 via L1. We then phys-

ically yanked the Ethernet cable on the Ethernet module ge-0/1/0, triggering SNMP

LinkDown trap message and the subsequent reconfiguration activity. A separate in-

terface (not shown in the figure) is found to be usable, then automatically configured

to resurrect the down links. Figure V.9(b) shows the packet rate that M2 observes.

The downtime is about 7.7 seconds, mostly spent on effecting router configuration

change. Failure detection is fast due to continuous SNMP messages, and similarly

controller processing takes less than 100ms. This exemplifies the benefit of strong

isolation in ShadowNet, as the physical instantiation is dynamically replaced using

the previous IP and OSPF configuration, leaving the user perceived slice intact after

a short interruption. To further reduce the recovery time, the ShadowNet controller

can spread a UsrLink’s instantiation onto multiple physical interfaces, each of which

provides a portion of the bandwidth independently.

5.7 Summary

In this chapter, we propose an architecture called ShadowNet, designed to accel-

erate network change in the form of new networks services and sophisticated network

operation mechanisms. Its key property is that the infrastructure is connected to,

but functionally separated from a production network, thus enabling more realistic

service testing. The fact that production-grade devices are used in ShadowNet greatly

130

improves the fidelity and realism achieved. In the design and implementation of Shad-

owNet, we created strong separation between the user-level representations from the

physical-level instantiation, enabling dynamic composition of user-specified topolo-

gies, intelligent resource management and transparent failure mitigation. ShadowNet

is now a deployed infrastructure in a tier-one ISP, and indeed helped the evalua-

tion of PACMAN and COOLAID. Though ShadowNet currently provides primitives

mainly for service testing purposes, as a next step, we seek to broaden the applicabil-

ity of ShadowNet, in particular, to merge the control framework into the production

network for allowing service deployment.

131

CHAPTER VI

Related Work

6.1 Understanding current network management

practice

When the network functionality is described by a distributed set of low-level con-

figurations, it is difficult to derive the high-level services that the network enables.

Thus an important line of related work is about bridging this gap by helping people

to understand the network-wide implication of the configurations, thus enabling fault

diagnosis, performance diagnosis, etc. It has been shown that managing networks

through router configuration is a challenging task and a significant contributor to

unsatisfactory network availability [96]. Many existing studies in this area of configu-

ration management in IP networks focus on extracting network service features, e.g.,

quality of service setup [108], and diagnosing network-wide misconfigurations from

router configuration files [55, 84, 119]. Our DFA work is different from previous work

in that we analyze data capturing continuous changes of the configuration of most

routers in the network. Our approach provides more fine-grained analysis and reveals

many interesting issues that are impossible to be discovered by studying static config-

uration snapshots. For example, incorrect ordering of management operations could

lead to severe transient network disruptions, even though the eventual configuration

state is correct.

132

The EDGE architecture [41] had the ambitious goal of moving to automated net-

work configuration by first analyzing existing network configuration data to identify

the network’s policies and to then use such network intelligence to create a database

to drive future automated configuration changes. This work seemed to have stopped

short of actually taking the last step to create an automated configuration system

and is therefore more similar to efforts that attempted to analyze the correctness of

existing network configurations [55, 58].

Other systems are built to understand the potential impact of network problems,

thus better prepare the network in problematic states. Reval [113] is a system to

scale up the magnitude of DDoS attacks to see how tolerable a network is. Kim et

al. [95] evaluated the impact of multiple network failures and the effectiveness of

different protection scheme. Mao et al. [91] analyzed the negative impact of BGP

route damping to network routing convergence. These analysis can be integrated into

our COOLAID framework, when the analysis is expressed in the declarative language.

We plan to explore building more generic reasoning support using COOLAID.

6.2 Dirty-slate solutions

A variety of tools and systems are built to assist the current management practice.

Our solutions can be largely described as dirty-slate as well, because we do not require

any infrastructure or hardware modification. We categorize them as follows.

6.2.1 Configuration management systems

The state-of-the-art in network configuration management is exemplified by the

PRESTO configuration management system [53]. The PRESTO system uses config-

uration templates, created by network experts and called active templates, which are

populated by instance-specific parameters to generate specific configuration specifi-

cations. The generated configurations can be optionally validated [112]. PRESTO’s

active templates, however, do not specify any conditional predicates that have to be

satisfied before the next set of configurations are applied. Therefore, PRESTO tem-

133

plates lack the necessary execution logic to capture sophisticated operational tasks,

or indeed the ability to intelligently create composed tasks from simpler components.

Also, the dependencies among templates and between the generated snippets and the

existing configurations, still need to be resolved manually Similar to PRESTO, a sim-

ple template based approach has been used to automate BGP configuration of new

customer links [63]. While also limited to BGP configuration, the work by Bohm et

al. [38] had a broader scope in that it addressed the creation of configuration files to

realize network-wide inter-domain routing policies.

