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ABSTRACT

Performance and Power Characterization of Cellular Networks and Mobile Application
Optimizations

by

Junxian Huang

Chair: Z. Morley Mao

Smartphones with cellular data access have become increasingly popular with the wide

variety of mobile applications. However, the performance and power footprint of these

mobile applications are not well-understood, and due to the unawareness of the cellular

specific characteristics, many of these applications are causing inefficient radio resource

and device energy usage. In this dissertation, we aim at providing a suite of systematic

methodology and tools to better understand the performance and power characteristics of

cellular networks (3G and the new LTE 4G networks) and the mobile applications relying

upon, and to optimize the mobile application design based on this understanding.

We have built the MobiPerf tool to understand the characteristics of cellular networks.

With this knowledge, we make detailed analysis on smartphone application performance

via controlled experiments and via a large-scale data set from one major U.S. cellular car-

rier. To understand the power footprint of mobile applications, we have derived comprehen-

sive power models for different network types and characterize radio energy usage of vari-

ous smartphone applications via both controlled experiments and 7-month-long traces col-
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lected from 20 real users. Specifically, we characterize the radio and energy impact of the

network traffic generated when the phone screen is off and propose the screen-aware traf-

fic optimization. In addition to shedding light to the mobile application design throughout

our characterization analysis, we further design and implement a real optimization system

RadioProphet, which uses historical traffic features to make predictions and intelligently

deallocate radio resource for improved radio and energy efficiency.
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CHAPTER I

Introduction

Smartphones with cellular data access have become increasingly popular across the

globe, with the wide deployment of 3G and emerging LTE [2] networks, and a plethora

of applications of all kinds. In the third quarter of 2009, the global smartphone shipments

reached 41.4 million units [3]. As of the third quarter of 2012, the global smartphone

shipments reached 173.7 million [4] with 61.3% year-on-year increase in average. It is

expected that in the next few years smartphone sales will continue to grow. Vendors, such

as Samsung, Apple, and HTC offer a variety of smartphones equipped with increasingly

faster CPUs and larger memory, though still lagging behind desktop or laptop systems.

With access to various high-speed 3G networks, such as EVDO and UMTS, and the LTE

4G networks, they are powerful enough to run modern operating systems and sophisti-

cated network applications such as web browsing, email, and streaming media. However,

the performance and power characteristics of these smartphone applications are not well-

understood, and many of these applications are inefficient in radio resource and energy

usage, which mainly attribute to the unawareness of the cellular specific characteristics. In

order to solve this challenge, in this dissertation, we devise a suite of systematic methodol-

ogy and tools to accurately measure the performance and power characteristics of cellu-

lar networks and mobile applications, and to optimize the mobile application design.

Unlike traditional Internet-based applications, whose performance is mostly constrained
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by the wired network, network application performance on smartphones with limited physi-

cal resources also heavily depends on factors including hardware and software on the phone

as well as the quality and load of wireless link. Understanding the application performance

on smartphones is important for the purpose of assisting consumers in choosing carriers

and phones and guiding application developers in designing intelligent software. More-

over, cellular network operators and smartphone hardware and software vendors can use

this knowledge to optimize networks and phones for better end-user experiences. Simi-

larly, content providers can leverage this knowledge to better customize content for mobile

users. However, this task is quite challenging since the performance of network applica-

tions on smartphones is poorly understood thus far, due to a lack of a systematic approach

for controlled experiments and comparative analysis, and especially because the network

performance of the underlying cellular networks is not well understood. In this thesis, we

take one of the first steps to thoroughly study the performance of cellular networks and

smartphone applications.

In addition to network performance aspect, we also study the energy footprint for smart-

phone applications. Todays cellular systems operate under diverse resource constraints:

limited frequency spectrum, network processing capability, and handset battery life. Op-

timizing energy footprint for smartphone applications is important for end-users. In the

meanwhile, optimizing the radio resource usage is of great interest for mobile operators to

minimize cost and guarantee quality of service.

In this dissertation, we dedicate five chapters to present our study in this space and these

chapters are broadly classified into three categories as summarized in Table 1.1. Chapter III

and Chapter VI discuss the network and power characterization of cellular networks and

smartphones. Chapter IV and Chapter V focus more on mobile application behaviors and

the interactions between mobile applications and cellular networks. Chapter VII presents

our work in optimizing resource utilization efficiency for mobile applications in cellular

networks.
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Chapter(s) Content category
Chapter III, Chapter VI Network and power characterization
Chapter IV, Chapter V Application performance and interplay with network protocol

Chapter VII Optimization to improve resource utilization efficiency

Table 1.1: Roadmap.

1.1 Characterizing Cellular Network Performance

Since 2008, We have been working on devising systematical methodologies and de-

veloping tools for characterizing cellular network performance directly from end users.

The tools developed includes 3GTest [5], 4GTest [6] and MobiPerf [7] 1, which have cu-

mulatively over 150,000 users from over 190 countries or regions. In these measurement

tools, we have devised methods to accurately measure round-trip time (RTT), DNS lookup

time, uplink/downlink bandwidth, loss rate, and other network performance metrics for 3G,

WiMAX and LTE 4G networks and compare those with WiFi networks.

Our study is among one of the first studies of the network characteristics of commer-

cial LTE networks. Initiated in 2004 by 3rd Generation Partnership Project (3GPP), the

Long Term Evolution (LTE), commonly referred to as a type of 4G wireless service, aims

at enhancing the Universal Terrestrial Radio Access Network (UTRAN) and optimizing

radio access architecture [2]. Since 2009, LTE starts entering the commercial markets and

is available now in more than 10 countries, with an expectedly fast-growing user base. The

targeted user throughput is 100Mbps for downlink and 50Mbps for uplink, significantly

higher than the existing 3G networks, with less than 5ms user-plane latency [11]. Un-

derstanding the actual user-perceived network performance for LTE network and how it

compares with its predecessor 3G and its competitors, e.g., WiFi and WiMAX, is impor-

tant, yet not straightforward. Our forementioned tool 4GTest, with enhanced measurement

design and global server support, allows us to characterize network performance of LTE

1Notably, MobiPerf has received both the Open Internet App Award and the People’s Choice App Award in
the FCC Open Internet Apps Challenge [8]. It is now an open-source project [9] that are being actively worked
on, with joint collaboration among University of Michigan, M-Lab [10] and University of Washington.
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and other mobile networks [12].

1.2 Anatomizing Smartphone Application Performance

In order to understand the key factors that affect smartphone application performance,

we develop a systematic methodology for comparing this performance along several key

dimensions such as carrier networks, device capabilities, and server configurations [1]. We

perform detailed analysis to help carriers, phone vendors, content providers, and appli-

cation developers gain insight. For example, for carriers, we infer various network level

problems, e.g., high latency or high loss rate, which they can directly take action on. For

phone vendors, we identify performance bottlenecks on the devices or issues associated

with the content. These issues can be resolved either independently or by cooperating with

content providers. And for application developers, we evaluate factors such as the overhead

of HTML rendering and Javascript execution given a particular software configuration.

Compared with 3G, LTE significantly improves the network performance. Meanwhile,

device processing capability and software design have also improved remarkably over the

last two years [1]. To understand the potential performance bottleneck shift for smartphone

applications, we perform longitudinal case studies of several popular applications on An-

droid, especially for web browsing applications. With the help of CPU, network and power

traces, we compare the determinant factors on smartphone applications in 2009 [1] and in

2011 [12]. We identify that the performance bottleneck for web-based applications lies

more in the devices processing power than in the network for the LTE networks.

1.3 Studying Effect of Network Protocol and Application Behavior on

Performance for LTE Networks

Despite it fast increasing user base, the interplay between mobile applications, protocol

and the network for the commercial LTE networks still remain unexplored. We thoroughly
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study these topics of the LTE network with a data set covering around 300,000 real LTE

users in a large metropolitan area for 10 days. We revisit basic network metrics in the LTE

network and compare with previously studied network conditions. We also observe that

a high downstream queueing delay, likely due to bufferbloat, has caused TCP congestion

window collapse upon one packet loss. With the help of TCP Timestamps option, we

have devised a lightweight passive bandwidth estimation algorithm, allowing us to observe

that for 71.26% of the large flows, the bandwidth utilization ratio is below 50%. We find

that TCP may not fully utilize the fast-varying available bandwidth when RTT is large in

the LTE network. Upon further analysis, we identify 52.61% of all downlink TCP flows

have been throttled by TCP receive window and data transfer patterns for some popular

applications are both energy and network unfriendly.

1.4 Understanding Power Characteristics of 4G LTE Networks

Besides higher bit rate, lower latency and many other service offerings for LTE, user

equipment (UE) power saving is an important issue and there has been increasing inter-

est in understanding the power characteristics of LTE networks, compared with 3G/WiFi

networks. LTE employs Orthogonal Frequency Division Multiplex (OFDM [13]) technol-

ogy, which suffers from poor power efficiency. To save power, LTE uplink uses an special

implementation of OFDM called SC-FDMA for uplink, with improved power efficiency.

Discontinuous reception (DRX) has been employed by existing wireless mobile networks

to reduce UE energy consumption. In UMTS [14], during the idle state, UE periodically

wakes up to check paging messages and sleeps for the remaining time. LTE supports DRX

for both RRC CONNECTED and RRC IDLE modes [15], seeking more opportunities to con-

serve UE battery. DRX is configured at a per-UE basis and its configuration incurs tradeoff

among UE power saving, channel scheduling delay, and signaling overhead.

To understand this tradeoff, existing studies use either total DRX-on time to estimate

UE power usage [16, 17], or a simplified LTE power model [18, 19], which ignores the im-
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pact of downlink/uplink data rates. In this paper, we develop the first empirically derived

comprehensive power model of a commercial LTE network, which accurately models UE

energy usage with less than 6% error rate. Also, existing studies [16, 17, 18, 19] heav-

ily rely on synthetic packet models instead of real user traces. Our study is the first that

leverages a comprehensive real user data set, we call UMICH, consisting of 5-month traces

of 20 smartphone users, to analyze the impact of LTE parameter configuration on realistic

application usage patterns. We carefully investigate the energy usage in 3G, LTE, and WiFi

networks and evaluate the impact of configuring LTE-related parameters. Despite several

new power saving improvements, we find that LTE is as much as 23 times less power effi-

cient compared with WiFi, and even less power efficient than 3G, based on the user traces

and the long high power tail is found to be a key contributor.

1.5 Optimizing Energy Usage in Cellular Networks

With the knowledge of performance and power characteristics of 3G/4G cellular net-

works, we study how we can optimize the resource (radio and energy) utilization of smart-

phone applications. Cellular networks are typically characterized by limited radio resources

and significant device power consumption for network communications. The battery ca-

pacity of smartphones cannot be easily improved due to physical constraints in size and

weight. Hence, battery life remains a key determinant of end-user experience. Given the

limited radio resources in these networks and device battery capacity constraints, optimiz-

ing the usage of these resources is critical for cellular carriers and application developers.

Achieving such energy efficiency for mobile devices when connected to cellular networks

without incurring excessive network signaling overhead, even despite diverse application

and user behavior, still remains a rather difficult and yet important challenge to tackle.

Energy use due to network access, particularly cellular networks, is becoming increasingly

dominant due to numerous network-based smartphone applications. In many cases, achiev-

ing network energy savings must reside on the mobile device’s OS to effectively and cen-
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trally manage the data scheduling decisions transparent to applications and with minimal

changes to the network.

The key mechanism that determines the energy consumed by cellular network interface

is the radio resource control (RRC) state machine [20] pre-defined by carriers (covered in

more details in Section 2.1) that governs when radio resources are acquired and released.

Previous studies [21, 20, 22, 12] have shown that the origins of low resource efficiency

comes from the way radio resources are released. Radio resources are only released after

an idle time (a.k.a. Radio Resource Control (RRC) tail [21]) controlled by a statically con-

figured inactivity timer. The tail is necessary and important for cellular networks to prevent

frequent state promotions (resource allocation), which can cause unacceptably long delays

for the UE, as well as additional processing overheads for the radio access network [23, 24].

During the tail time, radio energy is essentially wasted. Values as large as 11.6 seconds are

configured [12] in current networks, contributing to about half of the total radio energy on

user handsets (UEs) spent in idle times for common usage scenarios.

Without knowing when network traffic will occur, large tail timer settings are essentially

a conservative way to ensure low signaling overhead due to state transitions, as signaling is

known to be a bottleneck for cellular networks. Furthermore, they also help minimize per-

formance impact experienced by users caused by state promotion delays incurred whenever

radio resource is acquired. Given that application and user behavior are not random, using

a statically configured inactivity timer is clearly suboptimal. Smaller static timer values

would help reduce radio energy, but is not an option due to the risk of overloading cellular

networks caused by signaling load increase.

An attractive alternative is to configure the timer dynamically — adaptively perform-

ing radio resource release either signaled by the UE or triggered by the network itself by

monitoring the UE traffic, accommodating different traffic patterns, improving the over-

all resource efficiency. But the key challenge is determining when to release resources,

which essentially comes down to accurate and efficient prediction of the idle time period.
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Clearly, the best time to do so is when the UE is about to experience a long idle time pe-

riod, otherwise the incurred resource allocation overhead (i.e., signaling load) is wasteful

due to unnecessary radio state transitions, and the achieved resource savings are very small.

Therefore, accurate and efficient prediction of the idle time period is a critical prerequisite

for dynamic timer schemes.

We propose RadioProphet (RP), a practical system that makes dynamic decisions to

deallocate radio resources based on accurate and efficient prediction of network idle times.

Using 7-month-long real-world cellular traces, we comprehensively evaluate it using var-

ious traffic features and machine learning algorithms. Properly configured, it correctly

predicts 85.88% of idle time instances, achieving radio energy savings of 59.07%, at the

cost of 91.01% of additional signaling overhead, significantly outperforming existing pro-

posals. It incurs negligible energy overhead and has fast response times, demonstrating the

practicality of deploying the system on contemporary smartphones.

Besides, we also consider a novel angle to the above problem orthogonal to RP and

explore the impact of screen status, i.e., whether the screen is on or off, on the device’s

network traffic patterns. We find that off-screen traffic accounts for 58.5% of the total radio

energy consumption although their traffic volume contribution is much smaller. Such un-

expected results are attributed to the unique cellular resource management policy that is not

well understood by developers, leading to cellular unfriendly mobile apps. We then make a

further step by proposing screen-aware optimization, given that the screen status is easy to

monitor for most mobile OSes. We propose that the screen-off traffic should not be treated

the same as the screen-on traffic for traffic optimization purposes, and the former can be

optimized more aggressively. The main intuition is that the user (and possibly application)

behavior have significant differences when the screen is on v.s. off, resulting in different

traffic patterns and different performance requirements. When the screen is off, there is a

much higher chance that the user is not actively interacting with the device and the net-

work traffic is most likely to be more delay tolerant. Hence we can be more aggressive in
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optimizing this traffic using techniques such as batching and fast dormancy. In contrast,

when the screen is on, it is harder to predict the delay sensitivity of the network traffic

and aggressive optimizations may harm the user experience. To validate this intuition, we

characterize the screen-off traffic for a real-world user data set and evaluate the benefits of

using “screen-aware” optimization for balancing UE energy savings and the resulting over-

heads in radio resource usage and response delay. The proposed screen-aware optimization

focuses on the overall device traffic, and is complementary to other efficiency improvement

efforts, e.g., better application design. Our proposal can better balance the key tradeoffs in

cellular networks.

1.6 Thesis Organization

This dissertation is structured as follows. Chapter II provides necessary backgrounds

for resource management in cellular networks. We present the design of MobiPerf tool and

network performance characterization in Chapter III followed by the smartphone applica-

tion performance study in Chapter IV. We study the effect of network protocol and appli-

cation behavior on performance for one large commercial LTE Network in Chapter V. We

analyze the power characterization of smartphone applications in Chapter VI and present

the design, implementation and evaluation for the smartphone energy optimization system

RP in Chapter VII. We summarize the related works in Chapter VIII, before concluding in

Chapter IX.
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CHAPTER II

Background

This section provides sufficient background on resource management in cellular net-

works, especially for the LTE networks.

2.1 Radio Resource Control (RRC) State Machine

To efficiently utilize the limited resources, cellular networks employ a resource man-

agement policy distinguishing them from wired and Wi-Fi networks. In particular, there

is a radio resource control (RRC) state machine [20] that determines radio resource usage

based on application traffic patterns, affecting device energy consumption and user expe-

rience. Similar RRC state machines exist in different types of cellular networks such as

UMTS [20], EvDO [25] and 4G LTE networks [12], although the detailed state transition

models may differ.

RRC States. In 3G UMTS networks, there are usually three RRC states [20, 26].

RRC IDLE is the default state when the UE is turned on, with no radio resource allocated.

CELL DCH is the high-power state enabling high-speed data transmission. CELL FACH is

the low-power state in between allowing only low-speed data transmission. In 4G LTE

networks, the low-power state is eliminated due to its extremely low bandwidth (less than

20 kbps) so there are only two RRC states named RRC CONNECTED and RRC IDLE [27, 28].

State Transitions. As shown in Figure 2.1, regardless of the specific state transition
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Figure 2.1: RRC State Machine of (a) a large 3G UMTS carrier in the U.S., and (b) a large 4G LTE
carrier in the U.S. The radio power consumption was measured by a power monitor on (a) an HTC
TyTn II smartphone, (b) an HTC ThunderBolt smartphone.

model, there are two types of state transitions. State promotions switch from a low-power

state to a high-power state. They are triggered by user data transmission in either direc-

tion. State demotions go in the reverse direction, triggered by inactivity timers config-

ured by the radio access network (RAN). For example, as shown in Figure 2.1b, at the

RRC CONNECTED state, the RAN resets the RRC CONNECTED→ RRC IDLE timer to a con-

stant threshold Ttail=11.6 seconds whenever it observes any data frame. If there is no user

data transmission for Ttail seconds, the RRC CONNECTED → RRC IDLE timer expires and

the state is demoted to RRC IDLE. The two timers in 3G UMTS networks use similar

schemes (Figure 2.1a).

State promotions and demotions incur promotion delays and tail times, respectively,

which distinguish cellular networks from other types of access networks.

State promotions incur a long “ramp-up” delay of up to several seconds during which

tens of control messages are exchanged between the UE and the radio access network

(RAN) for resource allocation. Excessive state promotions increase the signaling overhead

at the RAN and degrade user experience, especially for short data transfers [29, 22].

State demotions incur tail times that cause waste of radio resources and the UE en-
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ergy [21, 20]. A tail is the idle time period matching the inactivity timer value before a

state demotion, e.g., the tail time is 11.6 seconds in Figure 2.1b. During the tail time, the

UE still occupies transmission channels, and its radio power consumption is kept at the

corresponding level of the RRC state. As an example of the negative impact of the tail

effect, periodically transferring small data bursts (e.g., every one minute) can be extremely

resource-inefficient in cellular networks due to the long tail appended to each periodic

transfer instance which is small in size and short in duration [30].

Adaptive Release of Radio Resources. Why are tail times necessary? First, the over-

head of resource allocation (i.e., state promotions) is high and tail times prevent frequent

allocation and deallocation of radio resources. Second, the current radio resource network

has no easy way of predicting the network idle time of the UE, so it conservatively appends

a tail to every network usage period. This naturally gives rise to the idea of letting the UE

actively request for resource release: once an imminent long idle time period is predicted,

the UE can actively notify the RAN to immediately perform a state demotion. Based on

this intuition, a feature called fast dormancy has been proposed to be included in 3GPP Re-

lease 7 [31] and Release 8 [32]. It allows the UE to send a control message to the RAN to

immediately demote the RRC state to RRC IDLE (or a hibernating state called CELL PCH)

without experiencing the tail time. Fast dormancy is currently supported by several hand-

sets [32], which can dramatically reduce the radio resource and the UE energy usage while

the potential penalty is the increased signaling load when used aggressively [29, 22]. In

this work we propose robust methodology for predicting the idle time period, enabling

more effective usage of fast dormancy.

2.2 RRC and Discontinuous Reception (DRX) in LTE

In this section, we provide more details for RRC in LTE in addition to Section 2.1, as

well as Discontinuous Reception (DRX) mechanisms in LTE.

As shown in Figure 2.2, at RRC CONNECTED state, UE can be in one of the three modes:
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Symbol Full name Measured value Description

Ti DRX inactivity timer 100ms
UE stays in Continuous Reception

for Ti before DRX starts when idling

Tis Short DRX cycle timer 20ms
UE remains in Short DRX for Tis

before entering Long DRX when idling

Ttail RRC inactivity timer 11.576s
UE stays in RRC CONNECTED for
Ttail before demoting to RRC IDLE

Ton
RRC CONNECTED

1ms
The on duration of UE during each

On Duration timer DRX cycle in RRC CONNECTED

Toni
RRC IDLE

43ms
The on duration of UE during

On Duration timer each DRX cycle in RRC IDLE

Tps Short DRX cycle 20ms
The cycle period of Short DRX

in RRC CONNECTED

Tpl Long DRX cycle 40ms
The cycle period of Long DRX

in RRC CONNECTED

Tpi RRC IDLE DRX cycle 1.28s
The cycle period of DRX

in RRC IDLE

Table 2.1: Important LTE RRC and DRX parameters.

Continuous Reception, Short DRX, and Long DRX. While at RRC IDLE state, UE is only

in DRX mode. Table 2.1 enumerates a list of important LTE parameters, which have signif-

icant impact on UE’s radio energy consumption, user experience, and signaling overhead

for cell towers. The terms in Table 2.1 are used consistently throughout this paper.

If UE is initially in RRC IDLE state and receives/sends one packet, regardless of the

packet size, a state promotion from RRC IDLE to RRC CONNECTED occurs with a relatively

stable delay, similar to the promotion from IDLE to DCH/FACH in UTMS network [20].

We define the LTE promotion delay to be Tpro1 consistently throughout this paper. During

this period, radio resources are allocated to the UE.

After being promoted to RRC CONNECTED, UE enters Continuous Reception by default

and keeps monitoring the Physical Downlink Control Channel (PDCCH), which delivers

control messages to UE. UE also starts the DRX inactivity timer Ti, which is reset every

time UE receives/sends a packet. Upon Ti’s expiration without seeing any data activity, UE

enters the Short DRX mode.

Discontinuous Reception (DRX) [15, 33], illustrated in Figure 2.3, is adopted by LTE

1Tpro is a measured system property, different from the configurable LTE parameters in Table 2.1.
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Figure 2.2: RRC state transitions in LTE network.
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Figure 2.3: Illustration of the LTE DRX in RRC CONNECTED.

for UE to “micro-sleep” to reduce power consumption while providing high QoS and con-

nectivity. DRX in RRC CONNECTED and RRC IDLE have similar mechanisms, but different

parameter settings. A DRX cycle includes an On Duration during which the UE monitors

PDCCH. UE rests for the rest of the cycle to save energy. The tradeoff between battery

saving and latency is the guideline for determining the parameterization of DRX cycle.

With a fixed On Duration, a longer DRX cycle reduces energy consumption of UE while

increasing user-perceived delay, and a shorter DRX cycle reduces the data response delay

at the cost of more energy consumption. Short DRX and Long DRX modes, having the
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same On Duration and differing in cycle length, are to meet these conflicting requirements.

When UE enters Short DRX, Short Cycle Timer Tis is started. Upon Tis’s expiration, if

there is no data activity, UE switches to Long DRX; otherwise, UE goes back into Contin-

uous Reception. For our measurement, Tis coincidentally equals Tps, so only one cycle of

Short DRX is expected to take place before Tis expires. Every time UE enters Continuous

Reception when there is any data transfer, UE starts the tail timer Ttail, which is reset every

time a packet is sent/received. When Ttail expires, UE demotes from RRC CONNECTED to

RRC IDLE and the allocated radio resource is released. Notice that Ttail coexists with Ti

and Tis.
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CHAPTER III

MobiPerf: Characterizing 3G/4G Network Performance

Given the wide adoption of smartphone platforms, such as iOS and Android, there is a

growing number of popular mobile applications designed for these platforms. For many of

these applications, including web browser, email, VoIP, social networks, network access is

required. Even for games that are often run locally, ranking systems and online peer match-

ing systems are widely adopted which also requires network access, e.g., Game Center for

iOS. As a result, mobile data traffic volume is sky-rocketing. For example, AT&T’s mobile

data volumes surged by a staggering 8,000% from 2007 to 2010 [34]. Hence, it is critical

to understand the network performance in cellular networks, and such understanding is a

prerequisite to study smartphone application performance and optimizations. Smartphone

customers want to know the cellular network performance in order to choose carriers and

devices to use; mobile network operators care about cellular network performance to ensure

the quality of service.

Systematically quantifying the cellular network performance is not straightforward.

The challenges are multifold:

• It is not easy to reuse existing open-source network performance measurement tools

due to smartphone operating system constraints. For example, iOS does not allow us

to run a command-line program unless we jailbreak the device.

• Conducting measurements from a single or a few vantage points is not sufficient for
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large cellular carriers. This is because the network condition and user load may vary

across locations and without a reasonable number of sample users, the measurement

results may not be representative. This forces us to abandon the idea to carry out all

measurements ourselves, but instead to provide a tool for real smartphone users to

use for network performance measurement.

• As the measurement tool is intended to be run by real smartphone users, who do not

necessarily have any computer science background, we have to design the tool in a

way that is easy for these users to make network measurements.

• The selection of the set of metrics for quantifying the cellular network performance

is critical, as we want to collect sufficient information about the network performance

within a period of user-tolerable time. Existing similar tools, such as Speedtest.net [35]

and FCC’s broadband test [36], only measure bandwidth and latency in cellular net-

works and ignore other important metrics such as DNS lookup time, etc. The mea-

surement methodology also requires careful design, e.g., bandwidth measurements

in cellular networks need support from geo-distributed server nodes.

In the following of this chapter, we first discuss the design and implementation of

MobiPerf in Section 3.1 and following that, we discuss the measurement results collected

via MobiPerf and their implications.

3.1 MobiPerf Design and Methodology

Inspired by previous work in the Internet, e.g., Netalyzr [37], which collects measure-

ment data from volunteers, we develop a measurement platform, MobiPerf, used by real

users on their smartphones to build a comprehensive data set for cellular networks. The

public deployment of MobiPerf overcomes the limitation of a single vantage point and

short time duration for locally conducted measurements and provides a representative data

set on cellular network performance in the real world.
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MobiPerf covers a more comprehensive set of metrics than existing public network

performance measurement tools available in iOS or Android, such as DNS lookup, Ping to

the first hop, etc.. We next describe the metrics we use for evaluating network performance

and how we compute them. To minimize the impact of the performance limiting factors in

the Internet path, we leverage the M-Lab [10] support and make MobiPerf always choose

the closest server node(s) for measurement. MobiPerf server suite is deployed to 46 M-Lab

nodes across the world, covering North America, Europe, Asia, and Australia. Each node

has 4-core 2.00 GHz Intel Xeon CPU and our virtual slice has 4GB memory and 100Mbps

Ethernet network access, which ensures that the network bottleneck is unlikely on the wired

network path. Specifically, 23 nodes are within the U.S., spreading across major cities in

different parts of the country.

To characterize cellular network performance, we use TCP throughput, downlink RTT,

retransmission rate, local DNS lookup time, TCP handshake time, and Ping latency to the

first responsive IP hop as our metrics. TCP is of particular interest, since most network

applications use TCP. An application session usually requires DNS lookup, and every TCP

connection begins with a TCP handshake. Hence these two factors contribute heavily to

user-perceived performance of many network applications. Ping latency to the first respon-

sive hop provides an estimate of the latency of the wireless hop.

DNS lookup For the DNS experiment, MobiPerf sends DNS requests to resolve a list of

selected popular domain names. We use Alexa [38] top sites to select the top URLs and the

list we use was downloaded in 2009. We list the top 20 domains as follows:

// List of top 20 domain names for DNS lookup test in C++

char* DOMAIN_NAMES[] = {"yahoo.com", "google.com", "youtube.com",

"live.com", "facebook.com", "msn.com", "myspace.com",

"wikipedia.org", "blogger.com", "yahoo.co.jp", "baidu.com",

"rapidshare.com", "microsoft.com", "google.co.in",

"google.de", "hi5.com", "qq.com", "ebay.com", "google.fr",

18



"sina.com.cn"};

By tuning the size of the list and going through the list sequentially twice, we ensure

that during the second lookup the names are highly likely cached at the local DNS (LDNS)

server in carrier networks but not on the phone based on observed latencies. This is achiev-

able since compared to the phone the LDNS server typically has a larger DNS cache.

RTT and variation test LTE has significantly smaller latency compared with 3G [11],

hence the network distance between users and the measurement servers for the wired In-

ternet path becomes less negligible. Given that the GPS coordinates for M-Lab nodes are

known, in MobiPerf, a nearest M-Lab node is selected for a user based on the current GPS

location if available, or the IP address otherwise, with the help of a IP address to GPS

coordinates mapping [39]. Such a mapping is sufficient for our purpose of finding coarse-

grained location estimates for server selection.

To measure RTT and variation, MobiPerf repeatedly establishes a new TCP connection

with the server and measures the delay between SYN and SYN-ACK packet. Both the

median of these RTT measurements and the variation are reported to our central server. For

some cellular ISPs, traffic may be redirected to a middlebox, which replies a SYN-ACK

packet to the client on behalf of the server. In this case, the measured RTT is between

the client and the middlebox. However, this RTT is the user-perceived delay for TCP

connection establishment and we think it is fine to use it for comparison purpose.

To measure TCP handshake to server nodes in diverse physical locations, MobiPerf

sends TCP connect requests to different M-Lab nodes distributed across the U.S. To charac-

terize Ping latency, our tool Pings www.google.comwith increasing TTL values starting

from 1 and records the IP address and the corresponding RTT. MobiPerf also Pings different

M-Lab nodes to obtain the delay distribution to diverse Internet locations.
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TCP throughput Since single-threaded TCP measurement is more sensitive to packet

loss and hence less accurate [40], we use multi-threaded TCP measurement in MobiPerf to

estimate the peak channel capacity, i.e., three nearest server nodes in M-Lab are selected

for each user at runtime to start concurrent threads for throughput test. Despite the shared

nature of M-Lab nodes with other test tools, it is unlikely that all three selected nodes are

overloaded in terms of CPU and network.

A throughput test lasts for 20 seconds, to balance across bandwidth usage, user waiting

time and measurement accuracy. The initial 5 seconds are ignored empirically due to TCP

slow start. The remaining 15 seconds are separated into 15 1-second bins. The average

throughput for each bin is calculated and the median of all bins is the measured throughput.

Compared with using average throughput, median more accurately estimates the steady

peak throughput by reducing the impact of abnormal bins, e.g., a very high-value bin due to

initial buffering or a low-value bin due to temporary signal problem. Uplink and downlink

tests share the same methodology. Packet traces are collected at the server side to calculate

TCP retransmission rate.

3.2 MobiPerf Deployment and User Statistics

MobiPerf [7] project was initiated in 2008 and the name of the measurement tool was

3GTest [7, 1] at the time. We made it publicly available on different smartphone platforms,

which allows us to characterize cellular network performance in multiple cellular carriers

at diverse locations over an extended duration. With significant UI and methodology im-

provements, we changed the name to be 4GTest [6] in 2011. In 2012, we further decided to

change the tool name to be MobiPerf and made it open source [9]. Initially, MobiPerf was

supported for iOS, Android and Windows Phone platforms and later, due to time limit and

OS constraints, we decided to focus our efforts on the Android platform. At the time this

dissertation is being written, MobiPerf is under active development with joint efforts from

University of Michigan, University of Washington, and M-Lab [10], and it is being used as

20



Figure 3.1: MobiPerf user coverage between August 2009 and April 2011.

Android iOS Win Mobile All
User 39.3K 39.7% 47.0K 47.4% 12.8K 12.9% 99.1K
Run 273.8K 62.3% 127.0K 28.9% 38.7K 8.8% 439.5K

Table 3.1: MobiPerf User and run breakdown of different platforms.

basis for research projects and commercial products of multiple organizations.

We publicly deployed the MobiPerf application in August, 2009, distributed via Apple’s

App Store, Google’s Android Market and Microsoft’s Windows Marketplace for Mobile.

Ever since the initial deployment, we have been continuously improving and releasing

updates for iOS and Android version of our app. Till April, 2011, 99.1K users from across

the world have run our app for 439.5K times. The number of users and runs for three

different platforms, including iOS, Android, and Windows Mobile, is listed in Table 3.1.

The average number of runs for each Android user is larger than the other two platforms,

because for the Android version of our app, we give an option to the users to periodically

run the tests. We observe users from 179 countries or regions according to the collected

GPS information. Since GPS information for Windows Mobile users is seldom available,

for most top countries of the other two platforms, we do not observe any Windows Mobile

users. GPS information may sometimes be unavailable as well on Android and iOS, due to
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Referred to as iPhone Palm Samsung G2 HTC
Carrier AT&T Sprint Verizon T-Mobile AT&T
Network UMTS EVDO EVDO UMTS UMTS
Advertised Downlink(Mbps)? 0.7-1.7 0.6-1.4 0.6-1.4 0.6-1.0 0.7-1.7
Advertised Uplink(Mbps)? 0.5-1.2 0.35-0.5 0.5-0.8 0.3-0.7 0.5-1.2
Vendor Apple Palm Samsung HTC HTC
Device iPhone Treo800w SCHi760 Android G2 TyTnII
Memory (MB) 128 128 64 192 128
Processor (ARM) 1176 1136 920T 1136EJS 1136EJS
CPU frequency (MHz) 620 333 400 528 400
OS iPhone OS 2.1 WM 6.1† WM 6.1 Android 1.6 WM 6.1
Browser Safari IE IE Browser App IE

Table 3.2: Device specifications and 3G network carriers\.

?All advertised data rate was for the time in 2009.
†WM stands for Windows Mobile
\At the time of this piece of study (2009), these devices represent state of the art of smartphones.

signal problem or users not wishing to share their location information. Among all 93.3K

users, 63.7K (68.27%) have GPS readings and 52.24% of them are from the U.S., and

among these 63.7K users, about 1.0K (1.57%) users have run our app in more than one

countries or regions. We also observe more than 800 carrier names. However, carriers

may adopt different names in different countries, making it difficult to accurately estimate

the actual number of carriers. Figure 3.1 shows the user coverage of MobiPerf, with one

dot representing one run of MobiPerf. Given the wide coverage of regions, we believe our

data set is fairly representative of the entire smartphone population, especially for North

America with denser user distribution. In this study, our analysis mostly focuses on U.S.

users.

3.3 3G Network Characterization

We first focus on characterizing the performance of commercial 3G networks with the

MobiPerf data set, complemented by local controlled experiments.

Table 3.2 lists the devices used and carriers studied in the local controlled experiments.

We studied four major carriers in the U.S., AT&T, Sprint, Verizon, and T-Mobile. They split
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between UMTS/HSPA (AT&T and T-Mobile) and EVDO (Sprint and Verizon). AT&T has

the highest advertised downlink and uplink data rates. The actual data rates that a user can

attain depend on many factors, such as signal strength, location, and background traffic.

One of our goals is to understand how the actual data rates match the advertised ones and

which factors have the biggest impact on network performance.

3.3.1 Comparison across Carriers

Figures 3.2(a) illustrates measured TCP downlink throughput. Given stable TCP through-

put is roughly inversely proportional to RTT and to the square root of packet loss rate [41],

we also analyze RTT and retransmission rate. In Figure 3.2(b), all carriers show comparable

RTT distributions, with T-Mobile showing slightly larger RTT values and correspondingly

lower downlink TCP throughput. Various reasons contribute to large RTT in 3G networks,

e.g., queueing delays at the base station or other internal nodes, such as RNC, SGSN, and

GGSN in UMTS networks. Large RTTs may also be due to packet loss recovered through

link layer retransmission, which we do not have direct information about.

Figure 3.2(c) plots measured TCP uplink throughput. Unlike downlink throughput,

AT&T and T-Mobile have lower uplink throughput compared with Sprint and Verizon.

One of the reasons could be the lack of support for UMTS/HSUPA on the phones used

for AT&T and T-Mobile. Even the latest version of iPhone 3GS does not claim to support

HSUPA. The median uplink throughput for AT&T and T-Mobile ranges from 200 kbps to

300 kbps, while that for Sprint and Verizon is around 400 kbps.

Figure 3.2(d) shows that Verizon and Sprint exhibit slightly higher TCP retransmission

rate, matching observations from our local experiments. On average, AT&T’s downlink

throughput outperforms that of the other carriers due to its relatively lower RTT and loss

rate. The median of TCP downlink throughput for all carriers ranges from 500 kbps to 1

Mbps. Median RTT varies from 300 ms to 500 ms, suggesting 400 ms is a representative

delay value to emulate 3G networks. AT&T and T-Mobile have a median retransmission
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Figure 3.2: TCP performance comparison among carriers (data from deployed application
MobiPerf, only considering U.S.).

rate of 0%, while that for Sprint and Verizon is 0.7%.

Figures 3.2(e)(f) show that Ping latency to the first responsive hop is close to that to
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landmark servers, suggesting that the first responsive hop consisting of 3G wireless link

contributes to most of the delay along the end-to-end network path. Note that Ping latency

to the first responsive hop actually refers to the first IP hop responding to ICMP probing.

For AT&T and T-Mobile, the first IP hop, when TTL is set to 1, does not respond in most

cases. Only the second IP hop replies with a private IP address. For Sprint and Verizon, the

first IP hop does reply with a public IP address. The median latency to the first responsive

hop ranges from 150 ms to 200 ms, while that to landmark servers is between 180 ms and

250 ms. We observe that both the Ping latency and TCP handshake time are smaller than

RTT values measured in TCP downlink experiments.

Figure 3.2(g) shows DNS lookup performance. We design the experiment in a way that

all DNS lookups are cached at the LDNS server but not locally on the phone (Section 3.1).

This allows us to more accurately estimate the delay to the LDNS servers. The LDNS

servers studied tend not to respond to ICMP packets, making it challenging to directly

measure the network delay between the phone and LDNS server. From the results, we

found that all carriers exhibit similar trend with median values close to 200 ms. Given that

the DNS lookup delay is already close to Ping latency to the first responsive hop, there is

limited room for improving DNS lookup performance.

As shown in Figure 3.2(h), the median of TCP handshake delay ranges from 160 ms

to 200 ms, close to the Ping latency to the first responsive hop in Figure 3.2(f). We also

observe that the relative ranking among all carriers is consistent with that in Figure 3.2(f).

Compared with Figure 3.2(b), large packets with size close to MTU (e.g., 1348 bytes in

AT&T) are found to have 2 – 4 times of the RTT for small packets.

3.3.2 Performance Comparison among Mobile Network Technologies

We compare the cellular network performance among technology types. We first break

down technology types into WiFi, UMTS family, CDMA family, EDGE and GPRS. UMTS

and CDMA are considered as 3G, while EDGE and GPRS are two types of older tech-
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Figure 3.3: Downlink/Uplink performance comparison among different types of networks.

nologies. Within 3G family, we select 4 major network types, including HSDPA, UMTS

(without HSDPA), 1xRTT and EVDO A, since these network types cover most 3G users.

Notice that at the time of this part of study [42], LTE has not come into market yet and we

leave the study of LTE in Section 3.4.

Downlink throughput is compared in Figure 3.3 (a). WiFi has the best performance

with median throughput of 1.46 Mbps. For 3G network, UMTS family appears to out-

perform CDMA family, with median downlink throughput of 964 kbps compared to 368

kbps. EDGE lags with median downlink throughput 112 kbps and GPRS is the slowest at
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45 kbps. The ranking of downlink retransmission rate is consistent with that of downlink

throughput, except that UMTS and CDMA have similar retransmission rate distribution. In

Figure 3.3 (c), UMTS’s median RTT is 495 ms, smaller than CDMA’s 680 ms. This helps

explain the throughput gap between UMTS and CDMA, since TCP throughput is lower

with higher RTT and loss rate. Among 3G networks shown in Figure 3.3 (d), HSDPA

has the highest median downlink throughput of 1.18 Mbps and 1xRTT has the smallest

throughput of 115 kbps, since it is one of the earliest CDMA 3G technologies. Similarly,

we observe high RTT in Figure 3.3 (f) and high retransmission rate for 1xRTT correlated

with its low throughput.

We closely study the variation of TCP downlink RTT, often known as jitter. It is an

important metric to evaluate network performance for streaming video, VoIP, and online

gaming applications, e.g., high variation causes intermittent video playing, voice calls and

lags for online games. In Figure 3.3(f), each data point in this figure corresponds to the

standard deviation of all RTT samples in one downlink TCP flow, i.e., one user’s downlink

experiment. Compared with WiFi, whose median of RTT standard deviation is 41 ms,

UMTS has a higher value of 93 ms and 233 ms for CDMA. If applications running on

smartphones fail to tolerate this high variation in RTT, user experience would be degraded.

In Figure 3.3 (b) , the uplink throughput difference between UMTS and CDMA is

less obvious compared with downlink. For example, at 50th percentile, UMTS’s uplink

throughput is 110 kbps and CDMA’s is 120 kbps. Within the 3G family, as shown in

Figure 3.3 (e), all network types experience less than 150 kbps median uplink throughput.

These results can be taken into consideration by network application developers to have

better support of various network conditions.

3.3.3 Time of Day Correlation

Understanding whether traffic patterns exhibit any time of day behavior is useful for

improving the design of applications and mobile network infrastructure. We expect smart-
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Figure 3.4: Number of MobiPerf users vs. time of day.

phone users to have diurnal patterns in their behavior. For example, we can observe such

a pattern in Figure 3.4. To further understand its impact on performance, we resort to

conducting local controlled experiments.

To measure the network performance over a long time period, we created an internal

version of MobiPerf and installed it on the smartphones listed in Table 3.2. MobiPerf is

modified to record the signal strength on the Samsung and Palm phones, and continuously

conducts measurements every 10 minutes to collect one week’s data (excluding weekends)

in Ann Arbor, MI. We make sure that the phones are placed at the same location with

excellent signal strength during the entire measurement study. Since the data is collected

continuously for a long period of time, it can be used for characterizing the time-of-day

effect. The results for the 5 contiguous weekdays are shown in Figure 3.5.

First, time of day effect is less pronounced for uplink throughput compared to downlink

throughput, comparing Figure 3.5(a) and (d). This is likely due to higher demand for

downlink capacity by popular applications such as web browsing and video streaming.

Second, we observe an obvious time pattern for AT&T’s downlink throughput. At night

and early morning hours, between 2AM and 8AM, the downlink throughput can reach 1

Mbps. However, the downlink throughput of lower than 500 kbps is observed at other

times. This phenomenon is possibly due to the large number of iPhone users and the large

traffic volume brought by various network applications. For Sprint and Verizon, we observe
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Figure 3.5: Correlation between TCP performance and time of day (local controlled exper-
iments).

similar though less prominent trend compared to that for AT&T. For T-Mobile, the TCP

downlink throughput is more stable, which we conjecture is due to the fact that its 3G

service has only recently become available at our location.

Figures 3.5(b)(c) indicate that RTT and retransmission rate exhibit time of day pattern

for some carriers. For AT&T, the downlink throughput is found to be mostly affected by

RTT values, likely to be caused by queueing delays in AT&T’s 3G networks. RTT varies

from 300 ms during late nights to as high as 700 ms at peak times. For Verizon and Sprint,

the RTT values are more stable, though with varying TCP retransmission rate. One possible

explanation is that in Verizon and Sprint’s 3G networks, shared queues would drop packets

once the queue length exceeds a threshold. This design will restrict the variation of RTT

but incur more packet loss.

We further analyze the time-of-day pattern using the MobiPerf data set collected across

locations. Figure 3.6 shows the aggregate time of day analysis of TCP downlink through-
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Figure 3.6: Time of day pattern of downlink performance for major carriers in the U.S.
(MobiPerf data set, large packets).

put, RTT, and jitter for all AT&T, T-Mobile, and Verizon 3G users in the U.S. Each data

point is median value of all data samples across locations in the U.S. within an hour based

on user’s local time. This analysis technique avoid potential bias by a specific small group

of users or any particular locations.

Figure 3.6 (a) shows that AT&T has the most clear time of day pattern for downlink

throughput, confirming previous local controlled experiments. Verizon has less obvious

yet still observable diurnal pattern for downlink throughput and even less obvious for T-

Mobile. TCP retransmission rate for these carriers stays low consistently at different hours,

hence the diurnal pattern of TCP downlink RTT in Figure 3.6 (b) explains the through-

put fluctuation, especially for AT&T. The standard deviation for TCP downlink RTT also

demonstrates a clear diurnal pattern for AT&T and Verizon, while less obvious for T-Mobile

shown in Figure 3.6 (c).

These observations suggest that applications with intensive network download require-
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Figure 3.7: Delay in AT&T 3G network (small packets).

ment and little tolerance on RTT jitter may experience worse performance during peak

hours. Uplink and LDNS performance are relatively consistent across different hours of

day, indicating that the infrastructure support is capable of handling peak hours for such

operations. However, for downlink, network resource at peak hours becomes a bottleneck.

Given that the downlink RTT in Figure 3.6 (b) is for large packets, mostly with a size

of MTU, we also study the diurnal pattern of small packets. For T-Mobile, similar to

Figure 3.6 (b), we do not observe any time of day effect on RTT. For AT&T, in Figure 3.7

showing RTT of small packets (100 bytes) with boxplot, at the median level, there is no

diurnal pattern for RTT. At the 75th percentile, 12:00PM and 1:00PM have larger RTT

values, and at the 95th percentile, hours between 10:00 AM and 6:00 PM clearly have much

larger RTTs. This indicates that during peak hours, most small packets do not experience

longer delay, but some (at least 5%) experience much longer RTTs. By comparing with

large packets, our local experiment suggests that small packets have less obvious, yet still

observable diurnal pattern for AT&T.
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Figure 3.8: Worldwide local DNS lookup time in 3G networks (ms).

3.3.4 Location and Performance Correlation

We only look at worldwide local DNS lookup time in the MobiPerf data set. In Fig-

ure 3.8, for each cell with a size of 50 kilometers×50 kilometers, the median DNS lookup

time of all 3G users within this region is selected. We can see that for most parts of the

world, the DNS lookup time is around 150 ms to 250 ms. Regions including South Asia,

Middle East, Eastern Europe and some regions in the middle of the U.S. experience higher

DNS delays.

For cellular networks, given that the infrastructure support differs across locations for

different carriers, we intend to study how performance correlates with location. We com-

pare TCP downlink performance of major U.S. carriers in Figure 3.9. The plotted cell size

is 50 kilometers × 50 kilometers, excluding those without enough data points to show sta-

tistically meaningful results. The coverage of each carrier shown in this figure is clearly

affected by the popularity of our app among its customers. Since we focus on the median

performance at different locations, where we do have data, our measurements can provide a

fairly representative sampled view of the cellular network performance across different lo-

cations. Comparing across carriers shows large variation in performance across locations,

with a few locations clearly having better downlink performance. Second, these locations
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Figure 3.9: Downlink throughput of major carriers in the U.S. (kbps).

of different carriers are typically large cities, such as New York, San Francisco, and Los

Angeles. Third, for each carrier, the eastern part of the U.S. has higher user coverage than

the western part, except for the state of California and Washington. These observations sug-

gest that for regions with larger user base, carriers may have provided better infrastructure

support and newer technology, compared with rural areas with fewer users.

3.3.5 Cellular Network Infrastructure and Implications

In this section, we study LDNS assignment and quantify the effectiveness of CDN

service in cellular networks.

LDNS Servers: How LDNS servers are assigned to customers is an interesting and im-

portant design decision made by carriers. It reflects how loading balancing is done and

affects LDNS lookup performance. It also impacts the effectiveness of DNS-based server

selection. With a representative data set for the major American carriers, we study how they
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Figure 3.10: Coverage of local DNS servers.

assign LDNS servers to their customers. We observe 12 different LDNS IPs for AT&T in

4 different /24 address blocks, each consisting of 3 IPs. For T-Mobile, 11 LDNS IPs are

observed in 5 /24 blocks, and for Verizon, 12 LDNS IPs in 3 /24 blocks are detected. In

Figure 3.10, we present the correlation between users’ location and the assigned LDNS

IPs. For both AT&T and Verizon, we can observe that clients for each LDNS address block

tend to cluster geographically. This suggests that both carriers assign LDNS servers to

clients based on geographic regions. However, for T-Mobile, all identified LDNS IPs are

used across the country. These results confirm the unsupervised clustering results of our

previous work [43].

To further understand how different individual IPs among a /24 address block are used,

we show in Figure 3.10 the geographic distributions of four representative LDNS IP ad-

dresses. We can observe that even at the individual IP level, there exists clear correlation

between location and LDNS assignment, despite some overlapping regions. Through local

experiments for AT&T, we confirm that the assigned LDNS IP remain constant for over 48
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Figure 3.11: Handshake RTT vs. spherical distances.

hours. Having one LDNS IP for a region allows the flexibility to customize DNS caches

according to the users’ interests within the region. The comparison of the LDNS latency

distribution for AT&T and T-Mobile shows no clear performance difference when querying

LDNS servers at different locations. As we discuss further below, we conjecture that the

bottleneck of network latency is along the wireless hop, making the server location less

important. Note that DNS-based server selection cannot effectively choose nearby servers

if the LDNS server assignment is not based on geographic regions.

CDN Service for Cellular Networks: Using landmark test results, we study the effec-

tiveness of CDN service in cellular networks. First, we select the users with GPS informa-

tion and calculate the physical spherical distance 1 to the list of 20 landmark servers. The

distribution of TCP handshake latency is show in Figure 3.11. We observe high variation

in RTT between users and landmark servers with no clear correlation with physical dis-

tance. This suggests that the latency in the 3G wireless hop is dominant in determining the

end-to-end latency, rather than the Internet latency.

To quantify the effectiveness of CDN services in cellular networks, we assume the 20

1Spherical is the accurate distance in the great circle of the earth based on latitude and longitude.
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landmark servers to be CDN servers. Then we study 5 different scenarios, assuming 20, 10,

5, 2 and 1 CDN servers are used, respectively. We select the CDN servers to maximize the

geographic spread. For each scenario, each user chooses the physically closest CDN server

based on its GPS information, and the latency to this server is regarded as the user perceived

latency. Figure 3.12 shows the distribution of the user perceived latency in all studied

scenarios. Additional CDN servers have very limited effect on reducing user perceived

latency. Comparing the best and worst scenario with 20 and 1 CDN servers each, we

found the median RTT difference to be 20 ms, only 10% of the median RTT of 200 ms.

However, the equivalent RTT saving can be more significant in LTE 4G networks with a

much shorter latency at the wireless hop. Given that today’s cellular network routing is

heavily restricted due to limited number of gateways to the Internet which are the closest

locations to the clients for deploying CDN servers, caches can be pushed closer to the user

to reduce latency in LTE 4G network, which uses a flatter architecture [33].

3.3.6 Signal Strength Effects

Signal strength is an important factor that affects 3G network performance, since higher

signal-to-noise ratio (SNR) allows higher bit rate. We therefore also carried out experi-
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ments to understand this correlation. Since it is not easy for us to control the signal strength,

we continuously monitor signal strength and TCP downlink throughput for a week. We

highlight our major observations here. When the signal strength is too weak, TCP con-

nections will disconnect. When signal strength is at some middle range, we observe clear

correlation between signal strength and TCP downlink throughput. TCP downlink through-

put is not affected by the signal strength if the latter is above some threshold. Given these

observations, we exclude the data points corresponding to poor signal strength from the

MobiPerf data set and controlled experiment data set.

3.3.7 Smartphone v.s. Laptop

To understand whether the computation capability of a smartphone limits its 3G net-

work performance, we set up a controlled experiment to compare a smartphone (iPhone

3G) with a laptop (ThinkPad T42). The laptop can access AT&T’s 3G network via a wire-

less data card, while the iPhone measurement is conducted at the same location and the

same time. We found that the distribution of downlink throughput is similar, implying that

the performance bottleneck is within the 3G network instead of on the phone. However, for

other compute-intensive applications, the performance difference is more pronounced. We

will study this in more details in Section 4.2.4.

Summary: The main observations of 3G network performance are the following:

• Typical values for 3G throughput range from 500 kbps to 1 Mbps for downlink, and

200 kbps to 400 kbps for uplink, both lower than the advertised rates.

• Network performance differs across all carriers. For downlink RTT and throughput,

the differences among carriers are evident.

• Some carriers show clear time of day patterns on weekdays, especially for AT&T’s

downlink throughput.
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Figure 3.13: MobiPerf user coverage in the U.S between October 2011 and December
2011.

• For simple TCP downloading/uploading, the performance bottleneck is within the

3G network.

• 3G wireless delay dominates the end-to-end RTT.

Our observations suggest that the low uplink throughput and large RTT of current 3G

networks raise challenges for offloading computation into the cloud. Network application

designers should avoid chatty protocols and minimize total bytes to transfer. 3G operators

need to examine their queueing and link layer retransmission policies to reduce latency in

the wireless links.

3.4 LTE 4G Network Characterization

During the time of study for the previous section, i.e., in 2009, LTE 4G network has

not yet come into commercial market. In 2011, with growing popularity for the commer-

cial LTE network, we decided to study it and compare it with existing cellular network

technologies and WiFi technology.

A special version of MobiPerf, branded as 4GTest (in the following, we do not distin-

guish 4GTest from MobiPerf) was initially released on Android Market on 10/15/2011. Till

12/15/2011, there has been altogether 3294 global users and 13768 runs. In the analysis,

we focus on 2292 users and 7063 runs inside the U.S., among which 380 are LTE users
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Figure 3.14: MobiPerf result analysis based on network type?.

?Each network type corresponds to the data of one cellular ISP, except for WiFi which has data of various ISPs.

with 982 runs. We check the distribution of MobiPerf users for different network types.

For example, in Figure 3.13, the coverage of LTE, WiMAX, and WiFi are mostly similar,

covering 39, 37 and 44 states in the U.S., respectively. We also observe that other networks

have similar coverage across the U.S. This indicates that MobiPerf data set enables fair

comparison on the distribution of performance metrics for different mobile networks in the

U.S.

Similar to our previous study for 3G networks in 2009, we complement MobiPerf with

local controlled experiments. We use an HTC phone with LTE data plan from a large cel-

lular ISP for controlled experiments. It has 768 MB RAM memory and 1 GHz Qualcomm

MSM8655 CPU, running Android 2.2.1. We also use a laptop equipped with LTE USB

Modem. It has 8GB memory and 2.53 GHz Intel Core Duo CPU, running Mac OS X

10.7.2.

3.4.1 Comparing LTE to Other Mobile Networks

Figure 3.14 summarizes the performance comparison among various mobile networks

based on 4GTest data set. We present anonymized data based on the technology type.

The box plot for each metric shows the 95th, 75th, 50th, 25th and 5th percentile among

all measurements for each network type. We observe that LTE network has a high down-

link and uplink throughput, with the median to be 12.74Mbps and 5.64Mbps, respectively,
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which is much higher than WiFi’s 4.12Mbps (downlink) and 0.94Mbps (uplink), as well

as 4.67Mbps (downlink) and 1.16Mbps (uplink) for WiMAX. The 3G family, including

eHRPD, EVDO A and HSDPA clearly lag behind LTE. We also observe relatively high

variation on LTE throughput for different users at different locations, and even for the same

user at the same location across different runs.

In terms of RTT and RTT jitter, LTE with the median RTT 69.5ms and RTT jitter

5.6ms is comparable to WiFi’s 64.5ms (RTT) and 7.9ms (RTT jitter). Similar to throughput

comparison, WiMAX also lags behind LTE with median RTT to be 125.0ms and RTT jitter

to be 21.0ms. For 3G networks, compared with our previous results obtained in 2009,

median RTT has been reduced from a median of 400ms to below 200ms, some even has a

median of 78ms (HSDPA 2), close to LTE RTT. RTT jitter for 3G networks are all larger

than 10ms.

To summarize, Figure 3.14 provides a fair comparison on performance distribution

among different mobile networks, from which we observe that LTE significantly improves

network throughput as well as RTT and jitter, making it comparable to or even better

than WiFi for throughput. WiMAX lags behind LTE, followed by HSDPA, eHRPD and

EVDO A networks.