In contrast, COOLAID advocates using declarative rules as a concise and compact

representation of domain knowledge, which can be contributed by both vendors and

service providers. The reasoning support is generic to all services. COOLAID further

provides constraint checking with transactional semantics, not simply emitting con-

figuration snippets to network devices. PACMAN does not generate configurations,

but can automatically perform generic configuration modification procedures without

human involvement.

NCG [14] is a recently published system from the network operator community.

They recognize the same urgent need to automate network configuration to ensure

correctness and timeliness while meeting scalability requirements. The tool can build

network configurations, but currently still requires manually pushing the changes

to the network elements. COOLAID, on the other hand, seamlessly integrates the

two. NCG advocates the separation of workload between architects and engineers:

architects specify the models and templates, while engineers can modify the data

in the model. This is conceptually similar to both PACMAN and COOLAID. In

PACMAN, we build assisted environments to make active document generation easier,

while in COOLAID, the architects only need to develop declarative rules based on the

database abstraction, which is much easier than dealing with low-level configuration

languages.

Besides NCG, there are many tools that originate from operators. For example,

RANCID [18] helps push and identify (diff) configuration changes. NetworkAuthor-

ity Inventory [16] (previously known as ZipTie) and NETDISCO [13] help discover

134

network devices and map network topology. These tools are complementary to our

work. For example, RANCID does not generate configurations, but rather provides

the mechanism to realize and manage configuration changes. Similarly the network

discovery tools can be used to create and maintain a network inventory database for

COOLAID.

6.2.2 Network operation support

Major router vendors have proposed their own network management automation

frameworks [3, 10]. Those management frameworks remain device-centric and are

mostly used to handle local failure response, while PACMAN and COOLAID allows

a full spectrum of network management tasks with a network-wide perspective.

Alimi et al. suggest the use of “shadow configurations” which would allow both

an old and a new network configuration to be active in the same network element [31].

This would allow an operator to test new configuration before activating it. While

limiting the potential impact of configuration changes, this approach does not do

anything to simplify or automate network configuration changes — the operators

still have to manually configure the shadow configuration. Similarly, the VROOM

work [114] attempts to avoid configuration changes altogether through the live mi-

gration of virtual routers. Again this work indirectly deals with the complexity of

configuration management without per se making it any easier.

Maestro [40] features reasoning about network states to safe-guard network op-

erations. However, it falls short of PACMAN and COOLAID, because our solutions

are more general. For example, PACMAN can be composed to realize a variety of

operations, and COOLAID can be used to automatically generate configuration.

A number of “autonomic” network architectures are related to PACMAN [62, 107].

Conceptually the FOCALE architecture [107] is perhaps the closest to PACMAN.

Specifically, like PACMAN, the FOCALE architecture contains an explicit control

loop so that network operations can be cognizant of network conditions. However,

unlike PACMAN, which closely models current operational practices and ties in with

135

existing network capabilities, the FOCALE approach requires the adoption of new

paradigms and tools.

6.2.3 Rule-based management systems

There are also many existing systems that apply rule-based approaches to general

system management. On the commercial side, IBM’s Tivoli management framework

and HP’s OpenView allow event-driven rules to be expressed and automated for sys-

tem management. These languages are best suited for reacting to system condition

changes by triggering pre-defined procedural code, but not suitable for specifying do-

main knowledge of network protocol behaviors and dependencies. On the research

side, InfoSpect [103], Sophia [116] and Rhizoma [28] all proposed to use logic program-

ming to manage nodes in large-scale distributed systems such as PlanetLab or cloud

environments. Providing advanced support for and meeting the distinct requirements

of network management, COOLAID’s main techniques differ drastically from those sys-

tems. For example, features like distributed recursive query processing, view update

resolution, and transactional semantics with constraint enforcement, are all unique

to COOLAID.

6.2.4 Declarative systems

Declarative programming in system and networking domains has gained consid-

erable attention in recent years. The declarative networking project proposes a dis-

tributed recursive query language to specify and implement traditional routing proto-

cols at the control plane [88]. The declarative approach has been explored by numer-

ous projects, e.g., to implement overlays [87], data and control plane composition [90],

specify distributed storage policies [36], building sensor network applications [49],

and simulate Byzantine fault tolerant protocols [105]. Compared to those studies,

COOLAID focuses on re-factoring current network management and operations prac-

tices. Specifically, in COOLAID the declarative language is used for describing domain

knowledge, like dependencies and restrictions among network components, as opposed

136

to implementing protocols for execution or simulation. As a stand-alone management

plane, COOLAID orchestrates network devices in a declarative fashion, while not re-

quiring the existing routers to be modified. Our work shows that COOLAID works

with off-the-shelf carrier-grade routers and is designed for production environments.