3.4.2 Network-based LTE Parameter Inference

Network-based approach for LTE parameter inference is used to validate the power-

based approach (Section 6.1). We use the following experiment to infer LTE state machine

and RRC IDLE DRX parameters. The LTE phone maintains a long lived TCP connection

with a test server. For each experiment, server first sends a packet P1 to trigger UE’s

promotion to RRC CONNECTED, and after X seconds, server sends another packet P2 to the

phone to measure RTT. Assume the RTT at RRC CONNECTED is RTTb ignoring the minor

impact of DRX in RRC CONNECTED. When X ≤ Ttail, RTT (X) = RTTb. Otherwise,

RTT (X) = RTTb +Tpro +Tdrx, where Tdrx = Tn−X and Tn is the start time of the next
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Figure 3.15: LTE RTT v.s. inter-packet idle time.

DRX on duration after P2’s arrival. If P2’s arrival is inside any DRX on duration, Tdrx = 0.

Figure 3.15 summarizes the network-based approach for LTE state machine and DRX

parameter measurement using the LTE phone. Each point is the median of five runs and for

each run, RTT is measured after making the device idle for a specific time. The pattern of

RTT is expected as inter-packet idle time changes. Based on these results, we can infer the

values of the following parameters in Table 2.1: Ttail is around 11.5s, Tpi is 1.28s and Toni

is close to 45ms. In addition, we observe Tpro is around 260ms. These measured values

agree with those measured from the power-based approach in Table 6.1, cross-validating

our measurement methodology.

3.4.3 One-way Delay and Impact of Packet Size

To understand the impact of packet size on one-way delay (OWD), uplink and down-

link OWD is measured with varying packet size. For each packet size, 100 samples are

measured, and we make sure that packets are not fragmented. OWD is measured between

the test laptop and the test server. A GPS Receiver [44] is connected to the test laptop,

which uses the received GPS messages for time synchronization. The test server is also

time-synced with another GPS clock. The maximum error of our setup is less than 1ms.
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With this setup, we measure uplink/downlink OWD for both LTE and WiFi networks.

Experiment in WiFi shows that both uplink and downlink OWD are around 30ms with little

correlation with packet size, and RTT is stable around 60ms. However, for LTE, Figure 3.16

shows that uplink OWD is clearly larger than downlink OWD. We also observe that uplink

OWD for LTE slightly increases as packet size grows, while the median of downlink OWD

stays more stable around 30ms. The median RTT ranges from 70ms to 86ms as packet size

increases. In summary, RTT in LTE is more sensitive to packet size than WiFi, mainly due

to uplink OWD.

3.4.4 Mobility

Requirements for LTE [11] specifies that mobility across the cellular network should be

supported and optimized for low mobile speed from 0∼15 km/h. Higher mobile speed of

15∼120 km/h should be supported with high performance. In this paper, we carry out one

of the first studies to quantify the impact of mobile speed for a commercial LTE network.

As shown in Figure 3.17, we measure RTT and downlink/uplink throughput with MobiPerf

at three different mobile speeds: stationary, 35mph and 70mph, highway speed limit. All

experiments are done in the same car for fair comparison. Given that MobiPerf takes less
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Figure 3.17: LTE performance at different speeds.

than 2 minutes to finish, handover seldom happens during a single test and we filter out

samples with cell ID changed during the test. Previous work [45] has shown that signal

strength varies across locations and has a non-negligible impact on performance, so we

only select sample points with the similar signal strength for fair comparison.

We observe that RTT remains stable at different speeds, with small variation. Uplink

and downlink throughput both have high variation of 3∼8Mbps. Comparing throughput

at different speeds, there is no clear difference, given the high variation. Our experiments

show that at least at our test location, there is no major performance downgrade at high

speed for LTE, satisfying the requirements in [11].

In addition, we also study the correlation between LTE performance and time of day.

We periodically run MobiPerf for 48 hours in two randomly selected days. RTT’s median

value remain stable at 68ms across different hours. For downlink and uplink throughput,

variation across different hours is observed; however, there is no strong correlation with

time of day. This may imply that, at our location, LTE currently does not have too many

users and has well-provisioned resources available.

To summarize, with both global experiments, via MobiPerf, and local controlled ex-

periments, we observe that LTE has significantly improved network performance over 3G,
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making it comparable to, if not better than, WiFi.
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CHAPTER IV

Anatomizing Smartphone Application Performance

Unlike traditional Internet-based applications, whose performance is mostly constrained

by the wired network, network application performance on smartphones with limited physi-

cal resources also heavily depends on factors including hardware and software on the phone

as well as the quality and load of wireless link. Understanding the application performance

on smartphones is important for the purpose of assisting consumers in choosing carriers

and phones and guiding application developers in designing improved software. More-

over, cellular network operators and smartphone hardware and software vendors can use

this knowledge to optimize networks and phones for better end-user experiences. Simi-

larly, content providers can leverage this knowledge to better customize content for mobile

users. However, this task is quite challenging since the performance of network applica-

tions on smartphones is poorly understood before our study, due to a lack of a systematic

approach for controlled experiments and comparative analysis. We believe this work fills

this gap.

We focus on developing systematic methodology for measuring and analyzing smart-

phone application performance. We make it relevant to end users by studying real applica-

tions directly on the phone platforms. Our approach differs inherently from most previous

work of using laptops equipped with 3G data cards in three ways: (1) We measure the per-

formance of applications rather than that of the low-level protocols. Prior work has shown
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that application performance often significantly deviates from protocol performance [46].

We target the pervasive web browsing, streaming video, and VoIP applications that most

end-users care about; (2) We measure application performance on several common mo-

bile devices. Application performance varies widely across devices due to differences in

hardware and software, necessitating direct experimentation on smartphones instead of on

laptops with wireless cards; (3) We study the application performance under real-world

scenarios and quantify the performance of web browsing by evaluating commercial web-

sites in addition to locally-constructed ones with replicated, real web content under our

control. The latter setup helps dissect and analyze the individual factors that contribute to

the overall web browsing performance.

In addition to shedding light on the overall application performance, we perform de-

tailed analysis to identify and isolate factors that impact user-perceived performance to

help carriers, phone vendors, content providers, and application developers gain insight.

For example, for carriers, we infer various network-level problems, e.g., high latency or

high loss rate, which they can directly take action on. For phone vendors, we identify per-

formance bottlenecks on the devices or issues associated with the content. These issues

can be resolved either independently or by cooperating with content providers. And for

application developers, we evaluate factors such as the overhead of HTML rendering and

JavaScript execution given a particular software configuration.

We comprehensively study the smartphone application performance for all four major

U.S. wireless carriers including AT&T, Sprint, Verizon, and T-Mobile. We choose popu-

lar devices including iPhone, Android G2 from HTC, and Windows Mobile phones from

Palm, HTC, and Samsung for carrying out experiments. Our results show that their perfor-

mance varies significantly across network applications. In fact, even for the same network

application such as web browsing, certain types of phones consistently outperform others

due to the differences in factors such as downloading behavior, customized contents, and

page rendering. The application performance also heavily depends on properties of carriers

46



including DNS lookup, RTT, and loss rate.

We summarize our main observations from extensive experimentation:

1. Besides networks, devices heavily influence application performance. Given the

same content and network condition, different devices exhibit vastly different web-

page loading time, e.g., the page loading time of Samsung SCHi760 is consistently

twice that of iPhone.

2. Mobile devices can benefit from new content optimization techniques like the data

URL scheme, e.g., page loading time for GPhone can improve by 20% in our exper-

iments, despite its already good performance compared to other devices.

4.1 Methodology and Setup for Measuring Web Browsing Performance

In this section, we present our methodology and setup for measuring web browsing

application performance over 3G networks. By analyzing the performance of web applica-

tions, we examine the effects of various factors on the overall application performance.

Unlike most previous works, we directly measure application performance on devices

that consumers really use with 3G service provided by four major cellular carriers in the

U.S., this helps us understand the client side factors and their impact on application per-

formance. The novelty of our measurement methodology stems from our approach of

approximately replicating the 3G network condition for controlled experiments using WiFi

to enable reproducibility, and isolating the impact of each factor. These techniques are

non-trivial given the complexity of mobile devices and network environment, and essential

for eliminating interaction across factors.

Web browsing is one of the most popular smartphone applications. The process of

visiting a webpage can be quite complex given the dynamic nature of the content, often

generated from JavaScript, resulting in multiple concurrent TCP connections. Content can

also be customized based on mobile device and carrier network.
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Figure 4.1: Network and CPU trace for Website Y in LTE.

Web browsing performance depends on various factors, e.g., DNS lookup time, TCP

handshake time, TCP transfer time, JavaScript execution time, and content size. To study

the effect of these factors, we carefully design controlled experiments to modify a single

factor at a time while keeping others the same. We first describe the metrics used to eval-

uate web browsing performance, followed by the controlled experiments to measure these

metrics.

4.1.1 Web Browsing Performance Metrics

Application loading time: To measure application loading time, we use CPU usage as

an indicator. Figure 4.1 shows co-located network and CPU trace of an Android device

visiting popular website in its default browser in the LTE network. At time 0, when GO

button is clicked, loading starts. Before ta, CPU usage stays low most of the time given

that UE has not finished downloading the HTML or JavaScript objects. Starting from ta,

CPU usage jumps to 100% and remains a high average usage until tc. We notice that

network activity nearly stops after tb, with only a few TCP FIN packets for closing TCP

connections afterwards, some even come seconds later, e.g., at time 10.5 seconds. During

the time between ta and tc, UE is rendering HTML pages or executing JavaScript, and
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during the time between ta and tb, UE is also downloading web objects in parallel.

We define tc to be the application loading time instead of tb, since at tb, UE has not fully

rendered the contents for the user, though the download process is complete. We validate

this by collecting video traces with a camcorder facing the screen of the phone. We replay

the video at normal speed and manually mark the start time and the end time, when the

website gets fully loaded and all UI activity indicators stop. We verify that tc is an accurate

estimate for application loading time. We also define the average CPU usage between time

0 and tc to be the CPU usage for this application.

Compared with a previous approach for measuring web browsing performance by mod-

ifying and instrumenting WebKit [47], our approach is more lightweight and easily extensi-

ble to other applications other then web browsers, with reasonable accuracy. One limitation

of our approach is that it is not applicable for applications, e.g., streaming video/audio and

some game applications, whose CPU usage remains high after initial loading.

JavaScript execution speed: Many webpages contain JavaScript, and hence JavaScript

execution speed has significant impact on page rendering time.

Page size: The total number of unique bytes downloaded. It can be used to compute aver-

age throughput and to detect content variation and customization. We found that in typical

web browsing, even the same URL can have different page sizes when accessed from dif-

ferent platforms. We cope with this effect by taking snapshots of URLs and replicate their

content on our local web server.

Browser concurrency: Most modern browsers support concurrent TCP connections to

a single web domain. The maximum number of concurrent TCP connections to a domain

varies across different browsers. Usually, higher concurrency enables better bandwidth

utilization which in turn leads to shorter page loading time.
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DNS lookup time: A browser sometimes needs to look up the IP address of a domain

name before establishing a TCP connection with the web server. Since the content of a

webpage can be hosted in multiple domains, a browser may have to perform a DNS lookup

for each domain.

TCP handshake time: Each TCP connection starts with a three-way handshake during

which no data is transferred. More TCP handshakes for a single page loading often lead to

longer page loading time.

TCP idle time & transfer time: Given a TCP connection, an idle period is defined to

be a period of at least T second with no network activity. The remaining time periods

within the connection are transfer periods. An idle period usually corresponds to the local

processing delay or server processing delay. Given the limited CPU power and memory on

smartphones, the TCP idle time is likely to be dominated by local processing delay, e.g.,

between the receipt of a response and transmission of the next request, often caused by

HTML rendering and JavaScript execution.

4.1.2 Web Browsing Controlled Experiment Setup

We select a list of 20 popular and representative URLs (based on Alexa Top 500 Global

Sites [38]) including search engines, emails, online maps, social networking websites, etc.

For most of the URLs, we use their mobile versions, specially optimized for smartphone

users, as opposed to desktop versions. To facilitate repeated experiments, we write a pro-

gram to invoke browser to visit each URL in turn with an interval of 120 seconds. Such

interval is expected to be large enough to complete the page download. We used Apache

2.0 HTTP server for hosting the replicated websites. We collect packet traces on iOS and

Android using tcpdump and on Windows Mobile phones using netlog. We verify that the

CPU utilization caused by trace collection is under 5%. All the experiments are repeated at

least 10 times.
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These websites are visited using smartphones via 3G networks. From the collected

packet trace, we infer various metrics such as page loading time. To study the effect of each

factor influencing the web browsing performance, we host static copies of these popular

URLs on our local web server. The content is replicated to ensure that all the phones

download the same content and all HTTP requests are sent to the local server. To control

the network conditions, we uniformly use WiFi across all phones while varying one factor

at a time. The WiFi link is lightly loaded and has stable throughput and RTT. To produce

network conditions comparable to 3G, we artificially introduce delay and packet loss at our

server. We study the impact of the following factors on web browsing performance:

Impact of network: To study the effect of network conditions on page loading time, we

vary the RTT and loss rate on our server. To introduce artificial delay and loss, we ran a

user-level program on the server. This program intercepts all packets destined to a particular

IP address and injects delay and random packet loss. We controlled loss rate values from

0% to 10% and RTT values from 0 ms to 800 ms. These values cover the major range of

loss rate and RTT values observed in 3G networks from our previous analysis.

Impact of concurrency: To study the effect of concurrency, we control the maximum

number of concurrent TCP connections to a web domain on the server side by configuring

the Apache server with the help of the mpm prefork module.

Because a phone also limits the maximum number of concurrent connections per do-

main, we create a special webpage with 30 embedded objects in which each web object is

hosted in a unique domain (a DNS alias) on the same web server. This effectively allows

us to bypass the per-domain concurrency limit imposed by the phones. Note that this is

necessary as we do not have the permission to directly modify the concurrency limit on the

phone. For concurrency experiments, we use the RTT of 400 ms and the loss rate of 0%.
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Impact of compression: To study the tradeoff between network overhead and computa-

tion overhead, we configure our web server into two modes, one uses compression, while

the other does not. We compare the page loading time under these two modes. Specifically,

we use SetOutputFilterand BrowserMatch directives to specify whether compression is en-

abled for a specific type of browser, i.e., compression is bypassed by adding the following

lines to the Apache config file:

<Location />

SetOutputFilter DEFLATE

BrowserMatch Mozilla no-gzip

</Location>

We fix the loss rate at 0% and vary the RTT from 0 ms to 800 ms. Our goal is to

understand whether compression is beneficial under different network conditions.

Impact of JavaScript execution speed: To evaluate JavaScript execution speed on dif-

ferent phones, we use a benchmark [48] consisting of 26 different JavaScripts. The bench-

mark is hosted on our web server and accessed by phones via WiFi so that the downloading

time is negligibly small. We measure the total execution time of these JavaScripts.

Impact of the data URL scheme: We also study the effect of the data URL scheme [49],

a recently-proposed mobile webpage design technique. We compare the time to load a web-

page constructed using and without using the data URL scheme. Specifically, we construct

a webpage with 20 images; 10 of them are of size 18KB and the remaining 10 are of size

0.241KB. We create two versions of this webpage, one with links to download the images

and the other with the images embedded in the webpage itself. We could not carry out this

experiment for Windows Mobile phones since IE does not support the data URL scheme in

2009.
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4.1.3 Analysis Methodology

We next describe how to analyze the traces collected from controlled experiments to

compute the desired metrics. We calculate the page loading time of each URL as defined

in Section 4.1.1 and the average page loading time of all the selected URLs. To measure

JavaScript execution time, we modify the JavaScripts to display their execution time when

their execution finishes. We use the average concurrency as a measure of browser con-

currency. The average concurrency of a page loading is calculated by dividing the total

duration of all the TCP connections by the page loading time.

For each TCP connection, TCP handshake time is calculated as the time between the

first SYN and SYN-ACK packets. TCP idle time is measured by scanning the connection

for durations of more than T seconds of no network activity. T should be larger than the

maximum RTT values. In our analysis, we choose T = 1 second, as we have seen that in

cellular networks, even for 3G networks, RTT is smaller than 1 second in 99% of the cases.

Thus, if there are no network activities for 1 second or more, the phone should be busy

with some local processing, e.g., rendering HTML pages or executing JavaScripts. TCP

transfer time is what remains for the connection excluding handshake and idle time. We

also calculate the response time of all the DNS lookups Tdns.

Since each web browsing session often consists of multiple concurrent TCP connec-

tions, to estimate the contribution of each factor to the overall performance, we logically

serialize all DNS lookups and TCP connections. This is possible for mobile web browsing

since no HTTP pipelining is observed on any phones. After serialization, we get a total time

Ttotal which is the sum of each connection’s duration. Assuming the actual page loading

time is T ∗total, the normalized DNS lookup time T ∗dns is calculated as

T ∗dns =
Tdns
Ttotal

T ∗total

This metric shows the overall weight of DNS lookup in the actual page loading time. The

53



normalized TCP handshake time, TCP idle time and TCP transfer time are calculated in a

similar way.

4.2 Web Browsing Performance Study

Given the previous discussions on the performance of 3G networks, we now examine

one of the most popular applications on smartphone, namely web browsing, in addition

to two other popular mobile applications, streaming video and VoIP in §4.3. Note that

many factors jointly determine user perceived performance, as an application may not fully

utilize available network bandwidth due to limited processing power or memory on the

phone [46].

Our study shows that the available 3G bandwidth is often not fully utilized for web

browsing, and several modifications can be applied to current web browsers on smart-

phones to make better use of available network resources, e.g., increasing the limit on

concurrent TCP connections per domain, optimizing JavaScript engines etc. We also eval-

uate the effectiveness of a few content optimization techniques, including compression and

the recently-proposed data URL scheme [49].

In the following, we study the impact of network condition, browser concurrency, com-

pression, and JavaScript execution speed on web performance. We then break down the

page loading time into several major components and identify the performance bottleneck

for some mobile devices (§4.2.6).

4.2.1 Network Effects on Web Browsing

To understand how network condition affects web browsing, we fix the web content,

server configurations, browser concurrency and only vary the network condition. We emu-

late the 3G network condition by injecting packet delay and loss on the WiFi network path

as described in §7.3.
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Figure 4.2: Factors impacting web browsing performance.

Figure 4.2(a) shows that page downloading time increases linearly with the RTT be-

tween smartphone and our local web server. The downloading time is computed by av-

eraging across 20 replicated URLs, with each URL visited 3 times. This is expected as

throughput is inversely proportional to RTT. No additional packet loss is introduced since

packet loss is observed to be rare in 3G networks, as shown in the previous section. The

base RTT in our WiFi network is between 30 ms and 50 ms. The x-axis in Figure 4.2(a)

shows the actual RTT after injecting extra delay. We can observe that under the same net-

work condition, downloading time varies across phones though the relative ranking remains

consistent. Note that web browsing cannot fully utilize the available network bandwidth,

due to the overhead imposed by page execution and rendering on the phone.

Figure 4.2(b) shows the effect of varying downlink packet loss rate for a fixed RTT

value of 400 ms. Again the ranking in downloading time across phones is consistent. For

small packet loss rate, e.g., 2%, there is little performance degradation. However, with 10%

loss rate, the page downloading time increases up to 35 seconds. In summary, smartphone
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web browsing performance heavily depends on network delay and loss conditions.

4.2.2 Concurrent TCP Connections

3G network’s downlink throughput as measured normally ranges from 500 kbps to 1

Mbps for the carriers we studied (Figure 3.2(a)). We used the phones to visit the cho-

sen URLs and found that the average throughput is only between 20 kbps and 50 kbps,

indicating that more concurrent TCP connections can potentially improve web browsing

performance.

Current web browsers on smartphones already allow concurrent connections. In browser’s

settings, there is a parameter specifying the maximum number of concurrent TCP connec-

tions per domain. On Windows Mobile phones, it is a registry value named MaxConnec-

tionsPerServer with a default value of 4. When we set the value to be smaller than 4, we

observe decreased concurrency. However, when we increase the value to be larger than 4,

the concurrency does not increase accordingly. This implies there exists another setting on

maximum allowed concurrency per domain, which we cannot configure. For iPhone and

GPhone, we are unable to set this parameter either. We design controlled experiments to

measure the default concurrency setting on different platforms and found it to be 4 for all

the phones studied.

We also found that no HTTP pipelining support is present on these platforms. Web

objects are fetched sequentially within a persistent connection, and browser will not send a

new HTTP request before data transfer of the previous request completes. We analyzed the

20 popular URLs and found that there are 10.8 images embedded in each page on average,

along with several other types of embedded objects, such as JavaScript, CSS files, etc.

Those websites which do not have a mobile version, tend to have even more objects.

To understand how concurrency affects web browsing performance, we devised a set of

experiments, with results shown in Figure 4.2(c). We first vary the maximum concurrent

connections allowed at the server side from 1 to 4. We observe a significant performance
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URL Text1 Image Size(KB) Original(KB)2 Compress3 GZIP Lines4 Redirect Sever IPs

www.google.com 4 1 79.2 77.6 2.56 X 14 - 2
m.bing.com 4 3 42.9 218.1 1.46 - 2 - 1

maps.google.com 6 10 479.8 656.0 2.78 X 8 - 4
mapquest.com 6 13 135.1 1326.35 1.96 X 752 2 6

xhtml.weather.com 22 9 41.4 977.3 2.53 - 70 4 2
m.youtube.com 5 3 77.6 490.1 2.34 X 231 - 3

m.ebay.com 4 3 58.6 484.0 2.17 - 1 - 1
m.facebook.com 4 1 19.7 399.1 2.81 X 7 2 2
m.myspace.com 3 2 14.6 600.2 2.6 X 98 1 2

m.fox.com 4 26 306.6 2083.0 1.16 X 297 - 4
mobile.craigslist.org 3 0 113.8 113.8 3.58 X 652 - 1
1This column shows the number of text objects including HTML, JavaScript and CSS files
2This column shows the total size of the original website for each mobile URL, for example, www.bing.com for the row of m.bing.com
3This column shows the compression ratio for mobile URLs, total size in no compression mode / total size in compression mode
4This column shows the total number of lines in the index page indicating whether minification is used

Table 4.1: Characteristics of today’s popular mobile websites.

degradation across all platforms with more restricted concurrency. Under the restriction of

a single connection per domain, web browsing is 3.5 to 4.5 times slower compared to that

under the default setting. This indicates that today’s mobile browsers already benefit much

from concurrency.

To understand whether further increasing concurrency will improve performance, we

make use of DNS aliasing (Section 4.1.2) to bypass the concurrency limit on the phone

since we are unable to change this setting directly. Figure 4.2(c) shows that the phones

can indeed attain a higher level of concurrency. For example, iPhone and G2 can establish

up to 9 concurrent connections for some content-rich URLs. The concurrency for other

phones are slightly lower (6 to 7), likely due to their slower rendering and execution speed.

Generally, an improvement of 30% is observed when concurrency limit on the phone is

removed. This means that given the selected popular URLs, and given current network

condition (with RTT of 400 ms), the default concurrency setting on mobile browsers ap-

pears to be too conservative. Allowing higher concurrency can help phones make better

use of available bandwidth and decrease page downloading time.
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Figure 4.3: Script execution speed for different platforms in 2009.

4.2.3 Content Compression

Compression can dramatically reduce web content size. For text objects, such as

HTML, CSS, JavaScript, PHP, etc., the object size can be reduced by around 70%. Usu-

ally, a web server does not compress image objects. We calculate the compression ratio for

the popular URLs in column Compress of Table 4.1, showing that the content size can be

reduced by more than 50% for most of the URLs we studied.

While compression reduces the bytes transferred over the network, decomression will

increase computation overhead on the phone. To understand this tradeoff, we vary RTT

covering the measured range and compare the web browsing performance in compressed

and uncompressed modes. In Figure 4.2(d), we exclude the results for HTC and Palm

phones as they show similar trends. We observe that compression consistently helps to

improve web performance, irrespective of the RTT values. It is especially helpful under

poor network condition. For example, it reduces iPhone’s page downloading time by 30%

when RTT is 800ms.
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4.2.4 JavaScript Execution

Given the limited processing power on smartphones, HTML rendering and JavaScript

execution may become the bottleneck for web browsing. Several factors jointly determine

the page processing speed, including CPU frequency, memory, OS, and browser. Even for

the same OS, such as Windows Mobile 6.1, phone vendors can have different builds for

different models of phones.

We measure JavaScript execution time on different phones using a benchmark consist-

ing of 26 different JavaScripts [48]. Figure 4.3 shows the total time taken to execute the

benchmark on different phones measured in 2009. The results demonstrate that execution

time is 20∼80 times longer on smartphones than on desktop computers. Among the smart-

phones, G2 has the best performance followed by iPhone. For example, G2 is 3 times

faster than the HTC phone. Such performance gap helps explain the differences in the page

loading time of G2 and iPhone compared to that of the Samsung and Palm phones under

the same network conditions in Figure 4.2. Large JavaScript execution time leads to more

TCP idle time and under-utilization of network bandwidth.

This experiment shows that network is not the only bottleneck for web browsing per-

formance. Phone itself also plays a major role, underscoring the necessity of measuring

application performance on real smartphones. Web designers should avoid using complex

JavaScripts when building mobile versions of their websites.

We revisited the JavaScript execution experiments in 2011, as shown in Figure 4.4. We

consistently use the same benchmark [48] (version 0.9) to quantify the JavaScript execution

speed. In Figure 4.4, the test results on the same G1 phone in 2009 and in 2011 are very

close, validating that the benchmark of that version has not changed since 2009.

From 2009 to 2011, iOS has a speedup of 29.88 for iPhone 4 and 51.95 for iPhone 4S,

while 21.64 for Android and 22.30 for Windows Phone. And the gap between smartphone

and computer has dropped to 5.5∼23.1 times in JavaScript execution speed. Possible rea-

sons for this improvement include fast CPU, larger memory, and better OS and application
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Figure 4.4: JavaScript execution speed comparison.

software for smartphones.

4.2.5 Server Configuration and Content Optimization

Server configurations and content optimization are important factors for web browsing

performance. One type of server configuration is the maximum concurrent connections

with a client. In §4.2.2, we found that mobile browsers set a default concurrency limit

of 4 per domain. However, we did not observe any web servers limit the concurrency

per client to be smaller than 4, likely because servers have the incentives to attain good

web browsing experience. The compression configuration is similarly important, with the

identified setting of the URLs studied shown in the GZIP column in Table 4.1. Despite

the fact that compression almost always improves web browsing performance (§4.2.3), we

found some websites do not enable it by default.

Various content optimization techniques also help improve web browsing performance

on smartphones. Most popular websites already customize their contents for mobile users,

with more concise texts and fewer and smaller images, e.g., via code minification [50],

image scaling, etc. We study in particular code minification which refers to the elimination
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Figure 4.5: Evaluation for data URL scheme.

of redundant characters, such as spaces, tabs, line breaks, etc. The size reduction varies

from 5% to 25% for the URLs studied. Column Lines/index in Table 4.1 shows the number

of lines in the index page of a website, providing a hint for whether minification is used.

The number of lines will be small for index pages treated with minification. It seems that

half of the URLs use this technique to optimize their contents.

Another type of optimization helps reduce the number of HTTP requests used to fetch

contents, including the data URL scheme [49], CSS3, etc. The general idea is to eliminate

TCP connections and HTTP requests for small objects, such as the corner image of a page.

We set up a controlled experiment to demonstrate the effectiveness of the data URL scheme,

under which small images are integrated with the main HTML page rather than linked as

separate objects (§4.1.2). In our experiment, we found that the images are actually 1.3–1.5

times of its original size under the data URL scheme. Figure 4.5 shows that it cuts page

loading time by about 20%.

The data URL scheme has not been ubiquitously supported. In fact, only the browser

of iPhone and G2 supports it. We also did not observe any URLs we studied adopt this

technique, possibly due to the concern of a lack of browser support. Without browser

support, the image represented by the data URL scheme will be displayed as a default error
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image.

Redirection (HTTP response code 301 and 302) is another issue which may adversely

impact web browsing performance. For mobile web browsing, this issue becomes more

pronounced given the large RTTs in 3G networks. In column Redirect of Table 4.1, we

found that some websites have multiple levels redirections. For example, m.weather.

com will be redirected to xhtml.weather.com and then to mw.weather.com. In

some cases, users are redirected to another URL which is quite similar to the original one.

In other cases, web objects have been moved to a new location, and the original URL simply

redirects the incoming requests to the new location. We think some of these redirections

are unnecessary and can be eliminated with better webpage design.