6.3 Clean-slate solutions

Several proposals exist that address network management complexity through

approaches that are less tethered to current operational practices and device limita-

tions [31, 33, 114]. These works do not cover the full range of network management

tasks required in operational networks [33], or attempt to limit the potential neg-

ative impact of configuration management without directly addressing its complex-

ity [31, 114]. One such approach is the CONMan architecture [33], in which device

and network functionality is captured by abstract modules which describe either data

plane or control plane functions. Certain network configuration tasks, specifically con-

nectivity management tasks, can be readily accomplished via manipulation of these

abstract modules. It is not clear, however, to what extent this approach is applicable

to more generic network operational tasks.

Relating to the 4D project [67], COOLAID fulfills the functionalities of the decision

and dissemination planes. Tesseract [120] is an implemented control plane under

the 4D concept. It is designed to a flexible platform such that different management

tools and algorithms can be plugged in easily. To the contrary, COOLAID use a unified

declarative language to capture the domain knowledge, which is expressed accurately

and succinctly.

In the enterprise network management space, Ethane [42] and NOX [68] focus on

network flow access control management. Along the same line, Flow-based Manage-

ment Language [69] is based on the Datalog syntax to express policies of flow control.

These resemble most of the policy-based network management work [7]. In contrast,

the language proposed in COOLAID effectively captures domain knowledge in protocol

behaviors and dependencies.

137

6.4 Network evaluation systems

ShadowNet has much in common with other test/trial networks [35, 97, 118]. How-

ever, to our knowledge, ShadowNet is the first platform to exploit recent advances

in the capabilities of networking equipment to provide a sharable, composable and

programmable infrastructure using carrier-grade equipment running on a production

ISP network. This enables a distinct emphasis shift from experimentation/prototyp-

ing (enabled by other test networks), to service trial/deployment (enabled by Shad-

owNet). The fact that ShadowNet utilizes production quality equipment frees us from

having to deal with low-level virtualization/partitioning mechanisms, which typically

form a significant part of other sharable environments. Please refer to Section5.1.2

for comparison between ShadowNet and other networking experimental testbeds.

From a composable testbed perspective, Shadownet is closely related to VINI [35]

and Emulab [52, 102, 118]. Emulab and VINI take user specifications of a network

setup and realize it through simulation or emulation on commodity PCs within a

local testbed or distributed across wide-area networks. Emulab, in particular, focuses

on facilitating network experiment, providing a batch-like interface, with which all

events are serialized and effected using a state machine. ShadowNet achieves the

similar goal on a set of heterogeneous network devices, including commercial-grade

slicable routers, virtual machine, etc. As a result, the realization process in Shad-

ownet is much more sophisticated, while gaining an even higher level of realism and

usability. The current implementation of VINI is closely coupled with PlanetLab [97]

nodes with Internet-2 [8] connectivity. Similarly, Shadownet nodes are deployed con-

necting to or close to ISP backbone for production-grade network access and potential

traffic demand. Emulab, in particular, considers resource allocation [101] as a crucial

component for managing the system. ShadowNet also provides resource management

support. Beyond Emulab and VINI, Shadownet provides a set of primitives that

enhance the interaction between the user and the testbed, making it an easy-to-use

platform to deploy real services. ModelNet [110] is a network testing environment,

where end-hosts installed with unmodified software connect to an emulated network

138

core to test Internet-scale services. ModelNet trades off accuracy for scalability by

optionally distilling the user-input topology.

A similar service deployment incentive to that espoused by ShadowNet was advo-

cated in [97]. Their service definition is, however, narrower than ShadowNet’s scope

which also includes network layer services. Amazon’s EC2 provides a platform for

rapid and flexible edge service deployment with a low cost [1]. This platform only

rents computing machines with network access, lacking the ability to control the

networking aspects of service testing, or indeed network infrastructure of any kind.

PLayer [72] is designed to provide a flexible and composable switching layer in data-

center environment. It achieves dynamic topology change with low cost; however, it

is not based on commodity hardware.

We heavily rely on hardware-based and software-based virtualization support [30]

in the realization of ShadowNet, for example virtual machines [27] and Juniper’s

logical router [74]. The isolation between the logical functionality and the physical

resource can be deployed to achieve advanced techniques, like router migration in

VROOM [114] and virtual machine migration [51, 94], which can be used by Shad-

owNet.

139

CHAPTER VII

Conclusion

Network management is one of the most important areas of networking research.