4.2.6 Understanding Bottleneck Factors for Web Browsing

Figure 4.6 shows the case study for two groups of URLs listed in Table 4.1. Group

A corresponds to the URLs that have concise and simple contents, e.g., m.ebay.com

(URL a) contains 7 objects with a total size of 58.6 KB. Many of these websites are search

engines or portals to social networking sites, including www.google.com, m.bing.

com, m.myspace.com, and m.facebook.com. Group B consists of websites with

rich contents, e.g., mapquest.com (URL b) has 19 objects with a total size of 135.1

KB. Other websites in the group include online map (maps.google.com), information

exchange (mobile.craigslist.org), and news (m.fox.com and m.cnn.com).

There are two sets of data in Figure 4.6. One set is collected when each smartphone

visits the real URLs via 3G networks. To eliminate the differences in downloaded contents

and network conditions, each phone also visits the replicated URLs via WiFi with an RTT

of 400 ms to emulate the typical 3G network conditions.

It is clear that all smartphones experience smaller page loading time for the simple

URL in Figure 4.6(a) compared with that for the content-rich URL in Figure 4.6(b). We

break down the page loading time into four parts: TCP transfer, TCP idle, DNS lookup,
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Figure 4.6: Web browsing anatomy for two popular mobile websites.

and TCP handshake. The size of mapquest.com is larger than that of m.ebay.com,

resulting in longer TCP transfer time. Moreover, mapquest.com contains more contents

to render and more complex JavaScripts to execute, leading to longer TCP idle time. The

DNS lookup time and TCP handshake time contribute to less than 10% of page loading

time, which are negligible.

We further observe that the Palm (Sprint), Samsung (Verizon), and HTC (AT&T) phones

experience much longer page loading time for mapquest.com compare to iPhone (AT&T)

and G2 (T-Mobile). This is likely due to their slower JavaScript execution speed, as shown
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in Figure 4.3.

In the WiFi experiments, all the phones download the same contents and experience the

same network conditions. As a result, the TCP transfer time differences among all phones

are small. However, we can still observe significant page loading time differences, mostly

due to the gap in TCP idle times. We further note that their relative ranking is consistent

with the ranking of JavaScript execution speed in Figure 4.3.

The previous part of the study was carried out in 2009. Along with improvements in

mobile client processing power, LTE technology significantly increased network speed. So

we perform another case study of a few popular applications to understand the impact of

network speed and processing power enhancement on user-perceived performance in 2011.

With the measurement methodology discussed in Section 4.1.1, we compare loading

time, CPU usage, and energy consumption for several popular applications in Figure 4.7.

We collect both network and CPU traces on an Android device with LTE data access.

Specifically, we select the default browser, YouTube, NPR News and Android Market as

our sampled applications given their popularity. For the default browser, we choose two dif-

ferent usage scenarios, i.e., visiting mobile version of google.com representing a simple

website and visiting non-mobile version of yahoo.com representing a content-rich web-

site. We name the two browser usage scenarios as Website G and Website Y, respectively.
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Application Total payload Maximum object size # objects Average size
Website G 160.7KB 87.6KB 11 14.6KB
Website Y 509.9KB 124.2KB 59 8.6KB
YouTube 449.1KB 109.4KB 33 13.6KB

NPR News 306.2KB 169.5KB 9 34.0KB
Market 599.7KB 145.4KB 17 35.3KB

Table 4.2: HTTP object statistics.

While for the other applications, we click the application icon until the initial page is fully

presented to the user. We make sure the cache is cleared before each experiment. These

usage scenarios are representative for web browsing and other similar web-based applica-

tions, different from audio and video streaming applications.

First, loading time comparison shows that LTE and WiFi have comparable user-perceived

delay for the studied scenarios, and 3G lags behind with 50%∼200% larger response time.

The application loading time for LTE slightly lags behind WiFi. On one hand, given that

promotion delay is counted into the loading time, LTE has larger Tpro. On the other hand,

though LTE has faster throughput than WiFi with throughput tests, its RTT is slightly larger.

To understand why RTT matters more than throughput for the usage scenarios in Figure 4.7,

we analyze the object size statistics for different applications in Table 4.2.

In Table 4.2, across all scenarios, the maximum object size is 169.5KB for NPR News

and the average object size is at most 35.3KB for Android market. Especially for Website Y,

there are 59 HTTP objects with an average size of only 8.6KB. Due to TCP slow start, these

objects are far from saturating the link capacity for either LTE or WiFi. Persistent TCP

connections are observed to transfer multiple web objects; however, no HTTP pipelining

is observed. We also observe up to 5 parallel TCP connections to different remote servers

and even to the same remote server; however the average low throughput, e.g., 364.2kbps

for Website Y, indicates that the RTT is more critical than available bandwidth for these

web-based applications in LTE and WiFi.

We observe that average CPU usage for 3G network is relatively low ranging from
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35.5% to 70.8%, with an average of 57.7%. CPU usage for LTE is between 68.8% and

84.3%, averaging at 79.3%, compared with WiFi’s 78.2%∼93.0% and 87.1% as average.

This comparison implies that the gap between WiFi and cellular network has narrowed be-

cause of LTE’s better network performance. For 3G network, network performance appears

to be the bottleneck, resulting in underutilized processing power. Given that the average

CPU usage for LTE and WiFi is already 80%∼90%, further performance optimization re-

lies more on processing speed improvement and OS/application software enhancement,

compared with network improvement. Work such as CloneCloud [51] on offloading com-

putation into the cloud is one such promising direction.

In terms of energy usage, WiFi clearly has significantly higher energy efficiency for

the usage scenarios studied, similar to previous discussions. 3G consumes 5.5∼7.8 times

the energy of WiFi, with 20.9%∼55.6% of the total energy due to tail. While for LTE,

energy usage is 5.4∼12.0 times of WiFi, with 32.2%∼62.2% tail energy. We notice that,

most of these applications keep some of the existing TCP connections open even after

the initial loading; so that if user generates subsequent requests, these connections could

be reused. Similar to previous work [26], we observe that applications remain idle after

the initial loading and a few TCP control packets are generated by UE to close the existing

applications a few seconds later, such as the packets seen at time 10.5 seconds in Figure 4.1,

which reset Ttail and further increase the high-power tail length.

Summary: First, we find that higher browser concurrency enables the phones to better

utilize available network bandwidth, hence reducing page loading time. Second, server

configurations and content optimization play a major role in web browsing performance.

Compression tends to always help under typical 3G network conditions. However, a few

popular websites are employing sub-optimal server configurations and page designs. Third,

we observe that contemporary smartphones have reduced gap with desktop computers in

terms of processing power. However, for web-based applications, downloading mostly
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Figure 4.8: Streaming video performance: content size, download strategy.

small sized objects, the performance bottleneck is still at the UE processing side, given the

significant improvement in network speed for LTE.

4.3 Other Mobile Applications

In this section, we study two other popular mobile applications, streaming video and

VoIP.

Streaming video is another popular application on smartphones. We measure streaming

video performance by playing a 37:40 minute video on the phones using the YouTube

application. From the collected packet trace, we calculate the downloading size of the video

by adding up the payloads for all the packets from the server to phone while excluding the

retransmitted packets.
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4.3.1 Streaming video

We downloaded a 37-minute long video using a YouTube player on each phone. Fig-

ure 4.8(a) shows the size of the video downloaded using TCP via WiFi and 3G on each

phone. As expected, the video size is smaller for 3G than for WiFi, because both the video

server and 3G carrier can customize video based on network conditions to ensure good user

experience. Interestingly, the video size for 3G also varies across carriers: it is the smallest

for T-Mobile, followed by AT&T, Verizon, and Sprint.

Figures 4.8(b)(c) show the representative time series of video download throughput for

iPhone and G2 via 3G networks. The timeline of iPhone exhibits a distinct pattern with

clear pauses. It initially downloads a portion of the video at a high rate, then stops before

downloading the remaining portions. We conjecture that the download stops when the

buffered content exceeds a certain threshold, and resumes after the buffered content falls

below another threshold. The purpose is likely to accommodate the limited phone memory

and to save energy usage associated with the 3G interface. Another observation is that

iPhone always terminates the TCP connection every 10–20 seconds and then establishes a

new one on demand. We conjecture that iPhone attempts to put the 3G interface into low

power state to save energy.

In contrast, G2 shows a different behavior by periodically downloading small chunks

of the video every 10 seconds. The Samsung and Palm phones behave similarly with a

slightly longer interval of 20 seconds between downloads. This is likely motivated by the

fact that users sometimes do not watch the entire video and may skim through certain parts

of the video. Such downloading patterns can also help conserve energy. Our initial study

shows that the video players on different phones employ different policies to fetch video.

This merits more detailed future study.
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Figure 4.9: VoIP performance.

4.3.2 VoIP

We carry out a simple VoIP experiment on the Samsung (Verizon) and Palm (Sprint)

phones given their uniform support for Skype. During the experiment, the same 3-minute

music file is played on both the phone and the desktop, when the two are in a Skype call.

The volume is kept the same to have similar voice input. Figure 4.9 shows that the through-

put for both phones via 3G is nearly identical, as the same coding rate is used. The through-

put is higher under WiFi than under 3G, as different amount of data is transferred depending

on the network being used. This reflects how Skype tries to vary the encoding rate accord-

ing to the network condition to achieve good perceived voice quality.
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CHAPTER V

An In-depth Study of LTE: Effect of Network Protocol and

Application Behavior on Performance

4G LTE is the latest deployed cellular network technology that provides high-speed

data services for mobile devices with advertised bandwidths matching and even exceeding

the home broadband network speeds. Recent work [12] has demonstrated the power model

of the LTE network compared to 3G provides the promise of higher energy efficiency as a

result of the new RRC state machine design and higher achievable throughput. However,

this new technology has not been extensively studied empirically in a deployed commercial

network setting to understand how network resources are utilized across different protocol

layers for real users. It is important to evaluate the benefits of increased bandwidth for

popular mobile applications and essential network protocols such as TCP to identify their

limitations for needed improvements. Intuitively, network protocol overheads can be sig-

nificant enough to prevent efficient usage of available network resources [46]. This has

been shown in network settings with high network capacity but potentially unpredictable

network conditions [52].

We are motivated by the fact that LTE uses unique backhaul and radio network tech-

nologies, and has unique features distinguishing it from other access technologies (e.g.,

much higher available bandwidth and lower RTT), requiring some existing topics to be

revisited. Also, the prevalence of these problems in commercial LTE networks is very
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important for both academia and industry. In this chapter, we evaluate the usage of LTE

network resources by analyzing an extensive data trace collected in a large geographic re-

gion of a commercial LTE network. As far as we know, this is the first in-depth analysis of

deployed LTE technology in a commercial setting. We systematically complement the data

analysis with local experiments using controlled traffic patterns to confirm or further in-

vestigate our observations based on data traces. Given the prevalence of proxy deployment

in cellular networks for improving user perceived performance due to inherently limited

radio network resources, we also study the impact of such middleboxes on performance.

No previous work has performed any detailed evaluation of such impact.

Our approach to characterizing the usage of a commercial LTE network starts with a

careful analysis of basic network characteristics in terms of TCP flow properties, network

latency, followed by the congestion control statistics of observed TCP flows. To answer the

question whether application traffic is effectively utilizing available network resources, we

devise a lightweight method to estimate the available network bandwidth based on the fine-

grained TCP data packet and ACK packet exchange close in time, while making use of the

TCP Timestamps option. We validate the accuracy of our bandwidth estimation algorithm

using controlled experiments. We expect this algorithm to be helpful in identifying proto-

col level and application level inefficiencies even in the presence of sufficiently available

network resources. Besides performance overhead, network usage efficiency has direct im-

pact on the energy usage of mobile devices. We highlight the potential energy waste due

to ineffective use of available network resources. Given the prevalence of video and audio

applications in cellular networks and their significant contribution to the network resource

usage, we perform a case study on popular multimedia applications from the perspectives

of network resource usage.

In summary, we make the following contributions:

• Using the TCP Timestamps option, we devise a passive method to estimate the avail-

able bandwidth by observing the TCP packet streams between the mobile device and
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the server.

• We develop a set of pragmatic techniques for passively capturing TCP flow char-

acteristics such as flow size, flow duration, flow rate, loss rate, queuing delay, LTE

promotion delay from a monitor placed between the LTE Radio Access Network

(RAN) and the Serving Gateway (SGW) or Packet Data Network Gateway (PGW).

• To evaluate performance of TCP flows, we design simple heuristics to identify ab-

normal TCP behavior based on duplicate ACKs, out of order packets, and slow start

through the analysis of packet traces and congestion window size.

Besides these methodological contributions, we make the following insightful observa-

tions about LTE network usage.

• For large TCP flows, queueing delay may increase RTT to a few times the normal

value. However, as TCP does not use duplicate ACKs to update RTT estimate (thus

retransmission timeout RTO), undesired slow start may occur in the middle of a flow

upon a single packet loss or reordering, and this phenomenon is observed for 12.3%

of all large TCP flows.

• We observe that 52.6% of all downlink TCP flows have experienced full TCP receive

window or even zero receive window, limiting the sending rate.

• Overall, with the bandwidth estimation algorithm, we observe that for 71.3% of the

large flows, the bandwidth utilization ratio is below 50%. And on average, data trans-

fer takes 52.9% longer than if the bandwidth was fully utilized, incurring additional

radio energy overhead.

Based on these observations, we make several recommendations on protocol and ap-

plication design to more effectively take advantage of the available network resources. We

believe our findings apply to other LTE networks given the extensive coverage of the data

set and independent controlled experiments carried out locally.
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Figure 5.1: Simplified network topology of the large LTE carrier from which we obtained
our measurement data.

Here is the roadmap for this chapter. Section 5.1 describes the data set studied and

setup for controlled experiments. We then characterize the LTE network characteristics

in Section 5.2 and discuss a newly identified TCP performance issue in LTE networks in

Section 5.3. We investigate the network resource usage efficiency with a devised band-

width estimation algorithm in Section 5.4, followed by exploring the network application

behaviors that cause network inefficiency in Section 5.5.

5.1 LTE Data and Local Testbed

We give an overview of the LTE network topology before describing our measurement

data. We then describe how we perform controlled experiments for validating our findings.

5.1.1 The LTE Measurement Data

As depicted in Figure 5.1, an LTE network consists of three subsystems: user equipment

(UE), the radio access network (RAN), and the core network (CN). UEs are essentially

mobile handsets carried by end users. The RAN allows connectivity between a UE and

the CN. It consists of multiple base stations called Evolved Node B (eNB). The centralized

CN is the backbone of the cellular network. It connects to the Internet. In Figure 5.1,
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within the CN, “Monitor” is our data collection point. “SGW” and “PGW” refer to the

serving gateway and the packet data network gateway, respectively. “PEP” corresponds to

the performance enhancing proxy to be described shortly. From the perspective of UEs,

we define downlink as the network path from the Internet to UEs, and uplink as the path

in the reverse direction. Similarly, we also use the terms downstream and upstream from

the perspective of the Monitor to indicate the relative locations of network elements, e.g.,

downstream refers to the path between monitor and UEs.

The Performance Enhancing Proxy (PEP). The data collection point is located within

the core network of the studied LTE network. TCP traffic from or to server port 80 or 8080

traverses the PEP on the upstream side of the monitor. The PEP splits the end-to-end TCP

connection into two, one between the UE and the PEP and the other between the PEP and

the server. It can potentially improve the Web performance by, for example, performing

compression and caching. Also the PEP makes the split transparent to UEs by spoofing

its IP address to be the server’s IP address. We will show later how PEP impacts our

measurement results.

Data Collection. Our measurement data is a large packet header trace covering a fixed

set of 22 eNBs at a large metropolitan area in the U.S. The data collection was started

on October 12 2012 and lasted for 240 hours. We record IP and transport-layer headers,

as well as a 64-bit timestamp for each packet. No payload data is captured except for

headers of HTTP, the dominant application-layer protocol for today’s smartphones [53].

No user, protocol, or flow-based sampling is performed. During the 10 days, we obtained

3.84 billion packets, corresponding to 2.9 TB of LTE traffic (324 GB of packet header data,

including HTTP headers). To our knowledge, this is the first large real-world LTE packet

trace studied in the research community.

Subscriber Identification. Due to concerns of user privacy, we do not collect any

subscriber ID or phone numbers. We instead use private IP addresses (anonymized using

a consistent hash function) as approximated subscriber IDs, since private IPs of the carrier

74



are very stable. They change only at the interval of several hours. In contrast, public IP

addresses observed by servers may change rapidly [54]. Private IPs can also be reused.

We take this into account by using a timing gap threshold of one hour in our analysis. If

a private IP has not been seen for one hour, we assume its corresponding user session has

terminated. This potentially overestimates the user base, but its impact on our subsequent

analyses is expected to be small since changing this threshold to 30 minutes or 2 hours does

not qualitatively affect the measurement results in Section 5.2, Section 5.4, and Section 5.5.

In total, we observe about 379K anonymized client IPs and 719K server IPs.

Flow Extraction. From the dataset, we extract flows based on a 5-tuple of src/dst IP,

src/dst port numbers, and protocol (TCP or UDP). We conservatively use a threshold of 1

hour to determine that a flow has terminated if no flow termination packets are observed.

We found that similar to the idle period threshold for subscriber identification, the impact

of this value on subsequent analysis results is negligible. Overall, 47.06 million flows are

extracted from the trace.

We emphasize here that no customer private information is used in our analysis and all

customer identities are anonymized before any analysis is conducted. Similarly, to adhere

to the confidentiality under which we had access to the data, in subsequent sections, we

present normalized views of our results while retaining the scientifically relevant bits.

5.1.2 Controlled Local Experiments

We also set up a measurement testbed in our lab for controlled experiments. The UE

used is a fairly new smartphone model — Samsung Galaxy S III (SGH-I747) running An-

droid 4.0.4 (IceCream Sandwich, Linux kernel version 3.0.8). It connects to a commercial

LTE network in the U.S. We configure a server with 2GB memory and 2.40GHz Intel Core

2 CPU, running Ubuntu 12.04 with 3.2.0-36-generic Linux kernel. Both the UE and

the server use TCP CUBIC as their TCP implementation.

Note that the purpose of using local experiments from a potentially different LTE carrier
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at locations that may not match where our studied dataset comes from is to provide a

different perspective and also evaluate whether observations from analyzing the dataset

can be empirically observed.

When measuring TCP throughput and RTT (Figures 5.11, 5.19, and 5.20), the UE es-

tablishes a TCP connection to the server, which then transfers randomized data without

any interruption. For throughput measurement, we ignore the first 10 seconds of the TCP

connection (skip the slow start phase), and calculate the throughput every 500 ms from

the continuously transferred data. The RTT is measured by computing the gap between

timestamps of transmitting a data packet and receiving the corresponding ACK from the

sender-side trace collected by the tcpdump tool.

5.2 LTE Networks Characteristics

We study LTE traffic characteristics using the aforementioned 10-day packet trace col-

lected from the large commercial LTE service provider. We also compare our results with

two previous measurement studies of cellular and Wi-Fi performance on mobile devices

(Section 5.2.4).

5.2.1 Flow Size, Duration, Rate, Concurrency

We begin by showing the protocol breakdown of the dataset. For the transport-layer pro-

tocol, TCP dominates the dataset (95.25% flow-wise and 97.24% byte-wise), with majority

of the remaining traffic in UDP. Within TCP, as the dominant application-layer protocol,

HTTP (port 80/8080) contributes 76.55% and 50.13% of all TCP bytes and TCP flows, re-

spectively. We also notice the popularity of HTTPS (port 443), which account for 14.83%

and 42.11% of TCP bytes and flows, respectively. We present a more detailed app-layer

content analysis and compare the findings with those for 3G networks in §5.5.1.

Following previous measurement studies of wired and Wi-Fi networks [55, 56, 57], we

are interested in three characteristics of LTE TCP flows: size, duration, and rate. Size is
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Figure 5.2: Distribution of TCP flow sizes.

the total number of payload bytes within the flow (excluding IP/transport layer headers).

Duration is the time span between the first and last packet of a flow. Flow rate is calculated

by dividing flow size by flow duration. Understanding these characteristics is vital to many

aspects in cellular networks such as eNB scheduling, usage-based billing policy, and RAN

resource balancing and optimization. Our focus is TCP since its accounts for the vast

majority of the traffic (95.25% of flows and 97.24% of bytes).

TCP Flow Size. Figure 5.2 plots the CDF of uplink and downlink payload sizes, both

exhibiting strong heavy-tail distributions. Most flows are small: 90% of flows have less

than 2.93 KB uplink payload and 90% of flows carry no more than 35.88 KB downlink

payload. In particular, 11.26% (10.86%) of flows do not have any downlink (uplink) pay-

load as they only contain complete or incomplete TCP handshakes. On the other hand,

a very small fraction of large flows, which are known as “heavy-hitter” flows [56], con-

tribute to the majority of the traffic volume. For downlink, the top 0.57% of flows ranked

by payload sizes, each with over 1 MB of downlink payload, account for 61.73% of the

total downlink bytes. For uplink, the top 0.13% of flows, each with over 100 KB of uplink

payload, consist of 63.86% of the overall uplink bytes. Such a distribution is as skewed as

that in wired networks [56].
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Figure 5.4: An example of delayed FIN packet and its impact on radio resource manage-
ment.

We next examined the top 5% of downlink flows ranked by their downlink payload

sizes. Each of them contains at least 85.9KB of downlink payload data and 80.29% of

them use HTTP. By examining the HTTP headers (if exist) of the top 5% downlink flows,

we found that 74.35% of their contents (in bytes) are video or audio. Regarding to the top

5% uplink flows, 73.56% of their bytes are images. Most of such traffic corresponds to

users uploading photos to social networks such as Instagram.

TCP Flow Duration. Figure 5.3 shows the distribution of TCP flow duration (the solid

line), defined to be the time span between the first and the last packets of a flow. Most flows

are short: 48.07% are less than 5 seconds. 8.49% of the TCP flows are not even established

successfully and they only consist of SYN packets. For the long-tailed part, 6.80% of the

flows last at least 3 minutes and 2.77% are longer than 10 minutes.

The dotted curve in Figure 5.3 denotes the timing gap between the packet carrying
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the last payload byte and the last packet of a flow. Note that most flows in the dataset

are properly terminated by either FIN (86.16% of flows) or RESET (5.35%), and for the

remaining flows, they consist of only one or more SYN packets (8.49%). One example

of the cause of the aforementioned timing gap is persistent HTTP that tries to reuse the

same TCP connection for transferring multiple web objects so there is a timeout before

the connection is closed. This does not cause any issue in wired and Wi-Fi networks.

However, in LTE networks, there exists a timeout for shutting down the radio interface

after a data transfer. Such a timeout, which is called tail time, saves energy by taking the

device to the idle state once it finishes, and prevents frequent radio state switches [12]. We

measured the timeout (i.e., the tail time) to be 10 seconds for the studied LTE network. A

delayed FIN or RESET packet will incur additional radio-on time of 10 seconds and one

additional off-on switch if the delay is longer than 10 seconds, leading to waste of device

energy [26]. Figure 5.4 shows one such example, which is found to be prevalent: delaying

FIN or RESET for longer than 10 seconds occurs in 23.14% of the flows in our dataset as

shown in Figure 5.3.

TCP Flow Rate. Figure 5.5 measures the flow rate. We observe a huge disparity be-

tween uplink and downlink rates, due to (i) mobile devices usually do not perform bulk
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data uploading (e.g., FTP and P2P upload), and (ii) cellular uplink channel is significantly

slower than the downlink channel, even in LTE networks [33]. The four downlink through-

put distributions for flows with different sizes in Figure 5.5 indicate that larger flows tend

to be faster. Previous measurements for wired networks also suggest that for Internet flows,

there exist correlations among their size, duration, and rate [55, 56]. We quantitatively con-

firm that similar behaviors also hold for LTE flows. Let S, D, andR be downlink flow size,

duration, and rate, respectively, and (X, Y ) be the correlation coefficient between X and

Y . We calculate the values of (logS, logD), (logD, logR), and (logR, logS) to be 0.196, -

0.885, and 0.392, respectively. For uplink flows, the values of (logS, logD), (logD, logR),

and (logR, logS) are 0.030, -0.986, and 0.445, respectively. We found the flow duration

and the rate are much more negatively correlated, compared with Internet flows studied

in [56], whose correlation coefficients are between -0.60 and -0.69 for Internet backbone,

VPN, and DSL flows. This is worth further investigation to confirm if the sessions are

terminated early due to bad performance.

Concurrent TCP Flows. We explore the concurrency of TCP flows per user in the LTE

data set, as shown in Figure 5.6. Specifically, we use 1 second as a threshold to determine

the concurrency, i.e., for the sampled time point, we count the number of TCP flows that

have the downlink data transfers within the last 1 second. We observe that for 72.14% of

the time, there is only one TCP flow actively downloading data, and this percentage might

be even larger for smartphone users, considering that our data set also consists of a small

share of users that uses LTE data cards on their laptops, which may have high TCP flow

concurrency.

5.2.2 Network Latency

Figure 5.7 measures distributions of TCP handshake RTT. “C”, “M”, “P”, and “S” cor-

respond to the client (UE), the monitor (the data collection point), the PEP, and the remote

server, respectively. Since the monitor lies in the LTE core network, we can break down
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the overall RTT into two components: the downstream RTT between a client and the mon-

itor (“C-M”, for all traffic), and the upstream RTT between either the monitor and the PEP

(“M-P”, for TCP port 80/8080 traffic) or server (“M-S”, for other traffic). The downstream

RTT is an estimation of the latency in the RAN (Figure 5.1). In a TCP three-way hand-

shake, let the monitor’s reception time of SYN (uplink), SYNACK (downlink), and ACK

(uplink) be t1, t2, and t3, respectively. Then the upstream RTT is computed as t2 − t1, and

the downstream RTT is t3 − t2. The “C-S” curve combines both the “C-M” and the “M-S”

components (for non-PEP traffic only).

It is well known that in 2G/3G data networks, usually the RAN latency dominates the

overall end-to-end delay [43]. This is no longer the case in LTE networks. Figure 5.7

shows that the upstream RTT to a remote server (“M-S”) has a higher variance, and is

usually larger than the downstream RTT (“C-M”). This is further confirmed by Figure 5.8,

which plots the distribution of ratios between the upstream RTT and the downstream RTT

for non-PEP (“C-S”) flows. For 55% of the non-PEP flows, their upstream RTTs are larger

than the corresponding downstream RTT, whose reduction (i.e., the reduction of the RAN

latency) is mostly attributed to the flattened network topology in the LTE RAN. For exam-

ple, the two-layered RAN architecture (NodeB and the Radio Network Controller, RNC)
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Figure 5.7: Distributions of normalized handshake RTT and DNS lookup time.

in 3G UMTS/HSPA networks is reduced into the single-layered eNB architecture in LTE,

helping significantly reducing the RAN latency [33] (See Section 5.2.4 for quantitative

comparisons). Further, the “M-P” curve in Figure 5.7 indicates the latency between the

monitor and the PEP is very small.

LTE Promotion Delay. In cellular networks, the end-to-end latency of a packet that

triggers a UE’s radio interface to turn on is significantly long. Such a packet incurs a

radio resource control (RRC) promotion delay during which multiple control messages are

exchanged between a UE and the RAN for resource allocation. The promotion delay can

be as long as 2 seconds in 3G networks [20], and it also exists in LTE networks [12]. The

promotion delay is not included in either the upstream RTT or the downstream RTT in

Figure 5.7, since the promotion (if any) has already finished when the monitor observes a

SYN packet, as illustrated in Figure 5.9. However, we are able to infer the promotion delay

using the TCP timestamp embedded into a TCP packet when the packet is about to leave

the UE. In a three-way handshake, let the TCP timestamp of the SYN and the ACK packet

be TSb and TSa, respectively. Then the round-trip time (including the promotion delay)

experienced by the UE is G(TSb − TSa) where G is the inverse of the ticking frequency

of UE’s clock generating the TCP timestamp. Note that the TCP timestamps are not wall-
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clock times. Their units depend on the ticking frequency of the UE. We detail how to

compute G in Section 5.4.1. Finally the promotion delay (if exists) could be derived by

subtracting the RTT between the UE and the server/PEP (estimated in Figure 5.7) from

G(TSb − TSa), as shown in Figure 5.9.

We calculated promotion delays using the aforementioned method, by examining TCP

handshakes with the following property: the user does not send or receive a packet within

the time window (t − T, t) where t is the reception time of SYN and T is the window

size. We conservatively choose T = 13 seconds which is larger than the 10-second timeout

of the studied LTE network. This restriction ensures the UE is in the idle state when the

handshake is initiated. Therefore, the SYN packet must trigger a state promotion. The

25%, 50%, and 75% percentiles of the promotion delay are 319 ms, 435 ms, and 558 ms,

respectively. We found they are significantly shorter than the 3G promotion delays (around

2 seconds from idle to high-power state, and around 1.5 seconds from low-power to high-

power state [20]), possibly due to the simplified signaling protocol in LTE networks [33].

DNS Lookup. The “DNS” curve in Figure 5.7 measures the DNS lookup delay, com-

puted as the delta between the reception time of a DNS request and its response at the
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Figure 5.9: Estimating the promotion delay.

monitor. Note this is the latency between monitor and the DNS server, and we are not

able to measure the downstream latency since DNS messages are transferred over UDP.

We found that the upstream latency is usually very short i.e., less than 10 ms for 87.28%

of request-response pairs. Since the studied LTE network (Figure 5.1) has its own DNS

server, the short lookup delay indicates the desired effectiveness of the DNS server, which

caches most DNS responses so their domain names are effectively resolved locally within

the LTE core network.

5.2.3 Queuing Delay and Retransmission Rate

Section 5.2.2 focuses on the RTT of TCP connection establishment during which the

small TCP handshake packets are usually unlikely to be buffered by the network. During

the data transfer phase, a TCP sender will increase its congestion window, allowing the

number of unacknowledged packets to grow. Such “in-flight” packets can potentially be

buffered by routers and middleboxes on their network paths, incurring queueing delays. In

LTE networks, buffers are extensively used to accommodate the varying cellular network

conditions and to conceal packet losses [33].
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Figure 5.10: Downlink bytes in flight vs. downstream RTT.
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Figure 5.11: Downlink bytes in flight vs. downstream RTT (controlled lab experiments
with LTE Carrier A).

Figure 5.10 shows the relationship between the downstream RTT and the number of

downlink in-flight bytes, which is computed by counting the unacknowledged bytes. As

shown in Figure 5.10, the downstream RTT tends to inflate as the number of in-flight bytes

increases. The in-flight bytes in our studied LTE network can be larger than 1200 KB, caus-

ing high latency due to the queuing delay. We very this in local experiments (Section 5.1.2)

where we measure both the RTT and the bytes in flight at UE for two large commercial LTE

networks. As shown in Figure 5.11 and 5.12, the trend that RTT grows with the number

of in-flight packets is obvious. Our observation is also consistent with a recent study [58]
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Figure 5.12: Downlink bytes in flight vs. downstream RTT (controlled lab experiments
with LTE Carrier B).

that shows the usage of large buffers in today’s cellular networks may cause high queuing

delays. In addition to that, we further demonstrate its prevalence in today’s LTE networks:

as shown in Figure 5.13, which plots the distribution of downlink in-flight bytes for large

flows (> 1MB), about 10% of measured instances have in-flight bytes greater than 200 KB,

potentially leading to long queuing delays.

Clearly, for short flows or traffic triggered by user interactions (e.g., web browsing),

queues are not likely to build up. For long-lived flows, usually it is the throughput in-

stead of latency that matters. However, when short-lived and long-lived flows coexist (e.g.,

performing browsing while streaming in the background), queuing delay may severely de-

teriorate user experience by introducing unacceptable delays for short flows. Moreover, as

a new observation, we found that a high downstream queuing delay may often cause TCP’s

congestion window to collapse upon a single packet loss. We discuss this newly identified

and rather severe issue in Section 5.3.

Retransmission Rate. We study TCP downlink retransmission rate, defined as the

number of retransmitted packets divided by all packets, across all downlink flows in our

data set. 38.1% of the flows have retransmission rates of zero, and the median value is only

0.06%. Such low retransmission rates are comparable to those in wired networks [56].

86



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

C
D

F

Downlink bytes in flight for a TCP flow (KB)

TCP downlink bytes in flight

Figure 5.13: Distribution of downlink bytes in flight for large flows (> 1 MB).

Study Our Results 3GTest [1] 4GTest [12] SpeedTest [59]
Time Oct 2012 Aug-Dec 2009 Oct-Dec 2011 Feb 21 - Jun 5 2011 (15 weeks)

Location 1 US City Across U.S. Across U.S. New York City Madison WI Manchester UK
Type LTE Only Four 3G ISPs LTE WiMAX Cellular WiFi Cell’ WiFi Cell’ WiFi

5% TCP DL∗ 569 74 - 222† 2112 431 108 404 99 347 28 267
50% TCP DL 9185 556 - 970 12740 4670 1678 7040 895 5742 1077 4717
95% TCP DL 24229 1921 - 2943 30812 10344 12922 17617 3485 14173 3842 15635
5% TCP UL 38 24 - 52 387 172 52 177 55 168 25 180

50% TCP UL 2286 207 - 331 5640 1160 772 2020 478 1064 396 745
95% TCP UL 8361 434 - 664 19358 1595 5428 10094 1389 5251 1659 5589
5% HS RTT 30 125 - 182 37 89 68 21 99 24 98 34

50% HS RTT 70 160 - 200 70 125 159 54 184 69 221 92
95% HS RTT 467 645 - 809 127 213 786 336 773 343 912 313
∗ TCP DL: downlink throughput (kbps). TCP UL: uplink throughput (kbps). HS RTT: TCP handshake RTT (ms). 5%, 50%, 95%

are percentiles.
† For a range x – y, x and y are the result of the worst and the best carriers, respectively, for that particular test.

Table 5.1: Comparing with previous measurement studies.

There are even fewer packet losses since the retransmission rate is an upper bound of the

packet loss rate in the downstream (i.e., between UE and the monitor, note we are not able to

capture losses occurring on the upstream side of the monitor). In fact, in cellular networks,

most transport-layer losses are concealed by the physical/MAC-layer retransmission and

reduced by buffering. In particular, buffers in LTE networks upstream from the airmile

can play an important in absorbing the burstiness of the traffic transmitted over the lossy

wireless link, helping achieve a low loss rate.
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5.2.4 Comparison to Previous Studies

We compare our results with three previous measurement studies, focusing on three

important metrics: TCP downlink throughput, TCP uplink throughput, and TCP handshake

RTT. The 3GTest study [1] deployed an app that measures network performance metrics

on users’ handsets. Their data consisted of 35K cellular (3G only) tests from customers

of four large U.S. cellular carriers in late 2009. The 4GTest study [12] adopts a similar

approach while focusing on LTE users. Its data comprises of about 1K LTE tests and a few

WiMAX tests across the U.S. in late 2011. A recent study [59] examined a 15-week dataset

from speedtest.net in 2011. Table 5.1 shows their reported performance metrics for

handheld device users from three locations: New York City (246K Wi-Fi tests / 79K cellular

tests), Madison Wisconsin U.S. (24K Wi-Fi / 4K cellular), and Manchester U.K. (291K /

31K). The cellular technology ranges from 2G EDGE to 4G LTE, but is dominated by 3G

(UMTS/EvDO/HSPA).

We discuss three major issues that may affect the comparison. First, all three previous

studies perform throughput measurement using bulk data transfer of a large file without

any pause while our flows may consist of idle time periods (e.g., due to user think time),

leading to a lower throughput. To obtain more fair comparison, here we only consider large

non-PEP flows in our dataset (with at least 200 KB for uplink and 1 MB for downlink)

with no visible idle time period (with maximum inter-packet time of less than 1 second,

which is larger than 99.9th percentile of RTT). Second, in our case, remote servers may

impose rate limit [60] while all previous studies perform active probing using dedicated

test servers without any limitation on throughput. Third, we infer performance metrics

from traces of real Internet servers, while 3GTest, 4GTest, and SpeedTest employ different

server selection policies: 3GTest uses a single server located in U.S. while SpeedTest picks

a server geographically close to the UE. This in particular affects the latency estimation.

The comparison results are shown in Table 5.1. Despite aforementioned differences

among diverse measurement approaches, we believe the comparison can still demonstrate

88



the advantage of LTE over other types of cellular access technology, since their perfor-

mance difference is quite significant: the median downlink throughput, uplink throughput,

and handshake RTT are 9.5x, 6.9x, and 0.43x compared with the median values of the

best U.S. 3G carrier in 2009, respectively. Compared with the 2011 New York City cel-

lular results, the ratios are 5.5x, 3.0x, and 0.44x for DL throughput, UL throughput, and

RTT, respectively. Moreover, on mobile devices, LTE also outperforms Wi-Fi in many

cases. Specifically, for the 5th/50th/95th percentiles of downlink throughput and the me-

dian uplink throughput shown in Table 5.1, LTE performs better handheld Wi-Fi. Based on

Table 5.1, LTE’s latency appears higher than that of Wi-Fi. However, recall that Speedtest

always picks a nearby test server while we are measuring the RTT between UE and real

servers that may be far away. This may lead to an unfair RTT comparison. Furthermore,

our performance values are consistently lower than those reported by LTE tests of 4GTest,

very likely due to the rate limiting imposed by remote servers as mentioned before. A re-

cent study [60] indicates such rate limiting is prevalent across today’s Internet servers. We

also observe that LTE significantly outperforms WiMAX in all three metrics.

5.3 Abnormal TCP behavior

Due to their resource usage, we focus on large flows defined to be relatively long flows,

with more than 5 seconds data transfer time, and total downlink payload exceeding 1MB.

These large flows account for only 0.3% of all TCP flows in our data set, but their total

downlink payload contributes to 47.7% of all downlink payload.

As a background, upon receiving an out-of-order unacknowledged segment, a TCP

receiver sends an immediate duplicate ACK [61]. From the sender’s perspective, duplicate

ACKs can be caused by reordering or loss. Therefore, when there is a large amount of

bytes in flight and one data segment S is lost, each data segment with sequence number

higher than that of S triggers a duplicate ACK, before a retransmission of S is successfully

received. So a long sequence of duplicate ACKs strongly suggests a packet loss. When
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Figure 5.14: Observed duplicate ACKs and packet reordering in large TCP flows.

TCP detects 3 duplicate ACKs, it infers a data packet loss and retransmits it according to

the fast retransmit [61]. In the monitor traces, we detect this behavior as the data packet

sent by fast retransmit is out-of-order relative to other packets.

Figure 5.14 summarizes the observation of duplicate ACKs and packet reordering in

the large TCP flows. Although the median of duplicate ACKs in large flows is 17, for over

29.0% of large flows, there are over 100 duplicate ACKs. We observe that the number

of out-of-order data packets in large flows is substantially smaller than that of duplicate

ACKs, with a median value of only 2. By studying the ratio between duplicate ACKs and

out-of-order data packets, 24.7% of flows have a ratio of over 25, and for some flows, this

ratio can reach up to 5,000. This indicates that even a single out-of-order data packet can

trigger a large number of duplicate ACKs when the bytes-in-flight are large, using up more

uplink bandwidth.

Fast retransmission allows TCP to directly send the lost segment to the receiver possibly

preventing retransmission timeout (RTO). If so, TCP would resume data transfer with the

congestion window size reduced by half. However, as shown earlier, we identified signifi-

cant queuing build up between UE and monitor. Such large in-network queues capable of

holding up to a few megabytes data could delay the receipt of the retransmitted data packet.
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Figure 5.15: Duplicate ACKs not triggering a slow start.

In the meanwhile, if TCP does not use duplicate ACKs to update RTO, a timeout is likely to

happen. If the corresponding ACK does not arrive at the server within the RTO (timeout),

the congestion window would drop to 1 segment, triggering slow start, significantly hurting

TCP performance. We refer to this as the undesired slow start problem.

Figures 5.15 and 5.16 demonstrate two sample cases in the data set, where Figure 5.15

shows that the train of duplicate ACKs does not trigger slow start and Figure 5.16 includes

a case that slow start is triggered. One key difference is that Figure 5.16 has about 500KB

bytes in flight before the first duplicate ACK, while Figure 5.15 has much fewer bytes in

flight.

In TCP, RTO is computed by the sender using smoothed round-trip time and round-

trip time variation [62]. However, using duplicate ACKs to update RTO, which may be

beneficial by allowing more accurate RTT estimation, is not standardized. In Figure 5.16,

between 1.1s and 1.5s, the sender receives many duplicate ACKs. Due to the growing

queueing size, RTT grows from 262ms (the last RTT sample before the first duplicate

ACK) to 356ms, the RTT for the retransmitted packet. The sender’s TCP implementation

apparently ignores these duplicate ACKs for updating RTO and RTO remains the same

without considering the duplicate ACKs. Following the method for calculating RTO [62],
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Figure 5.16: Duplicate ACKs triggering a slow start.

we observe that RTO is around 290ms before the first duplicate ACK, which is smaller than

the RTT of the retransmitted packet (356ms). This problem does not happen in Figure 5.15,

because the RTT before the first duplicate ACK is close to that after the last duplicate ACK,

due to the small number of bytes in flight. Although it is recommended that the RTO should

be at least 1 second [62], depending on the operating systems, different minimum values are

used, e.g., Linux’s minimum RTO is 200ms [63]. Such small values of RTO can exacerbate

the undesired slow start problem demonstrated in Figure 5.16.

We also study the prevalence of the congestion window collapse problem. To tell

whether there is a slow start following a long list of duplicate ACKs, we use a heuris-

tic metric Rss, ratio of slow start: Rss =
θ[100,200]
θ[0,100]

, where θ[t1,t2] is the average downlink

throughput from t1 ms to t2 ms after the last duplicate ACK. We choose 200 ms empiri-

cally as it is observed to be shorter than a typical slow start in the LTE networks. During

slow start, Rss is expected to be larger than that when there is no slow start. For example,

the Rss is 1.0 for Figure 5.15 and Rss is 3.7 for Figure 5.16. In practice, we observe that

1.5 is a good threshold for Rss in determining slow start. Using this threshold, we have de-

termined that for all the large TCP flows with at least one lost data packet, 20.1% of them

suffer from the slow start problem, which consists of 12.3% of all large TCP flows. In one
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case, a 153-second flow even experience 50 slow starts, resulting in an average throughput

of only 2.8Mbps, while the estimated bandwidth actually larger than 10Mbps.

There are different ways to mitigate this problem. One approach is to update RTO with

the help of duplicate ACKs with TCP Selective Acknowledgment options (SACK) [64].

Assuming there is no packet reordering, by taking the difference between the SACK win-

dow of two consecutive duplicate ACKs, we can identify the exact data packets correspond-

ing to these ACKs. If there is ambiguity, either due to ACK reordering or additional packet

loss, we simply ignore this sample. In our data sets, packet reordering rate is less than 1%

and SACK is enabled in 82.3% of all duplicate ACKs, making this approach promising.

If SACK is disabled, we can use a fall-back approach to estimate RTT based on du-

plicate ACKs by assuming that they are in response to the data packets sent out in order.

This assumption holds in most cases as the packet reordering rate is low. Using these ap-

proaches, we can obtain RTT estimations for duplicate ACKs and update RTO accordingly,

which effectively prevents the timeout of retransmitted packet due to queueing delay. Note

that the RTT estimation method used in TCP Vegas [65] with help of the TCP Timestamps

option is not applicable to duplicate ACKs, since the echo timestamps of all duplicate ACKs

are all the same, which is the timestamp of the segment before the lost segment, rather than

the timestamp triggering the duplicate ACK. Our initial analysis shows that these two ap-

proaches are able to prevent more than 95% of the slow starts. From the mobile network

operators’ perspective, one simple solution for this problem could be prioritizing the re-

transmitted packet. The retransmitted packet could be inferred by tracking the TCP flow

status. However, the security and performance implications of this approach are yet to be

studied.

5.4 Bandwidth Estimation

In order to understand the network utilization efficiency of existing applications in the

LTE networks, we first need to know the available bandwidth for each user. Previous
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Figure 5.17: Typical TCP data transfer.

work on active bandwidth measurement methodology to estimate available bandwidth, e.g.,

using packet pairs, packet trains, and parallel TCP connections [66, 67, 68], do not apply

here. As existing studies have shown that network condition is highly variable in cellular

networks [1], active probing would require us launch measurements for each user in our

data set at the time of trace collection. Using packet traces collected at the monitor, we

instead devise a passive bandwidth estimation algorithm to capture the available bandwidth

for each user using TCP flows that may not fully utilize the bandwidth.

5.4.1 Bandwidth Estimation Algorithm

Figure 5.17 illustrates a typical TCP data transfer. Our monitor lies between the server

and the UE, and we only use packet traces collected at the monitor for the analysis. The

high-level idea for our bandwidth estimation algorithm is to select a time window during

which the sending rate is fast enough (to be discussed later) and calculate the UE receiving

rate. Note that the UE receiving rate is not always equal to the server sending rate, e.g.,

when the in-network buffers fill up, the sending rate might exceed the receiving rate. The
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idea behind our bandwidth estimation algorithm is to use the TCP Timestamps option to

calculate receiving rate.

We use Figure 5.17 to illustrate our bandwidth estimation algorithm. At t2, UE sends an

ACK in response to the two data packets P1 and P2. And similarly, at t6, the ACK for Pn−1

and Pn is sent. From the monitor’s traces, we observe that n − 2 data packets (P3 · · ·Pn)

sent to the UE in a time window between t0 and t4. Assuming the average payload size of

these n− 2 packets is S, the sending rate between t0 and t4 is

Rsnd =
S(n− 2)

t4 − t0
(5.1)

And from the UE’s perspective, the receiving rate for these n− 2 packets is

Rrcv =
S(n− 2)

t5 − t1

Typically, t2 is very close to t1 and similarly t5 ≈ t6. In our controlled lab experiments,

for a 30-minute continuous trace, the median value of the delay between a data packet and

the corresponding ACK is negligible: 0.3ms. However, such delay, e.g., t2 − t1, could

be large in some rare cases. Typically, one ACK in TCP is for two data packets and when

there is only one data packet pending acknowledgement, the receiver may delay sending the

ACK by up to 500 ms, which is known as the delayed acknowledgement mechanism [69].

In our example, if Pn−1 has already been acknowledged by another ACK and after t5 there

are no more data packets arriving at the UE side, the ACK for Pn could be delayed. For

simplicity, we ignore the cases when the last ACK is acknowledging only one data packet,

indicating it might be a delayed ACK. We also do not consider cases with out-of-order data

packets or duplicate ACKs in the time window for bandwidth estimation, as there may be

ambiguity in packet timing. Then we know

Rrcv ≈
S(n− 2)

t6 − t2
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If the uplink delay from the UE to monitor is stable, we can assume t6 − t2 = t7 − t3.

However, as shown previously that RTT could be significantly affected by the bytes in

flight and thus the assumption of t6 − t2 = t7 − t3 may not hold. Instead, we use TCP

Timestamps option [52] to calculate t6 − t2. Specifically, the ACKs from the UE to the

server may contain the Timestamp Value field (TSval), which contains the current value of

the UE’s timestamp clock. The unit for TSval is clock tick and for different devices, the

actual time per clock tick could be different. Assume for each clock tick, the corresponding

time is G milliseconds and G can be treated as a constant for the same device. Assuming

G is known, we can estimate Rrcv as

Rrcv ≈
S(n− 2)

G(TS2 − TS1)
(5.2)

where TS1, TS2 are the TSval in the two corresponding ACKs.

Our bandwidth estimation algorithm only requires ACKs from the UE having TCP

Timestamps option enabled, with no requirement on servers and in our data set, for 92.61%

of the TCP flows, this requirement is satisfied.

We infer the G value using a similar method from previous work [70]. Using the exam-

ple in Figure 5.17, we have

G ≈ TS2 − TS1

t7 − t3
(5.3)

We require t7 − t3 to be large enough, because clock tick is discrete, not continuous,

and if it is too small, e.g., when t7 − t3 = 0.6G and TS2 − TS1 = 1, the calculated

value is actually 0.6G. Also, there might be variations in uplink one-way delay from UE to

monitor, and such variation is only negligible in calculatingG when t7− t3 is large enough.

Assuming the threshold for t7 − t3 to calculate G with small error rate is δG, we present

the error curve for calculating G value of two UEs in Figure 5.18 based on controlled

experiments. The actual G values for device 1 and 2 are measured at the UE side using

30-minute long traces. We observe that the error for G inference drops drastically as δG
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Figure 5.18: G inference and the selection of δG.

increases and we conservatively select δG = 3 seconds, incurring less than 0.1% error.

Note that the error curve may be different for different G values. In our data set, among

all large flows, except for 5.93% of them without UE Timestamps option enabled, 57.33%

have G ≈ 1ms/tick, 36.37% have G ≈ 10ms/tick, and the rest 0.37% have other values,

e.g., G ≈ 100ms/tick. With δG = 3 seconds, we estimate the inferred G has less than 0.1%

error for majority of the flows.

Summary: for a target TCP flow, if G value is not known, the initial δG = 3 seconds is

used to infer G using Formula 5.3, with two sample packets more than δG apart selected.

Flows without UE TCP Timestamps option support are ignored. Then the algorithm scans

for a window with high sending rate Rsnd calculated by Formula 5.1. If Rsnd ≥ C, a

pre-known constant of the maximum possible available bandwidth in the studied network,

and there is no out-of-order data packets or duplicate ACKs within the time window for

estimation, and the last ACK of this window is not a delayed ACK, one bandwidth esti-

mation sample is obtained using Formula 5.2. The selection of C is important, i.e., if C

is too small, the bandwidth may be underestimated, as small Rsnd may be chosen; if C is

too large, we may not be able obtain many estimation samples. We conservatively choose
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C = 30Mbps, which is verified to be higher than the rate of most flows, and in the mean-

while allows us to predict bandwidth for over 90% of the large downlink flows during our

analysis.

In addition to downlink bandwidth, our algorithm is also applicable to uplink bandwidth

estimation, by interchanging the UE and the server in Figure 5.17. However, some tuning is

required, e.g., the choice of C and ∆G, etc. Similarly, our bandwidth estimation algorithm

also works in other network types, such as 3G, WiFi and even wired networks, with proper

parameter settings.

Although the described algorithm is based on one single TCP flow per user, a similar

idea can be applied to multiple concurrent flows per user by summing up the predicted

bandwidth for different flows. As long as we ensure that the total sending rate for all

concurrent flows are larger than C, the total receiving rate would be the accurate estimation

of the available bandwidth. In this work, we focus on the application of our bandwidth

algorithm for the downlink traffic (UEs downloading contents from servers) in the LTE

networks for single TCP flows, i.e., with no competing downlink flows for the same user.

5.4.2 Validation with Local Experiments

To validate the bandwidth estimation algorithm, we use controlled experiments with the

setup described in Section 5.1.2.

Figure 5.19 shows the UE-perceived throughput over 30-minute duration, as well as

the absolute error for the estimated bandwidth. The actual throughput fluctuates frequently

around 10Mbps and error fluctuates within ±2Mbps in most cases. In Figure 5.20, we

compare the distribution of estimated bandwidth calculated from the server-side packet

traces with actual used bandwidth calculated from UE-side packet traces. We can see that

the estimated bandwidth curve is very close to the actual throughput curve. Based on UE

traces, we can select different window size to calculate actual throughput. For each window,

we also get one bandwidth estimation sample whose timestamp is closest to the center of
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Figure 5.19: Time series of bandwidth estimation for LTE network (controlled lab experi-
ments ).

that window, and we compare this sample with the average actual throughput to obtain an

error sample. The error distribution for two window sizes, i.e., 1.0s and 0.1s, are shown in

Figure 5.20. For 1.0-second window, the average error is 7.92% and for 0.1s window, the

UE throughput has higher variation and the average error is slightly higher. Note that the

term “error” here is relative to the actual throughput observed from UE-side traces, which

itself might not be the actual available bandwidth, and the true error rate for our estimation

algorithm could be even smaller.

5.4.3 Bandwidth Utilization by TCP Flows

In this section, we analyze the LTE traffic data set to understand network utilization ef-

ficiency of TCP flows. As shown in Figure 5.6 (§5.2.1), most users have only one TCP flow

actively downloading data. This allows us to focus on applying our bandwidth estimation

algorithm to single TCP flows with no competing downlink flows from the same user.

We then apply the bandwidth estimation algorithm to the large TCP downlink flows

that are not concurrent with other large flows and summarize the results in Figure 5.21. We

use a time window size of 250ms and for each window, we take one bandwidth estimation

99



 0

 0.2

 0.4

 0.6

 0.8

 1

-5  0  5  10  15  20  25  30

C
D

F

Downlink throughput (Mbps)

Actual throughput
Error 1.0s window
Error 0.1s window

Estimated bandwidth

Figure 5.20: CDF of bandwidth estimation results for LTE network (controlled lab experi-
ments ).

sample that is closest to the center of the window. For some flows, there exist windows

that do not contain any valid bandwidth estimation samples and we simply assume the

bandwidth distribution for these unknown windows is the same for the known windows.

The possible bias will not likely significantly affect our analysis as such unknown duration

accounts for less than 20% of the total flow duration. For each flow, we use the average

value of all bandwidth estimation samples as the estimated bandwidth and compare it with

the actual utilized bandwidth.

For Figure 5.21, we plot the ratio of used bandwidth to estimated bandwidth per flow.

The median value is only 19.78%. For 71.26% of the large flows, the bandwidth utilization

ratio is below 50%. We notice that for 6.41% of the flows, the used bandwidth is slightly

larger than the estimated bandwidth and this is possibly due to estimation error. On average,

the utilization ratio is 34.60%, meaning that the data transfer for a TCP flow takes 52.91%

longer than if the bandwidth is fully utilized, while keeping the ratio interface in the high-

power state, incurring significant additional radio energy overhead [12].

Figure 5.22 shows two sample large TCP flows and their estimated bandwidth in the

LTE data set. Note that these flows belong to two separate users at different time and the
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Figure 5.21: Bandwidth utilization ratio for large downlink TCP flows.

time is aligned only for presentation purposes. We can see that the available bandwidth

varies significantly over time and even on the scale of seconds. This could be due to net-

work condition changes, such as signal strength, as well as the changes of the network load

in the associated eNB. In order to dissect the root cause of such variability, more informa-

tion, e.g., load information of eNB, is needed.

To understand how well TCP performs under highly variable available bandwidth, we

use iptables to redirect packets to a packet scheduler we designed, which controls the

variation of available bandwidth following the variations observed in LTE networks. The

packet scheduler also adds different delays to each packet allowing us to understand the

impact of RTT. Intuitively, TCP would adapt slower to the fast varying available bandwidth

under large RTTs during congestion avoidance, as the congestion window is updated only

once per RTT. We measure the bandwidth utilization ratio with the packet scheduler chang-

ing the available bandwidth every 500ms. We observe that under small RTTs, TCP can

utilize over 95% of the available bandwidth. However, when RTT exceeds 400∼600ms,

the utilization ratio drops to below 50%. We also observe that for the same RTT, higher

variation leads to lower utilization. These observations further suggest that long RTTs can

degrade TCP performance in the LTE networks, which have inherently varying available
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Figure 5.22: Bandwidth estimation timeline for two sample large TCP flows.

Video  
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Figure 5.23: Breakdown of content type for all HTTP traffic based on total content size.

bandwidth (likely caused by changes in load and channel conditions).

5.5 Network Applications in LTE

In this section, we characterize the network applications and traffic patterns in the LTE

data set. Specifically, we study the causes of inefficient bandwidth usage observed in Sec-

tion 5.4.
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5.5.1 HTTP Content Characterization

We break down the content type based on total bytes for HTTP traffic in Figure 5.23.

About 37.8% is video, followed by 19.5% of image and 11.8% of text. Zip contributes to

8.3% of the HTTP traffic and we observe that these mostly correspond to file downloads,

such as application updates, and audio contents consume 6.5%. The other files consist of

5.6% , and the remaining 10.5% is unknown. Within video contents, we observe 12.9%

to be octet-stream type, i.e., byte stream in binary format, and most of them generated by

video players via byte-range requests.

Previous studies show that the multimedia content (video and audio) correspond to

40% of the traffic generated by mobile hand-held devices in DSL networks [71], and video

contributes to 30% of the 3G cellular traffic [72]. Although we observe slightly higher per-

centage of multimedia traffic in this LTE network, the difference is insignificant. Overall,

we observe multimedia content is still dominant in the LTE network studied followed by

image content.

5.5.2 Inefficient Network Usage

We investigate the large flows with under-utilized network bandwidth and observe that

the TCP receive window size [52] has become the bottleneck in many cases.