Successful network management practice not only guarantees satisfiable service deliv-

ery but also enables continuous network evolution. In this dissertation, we explored

various abstractions and systems to understand the patterns and structures of existing

management practice, automate operations that used to be performed manually and

requires significant domain expertise, augment these operations to provide network-

wide guarantees. We showed that using Petri-Net and database abstractions our

proposed systems perform network operations in a both timely and correct fashion,

reducing human involvement and at the same time preventing misconfigurations from

making into the network. To truly evaluate the usefulness of the proposed network

management solutions, and indeed provide a playground for safe network evolution,

we proposed a new platform that enables multiple network testings that run in iso-

lation and realistic setups. This platform was used to evaluate both PACMAN and

COOLAID and is currently deployed in a large ISP to evaluate novel network service

and infrastructure design. In the following sections, we summarize some of insights

and limitations of our approach as well as look to future areas of interest suggested

by our work.

140

7.1 Insights

First and foremost, this dissertation provides valuable insight into designing, im-

plementing and evaluating alternative management abstractions. We have shown that

abstractions like active documents in PACMAN and database model in COOLAID

can significantly reduce human workload without compromising the ability to con-

trol the underlying network. Such abstractions allow network-wide reasoning to be

performed in a more automated fashion, thus providing the means to seamlessly en-

force desired network properties, for example, preventing misconfigurations. On the

other hand, comparing to other management systems that require drastic changes to

existing infrastructure, PACMAN and COOLAID are also compatible with existing

network devices, showing that useful management systems do not necessarily require

ground-up changes. This ability also translate to the fact that operators can still

review and appreciate the results of our systems, because ultimately our systems in-

teracts with existing management interfaces. This would certainly reduce the possible

reluctance of adoption.

Secondly, our work has provided insights into capturing and automating domain

knowledge in management practice. PACMAN is a bottom-up approach, using a

graph representation to capture the workflow logic of network management opera-

tions. COOLAID is a more dramatic shift, using a declarative language to represent

domain knowledge in abstract and allowing a reasoning engine to piece together the

knowledge and operate on the target network. Comparing to today’s common prac-

tice of using Method of Procedure (MOP) documents to guide manual operations,

our approach is undoubtedly a step forward. Our work calls for a gradual shift from

and eventual abandoning of text-based manuals and documentations.

Third, a key insight from our approach is that human operators cannot single-

handedly scale with large, complex and dynamic networks. As fully automated net-

work management is not within close reach, human operators are still in the loop of

most management operations. Both PACMAN and COOLAID have attempted to

give operators the flexibility to decide the operations to perform, but at the same

141

time perform automated reasoning about network-wide implications and inform or

even intervene when undesired events are likely to happen. Indeed many of the

misconfigurations or network failures stem from the fact that operators cannot fully

reason about the negative implications of their actions or natural causes. We have

shown that combining such support seamlessly with management tools, rather than

building a separate system for manual consultant, allows more effective management

operations.

Finally, we have shown that virtualization can help management practice by iso-

lating the impact of network changes. In ShadowNet, different management tool

trials and service implementations can be tested in parallel while not impacting each

other and the underlying backbone, even with current off-the-shelf network devices.

Indeed, a virtualized environment allows innovative network experiments to co-exist

with traditional services, utilizing the same infrastructure thus providing real insights

on system and service development. We envision network virtualization would have

a lasting impact on the evolution of network management practice.

7.2 Limitations

The works presented in this dissertation all base on real management practices

and are designed to facilitate daily operations. Our key design philosophy is practi-

cality, such that our tools and systems can be immediately applied to current network

infrastructure, which would immediately benefit from our support. Yet, our proposed

work still need to overcome the following limitations.

First, we usually assume full exclusive access to all the devices under the same

administrative domain. While full access would certainly enable more complete sup-

port, such as network-wide reasoning and control, this level of access is unlikely to be

granted for newly-proposed management systems. Although extensive tests and trials

can be performed in lab environments or realistic testbeds like ShadowNet, applying

a new management tool to a real network is likely to be incremental, for example,

starting with a single router or a POP of routers. While our work can be tweaked

142

slightly to circumvent this difficulty, for example setting read-only access to config

table entries that are related unmanaged routers, we have not fully studied the issue

of incremental deployment.

Second, we confine our work mostly in a single-ISP setup. In reality, a lot of oper-

ations happen upon inter-ISP communications. For example, operators from different

ISPs can negotiate to perform an cross-ISP traffic engineering. These operations are

currently not directly supported by our systems. A key issue is that the automation

of such activities to a certain extent requires cooperating ISPs to run the same or at

least compatible management tools. Nevertheless, PACMAN tries to abstract exter-

nal synchronization as part of the active document primitives, thus has the potential

of realizing such support.

Finally, we do not specifically deal with the compatibility issues of knowledge base.