Figure 5.24 shows one such example: an iOS user uses the popular Shazam applica-

tion [73] to download a 30-second music file of 1MB size. Initially, the data transfer speed

is fast and between time 0s and 2s the average downlink throughput is over 3Mbps. How-

ever, between 2s and 9s, the average throughput decreases to less than 300Kbps. The total

download time is 9 seconds and as indicated by the ideal case curve, the download could

have been completed within 2.5 seconds, based on our estimation of the available band-

width. In addition, we notice that the TCP connection is not immediately closed after the

file transfer is complete, although the HTTP request specifies the connection type to be

Connection: close. Instead, the connection is only torn down at 30s, after the mu-
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Figure 5.24: Full receive window slows Shazam player (a popular app) in downloading a
30-second music file.

sic clip has finished playing, and the client sends some TCP receive window updates to the

server between 20s and 25s with increasing receive window size. Ideally, the connection is

closed immediately after the file transfer completion. Overall, the total download process

keeps the radio interface of the device active for around 38 seconds. Assuming a tail time

of 10 seconds, in the ideal case, the active radio time is only 12.5 seconds.

The performance drop at 2s in Figure 5.24 is due to the full TCP receive window,

i.e., byte in-flight fully occupy the window size. Between 0s and 2s, the window size has

gradually dropped to a small value, e.g., at the turning point around 2s, the window size is

816 bytes, even smaller than the maximum payload size (1358 bytes in our traces). As TCP

rate is controlled by both congestion window and receive window jointly, the full receive

window would prevent the server from sending more data, regardless of the congestion

window, leaving the network resource underutilized.

The reason for the full TCP receive window is two-fold. First, the initial receive window

size is not large, e.g., 131.76KB in the case of Figure 5.24, much smaller than the file size.

We explore the initial advertised receive window size in all TCP flows, and observe that

the values fall in 131,712±600 bytes for over 99% of the flows, for iOS, Android and
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Figure 5.25: The periodic request behavior of Netflix player limiting its overall throughput.

Windows Phone devices. Second, the application is not consuming the data fast enough

from the receiver’s buffer, otherwise, even if the initial receive window is small, the receive

window size should not drop to close to 0 afterwards.

We further study the prevalence of such TCP performance throttling by the receive win-

dow. We find that for all the downlink TCP flows, 52.61% of them experienced full receive

window or even zero receive window. And for 91.24% of these affected flows, throttling of

receive window happens in the initial 10% of the data transfer duration. These observations

suggest that about half of the TCP flows in the LTE network studied are experiencing lower

network performance limited by receive window size.

We also observe that some applications under-utilize the bandwidth due to the applica-

tion design. Figure 5.25 shows the network behavior of the popular Netflix application [74]

on iOS. The upper half of the figure shows the HTTP requests and the HTTP object trans-

fers on different client ports. At around 70s, the user browses through a list of video

thumbnails and switches to another video. We observe that all HTTP requests for video

download are HTTP byte-range requests and the corresponding HTTP object transfers are

mostly short in duration, i.e., smaller than 1s. The content size of the requests ranges from

1MB to 4MB. The client periodically requests chucks of data every 10s, with each TCP
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connection typically reused by two consecutive HTTP requests. The bottom half of the

figure shows the aggregate downlink throughput, showing a clear periodic pattern corre-

sponding to the periodic requests. While the peak throughput can reach up to 30Mbps,

for most of the time, the network interface is idle. This type of traffic pattern is known

for incurring high tail energy [30]. Especially in this case, we know that the tail timer for

the studied network is 10s, and based on the radio resource control RRC state machine of

the LTE networks [12], the 10-second request cycle would keep the radio interface of the

device always in the high-power state, incurring high energy overheads.

5.5.3 Discussions

We have shown that multimedia traffic is dominant in the LTE network studied and

the available bandwidth is far from effectively utilized by many applications. Hence op-

timizing the network utilization efficiency for these applications is critical for better user

experiences, in terms of both responsiveness and energy consumption.

About the TCP receive window problem, existing studies [58] have shown that smart-

phone venders may have been reducing maximum receive window size to mitigate the

buffer bloat problem, resulting in TCP performance degradation. Dynamic receive win-

dow adjustment (DRWA) [58] is proposed towards this problem. However, such propos-

als require changes to TCP stacks, making the deployment potentially challenging. Also,

the potential drawbacks for such TCP modifications remain to be studied in the real LTE

networks. Alternatively, a more lightweight and yet still effective solution could be that

applications have their own buffers, or increase the buffer size if the existing buffer size is

small, to consume the bytes in the TCP’s receiver buffer quickly. For example, the ideal

behavior of the Shazam player described in Figure 5.24 is that it downloads the file as fast

as possible and stores the contents in an application-layer buffer, no matter how much of

the music has been played, and closes the connection immediately when the file transfer is

complete. The application-layer buffer is beneficial for both network and energy efficiency.
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As for the periodical behavior of the Netflix player in Figure 5.25, in addition to the

application-layer buffer, it is also recommended that it sends fewer requests and downloads

more content for each request. We have shown that transferring data in a large batch sig-

nificantly reduces the radio energy than otherwise [12]. Bulk data transfers also allow TCP

to make better use of the available bandwidth.

5.6 Summary

In this chapter, we use a large-scale LTE data set to study the impact of network pro-

tocol and application behaviors on network performance. We show that the RTT in the

LTE network studied grows with the TCP bytes in flight due to long queueing delay. Such

high RTTs have caused performance problems for TCP upon packet losses. We have also

shown that the available bandwidth for the LTE networks has high variation and long RTTs

prevent TCP from fully utilizing the bandwidth as the congestion window cannot adapt

fast enough. We further notice that the limited TCP receive window size has constrained

TCP data rate for 52.61% of the downlink flows. By devising a bandwidth estimation al-

gorithm, we observe that for 71.26% of the large flows, the bandwidth utilization ratio is

below 50%. In addition, we also observe that the application design may result in under-

utilized bandwidth. We have seen that about 44.3% of the HTTP content is multimedia;

therefore, increasing the network efficiency of the corresponding applications is important

in improving the application responsiveness and energy efficiency.
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CHAPTER VI

Characterizing Radio Energy Usage of Smartphones in

Cellular Networks

Smartphones with cellular data access have become increasingly popular across the

globe, with the wide deployment of 3G and emerging LTE [2] networks, and a plethora

of applications of all kinds. Cellular networks are typically characterized by limited radio

resources and significant device power consumption for network communications. The bat-

tery capacity of smartphones cannot be easily improved due to physical constraints in size

and weight. Hence, battery life remains a key determinant of end-user experience. Given

the limited radio resources in these networks and device battery capacity constraints, opti-

mizing the usage of these resources is critical for cellular carriers and application develop-

ers. Specifically, radio power is reported to be 1/3 to 1/2 of the total device power [26], and

in this chapter, we first devise a systematic way to characterize smartphone radio energy

usage given packet traces as input and then we discuss our analysis results with real user

traces.

6.1 Power Measurement Methodology

Similar to previous studies [20, 75], we use Monsoon power monitor [76] as power

input for our device measuring power traces at the same time. The power trace contains
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two fields, timestamp and average instant power, and the sampling rate is 5000Hz. The

test device is an HTC phone with LTE data plan from a cellular ISP. It has 768 MB RAM

memory and 1 GHz Qualcomm MSM8655 CPU, running Android 2.2.1. We remove the

battery and connect ⊕ and 	 pins of the power monitor to device’s ⊕ and 	 pins, respec-

tively. By enabling Vout with the voltage of 3.7V, the device boots properly and the power

monitor records the total power traces consumed by the device. Another tricky part for our

setup is that, the back cover of our test device, HTC Thunderbolt, must remain attached

firmly, otherwise, if it is pried off the device, LTE session is terminated and 1xRTT session

is started. This is because part of the LTE antenna circuit lies inside the back cover [77]. In

the end, we let the wires going out of the back cover through the hole of earplugs.

We share the same observation with previous study [75] that screen plays an impor-

tant role in device power consumption, i.e., with screen 100% on, the UE idle power is

847.15mW compared with 11.36mW with screen off. For all measurements, we keep the

test application running in the background with screen completely off to minimize power

noise, unless UI interactions are required and screen should be kept on, i.e., measuring

power for browser. In this case, we subtract screen power from the total, with slightly

increased noise. All experiments are repeated at least 5 times to reduce measurement error.

To measure state transition power levels, UE keeps a long-lived TCP connection with

the server and packet traces are collected to make sure there is no background traffic. In

order to trigger state promotions, we make the device idle for sufficient time, e.g., 30 sec-

onds, and then send a packet from server to client. UE remains idle afterwards and demotes

to idle state in the end, and the power trace covers the full tail.

6.2 Smartphone Power Model

In Section 2.1, we have discussed the radio resource control mechanisms in cellular

network. In fact, RRC state machine is the key factor for determining the UE power con-

sumption for both 3G and LTE 4G networks.
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Figure 6.1: Power states of LTE.

In this section, we take LTE network as a sample and illustrate the power traces of

our test Android smartphone in a commercial LTE network based on local experiments.

We observe that network activities match the corresponding state transitions indicated by

different power levels.

Figure 6.1 shows the power trace of uploading at the speed of 1Mpbs for 10 seconds.

With screen off, the energy is mostly consumed by the radio interfaces, as the power

level is less than 20mW before t1. At t1, the application sends a TCP SYN packet trig-

gering RRC IDLE to RRC CONNECTED promotion, and the application waits for Tpro until

starting data transfer at t2. Between t2 and t3, depending on the instant data rate, the

power level fluctuates. We notice the power level during fast data transfer is significantly

higher than the base power in RRC CONNECTED, which motivates us to incorporate data

rates into our LTE power model. After the data transfer completes at t3, the device re-

mains in RRC CONNECTED for a fixed tail time Ttail, until t4, when the device goes back to

RRC IDLE. The periodicity of DRX between t3 and t4 is not obvious due to limited sample

rate.

Figure 6.2 is a 125× zoom-in view of Figure 6.1’s tail, which clearly illustrates DRX

activity in RRC CONNECTED mode. The device activates its receivers to listen to downlink
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Figure 6.2: Zoom-in view in RRC CONNECTED.

control channel. If downlink traffic is found awaiting, the device goes into Continuous Re-

ception model; otherwise, the device goes into a dormant state without continuously check-

ing downlink control channel, though still remaining in RRC CONNECTED mode. The spikes

appearing every 40 ms in Figure 6.2 match the on period of DRX in RRC CONNECTED.

6.3 Power Model Construction

This section summarizes the construction of the new LTE power model, as well as

the 3G and WiFi model measured from the same LTE phone. We then compare energy

efficiency in bulk data transfer for different networks and validate LTE power model in the

end.

6.3.1 Power model for RRC and DRX

With the experimental setup described in Section 6.1, we measure power model for

LTE, 3G, and WiFi on the LTE phone, summarized in Table 6.1. The LTE parameter

values are validated by the network-based measurement in Section 3.4.2. For simplicity,

we ignore the WiFi AP scanning and association, assuming UE is already connected with
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Power? Duration Periodicity
(mW) (ms) (ms)

Screen off (base) 11.4±0.4 N/A N/A
Screen 100% on 847.2±2.7 N/A N/A

LTE promotion 1210.7±85.6
Tpro: N/A

260.1±15.8
LTE Short DRX On

1680.2±15.7
Ton: Tps:

RRC CONNECTED 1.0±0.1 20.0±0.1
LTE Long DRX On

1680.1±14.3
Ton: Tpl:

RRC CONNECTED 1.0±0.1 40.1±0.1

LTE tail base 1060.0±3.3
Ttail: N/A

11576.0±26.1
LTE DRX On

594.3±8.7
Toni: Tpi:

RRC IDLE 43.2±1.5 1280.2±7.1
3G promotion 659.4±40.4 582.1±79.5 N/A

3G DCH tail base 803.9±5.9 8088.2±149.6 N/A
3G FACH tail base 601.3±6.4 824.2±148.1 N/A

3G DRX (idle) 374.2±13.7 55.4±1.5 5112.4±37.7
WiFi promotion 124.4±2.6 79.1±15.1 N/A
WiFi tail base 119.3±2.5 238.1±9.2 N/A

WiFi beacon (idle) 77.2±1.1 7.6±0.1 308.2±1.0

Table 6.1: LTE, 3G, and WiFi power model.

?All power readings in this table include the base power (screen off),
which has negligible impact on total energy.

an AP.

First, we observe that LTE reduces the promotion delay (Tpro) from 3G’s 582.06ms

to 260.13ms. However, the power level is almost doubled, i.e., 1210.74mW (LTE) v.s.

659.43mW (3G). WiFi has the most lightweight state promotion with smaller Tpro and

much lower power level.

Secondly, LTE appears to have longest tail (11.576 seconds) with highest tail base

power (1060.04 mW). Summing up DCH and FACH tail, 3G’s total tail time (8.9 seconds)

is smaller than LTE’s Ttail of 11.6 seconds. Even 3G DCH’s tail base power is 24.17%

lower than LTE’s tail base power, and the gap becomes 25.25% if we consider LTE DRX in

RRC CONNECTED with a high on duration power (1680.20mW). WiFi is much more power

112



 1000

 1500

 2000

 2500

 3000

 3500

 0  5  10  15  20

P
o
w

e
r 

(m
W

)

Throughput (Mbps)

LTE DOWN
LTE UP

Figure 6.3: Power-throughput curve for LTE
network.

 0

 250

 500

 750

 1000

 1250

 0  500  1000  1500  2000

P
o
w

e
r 

(m
W

)

Throughput (kbps)

3G DOWN
3G UP

WiFi DOWN
WiFi UP

Figure 6.4: Power-throughput curve for 3G and
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efficient, with shorter tail and much lower base power.

We also compare LTE DRX in RRC IDLE with 3G DRX and WiFi beacon in the idle

state. LTE has the highest on power and slightly smaller On Duration than 3G, while WiFi

has smallest on power and On Duration. The cycle of LTE (1.28 seconds) is in between 3G

and WiFi.

Based on these observations, LTE is less energy efficient during idle state and for trans-

ferring smaller amount of data. For example, if only one packet is transferred, the energy

usage considering both promotion and tail energy for LTE, 3G and WiFi is 12.76J, 7.38J

and 0.04J, respectively. One possible reason for LTE’s higher power states is that devices

must incorporate multiple-input and multiple-output (MIMO) to support LTE network, e.g.,

the test device we use has 1 transmit antenna and 2 receive antennas, which contributes to

higher power consumption.

6.3.2 Power Model for Data Transfer

Previous work on 3G UMTS power modeling either treats DCH power state to have a

fixed power value [75, 26], or assumes energy per bit to be the same constant for both uplink

and downlink [21]. These assumptions might be reasonable given that 3G has relatively low

data rates. However, for LTE, we observe that device power is much higher during high

speed data transmission (up to 3300mW for uplink) relative to the base power (1060mW)
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αu (mW/Mbps) αd (mW/Mbps) β (mW) αu/αd
LTE 438.39 51.97 1288.04 8.44
3G 868.98 122.12 817.88 7.12

WiFi 283.17 137.01 132.86 2.07

Table 6.2: Data transfer power model.

in RRC CONNECTED, and there is significant difference between downlink and uplink power

levels at the same data rate. In this paper, we propose a new comprehensive power model

for LTE empirically derived in a commercial LTE network.

We start with measuring device power states with controlled uplink or downlink through-

put. The impact of TCP ACK packets, which are small in size, is minor, thus ignored.

Figures 6.3 and 6.4 present the power-throughput curve for LTE, 3G, and WiFi. The

curves are limited by the peak data rate we can achieve at the test location. We observe

that for all networks, a linear model fits well for both uplink and downlink. Assume uplink

throughput is tu (Mbps) and downlink throughput is td (Mbps), the power level (mW) for

uplink is Pu = αutu+β and for downlink Pd = αdtd+β. The best fit parameters are listed

in Table 6.2.

By looking at αu/αd, we notice that uplink power increases faster than downlink for
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all three networks types. This is expected because sending data requires more power than

receiving data for wireless data access [78]. LTE has the largest gap of αu/αd = 8.44

among three network types. This is largely because αd for LTE is quite small. For 3G, both

αu and αd are larger than LTE. β is the base power when throughput is 0, with the ranking

of LTE > 3G > WiFi. This is consistent with the tail base power comparison in Table 6.1.

We notice that β is slightly higher than the tail base for all networks types. This is possibly

because of the overhead of switching transmitters or receivers into high speed mode.

For simultaneous uplink and downlink transfers, given that transmitters and receivers

are separate, we conjecture that the power level (mW) is given by the following formula:

P = αutu + αdtd + β

To validate this conjecture, we measure the power levels for concurrent uplink and down-

link transfers in Figure 6.5. Assume total throughput t = tu + td and the ratio of uplink

throughput ε = tu
/
t:

P = αutu + αdtd + β = (αu − αd)tε+ αdt+ β

When t is a constant, P grows linearly with ε and the slope is (αu−αd)t. Figure 6.5 shows

two curves of t = 1Mbps and t = 2Mbps, both having a strong linear pattern and the slope

is less than 5% off the expected value.

6.3.3 Energy Efficiency for Bulk Data Transfer

To compare the power efficiency of different networks in the wild, we use bulk data

transfer experiments to measure energy per bit. Perrucci et al. [79] measure energy per bit

for 3G and WiFi with a fixed bulk size. In addition to taking LTE into consideration, we

vary the bulk size to cover more possible network usage scenarios. Figure 6.6 shows the

measured energy per bit in µJ/bit (10−6Joule/bit) with different bulk data size. All data
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Figure 6.6: Energy per bit for bulk data transfers.

is randomly generated so that there is no chance for caching. We do not include promotion

or tail energy but instead focus on data transfer energy. Given that signal strength and peak

data rate on wireless networks fluctuates, both affecting energy per bit, our measurement

only serves as a sampled view for the energy efficiency of different networks.

First, energy per bit decreases as bulk data size increases, largely because with a small

data size, throughput does not reach link capacity due to TCP slow start. We also observe

that LTE’s energy per bit in downlink is comparable with WiFi, although the absolute power

level of LTE is much higher than WiFi. This is due to high downlink throughput for LTE

at our test location, even compared with the WiFi network. Similarly, for LTE uplink, it

drops from 10µJ/bit to less than 1µJ/bit as bulk data size increases. With bulk data size

of 10MB, LTE consumes 1.62 times the energy of WiFi for downlink and 2.53 for uplink.

With lowest throughput, 3G has the worst energy efficiency for large data transfer, e.g., for

downloading 10MB data, 3G requires 21.50 times the energy of LTE and 34.77 times the

energy of WiFi, and for uplink, 7.97 times of LTE and 20.16 times of WiFi.
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App
Measured Simulated

Error
energy (J)1 energy (J)1

Website G3 24.77 24.37 -1.61% (-2.06%2)
Website Y4 31.84 30.08 -5.53% (-7.04%)
YouTube 21.81 21.14 -3.07% (-4.17%)

NPR News 24.65 24.37 -1.12% (-1.70%)
Market 38.64 38.03 -1.58% (-3.03%)

1Both measured and simulated energy include tail energy.
2This error is for simulated energy assuming αu = αd = 0.
3Website G is the mobile version of google.com.
4Website Y is the non-mobile version of yahoo.com.

Table 6.3: LTE power model validation.

6.3.4 Power Model Validation

To validate the LTE power model and the trace-driven simulation (§6.4.3), we compare

measured energy (measured from the LTE phone) with simulated energy for case study

applications. Table 6.3 contains the sample application usage scenarios described in §4.2.6.

The error rate is consistently less than 6%, with the largest error rate from Website Y, which

includes heavy JavaScript execution and HTML rendering. Since our power model focuses

on radio power and ignores the impact of CPU, for Website Y, the total energy usage is

slightly underestimated.

The error rate is increased if the impact of downlink and uplink throughput is ignored,

i.e., assuming αu = αd = 0. However, the increase is not significant, at most 1.5%. This

is because for these web-based applications, network throughput is low due to small object

size. For other applications, such as video/audio streaming and file download, we expect to

see a larger gap in error rate if the impact of downlink/uplink is ignored.

In this section, in addition to comparing energy per bit in bulk data transfer for different

networks, we construct a new LTE power model and validate its accuracy, which is the

basis for the following analysis.
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6.4 Trace-driven Analysis Methodology

To compare energy consumption for different networks using real user traces and eval-

uate the impact of setting LTE parameters, we devise a systematic methodology for trace-

driven analysis, which is applied to a comprehensive user trace data set, named UMICH.

6.4.1 UMICH Data Set for Analysis

UMICH data set is collected from 20 smartphone users for seven months, from May

9 2011 to December 5 2011. These participants consist of undergraduate and graduate

students from 8 departments at University of Michigan. The 20 participants are given

Motorola Atrix (11 of them) or Samsung Galaxy S smartphones (9 of them) with unlimited

voice, text and data plans, all running Android 2.2. They are encouraged to take advantage

of all the features and services of the phones. As stated in our study consent form, we keep

collected data and users’ identities strictly confidential 1.

We develop custom data collection software and deploy it on the 20 smartphones. It

continuously runs in the background and collects four types of data:

• Full packet traces in tcpdump format including both headers and payload. The

detailed packet traces allows us to keep detailed track of traffic patterns generated by

each individual user for a long period.

• The process name responsible for sending or receiving each packet. This packet-to-

process correspondence is derived by efficiently correlating three mappings in An-

droid OS in realtime [26]: /proc/PID/fd (inode of each TCP/UDP socket→Process

ID), /proc/net/tcp(udp) (socket→inode), and /proc/PID/cmdline (Pro-

cess ID→ Process name).

• User input events such as pressing a button and tapping the screen. This is collected

by reading /dev/input/event* in the Android system.
1This user study has been approved by the University of Michigan IRB-HSBS #HUM00044666.
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• Screen on/off status data with a sampling rate of 1Hz. In order to associate individual

packets with their screen status, we define a time window [t1, t2] to be a screen-

on (or screen-off, respectively) window if “all” the screen samples in this window

have screen-on (or screen-off) status. Then we classify a packet as either screen-on

or off if its timestamp falls respectively into any screen-on or screen-off window, and

unknown otherwise. One reason for the occurrence of the unknown category is data

collection errors.

Both cellular and Wi-Fi traces are collected without any sampling performed. The data

collector incurs no more than 15% of CPU overhead, although the overhead is much lower

when the throughput is low (e.g., less than 200 kbps).

We also build a data uploader that uploads the data to our server when the phone is idle

as indicated by low network throughput. The upload is suspended by increased network

activity of user applications. Since the data collector needs to be shut down when the

data is being uploaded, we set the interval of consecutive uploading attempts to 6 hours

to minimize the impact of uploader on data collection. The entire data collection and

uploading process is transparent to the users, although we do advise the users to keep their

phones powered on as often as possible.

During the deployment period, we have collected 152GB data (150 GB tcpdump

traces). Although both cellular and Wi-Fi traces were collected, in this study, we con-

sistently use 3G traces only, which contribute 57.82% of the total traffic volume, in the

UMICH dataset for further analysis. Comparing with the Wi-Fi traces, 3G traces better

represent the user and application behavioral patterns in cellular networks.

6.4.2 Burst Analysis Methodology

In order to understand the screen-off traffic pattern and its impact on radio resource and

device energy, we use the following traffic model for burst analysis. Intuitively, a burst is

a continuous data transfer with preceding and succeeding idle times. For each user, the
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traffic trace is a sequence of network packets, Pi(1 ≤ i ≤ n). Notice that Pi could be either

downlink or uplink. If the timestamp of Pi is defined to be ti, we have ti ≤ tj for any i < j.

Using a burst threshold BT, the packets are divided into bursts, i.e., {Pp, Pp+1, · · · , Pq}

belongs to a burst B, if and only if: i) tk+1 − tk ≤ BT for any k ∈ {p, · · · , q − 1}, ii)

tq+1− tq > BT and iii) tp− tp−1 > BT. We define the inter-burst time IBT for burst B to be

the time gap following this burst, i.e., tq+1− tq. In this paper, we empirically choose to use

BT = 2 seconds, which is validated to be larger than most packet gaps for 3G/4G networks

within a continuous data transfer, such as downloading a web object.

6.4.3 Trace-driven Modeling Methodology

We build a network model and power model analysis framework for the trace-driven

analysis, totaling about 8,000 lines of code in C++.

Network model simulator takes the binary packet trace files in libpcap [80] format and

preprocesses the data following the same methodology as previous study [20], for the pur-

pose of removing existing delays imposed by state promotions and extracting the actual

traffic patterns, e.g., for the purposing of simulating the trace in another network. It then

applies a specific network model to the processed traces and adjusts timestamps for some

packets, since different network models have different delay behavior due to state machine

differences. There are two reasons for a packet’s timestamp to be adjusted, promotion delay

and DRX waiting time. We use the same methodology to adjust timestamp for promotion

delay as previous study [20]. In LTE network, if there is no packet for over Ttail time,

when the next packet P arrives, an extra delay Tpro is inserted before P . In terms of DRX

waiting time, if a downlink packet P ′ comes at time TP ′ and UE is in DRX mode, either

in RRC CONNECTED or RRC IDLE, there is no DRX waiting time if P ′ arrives inside any

DRX on duration; otherwise, P ′ would experience an extra delay of Tn − TP ′ , where Tn

is the start time of the next DRX on duration after TP ′ . The parameters for different net-
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work models are listed in Table 6.1, obtained from local experiments. We also empirically

assume that UE goes into complete sleep with 0 power usage after being idle for Ttail2 (1

minute). Notice that Ttail2 is not actually observed in our experiments and is only used to

bound the total idle energy and simplify our analysis.

The output of network model simulator is an array of packets with adjusted timestamps,

in ascending order, as well as the RRC and DRX states of UE at any time.

Power model simulator takes the output of network model simulator and calculates the

energy consumption based on the power model, detailed in Section 6.3. We break down

the total energy into four components: promotion, data transfer, tail, and idle.

For promotion energy, both promotion delay Tpro and average promotion power Ppro

are fixed. If a trace includes N promotions, promotion energy is given by NTproPpro.

For idle energy in RRC IDLE, assume that DRX cycle is Tpi (with base power Pb) and

on duration is Toni (with on power Poni), energy consumption of an duration of tidle is given

by

btidle
Tpi
c
(
ToniPoni + (Tpi − Toni)Pb

)
+ Eres

where the remaining energy Eres can be calculated as

Eres =

 TresPoni if Tres ≤ Toni

ToniPoni + (Tres − Toni)Pb if Tres > Toni

with

Tres = tidle − Tpib
tidle
Tpi
c

Tail energy is more complex for LTE since RRC CONNECTED has three modes as in

Figure 2.2, while 3G and WiFi do not have DRX in connected mode. We simulate the

transitions among Continuous Reception, Short DRX and Long DRX to calculate tail en-

ergy, in a similar way of idle energy calculation. Note that we only count tail energy when
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the tail is complete, otherwise, the energy is considered as data transfer energy, i.e., if one

packet P is observed before UE demotes to RRC IDLE at the end of the tail, the energy

between P and the previous packet is still considered as data transfer energy.

For data transfer energy, we propose a novel model. Assume uplink throughput is tu

(Mbps) and downlink throughput is td (Mbps), the instant power level (mW) of UE is

P = αutu + αdtd + β

Validation of this formula is in §6.3.2. We simply consider payload throughput in our

power model, without considering header length and ACK packets due their small impact.

Since TCP instant throughput changes frequently, in order to accurately estimate the instant

power levels, we divide the trace into small time windows with size W seconds and within

each window, throughput tu and td are calculated, which determine the power P . W is set

to be 1 second empirically in our setup and the total energy is not sensitive to the choice of

W as long as W is larger than a few RTTs and smaller than most flow durations.

6.5 User Trace based Tradeoff Analysis

In this section, we apply the LTE power model to UMICH data set and compare energy

efficiency with 3G and WiFi, with detailed break down of the total energy. We then study

the tradeoff of configuring different LTE parameters via our analysis framework.

6.5.1 Energy Efficiency Comparison

We use the UMICH data set to simulate the LTE, WiFi and 3G model. Assume that

the simulated energy usage for LTE, WiFi and 3G power model is Elte, Ewifi and E3g,

respectively, the energy ratio of LTE/WiFi is defined as Elte/Ewifi, and that for 3G/WiFi

is calculated as E3g/Ewifi. With the same traces, we can make fair comparison among

different power models to understand their energy efficiency.
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Figure 6.7: Power model simulation: energy ratio.

In Figure 6.7, we compare the energy efficiency of different networks for the 20 users

both individually and in aggregate (summing up for all users). We first observe that LTE

power model consumes significantly more energy than WiFi. The ratio of LTE/WiFi ranges

from 16.9 to 28.9 and the aggregate ratio for all users is 23.0. Notice that the gap between

LTE and WiFi is larger compared with the bulk data transfer experiments in §6.3.3. This

is because, for bulk data transfer, LTE’s high throughput could compensate the low energy

efficiency, compared with real traces, which do not saturate the link capacity. Second, for

3G/WiFi ratio, the range is between 10.8 and 18.0, and in aggregate, 3G/WiFi ratio is 14.6,

lower than LTE. In summary, the energy efficiency for LTE is lower than 3G, with WiFi

having a much higher energy efficiency. Notice that in this work, we do not consider AP

association energy for WiFi networks due to the lack of such information, so Ewifi is an

underestimate. However, we believe that AP association does not happen very often and

the impact is not significant.
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Figure 6.8: Break down of energy usage in analysis.

6.5.2 Energy Consumption Break Down

To further understand the energy consumption, with the methodology discussed in

§6.4.3, it is decomposed into promotion energy, data transfer energy, tail energy, and idle

energy in Figure 6.8 with results for aggregate analysis and 6 sample users. These energy

values are calculated including the UE base power.

Promotion energy contributes to a small portion (< 4%) of the total energy for all

networks, i.e., in aggregate, its contribution is only 1.2%, 2.5% and 2.6% for LTE, WiFi,

and 3G, respectively. In terms of idle energy, WiFi has significantly higher percentage

than LTE and 3G, despite small average power difference at idle state across networks, i.e.,

31.1mW 2 for LTE, 13.0mW for WiFi and 15.3mW for 3G. This is explained by WiFi’s

smaller total energy, making its idle energy contribution relatively higher.

Aggregate data transfer energy percentage is 47.1%, 42.1% and 46.2% for LTE, WiFi

and 3G, respectively. The variation across users is high, e.g., for LTE network, it ranges

from 22.0% to 62.3%, due to traffic pattern differences across users.

2The idle power for LTE network is calculated as the average power of a DRX cycle in RRC IDLE, and
similarly for WiFi and 3G networks.
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Figure 6.9: Impact of the LTE tail timer Ttail.
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Figure 6.10: Impact of DRX inactivity timer Ti.
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Surprisingly, the biggest energy component for LTE network is tail, rather than data

transfer. The average tail energy for LTE and 3G is 48.2% and 48.1% respectively com-

pared to 7.2% for WiFi. Our observation for 3G is consistent with previous study [21].

Combined with high data transfer energy due to the higher power levels, tail energy lowers

the energy efficiency of LTE and 3G compared to WiFi.

6.5.3 Impact of LTE Parameters

Similar to Section 6.5.1, we use WiFi traces in the UMICH data set to study the impact

of LTE parameter configuration on radio energy E, channel scheduling delay D, and sig-

naling overhead S. E is the simulated total energy consumed by UE. Since most energy

is consumed by radio interfaces, with display energy excluded, we approximate this total

energy as radio energy. D is the sum of scheduling delay for all packets, resulting from two

factors: waiting for the next DRX cycle’s on duration for a downlink packet and waiting

for Tpro during RRC IDLE to RRC CONNECTED promotion. S is the overhead of the LTE

network for serving this UE. S has different definitions in our study given that different

parameters studied affect signaling load in different ways, e.g., Ttail affects mostly the state

promotions, and Tpi affects the total on duration in RRC IDLE. D and E directly affect

end users via application delay and battery life time; S is of interest to cellular ISPs for

supporting large user base at low cost.

Impact of LTE tail timer Ttail: In Figure 6.9, we study the impact of LTE tail timer Ttail,

with S defined to be the total number of RRC IDLE to RRC CONNECTED promotions. Ttail

varies from 1 second to 30 seconds. TD is the default configuration of 11.6 seconds for

Ttail in the measured LTE network with the corresponding values of E, D and S calculated

as ED, DD and SD, respectively. When Ttail is set to be T ′, similarly, we get E ′, D′ and

S ′. The change relative to the default setting is calculated as ∆(E) = (E ′ − ED)/ED, and

similarly for ∆(D) and ∆(S). ∆s for each Ttail values are plotted in Figure 6.9 and they
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are all 0 at TD.

As expected, a larger Ttail value reduces bothD and S, at the cost ofE. We observe that

∆(S) and ∆(D) curves are almost identical, since most channel scheduling delay results

from idle to active promotions. In addition, the impact of Ttail on the radio energy E is

significant. For example, when Ttail is set to be 30 seconds, total radio energy E increases

by 55%, while for Ttail = 1 second, E decreases by 65%, at the cost of 143% ∆(D) and

169% ∆(S). This indicates that Ttail is a very important parameter for LTE network.

In previous study [26], traffic bursts attribute to low efficiencies of radio resource and

energy utilization in 3G UMTS network, due to tail time. Given that LTE has similar tail

time, we analyze the bursts in the UMICH data set. We follow the same definition of a burst

as in [26], which is a sequence of consecutive packets whose inter-arrival time is less than a

threshold δ, with δ set to be 1.5 seconds, since it is longer than common cellular RTTs [1].

From ISP’s perspective, Ttail should not be smaller than majority of the inter-burst delays;

otherwise, a larger number of promotions would be triggered.

We study the inter-burst delay in the 3G and WiFi traces of UMICH data set in Fig-

ure 6.13. For 3G traces, 67.3% inter-burst delays are smaller than the default value of Ttail

(11.58 seconds), and 55.4% for WiFi traces. Compared with WiFi traces, 3G traces have

smaller inter-burst delays. We also observe the inter-burst delay distribution for different

users have non-negligible differences. This makes us believe that a per-UE based dynamic

Ttail configuration mechanism, adapting to traffic patterns, provides a better chance for

optimizing radio resource efficiency and balancing energy utilization. Notice that this ap-

proach is inside the radio access network and transparent to UE. Previous study on 3G

UMTS network also points out two possible approaches to deal with the tail effect with

support from UE, i.e., applications proactively alter traffic patterns based on the state ma-

chine behavior without interaction with the network, or cooperate with the radio access

network in allocating radio resources by fast dormancy [31, 32]. These approaches remain

to be applicable solutions for the tail problem in LTE.
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Impact of DRX inactivity timer Ti: Figure 6.10 shows the tradeoff of setting DRX inac-

tivity timer Ti. Signaling overhead S is defined as the sum of the continuous reception time

and DRX on durations in RRC CONNECTED, since during these time slots, UE exchanges

control messages with eNB (base station of LTE network) [33]. A larger Ti keeps UE in

continuous reception longer and reduces the scheduling delay for downlink packets, i.e.,

no DRX waiting time, at the cost of higher energy usage, since continuous reception has

higher power level than DRX idle state. TD is the default value 100ms.

We observe that Ti has negligible impact on E, with only 2% ∆(E) as Ti is set to be

1 second. Different from E, S is significantly affected by Ti. For D, when Ti is set to be

small than 100ms, ∆(D) grows up to 80%. However, even when Ti is set to be as large as 1

second, D is only reduced by 16%. This can be partly explained by Figure 6.14 that 88.6%

packet pairs has≤ 100ms inter-packet delay for 3G traces and 92.3% for WiFi traces in the

UMICH data set. Decreasing Ti causes more packets arrive outside of continuous reception,

which may experience DRX delay. Hence similar to Ttail, the setting of Ti is also affected

by the traffic pattern, i.e., inter-packet delay distribution, which may differ across users.

Impact of DRX cycle in RRC CONNECTED: In RRC CONNECTED, Short DRX cycle

timer Tis determines the transition from Short DRX to Long DRX. Given that we already

vary the DRX cycle to understand its impact, for simplicity, we assume Tis to be 0, i.e., the

DRX cycle in RRC CONNECTED refers to Long DRX cycle Tpl.

In Figure 6.11, S is defined similarly as in Figure 6.10, i.e., the sum of continuous re-

ception time and DRX on durations. TD is 40ms, the default setting for Tpl. First, we notice

that compared with TD, when Tpl is set to be 100ms, energy saving ∆(E) is minor (0.2%)

with 13.0% reduction in S, at the cost of 40% increase in D. So Tpl is not recommended to

be set much higher than TD unless ISP prioritizes S reduction. When Tpl is set to be a small

value, for example 2ms, E increases by 21.9% and D reduces by 18.1%, with a significant

increase in S of 412.9%. Especially for ISPs with fast growing LTE user volume and con-
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gested radio access network, DRX cycle in RRC CONNECTED is not recommend to be set

to too small values. We omit the simulation results for Short DRX cycle Tps and Short

DRX timer Tis, since reducing Tps or increasing Tis has similar effect of decreasing Tpl,

i.e., resulting in a shorter average DRX cycle, and their impact is similar as in Figure 6.11.

Impact of DRX cycle in RRC IDLE: Similarly to RRC CONNECTED, we study the im-

pact of DRX cycle in RRC IDLE. Under this setting, signaling overhead S is defined to

be the total on duration of DRX cycles in RRC IDLE, during which control messages are

exchanged between UE and eNB [33]. In Figure 6.12, the default setting 1.28s is shown

as TD. The impact of Tpi on E is not significant when Tpi is larger than TD, with 0.7%

energy saving when Tpi set to be 2.0s, which also brings in 21.3% increase in D and 31.7%

reduction in S. When Tpi is set to be 100ms, the energy overhead is 26.2%, with 40.7%

reduction in D and up to 1147.2% increase in S.

Similar to Tpl, Tpi causes significant signaling overhead when set to be too small. De-

fault values for both Tpl and Tpi are reasonable settings and adjustment around the default

configurations results in moderate impact on channel scheduling delay and negligible im-

pact on radio energy.

In this section, we observe that LTE consumes up to 23 times the total energy of WiFi

in the simulation, and the tail problem in 3G UMTS network is still a key contributor for

the low energy efficiency for LTE. Similar to 3G network, Ttail remains a key parameter for

LTE. In addition to the UE-participated approaches including proactive traffic shaping and

fast dormancy proposed by previous study [20], we discuss a possible approach to solve the

tail problem in LTE network, which dynamically adapts Ttail to traffic pattern at a per-UE

base, being transparent to UE. Similar observations are shared by the other LTE parameters

and we leave the feasibility study of such dynamic parameter configuration framework for

LTE as future work.
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# of packets (million) %
Total 131.49 100%

Screen on 72.50 55.13%
Screen off 47.14 35.84%
Unknown 11.85 9.02%

Table 6.4: Packet statistics of the UMICH data set.

Traffic type Payload % of dl # of packets % of dl Avg dl packet Avg ul packet
(GB) / %a payload (×106) / %b packets payload (B) payload (B)

Screen-on 51.47 / 64.31% 96.31% 72.50 / 55.13% 60.71% 1126 67
Screen-off 21.82 / 27.26% 93.52% 47.14 / 35.84% 52.60% 823 63

Process name Off payload % of dl # of off packets % of dl Avg dl off packet Avg ul off packet
(GB) / %c off payloadd (×106) / %e off packetsf payload (B) payload (B)

Genie Widget 1.76 / 72.21% 97.01% 3.80 / 73.16% 49.97% 901 28
Google Music 3.13 / 57.14% 99.91% 3.30 / 57.02% 68.60% 1384 3

Epicurious Recipe 1.65 / 70.05% 99.22% 2.69 / 69.29% 50.46% 1212 10
/system/bin/mediaserver 2.39 / 10.09% 99.77% 2.66 / 11.05% 66.95% 1342 6
android.process.media 2.35 / 28.42% 99.98% 2.37 / 29.06% 71.55% 1388 1

Skypekitg 0.04 / 25.54% 48.44% 2.07 / 46.73% 48.32% 22 22
Facebook 0.46 / 32.96% 86.13% 1.95 / 40.67% 42.55% 487 58

Yahoo! Sportacular 0.23 / 80.45% 83.53% 1.94 / 81.05% 41.98% 238 34
Gmail 0.39 / 46.00% 63.65% 1.33 / 54.46% 47.70% 400 208

a Payload refers to the total screen-on/off payload, and % is relative to the total payload of all traffic.
b % relative to the total number of packets of all traffic.
c Off payload refers to the screen-off payload of the specific application, and % is relative to the total payload of this application.
d % of downlink screen-off payload of the specific application relative to the total screen-off payload of that application.
f % of downlink screen-off packet count of the specific application relative to the total screen-off packet count of that application.
g Full process name: /data/data/com.skype.raider/files/skypekit, which is not the actual Skype application (com.skype.raider).

Table 6.5: Packet characteristics of screen-on/off traffic and top processes for screen-off traffic.

6.6 Characteristics of Screen-off Traffic

In this section, we present packet characteristics and burst analysis of screen-off traffic

in the UMICH data set, which is described in Section 6.4.1. Then we compare screen-on

and screen-off traffic and scrutinize the top applications generating screen-off traffic.

6.6.1 Packet Characteristics of Screen-off Traffic

Using the methodology described in Section 6.4.1, we classify all packets to be screen-

on, screen-off or unknown. Table 6.4 lists the number of packets in different categories.

Among the total 131.49 million packets, 55.12% of them are screen-on packets and 35.85%

are screen-off packets, with 9.02% unknown. The possible reasons for unknown packets

are multifold, including that voluntary users may have accidentally killed the data collector.

For the unknown category, we conservatively choose not optimize it for either screen-on or
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screen-off traffic optimization.

The top section of Table 6.5 lists the packet characteristics of both screen-on and screen-

off traffic. Packet payload size refers to the size in bytes of an IP packet excluding the

TCP/UDP and IP headers, and payload for a given process is the sum of the packet payload

sizes of all packets corresponding to that process. We notice that screen-off traffic has far

less packets (35.84% of total) than screen-on traffic (55.13% of total), much smaller total

payload (27.26% for screen-off and 64.31% for screen-on traffic), and smaller average

downlink packet payload size.

To understand individual process behavior within screen-off traffic, we scrutinize the

top processes sorted by the number of screen-off packets, in the bottom section of Ta-

ble 6.5. In the second column, titled “Off payload”, we observe that some processes have

most of their payload transferred during screen-off sessions, e.g., Genie Widget, Epicu-

rious Recipe, etc. Especially for Yahoo! Sportacular, 80.45% of all its payload is trans-

ferred when the screen is off. This is possibly due to the background behaviors of these

processes, involving either periodically pulling updates from servers or traffic triggered

by server-initiated push notifications. In terms of the % of downlink payload, compared

to other processes, Skypekit, Gmail, Sportacular and Facebook have smaller proportions

of their respective total downlink payloads associated with the screen-off states. These

processes also have a smaller average downlink packet size (<500B). In contrast, a pro-

cess like android.process.media has an average size of 1388B, indicating that most

packets have a size of MTU (maximum transmission unit, ∼1500B). This shows that for

screen-off traffic, application behavioral diversity still exists similar to that of screen-on

traffic.

A group of processes share quite similar behavior patterns, including Google Music,

/system/bin/mediaserver and

android.process.media, which have larger payload (>2GB), and >99% of the pay-

load is downlink. Their average downlink packet sizes are close to the MTU and average
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Traffic type # of Avga # of Avga # of Avga ul Avga dl Avga burst Avga IBT
bursts ul packets dl packets payload (B) payload (KB) length (sec) following (sec)

Screen-on 650.9K 43.75 67.62 2910.44 76.17 2.92 335.13
Screen-off 1910.9K 11.69 12.98 739.78 10.68 1.37 113.60

Process name # of Avga # of Avga # of Avga ul Avga dl Avga burst Avga IBT
bursts ul packets dl packets payload (B) payload (KB) length (sec) following (sec)

Genie Widget 6.0K 319.73 319.36 8852.48 287.88 17.87 3,892.87
Google Music 5.3K 195.69 427.56 505.54 591.92 4.53 5,111.50

Epicurious Recipe 63.2K 21.07 21.46 202.22 26.01 0.67 159.34
/system/bin/mediaserver 8.2K 106.44 215.53 669.82 289.35 5.01 14,451.70
android.process.media 1.4K 461.88 1,156.93 246.99 1,605.84 19.83 123,565.00

Skypekit 42.7K 25.08 23.46 555.38 0.52 1.93 832.79
Facebook 203.5K 5.49 4.07 318.83 1.98 0.86 547.23

Yahoo! Sportacular 133.8K 8.39 6.07 285.44 1.45 1.52 261.78
Gmail 105.5K 6.60 6.02 1375.30 2.41 1.17 2,002.60

a Each “avg” in this table stands for the average value per burst.

Table 6.6: Burst analysis of screen-on/off traffic and top processes for screen-off traffic.

uplink packet sizes are close to 0. Also, their ratio of downlink packets is close to 2/3.

This is because TCP’s delayed ACK would generate one uplink ACK packet for every

two downlink data packets, resulting in a ratio of 2/3 of downlink packets. These ob-

servations suggest that Google Music is downloading large amount of data, as it can run

in the background allowing users to listen to the music with the screen off. Similarly,

although /system/bin/mediaserver and android.process.media are not actual

applications, they are used by other applications, such as Pandora, to download contents

for users while the screen is off. However, this group of processes does not necessarily

have higher energy consumption compared with the remaining processes, and we explore

this in more detail in latter sections.

6.6.2 Burst Analysis of Screen-off Traffic

Following the methodology in §6.4.2, Table 6.6 lists the results of the burst analysis for

screen-off traffic, with that of screen-on traffic listed for comparison purposes.

We observe that screen-off traffic contains much more bursts than screen-on traffic, al-

though the total number of packets for screen-off traffic is smaller. For screen-off traffic,

bursts are smaller in terms of the number of downlink/uplink packets and payload. Espe-

cially, for average downlink payload per burst, screen-on traffic is 7 times that for screen-

off traffic. In addition, the average burst length and the IBT following bursts for screen-off

132



traffic are both shorter than those of screen-on traffic. The above observations indicate that

screen-off bursts are smaller in size and duration and appear more often — such behavior is

likely to cause longer channel occupation time in the high energy RRC state and therefore

incur significant battery usage.

By studying the screen-off burst behavior of individual processes, we classify them into

two separate groups. The first group, which we call Gathered group, includes Genie Wid-

get, Google Music, /system/bin/mediaserver and android.process.media.

These processes have a small number of larger bursts in terms of the number of uplink/-

downlink packets per burst and the average downlink payload. Notice that the uplink pay-

load for these bursts is not necessarily large, since a small uplink payload of HTTP request

can result in a large file download. The Gathered group also has longer bursts and longer

trailing IBT in average, indicating a less frequent appearance.

The rest of the processes fall into the second group, called the Scattered group, which

generate significantly more bursts and on average, these bursts contain less packets and

smaller downlink payload. In addition, these bursts are shorter in duration and appear

more frequently. A representative process from this group is Facebook, which includes

over 200,000 bursts, and the major reason for this behavior of Facebook is the periodic

keep-alive transfers [30].

Based on this comparison, we believe that it is both easy and important for mobile

application developers to optimize their application behaviors during the screen-off stage,

e.g., for delay-insensitive traffic, they can batch the data into larger bursts, or even eliminate

the screen-off data transfers if they are not necessary.
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Traffic type ∆E %a Min |∆E| %c Max |∆E| %c ∆S %a ∆D %a

Screen-on -22.18% 3.78% 38.11% -14.87% -17.57%
Screen-off -58.55% 12.39% 73.53% -58.03% -54.46%

Process name ∆E %b Min |∆E| %c Max |∆E| %c ∆S %b ∆D %b

Genie Widget -0.34% 0% 2.46% 0.11% -0.81%
Google Music -0.12% 0% 1.68% -0.02% -0.08%

Epicurious Recipe -1.63% 0% 26.06% -1.78% -0.94%
/system/bin/mediaserver -0.13% 0% 1.08% 0.02% -0.16%
android.process.media -0.08% 0.01% 0.52% 0.02% -0.05%

Skypekit -0.96% 0% 7.32% -0.24% -0.51%
Facebook -5.25% 0% 34.68% -5.82% -4.15%

Yahoo! Sportacular -3.01% 0% 20.04% -1.88% -1.44%
Gmail -1.18% 0.04% 4.59% -0.69% -1.47%

a ∆E, ∆S and ∆D are calculated by removing all screen-on/off traffic from the original traces
b ∆E, ∆S and ∆D are calculated by removing the screen-off traffic of one process from the original traces
c Min and max refer to the minimum and maximum energy saving |∆E| across all users, respectively.

Table 6.7: Radio resource and energy impact of screen-on/off traffic and top processes for
screen-off traffic.

6.7 Radio Resource, Energy Impact and Optimization of Screen-off

Traffic

Using the network and power model simulation (Section 6.4.3), we now evaluate the

radio resource and energy impact of screen-off traffic and evaluate some optimization ap-

proaches.

6.7.1 Radio Resource and Energy Impact of Screen-off Traffic

Table 6.7 presents highlights of the simulation results using the LTE network and power

model derived previously. ∆E, ∆S and ∆D represents the change of network energy,

signaling overhead and channel scheduling delay after removing the traffic of an application

or type, and a negative value indicates a reduction. The results indicate that, compared to

screen-on traffic, screen-off traffic clearly has larger impact on the network energy E, as

well as S and D. For example, removing all screen-off traffic reduces the total network

energy by 58.55%, and for one user, this reduction is as high as 73.53%.

Comparing the Gathered group and Scattered group discussed in §6.6.2, the former has

very small impact on E, S and D, while the later has a substantial impact. This is because,
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Process name Optimization Settings ∆Ea ∆Sa ∆Da

All applications

Fast dormancy

Ti,on
b = 8s, Ti,off b = 8s -16.39% 16.95% 13.14%

Ti,on = 4s, Ti,off = 8s -20.60% 28.29% 21.26%
Ti,on = 8s, Ti,off = 4s -34.44% 47.04% 35.21%
Ti,on = 4s, Ti,off = 4s -38.66% 58.38% 43.31%

Batching

Only for screen-off, α = 50s, β = 10s -22.33% -6.24% -11.27%
Only for screen-off, α = 50s, β = 5s -27.15% -6.24% -10.67%

Only for screen-off, α = 100s, β = 10s -36.72% -30.00% -33.43%
Only for screen-off, α = 100s, β = 5s -40.79% -30.00% -34.25%

Fast dormancy + Ti,on = 8s, Ti,off = 4s, batching only -60.92% -25.33% -30.59%Batching for screen-off traffic, α = 100s, β = 5s

Facebookc Fast dormancy + Ti,on = 8s, Ti,off = 4s, batching only -60.19% -36.27% -34.93%Batching for screen-off traffic, α = 100s, β = 5s

Google Musicc Fast dormancy + Ti,on = 8s, Ti,off = 4s, batching only -57.30% 7.12% -21.11%Batching for screen-off traffic, α = 100s, β = 5s
a ∆E,S,D are relative to the E,S,D of all traffic for the specific application.
b Ti,on is the inactivity threshold of fast dormancy for screen-on traffic, and Ti,off is for screen-off traffic.
c For these two application rows, we consider the traffic of only one specific application, excluding that from other applications.

Table 6.8: Traffic optimization with fast dormancy and batching.

for the Scattered group, a large number of small bursts could result in a large number of

RRC tails if the IBTs among these bursts are larger than the tail time and a long channel

occupation time otherwise. For example, although the Facebook process does not generate

the most screen-off traffic, it has the largest energy impact among all processes, i.e., 5.25%

of the total network energy can be saved by only removing Facebook’s screen-off traffic,

and for some users this number could be as high as 34.68%.

6.7.2 Traffic Optimization

Based on the above analysis, we find that screen-off traffic has a clearly different pat-

tern compared to screen-on traffic, and accounts for a huge proportion of the UE network

energy E, signaling overhead S and channel scheduling delay D. Intuitively, since screen-

off traffic is more tolerant to delays as users are typically not actively interacting with the

device, and hence more amenable to more aggressive optimization efforts, a traffic opti-

mization approach that is appropriately tuned to the two different traffic categories would

yield significant efficiencies. To verify this intuition, we study two common optimization

techniques, fast dormancy and batching:

(i) Fast dormancy (FD) [31, 32] is a mechanism in 3G networks for reducing the amount

of tail time incurred by a device by quickly demoting it to a low energy RRC state with-

135



out waiting for the tail timer to expire. In our simulations, we explore fast dormancy in

an LTE setting, motivated by the fact that LTE, like 3G, also suffers from a serious tail

problem [12]. Our fast dormancy-based optimization works as follows: when the UE has

not observed any network activity for some idle time Ti, it sends a special RRC message to

the network to make the allocated radio resource be released earlier, instead of occupying

it for the whole RRC tail. After the radio resource is released, the UE switches to the low

power idle state (RRC IDLE for LTE networks), saving energy. The setting of Ti is impor-

tant for balancing the tradeoffs among UE energy saving (∆E), signaling overhead (∆S)

and channel scheduling delay (∆D), i.e., a smaller Ti would results in a larger ∆E at the

cost of larger ∆S and ∆D, and vice versa.

(ii) Batching is a widely used traffic shaping technique, which has been discussed in

previous studies [21, 30]. In this study, batching uses two parameters, source window size

α (seconds) and target window size β (seconds), and α > β. For each α seconds long time

window [t, t + α], packets within [t, t + α − β] are delayed and batched with those inside

[t + α − β, t + α]. Notice that if α/β is too large, the limited bandwidth of the cellular

network could become the bottleneck, making the batching impossible. So in this study,

we make sure that our choice of α and β results in acceptable bandwidth usage for LTE

networks.

We first compare applying fast dormancy to screen-on and screen-off traffic with a

separate Ti settings. The default setting of the RRC CONNECTED inactivity timer is 11.58

seconds for a major LTE ISP [12]. In Figure 6.15, we vary the setting of Ti from 10 seconds

to 2 seconds with a step-size of 2 seconds (from left to right in Figure 6.15) and calculate

the ∆(E, S,D) relative to when fast dormancy is not applied. We observe that for the same

Ti setting, there is a higher energy saving ∆E and a lower ∆S and ∆D for screen-off

traffic, compared with screen-on traffic, and these gaps are larger when Ti is smaller, i.e.,

applying fast dormancy more aggressively. So in order to achieve the same energy saving

for screen-off and screen-on traffic, the Ti should be set to a much smaller value for screen-
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Figure 6.15: Effectiveness comparison of fast dormancy.

on traffic, incurring much larger ∆S and ∆D. However, the responsiveness requirement

when the screen is on is actually higher, hence a higher ∆D for screen-on traffic is not

acceptable. A better strategy would be being more aggressive (a smaller Ti) for screen-

off traffic, which produces significant energy savings, and more conservative (a relatively

larger Ti) for screen-on traffic, which limits the negative impact on user experience, though

with less energy savings. For example, when Ti = 8s, there is 42% energy savings with

52% ∆S and 40% ∆D for screen-off traffic, and when Ti = 4s, for screen-on traffic,

though the energy saving is small (24%), ∆S (43%) and ∆D (30%) are also limited. With

these two fast dormancy settings, for the whole traffic, we can achieve 34% energy saving,

with 47.04% ∆S and 35.21% ∆D. This is a better tradeoff than one single Ti setting for

both screen-on and screen-off traffic.

Besides fast dormancy, batching [30, 21] is also proposed for optimizing mobile traffic.

In Table 6.8, we compare fast dormancy and batching under different settings for all ap-

plications together, and also individually for two applications, Facebook representing the

Scattered group and Google Music representing the Gathered group. For fast dormancy,

with reduced E, there is increased S,D, while for batching, all E, S,D are decreased.

This is because for fast dormancy, since UE demotes to RRC IDLE earlier, there would be
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more promotions resulting in increased S,D, while for batching, since the traffic pattern

is altered, scattered packets are gathered into groups and hence there are less promotions.

Notice that the metric D here does not include the delay of packets incurred by batching.

In this work, we only focus on batching for screen-off traffic, since any delay for screen-on

traffic is likely to be more perceptible to users.