For example, in COOLAID, we envision that the declarative rules can be contributed

from device vendors, service providers, and management tool developers. While the

benefit of such an approach is unquestionable, it is difficult to achieve a global stan-

dard. For example, different router vendors can expose totally different database

schemas and declarative rules. This problem is evident based on how differently

Cisco and Juniper implement the same NetConf protocol. However, the industry is

not totally against open standards. In fact, many device vendors are building devices

to support the OpenFlow standard [22].

7.3 Future work

One avenue of work unexplored in this thesis is the evaluation methodologies of

network management tools and systems. For most other research avenues, the eval-

uation metrics are fairly obvious: throughput achieved for a transport layer protocol

or a multi-hop wireless routing mechanism, computation time reduction for a data-

center scheduling algorithm, etc. For network management, unfortunately, there is

no standard evaluation suite, like SPEC [20] or TPC [25], to quantitatively measure

the “correctness” of management practices. Indeed network management operations

143

often take compromises among multiple dimensions, for example, trading-off delay

with loss-rate in some traffic engineering operations. To complicate matters further,

the abstractions exposed by management tools and systems often differ from tradi-

tional interfaces, such as CLI. For operators that are already used to think at the

lowest level of individual commands, it is hard to force them to switch to new man-

agement systems over night. Also, different people clearly have different preference

over the interfaces exposed by management tools. Although these questions are hard

to answer by nature, solving them, even partially, would certainly steer the evolution

of network management.

The focus of this dissertation is mostly on service provider networks, where scale,

timeliness and correctness are of the biggest concerns. It remains to be studied if the

abstractions proposed are applicable to other networking environments, for exam-

ple, home and data center networking. Diversity in home networking environments

imposes the biggest challenge: an automation system needs to deal with a variety

of service providers, Internet access technology, home equipments or even levels of

interference from the vicinity. In data centers, on the other hand, network services

are closely coupled with the network infrastructure, which must enable and assist

sophisticated service management, such as scaling up and down. As a result, an au-

tomation system must incorporate service-level awareness when performing network

operations.

We have shown with the instance of ShadowNet that virtualization can signifi-

cantly reduce the negative impact of network changes on existing services and fea-

tures. Currently, ShadowNet is designed to be a testing facility that is connected to

but isolated from a production network. A key question is that whether we can apply

the management techniques we developed in ShadowNet controller to control a real

production network itself. As such, virtualized network slices can run concurrently

with significantly different service features and even support systems. This would

certainly unleash the potential of innovative networking research.

144

BIBLIOGRAPHY

145

BIBLIOGRAPHY

[1] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.

[2] AS 7007 Incident. http://en.wikipedia.org/wiki/AS_7007_incident.

[3] Cisco Active Network Abstraction. http://www.cisco.com.

[4] FEDERICA: Federated E-infrastructure Dedicated to European Researchers

Innovating in Computing network Architectures. http://www.fp7-federica.

eu/.

[5] GENI: Global Environment for Network Innovations. http://www.geni.net/.

[6] How a System Error in Pakistan Shut YouTube. http://online.wsj.com.

[7] IETF Policy Framework Charter. http://ietf.org.

[8] Internet 2 Network. http://www.abilene.iu.edu/.

[9] Juniper for Network Service Providers. http://puck.nether.net/mailman/

listinfo/juniper-nsp.

[10] Juniper Networks, Configuration and Diagnostic Automation Guide. http:

//www.juniper.net.

[11] Juniper Networks: Troubleshooting Layer 3 VPNs. http://www.juniper.

net/.

[12] LINQ. http://msdn.microsoft.com/netframework/future/linq/.

[13] NETDISCO - Network Management Tool. http://www.netdisco.org/.

146

[14] Netomata Config Generator (NCG). http://www.netomata.com/products/

ncg.

[15] Network configuration (netconf). http://www.ietf.org/html.charters/

netconf-charter.html.

[16] NetworkAuthority Inventory. http://inventory.alterpoint.com/.

[17] Providing IPv4 VPN Services Across Multiple Autonomous Systems. Juniper

BGP and MPLS Configuration Guide.

[18] RANCID - Really Awesome New Cisco confIg Differ. http://www.shrubbery.

net/rancid/.

[19] Results of the GEANT OSPF to ISIS Migration. http://www.geant.net/

eumedconnect/upload/pdf/GEANT-OSPF-to-ISIS-Migration.pdf.

[20] SPEC: Standard Performance Evaluation Corporation. http://www.spec.

org/.

[21] The Internet2. http://www.internet2.edu/network/.

[22] The OpenFlow Switch Consortium. http://www.openflowswitch.org/.

[23] The SQLAlchemy Project. http://www.sqlalchemy.org.

[24] Traffic Control HOWTO. http://linux-ip.net/articles/

Traffic-Control-HOWTO/.

[25] Transaction Processing Performance Council. http://www.tpc.org/.

[26] Tutorial: Automating Network Configuration. NANOG’49, San Francisco, CA,

June 2010.

[27] VirtualBox. http://www.virtualbox.org.

[28] Rhizoma: a runtime for self-deploying, self-managing overlays. In Proceedings

of ACM Middleware, 2009.

147

[29] V. D. Aalst. The application of petri nets to workflow management, 1998.

[30] K. Adams and O. Agesen. A comparison of software and hardware techniques

for x86 virtualization. In Proceedings of the 12th international conference on

Architectural support for programming languages and operating systems, 2006.

[31] R. Alimi, Y. Wang, and Y. R. Yang. Shadow configuration as a network man-

agement primitive. In Proc. ACM SIGCOMM, 2008.

[32] H. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and J. Van der Merwe.

Anycast CDNs Revisited. 17th International World Wide Web Conference,

April 2008.

[33] H. Ballani and P. Francis. CONMan: A Step towards Network Manageability.

In Proc. ACM SIGCOMM, 2007.

[34] H. Ballani and P. Francis. Conman: a step towards network manageability.

SIGCOMM Comput. Commun. Rev., 37(4):205–216, 2007.

[35] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI

veritas: realistic and controlled network experimentation. SIGCOMM Comput.

Commun. Rev., 36(4):3–14, 2006.

[36] N. Belaramani, J. Zheng, A. Nayte, M. Dahlin, and R. Grimm. PADS: A Policy

Architecture for building Distributed Storage systems. In Proc. of NSDI, 2009.

[37] M. Bhatia, V. Manral, and Y. Ohara. IS-IS and OSPF Differ-

ence Discussions. http://www.join.uni-muenster.de/Dokumente/drafts/

draft-bhatia-manral-diff-isis-ospf-01.txt.

[38] H. Bohm, A. Feldmann, O. Maennel, C. Reiser, and R. Volk. Network-wide

inter-domain routing policies: Design and realization. Presentation at the

NANOG34 Meeting.

[39] A. B. Brown and D. A. Patterson. Embracing failure: A case for recovery-

oriented computing (roc), 2001.

148

[40] Z. Cai, F. Dinu, J. Zheng, A. L. Cox, and T. S. E. Ng. The Preliminary Design

and Implementation of the Maestro Network Control Platform. Rice University

Technical Report TR08-13.

[41] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and J. Rex-

ford. The cutting EDGE of IP router configuration. In Proceedings of ACM

SIGCOMM HotNets Workshop, November 2003.

[42] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.

Ethane: taking control of the enterprise. In Proc. ACM SIGCOMM, 2007.

[43] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin. Simple network manage-

ment protocol (snmp), 1990.

[44] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. DECOR: DEClarative

network management and OpeRation. In PRESTO Workshop, 2009.

[45] X. Chen, Z. M. Mao, and J. Van der Merwe. Towards Automated Network

Management: Network Operations using Dynamic Views. In Proceedings of

ACM SIGCOMM Workshop on Internet Network Management (INM), 2007.

[46] X. Chen, Z. M. Mao, and J. Van der Merwe. PACMAN: a Platform for Auto-

mated and Controlled network operations and configuration MANagement. In

Proc. CoNext, 2009.

[47] X. Chen, Z. M. Mao, and J. Van der Merwe. ShadowNet: A Platform for Rapid

and Safe Network Evolution. In Proc. USENIX ATC, 2009.

[48] J. M. Christensen and J. M. Howard. Field Experience in Maintenance. In

In NATO Symposium on Human Detection and Diagnosis of System Failures,

1981.

[49] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis, S. Shenker, and I. Stoica.

The design and implementation of a declarative sensor network system. In Proc.

of SenSys, Sydney, Australia, November 2007.

149

[50] Cisco Systems. MPLS VPN Carrier Supporting Carrier. http://www.cisco.

com/en/US/docs/ios/12_0st/12_0st14/feature/guide/csc.html.

[51] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield. Live migration of virtual machines. In NSDI’05: Proceedings of the

2nd conference on Symposium on Networked Systems Design & Implementation,

2005.

[52] E. Eide, L. Stoller, and J. Lepreau. An Experimentation Workbench for Re-

playable Networking Research. In NSDI, 2007.

[53] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg, S. Rao,

and W. Aiello. Configuration management at massive scale: system design and

experience. In Proceedings of the USENIX’07.

[54] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with

Static Analysis. In NSDI, May 2005.

[55] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with

Static Analysis. In 2nd Symp. on Networked Systems Design and Implementa-

tion (NSDI), Boston, MA, May 2005.

[56] A. Feldmann. Netdb: IP Network Configuration Debugger/Database. Technical

report, AT&T Research, July 1999.

[57] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford. NetScope:

Traffic engineering for IP networks. IEEE Network Magazine, March/April

2000, pp. 11-19.

[58] A. Feldmann and J. Rexford. IP network configuration for intradomain traffic

engineering. IEEE Network Magazine, pages 46–57, September/October 2001.

[59] P. Ferguson and D. Senie. Network ingress filtering: Defeating denial of service

attacks which employ ip source address spoofing (rfc 2827), 2000.

150

[60] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. SIGOPS

Oper. Syst. Rev., 37(5):29–43, 2003.

[61] V. Gill and J. Mitchell. OSPF to IS-IS. http://www.nanog.org/mtg-0310/

pdf/gill.pdf.

[62] H. Gogineni, A. Greenberg, D. A. Maltz, T. S. E. Ng, H. Yan, and H. Zhang.

MMS: An Autonomic Network-Layer Foundation for Network Management.

Rice University Technical Report TR08-11, December 2008.

[63] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang. Automated Provisioning

of BGP Customers. IEEE Network, 17, 2003.

[64] J. Gray. Why do computers stop and what can be done about it?, 1985.

[65] J. Gray and L. Lamport. Consensus on transaction commit. ACM Trans.

Database Syst., 31(1):133–160, 2006.

[66] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, 1993.

[67] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,

H. Yan, J. Zhan, and H. Zhang. A Clean Slate 4D Approach to Network

Control and Management . In SIGCOMM CCR, 2005.

[68] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker. Nox: towards an operating system for networks. In CCR, 2008.

[69] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker. Practical

declarative network management. In WREN Workshop, 2009.

[70] L. E. Holloway, B. H. Krogh, and A. Giua. A survey of petri net methods for

controlled discrete eventsystems. Discrete Event Dynamic Systems, 7(2):151–

190, 1997.

[71] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata

Theory, Languages, and Computation. July 2006.

151

[72] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer for

data centers. SIGCOMM Comput. Commun. Rev., 38(4), 2008.

[73] Juniper Networks. Configuring Interprovider and Carrier-of-Carriers VPNs.

http://www.juniper.net/.

[74] Juniper Networks. Juniper Logical Routers. http://www.juniper.net/

techpubs/software/junos/junos85/feature-guide-85/id-11139212.

html.

[75] Juniper Networks. Juniper Networks JCS 1200 Control System Chassis. http:

//www.juniper.net/products/tseries/100218.pdf.

[76] Juniper Networks. Juniper Partner Solution Development Platform. http:

//www.juniper.net/partners/osdp.html.

[77] Juniper Networks. JUNOS 9.2 Policy Framework Configuration

Guide. http://www.juniper.net/techpubs/software/junos/junos92/

swconfig-policy/frameset.html.

[78] B. H. Kantowitz and R. D. Sorkin. Human Factors: Understanding People-

System Relationships. In Wiley, 1983.

[79] K. M. Kavi, A. Moshtaghi, and D.-J. Chen. Modeling multithreaded applica-

tions using petri nets. Int. J. Parallel Program., 30(5):353–371, 2002.

[80] J. Kelly, W. Araujo, and K. Banerjee. Rapid service creation using the junos

sdk. SIGCOMM Comput. Commun. Rev., 40(1):56–60, 2010.

[81] Z. Kerravala. Configuration Management Delivers Business Resiliency. The

Yankee Group, November 2002.

[82] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang. Phas: A prefix

hijack alert system, 2006.

152

[83] A. Lakhina, M. Crovella, and C. Diot. Characterization of network-wide anoma-

lies in traffic flows. In IMC ’04: Proceedings of the 4th ACM SIGCOMM con-

ference on Internet measurement, pages 201–206, New York, NY, USA, 2004.

ACM.

[84] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb. Minerals: Using Data

Mining to Detect Router. In ACM Sigcomm Workshop on Mining Network

Data (MineNet), September 2006.

[85] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb. Minerals: using data min-

ing to detect router misconfigurations. In Proceedings of the 2006 SIGCOMM

workshop on Mining network data, 2006.

[86] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,

R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking: Language,

Execution and Optimization. In Proc. of SIGMOD, June 2006.

[87] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.

Implementing Declarative Overlays. In Proc. of SOSP, 2005.

[88] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative

Routing: Extensible Routing with Declarative Queries. In Proc. of SIGCOMM,

Philadelphia, PA, 2005.

[89] A. A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and Q. Zhao.

Towards automated performance diagnosis in a large iptv network. In SIG-

COMM ’09: Proceedings of the ACM SIGCOMM 2009 conference on Data

communication, pages 231–242, New York, NY, USA, 2009. ACM.

[90] Y. Mao, B. T. Loo, Z. G. Ives, and J. M. Smith. MOSAIC: Unified Declarative

Platform for Dynamic Overlay Composition. In CoNEXT, 2008.

[91] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Route flap damping

exacerbates internet routing convergence. SIGCOMM Comput. Commun. Rev.,

32(4):221–233, 2002.

153

[92] A. B. Mnaouer, T. Sekiguchi, Y. Fujii, T. Ito, and H. Tanaka. Colored petri nets

based modelling and simulation of the static and dynamic allocation policies of

the asynchronous bandwidth in the fieldbus protocol. In Application of Petri

Nets to Communication Networks, pages 93–130, 1999.

[93] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of

the IEEE 77, 4 (1989).

[94] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for virtual

machines. In ATEC ’05: Proceedings of the annual conference on USENIX

Annual Technical Conference, pages 25–25, Berkeley, CA, USA, 2005. USENIX

Association.

[95] I. O. Networks, S. il Kim, and S. S. Lumetta. Evaluation of protection recon-

figuration for multiple failures. In In Proc. of Optical Fiber Communication

Conference and Exhibit (OFC, pages 210–211, 2003.

[96] D. Oppenheimer. The Importance of Understanding Distributed System Con-

figuration. In Proceedings of CHI, April 2003.

[97] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for Introducing

Disruptive Technology Into the Internet. In Proc. of ACM HotNets, 2002.

[98] L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet Impasse

through Virtualization. Proc. of ACM HotNets, 2004.

[99] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill,

third edition, 2002.

[100] R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive

Database Systems. Journal of Logic Programming, 23(2):125–149, 1993.

[101] R. Ricci, C. Alfeld, , and J. Lepreau. A Solver for the Network Testbed Mapping

Problem. In CCR, 2003.

154

[102] R. Ricci, J. Duerig, P. Sanaga, D. Gebhardt, M. Hibler, K. Atkinson, J. Zhang,

S. Kasera, and J. Lepreau. The Flexlab Approach to Realistic Evaluation of

Networked Systems. In NSDI, 2007.

[103] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. InfoSpect: Using a Logic

Language for System Health Monitoring in Distributed Systems. In Proceedings

of the SIGOPS European Workshop, 2002.

[104] F. Schneider. Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Computing Surveys, 22(4), 1990.

[105] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. BFT Protocols

Under Fire. In Proc. of NSDI, Apr 2008.

[106] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topolo-

gies with rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16, 2004.

[107] J. C. Strassner, N. Agoulmine, and E. Lehtihet. FOCALE A Novel Autonomic

Networking Architecture. Latin American Autonomic Computing Symposium

(LAACS), 2006.

[108] Y.-W. E. Sung, C. Lund, M. Lyn, S. G. Rao, and S. Sen. Modeling and un-

derstanding end-to-end class of service policies in operational networks. In

SIGCOMM, 2009.

[109] J. Turner and N. McKeown. Can overlay hosting services make ip ossification

irrelevant? PRESTO: Workshop on Programmable Routers for the Extensible

Services of TOmorrow, May 2007.

[110] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase, and

D. Becker. Scalability and accuracy in a large-scale network emulator. In

OSDI ’02: Proceedings of the 5th Symposium on Operating Systems Design and

Implementation, 2002.

[111] W. van der Aalst. The application of petri nets to workflow management, 1998.

155

[112] L. Vanbever, G. Pardoen, and O. Bonaventure. Towards Validated Network

Configurations with NCGuard. In INM Workshop, 2008.

[113] R. Vasudevan and Z. M. Mao. Reval: A tool for real-time evaluation of ddos

mitigation strategies. In In Proceedings of USENIX Annual Technical Confer-

ence, 2006.

[114] Y. Wang, E. Keller, B. Biskeborn, J. Van der Merwe, and J. Rexford. Vir-

tual Routers on the Move: Live Router Migration as a Network-Management

Primitive. In Proc. ACM SIGCOMM, 2008.

[115] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara: Dynamic

Deadlock Avoidance for Multithreaded Programs. In Proceedings of OSDI, 2008.

[116] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: an Information Plane for

networked systems. In Proceedings of SIGCOMM CCR, 2004.

[117] G. R. Wheeler. The modelling and analysis of ieee 802.6’s configuration control

protocol with coloured petri nets. In Application of Petri Nets to Communica-

tion Networks, pages 69–92, 1999.

[118] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-

bler, C. Barb, and A. Joglekar. An Integrated Experimental Environment for

Distributed Systems and Networks. In Proc. of the Fifth Symposium on Oper-

ating Systems Design and Implementation, 2002.

[119] G. Xie, X. Jibin, Z. David, A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson,

and J. Rexford. On static reachability analysis of IP networks. In Proc. IEEE

INFOCOM, 2005.

[120] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and Z. Cai. Tesser-

act: A 4d network control plane. In in Proc. Networked Systems Design and

Implementation, 2007.

156