In Table 6.8, when applying fast dormancy to all applications, we set a different Ti for

screen-on/off traffic, i.e., Ti,on and Ti,off . For simplicity, let <a, b> stands for the case

when Ti,on = a seconds and Ti,off = b seconds. Based on Figure 6.15, we empirically

select two values for Ti,on and Ti,off , 4s as an aggressive setting and 8s as a conservative

setting. Compared with <8, 8>, reducing Ti,on to 4s, i.e., <4, 8>, only saves 4.21% energy

additionally. And <8, 4> has 11.34% reduction in S and 8.10% reduction in D, with only

4.22% less energy saving, compared with <4, 4>. This verifies that a different setting for

Ti,on and Ti,off balances the tradeoff of saving energy and reducing overhead, and we select

<8, 4> as a reasonable setting. Notice that there are other possible parameter settings

representing different aggressiveness with different energy saving and overhead, which

may be more appropriate for different settings.

In Table 6.8, batching applied to the screen-off traffic is able to reduce all E, S, and

D. Notice that we do not apply batching for screen-on traffic since it may affect the user

experience, e.g., when the user is waiting for a response at real time. We observe that

most of the screen-off traffic (in terms of the energy impact) is less delay-sensitive, e.g.,

push notification, since user interaction is not involved. However, there are also some

exceptions for screen-off applications which requires real-time data transfer, e.g., when the

user is making a VoIP call with the screen off. Ideally, traffic from these delay-sensitive

applications should not be batched even during screen-off stage. In this study, we do not

attempt to completely solve this problem, instead, we show an upper bound of the benefit

by batching all screen-off traffic. In reality, we need to prioritize delay-sensitive traffic

during screen-off stage, and we leave it to future study. The choice of α and β values is
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limited by the available bandwidth for 3G/4G networks. Comparing among the empirically

selected candidate settings in Table 6.8, α = 100s and β = 5s is a better setting, which

saves up to 40.79% energy, with a 30.00% reduction in S and 34.25% in D. Notice that

the α and β settings studied are just example settings that work well in practice. The goal

is to demonstrate the benefit of batching for screen-off traffic and the selection of optimal

settings is left to future work.

Then we evaluate applying fast dormancy and batching jointly for all applications and

for two sample applications, with the settings specified in Table 6.8. For all applications,

there is a total network energy saving of 60.19%, with 25.33% reduction in S and 30.59%

reduction in D. Facebook has similar energy saving, and due to its more “scattered” traffic

pattern for screen-off traffic, the batching optimization results in even more reduction for

S and D. However, for Google Music, whose traffic is already “gathered” as large bursts,

the impact of fast dormancy is more obvious than batching, hence the reduction for D is

smaller and there is even an increase in S, unlike the other two scenarios.

6.7.3 Discussions

We took a first step towards understanding the impact of screen status on cellular appli-

cation traffic behavior. Our evaluations in the context of LTE cellular networks, show that

although the number of packets and total payload for screen-off traffic are much smaller

than that for screen-on traffic, the former accounts for a disproportionate majority (58.55%)

of the total network energy consumed by a device. Exploration of resource optimization

techniques like fast dormancy and batching indicate that the strategy of optimizing the

screen-off traffic more aggressively than screen-on traffic can realize substantial resource

savings, without adversely impacting user experience.

We are pursuing this research further, first to explore screen-off traffic in greater detail

and explore optimization strategies tailored to the potentially different delay-requirements

of subsets of that traffic. Second, in this paper, our optimization strategies imposed the
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strict constraint that screen-on traffic should not suffer any additional delays that come

with traffic shaping approaches. In reality, some limited delay jitter would be tolerable de-

pending on the application and traffic semantics - this is be an additional source of resource

optimization beyond the savings we have shown in this paper. Finally, logistics permitting,

it would be nice to extend the study to a larger user group.
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CHAPTER VII

RadioProphet: Optimizing Smartphone Energy and Radio

Resource in Cellular Networks

Achieving energy efficiency for mobile devices when connected to cellular networks

without incurring excessive network signaling overhead, even despite diverse application

and user behavior, still remains a rather difficult and yet important challenge to tackle.

Energy use due to network access, particularly cellular networks, is becoming increasingly

dominant due to numerous network-based smartphone applications. In many cases, achiev-

ing network energy savings must reside on the mobile device’s OS to effectively and cen-

trally manage the data scheduling decisions transparent to applications and with minimal

changes to the network.

The key mechanism that determines the energy consumed by cellular network inter-

face is the radio resource control (RRC) state machine [20] pre-defined by carriers (Fig-

ure 2.1) that governs when radio resources are acquired and released. Previous stud-

ies [21, 20, 22, 12] have shown that the origins of low resource efficiency comes from the

way radio resources are released. To avoid unnecessary state transitions, radio resources

are only released after an idle time (also known as the “tail time”) controlled by a statically

configured inactivity timer. During the tail time, radio energy is essentially wasted. Val-

ues as large as 11.6 seconds are configured [12] in current networks, contributing to about

half of the total radio energy on user handsets (UEs) spent in idle times for common usage
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scenarios.

Without knowing when network traffic will occur, large tail timer settings are essentially

a conservative way to ensure low signaling overhead due to state transitions, as signaling is

known to be a bottleneck for cellular networks. Furthermore, they also help minimize per-

formance impact experienced by users caused by state promotion delays incurred whenever

radio resource is acquired. Given that application and user behavior are not random, using

a statically configured inactivity timer is clearly suboptimal. Smaller static timer values

would help reduce radio energy, but is not an option due to the risk of overloading cellular

networks caused by signaling load increase.

An attractive alternative is to configure the timer dynamically — adaptively perform-

ing radio resource release either signaled by the UE or triggered by the network itself by

monitoring the UE traffic, accommodating different traffic patterns, improving the over-

all resource efficiency. But the key challenge is determining when to release resources,

which essentially comes down to accurate and efficient prediction of the idle time period.

Clearly, the best time to do so is when the UE is about to experience a long idle time pe-

riod, otherwise the incurred resource allocation overhead (i.e., signaling load) is wasteful

due to unnecessary radio state transitions, and the achieved resource savings are very small.

Therefore, accurate and efficient prediction of the idle time period is a critical prerequisite

for dynamic timer schemes.

This paper proposes RadioProphet (RP), a practical system that makes dynamic deci-

sions to deallocate radio resources based on accurate and efficient prediction of network

idle times. It makes the following contributions.

First, RP utilizes standard online machine learning (ML) algorithms to accurately pre-

dict the network idle time, and performs resource deallocation only when the idle time

is sufficiently long. We explored various ML algorithms and prediction models with tun-

able parameters, with the main contribution of finding robust and easy-to-measure features

(not relying on packet payload), whose complex interaction with the network idle time can
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be automatically discovered by the ML algorithms. The model is validated using seven-

month-long traces collected from real users (§7.4).

Second, we implement the full RP system on the Android platform, and it incurs negli-

gible energy and CPU overhead on our test device demonstrating its practicality. To reduce

the runtime overhead, RP strategically performs binary prediction (i.e., whether the idle

time is short or long) at the granularity of a traffic burst consisting of a packet train sent

or received in a batch. Compared to fine-grained prediction of the precise value of packet

inter-arrival time, our proposed approach is much more efficient while yielding similar

optimization results.

Third, we overcome critical limitations of previously proposed approaches, i.e., Radio-

Jockey [81] and MakeIdle / MakeActive [82] are only applicable to background applica-

tions without user interaction, with the ideal usage scenario of RadioJockey for a single

application only. With multiple concurrent applications, it suffers from low prediction ac-

curacy with increased overhead. By design, RP applies to both foreground and background

traffic, maximizing energy savings. Since its prediction is based on the aggregate traf-

fic of all applications, RP incurs no additional performance degradation nor overhead for

supporting concurrent apps.

Fourth, we evaluate RP using real-world smartphone traces. The overall prediction

accuracy is 85.9% for all traffic. RP achieves radio energy saving by 59.1%, at the cost

of 91.0% additional signaling overhead in LTE networks, significantly outperforming pre-

vious proposals. In order to achieve such energy saving (59%), the additional signaling

overheads incurred by MakeIdle and naı̈ve fast dormancy [31, 32] are as high as 305% and

215%, respectively. The maximal energy saving achieved by RadioJockey is 27% since it

is only applicable to background traffic.

In this chapter, we present the design of RP in Section 7.1. Then we explore feature

selection in Section 7.2. With the methodology discussed in Section 7.3, we evaluate the

performance of RP in Section 7.4, before summarizing in Section 7.5.
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7.1 The Design of the RadioProphet System

As described in Chapter II, the static tail times are the root cause of low resource ef-

ficiency in cellular networks. Previous work points out that around 50% energy is in-

curred by the long high-power RRC tail for 3G [20] and 4G networks [12]. Our proposed

RadioProphet (RP) system leverages the fast dormancy feature to dynamically and intelli-

gently determine when to release radio resources.

Challenge 1: the tradeoff between resource saving and signaling load. Clearly,

the best time to perform resource deallocation is when the UE is going to experience a

long idle time period t. Specifically, if t is longer than the tail time, deallocating resources

immediately after a data transfer saves resources without any penalty of signaling load (i.e.,

state promotions). If t is shorter than the tail time, performing deallocation ahead of time

trades off resource saving with signaling load, because doing so will incur an additional

state promotion. Such a critical tradeoff presents the key challenge of predicting the idle

time between data transfers so that fast dormancy is only invoked when the idle time is

sufficiently long.

Challenge 2: the tradeoff between prediction accuracy and system performance.

RP is a service running on the UE with limited computational capabilities and even more

importantly, limited battery life, so we need to minimize the runtime overhead without

sacrificing much of the prediction accuracy. Otherwise the resource utilized by RP itself

may overpower its benefits.

Challenge 3: the requirement to handle both foreground traffic and background

traffic. Idle time prediction is particularly difficult for applications involving user interac-

tions. Previous systems, such as RadioJockey [81] and MakeActive [82], simply avoid this

by only handling traffic generated by applications running in the background. To maximize

the energy saving, the proposed system should be able to handle foreground traffic well, in

addition to background traffic.

To address Challenge 1, we established a novel machine-learning-based framework
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for idle time prediction. We explored a wide range of ML algorithms with tunable pa-

rameters, and evaluated their effectiveness and efficiency. More importantly, our primary

focus is addressing the hard problem of selecting discriminating features that are relevant

to our specific problem. We find that strategically using a few simple features (e.g., packet

direction, size, and application name, etc.) leads to a high prediction accuracy of 85.9%.

To address Challenge 2, we perform binary prediction at the granularity of a traffic

burst consisting of a train of packets sent or received in a batch. In other words, we find

that the knowledge of whether the inter-burst time (IBT) is short or long (determined by

a threshold) is already accurate enough for guiding the resource deallocation. Such an ap-

proach is much more efficient while yielding similar optimization results compared to more

fine-grained and more expensive prediction for the precise value of packet inter-arrival

times.

Further, by design, since the prediction of RP is based on the aggregate traffic of all

applications, it incurs no additional performance degradation nor overhead for supporting

concurrent apps. In contrast, previous systems such as RadioJockey have the ideal usage

case for a single app.

To address Challenge 3, we choose robust features for idle time prediction for all traffic.

We also customize the prediction settings for different types of traffic, either background

traffic without user interaction or foreground traffic likely to be triggered by users. We use

smartphone screen status as a hint to indicate whether a user is interacting with the device,

i.e., screen-on traffic belongs to foreground applications. We then apply different settings

for prediction based on the screen status and evaluate RP with all traffic.

We illustrate the design of RadioProphet (RP) in Figure 7.1. In summary, a data collec-

tor collects packet traces (only headers are required) and some other auxiliary information,

e.g., process association for all packets. The data collected is fed into the IBT prediction

framework, which trains models to predict the IBT for the current burst. Then, based on

the prediction result, the fast dormancy scheduler makes decision on whether to invoke fast
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Figure 7.1: Working flow of RadioProphet (RP).

dormancy.

For IBT prediction, we define the traffic model as follows. For each user, the traffic

trace is a sequence of network packets, Pi(1 ≤ i ≤ n). Pi could either be a downlink

packet or an uplink one. Assume the timestamp of Pi is ti, ti ≤ tj for any i < j. Using a

burst threshold BT, the packets are divided into bursts, i.e., {Pp, Pp+1, · · · , Pq} belongs to

a burst B, if and only if:

1. tk+1 − tk ≤ BT for any k ∈ {p, · · · , q − 1}

2. tq+1 − tq > BT

3. tp − tp−1 > BT

We define the inter-burst time IBT for burst B to be the time gap following this burst, i.e.,

tq+1 − tq. We also use a short IBT threshold SBT to classify an IBT, i.e., if IBT ≤ SBT,

it is short, otherwise, it is long.

The IBT prediction framework trains the prediction model based on historical traffic

information collected by the data collector. The information collected is an array of bursts

{B1, · · · , Bm}. Each Bi is a vector

Bi : < f1, f2, · · · , ft, ibti >
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where {f1, · · · , ft} is the list of features of Bi and ibti is the IBT following burst Bi. With

the prediction model, RP monitors the UE traffic in real-time and whenever there is an idle

time of BT, i.e., the last packet’s arrival time was BT time ago, the prediction process starts.

The feature vector of the current burst {f1, · · · , ft} is generated and fed to the prediction

framework, which predicts whether the IBT following the current burst is short or long.

If short, as shown in Figure 7.1, no change is made and UE stays in the tail, since the

prediction framework suggests that a packet would appear soon. Otherwise, the prediction

framework triggers fast dormancy to save energy.

7.2 Feature Selection

In this section, we study the traffic burst characteristics in the UMICH data set. Then

we look at a few burst features for IBT prediction.

7.2.1 The UMICH Dataset

The measurement data used in this study, which we call the UMICH data set, is collected

from 20 smartphone users for five months. The participants consisted of undergraduate and

graduate students from University of Michigan. The 20 participants are given Motorola

Atrix (11 of them) or Samsung Galaxy S smartphones (9 of them) with unlimited voice,

text and data plans.

We develop custom data collection software and deploy it on the 20 smartphones. It

continuously runs in the background and collects three types of data. (1) Full packet traces

in tcpdump format including both headers and payload. The detailed packet traces allows

us to keep detailed track of traffic patterns generated by each individual user for a long

period. (2) The process name responsible for sending or receiving each packet. (3) User

input events such as pressing a button and tapping the screen. This is collected by reading

/dev/input/event* in the Android system. We also build a data uploader that uploads

the data to our server when the phone is idle as indicated by low network throughput.
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Figure 7.2: CDF of IBT for sampled/all users.

We deployed the user study in May 2011. From May 9 2011 to December 5 2011, we

collect 152GB data (150 GB tcpdump traces). Although both cellular and Wi-Fi traces

were collected, in this study, we consistently use 3G traces only, which contribute 57.8% of

the total traffic volume, in the UMICH dataset for further analysis. Comparing with the Wi-

Fi traces, 3G traces better represent the user and application behavioral patterns in cellular

networks.

7.2.2 Characteristics of Bursts

For burst characterization, we first need to pick a value for BT. Obviously, BT should be

larger than typical RTTs in cellular networks, which is around hundreds of milliseconds [1,

12], so as not to break a single continuous TCP flow into separate bursts. In the meanwhile,

BT should not be set to be too large; otherwise, there could be a large gap inside a burst,

during which, fast dormancy could have been triggered to save energy. We start our analysis

with BT = 1s, resulting in 5.44 million bursts in total, and later we would explore how

different BT values affect our results.

By analyzing all 3G traces in the UMICH data set, we plot the CDF of IBTs for all users

(IBTs are calculated separately for each user before aggregate analysis) and two sample

users in Figure 7.2. The median of IBT for all users is 4.46 seconds, and 68.24% of IBTs

are smaller than the tail timer Ttail in our studied network.
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Figure 7.3: CDF of IBT for different screen status.

In Figure 7.2, we also compare the aggregate curve of all users with those of two sam-

ple users. The difference for IBT distribution is mainly due to the user preference over

different applications, e.g., sample user 1’s curve has a big jump around 20 seconds and

this is verified to be correlated with the heavy use of the Facebook application as shown in

Figure 7.9. Therefore, RP predicts IBT using a per-user model instead of a global model

for all users. Even for the same user, i.e., user 1, at day 1 and day 2, which are months

apart, we also observe a clear difference. We observe that user 1 uses a quite different

list of applications for these two days, though not completely different. Even for the same

application, different versions may also result in traffic pattern changes. So we think it is

not practical to build a static model for each user. Instead, RP uses a dynamic model based

on the most recent traffic history for each user.

Choosing a proper value for SBT is challenging, i.e., a large SBT reduces the chance

of RP for saving energy and a small SBT would result in excessive signaling load, since

RP would trigger fast dormancy for long IBTs. Previous work [83] indicates that traffic

pattern is different between screen-on state and screen-off state. In Figure 7.3, we also

observe that screen-off traffic has higher IBTs than screen-on traffic. The median IBT

for screen-off and screen-on traffic is 5.00s and 3.14s, respectively. This motivates us to

select different SBT values based on the different screen states, i.e., we could use an more

aggressive (smaller) value of SBT to trigger more fast dormancy for screen-off traffic.
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Figure 7.4: Distribution of bursts grouped by # of packets.

Figure 7.4 shows the distribution of the number of packets of a burst. We observe that

the distribution is heavy-tailed. In particular, 27.69% of all bursts only contain 1 single

packet, and 75.00% of these 1-packet bursts are short bursts. About 52.63% of all bursts

consist of no more than 3 packets and 73.47% bursts contain no more than 10 packets,

indicating that small bursts dominate the user traffic.

7.2.3 Selecting Features for Burst Classification

To predict whether an IBT is larger or smaller than SBT, we naturally choose to look

at the features of the burst preceding the IBT. Based on our observation, the correlation

between IBT and the bursts further beyond the preceding burst is small, hence we do not

use those bursts for training features. For the preceding burst, we look at the detailed fea-

tures of the last three packets. The choice of three packets is because in most cases, bursts

are small, and even for large bursts, we can tell the nature of a burst based on the last three

packets, e.g., TCP three-way handshake for connection establishment and termination. For

each of the last three packets, we only look at header information, not the payload, since

many of these packet either do not have any payload, or use encryption. The features of the

last three packets 1 used for training are listed in Table 7.2.3 and we study some of them as

follows. These features are selected empirically that are most relevant to IBT.

1If a burst contains less than three packets, all features for the missing packet(s) have a value of 0.
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Name Symbol Description
Packet direction Dir(i)? Downlink or uplink

Server port number Port(i) The remote port number
Total packet length Len(i) Including headers

Protocol Prot(i) Protocol field in the IP header

TCP flags Flag(i)
TCP flags field in the TCP

header and 0 if not TCP

Application ID AppID(i)
The global application ID

which generates this packet

? Dir(i) (i = 1, 2 or 3) refers to the i-th to last packet, e.g., when i = 1,
it refers to the last packet. Similar rule applies to all other features.

Table 7.1: Features for the last three packets of a burst.
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Figure 7.5: CDF of IBT v.s. direction of the last packet.

In Figure 7.5, CDF of IBT for the two possible directions of the last packet is shown. In

general, IBT following a burst whose last packet is downlink is larger than that for uplink,

e.g., the median IBT is 6.49 seconds for downlink and 3.79 seconds for uplink.

Figure 7.6 shows the CDF of IBTs of all users for the top 6 ports ordered from top to

bottom in the legend, i.e., port 80 is the top 1 port and port 993 ranks 6-th. IBT distribution

for different ports have clear differences, especially for port 53. By further investigation on

the traffic traces, we know that the sudden jump for port 53 at IBT = 5 seconds is related

with the DNS request retransmission behavior, i.e., when UE fails to get DNS response

within 5 seconds, either due to poor signal strength or slow DNS response, it resends the

DNS request and the initial DNS request itself forms a burst. We also observe that the
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Figure 7.6: CDF of IBT v.s. port of the last packet.
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Figure 7.7: Distribution of bursts grouped by packet length of the last packet.

jump for port 5222 around 20 seconds corresponds to the periodic keep-alive messages for

Facebook app.

Figure 7.7 summarizes the number of bursts for different packet length of the last

packet. Packet length outside the plotted range has much fewer bursts. As expected, we ob-

serve that most bursts ends with small packets, i.e., 84.59% of all bursts have the last packet

≤ 100 bytes, since large packet typically indicates being in the middle of data transfer, thus

not the end of a burst. For some other values, e.g., 121 bytes, 93.04% bursts are short bursts

indicating high correlation. Machine learning algorithms could learn such rules and make

prediction. Although there is less correlation between IBT and packet length for the two

major spikes at 40 bytes (71.05% short bursts) and 52 bytes (70.00% short bursts), machine

learning algorithms would consider other features for prediction automatically for higher
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Figure 7.8: Distribution of IBT grouped by the type of the last packet.

accuracy.

In Figure 7.8, the number of bursts for different Flag(1) is presented, sorted in a de-

scending order from left to right. Specifically, for Flag(1) == 0, such bursts fall into two

groups, UDP packets and ICMP packets. Besides UDP packets, we also observe strong cor-

relation between Flag(1) and short IBTs for SYN and PUSH-ACK packets, with 90.44%

and 90.72% confidence, respectively.
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Figure 7.9: CDF of IBT v.s. the application generating the last packet.

The last feature we look at for each packet is the application ID. Notice that this fea-

ture is not directly obtainable from packet traces and only available at the client side 2. In

Figure 7.9, the legend shows the sorted top list of applications contributing to most bursts

2At the network side, using the User-Agent field in each TCP flow, the application name may be inferred,
however, it is not 100% accurate and for non-HTTP traffic, no such information is available.
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with Facebook as the top 1 app. The application-wise differences of IBT is obvious which

necessities the choice of this feature. We also observe that for some applications, peri-

odic transfer behavior contributes to clear jumps in IBT distribution, e.g., Faceboook and

LiveProfile.

7.3 Evaluation Methodology

We present the metrics and methodology for evaluating RP in this section.

7.3.1 Evaluation Metrics

Although there are some differences between 3G and 4G RRC mechanisms as described

in Chapter II, the overall tail mechanisms are similar:

1. There is a fixed promotion overhead, which incurs both energy and signaling over-

head.

2. There is a fixed tail which incurs UE energy overhead, but useful for preventing

excessive promotions.

With the help of accurate IBT predictions, RP can make decisions on fast dormancy

for each burst in a similar way for both 3G and 4G networks, although fast dormancy

was initially proposed for 3G networks. In this study, we select the 4G LTE network as

a representative for simplicity and the conclusions we draw if we use the 3G network and

power model should only have the quantitative differences from the 4G model, rather than

qualitative ones.

We consistently use the same terms described below. Specifically, assuming a UE is

used for some period t. We define the total radio energy usage of the UE in t to be E.

Notice that E is one of the most significant components for UE’s total energy usage, along

with screen energy and CPU energy, etc. [26]. We then define the total duration of UE
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being in RRC CONNECTED to be R, to quantify the channel occupation time, since radio

resource is only allocated to UE in RRC CONNECTED in the LTE network. E and R are ap-

proximately proportional, because the power level in RRC CONNECTED is much higher than

that in RRC IDLE, and the radio energy E energy is dominated by that in RRC CONNECTED:

E ≈ PR, where P is the average power level in RRC CONNECTED, with small variation in

most cases. For the rest of the paper, we only study E, and assume the channel occupation

time R is proportional to E.

To quantify the state promotion overhead, we define signaling overhead S as the num-

ber of state promotions, since one promotion corresponds to fixed number of signaling

messages [81]. To save the radio energy E, UE would spend less time in RRC CONNECTED

and hence there is a higher probability for RRC state promotions, resulting in increased S.

The design goal of our system is to reduce E, while minimizing the increase of S. A state

promotion also incurs a fixed delay (Tpro). Since the total of such delays is proportional to

S, we do not use a separate metric to quantify the introduced delay by promotions. In ad-

dition, a state promotion requires fixed energy (TproPpro), which is taken into consideration

in calculating E.

Assume a specific user trace is fed to the LTE network and power model simulator

with all default settings, the values for E and S are Ed and Sd, respectively (the subscript d

stands for default). Then assume after the energy saving scheme is applied and the resulting

E, S values are E ′, S ′. We define

∆(T ) =
T ′ − Td
Td

where T = E, S. ∆(S) is positive, while ∆(E) is always negative. For simplicity, we

redefine

∆(E) =
|E ′ − Ed|

Ed
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making it positive, representing the ratio of energy saved. In sum, the goal is to maximize

∆(E) while minimizing ∆(S).

7.3.2 RRC and Radio Power Simulator

We build a 4G LTE RRC state machine simulator with the LTE power model for the

trace-driven analysis.

The LTE state machine simulator takes as input the 3G packet trace. It first prepro-

cesses the trace using the methodology introduced in previous work [20] by removing ex-

isting state promotion delays. The purpose is to decouple promotion delays introduced by

the existing 3G state machine from the actual traffic patterns. Therefore the 3G trace can

be simulated in a different (4G LTE) network. Subsequently, the simulator injects new pro-

motion delays into the trace, then infers the RRC states experienced by the UE based on the

timing, size, and direction of each packet, according to the 4G LTE state transition model

depicted in Figure 2.1(b). The output of network model simulator is an array of packets

with adjusted timestamps, as well as the RRC states of the UE at any given time.

The power model simulator takes as input the output of the state machine simulator and

calculates the energy consumed by the 4G radio interface. The total energy consumption

consists of four components: idle, promotion, tail, data transfer. In idle mode, the radio

power consumption is very low (almost zero). For promotion energy, both the promotion

delay and the average promotion radio power are fixed. The radio power consumed on the

tail is also fixed, based on our measurement using a real LTE phone (detailed below).

The parameters of the model are measured by us using an HTC ThunderBolt smart-

phone with an LTE data plan of a large cellular ISP in the U.S. The phone has 768MB

RAM memory and 1 GHz Qualcomm MSM8655 CPU, running Android 2.2.1. We use

the Monsoon power monitor [76] to measure the UE power consumption. The measured
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Powera (mW) Duration (ms)
Screen off Pbase: 11.4±0.4 N/A

Idle averageb Pidle: 31.1±0.4 N/A
Promotion Ppro: 1210.7±85.6 Tpro: 260.1±15.8

Tail averageb Ptail: 1075.5±3.3 Ttail: 11576.0±26.1

a All power values include the base power with screen off.
b The average power is measured with DRX considered.

Table 7.2: The LTE power model parameters measured from a real cellular ISP.

parameters are summarized in Table 7.2. We validate the LTE state machine and the power

model simulator by comparing the radio energy measured by power monitor with simulated

radio energy for four popular Android applications. The error rate is less than 6%.

7.3.3 Prediction Framework Evaluation Methodology

To evaluate the performance of the prediction framework, we need to calculate the

prediction accuracy and the resulting ∆(E) and ∆(S).

It is straightforward to calculate the prediction accuracy. Assume n bursts are predicted

and ns of them are followed by short IBTs and nl are followed by long IBTs (n = ns+nl).

Then assume the prediction framework correctly predicts n1 out of the ns IBTs to be short

and n2 out of the nl IBTs to be long, the prediction accuracy is (n1 + n2)/n.

For calculating ∆(E) and ∆(S) , if an IBT is predicted to be short, the prediction

framework would have no impact since it keeps UE stay in the high power tail and there is

no change to the RRC state machine. When an IBT is predicted to be long, the prediction

framework would make UE demote to RRC IDLE to save energy.

Assume the current burst Bi ends at time t0 and the next burst Bi+1 comes at time

t1. At time t0+BT, when the existence of Bi is detected by the prediction framework, it

collects information about Bi and predicts the IBT following it, denoted as ibti, whose

actual value is t1 − t0. We also assume that the short burst threshold SBT ≤ Ttail, the

tail timer. Otherwise, if SBT > Ttail, the energy saving opportunity would be much less,
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Algorithm 1 Update ∆(E),∆(S) for burst Bi

Ptail ← power level at RRC CONNECTED tail
Pidle ← power level at RRC IDLE state
Ppro ← power level during promotion
Tpro ← promotion delay
if ibti is predicted to be > SBT then

if ibti ≤ Ttail then
//Demote to RRC IDLE at time BT + t0, save energy
∆(E) += (Ptail − Pidle)(ibti−BT)/ED
//Extra idle to active promotion overhead
∆(E) −= PproTpro/ED
∆(S) += 1/SD

else
//Demote to RRC IDLE at time BT + t0, save energy
∆(E) += (Ptail − Pidle)(Ttail−BT)/ED
//No extra promotion overhead

end if
else

// ibti predicted to be short, remain in the tail, no impact
end if

since when an IBT is predicted to be short, it is still possible that IBT > Ttail, and it is

an indication that the tail could be ended earlier to further save energy. Based on these

definitions, we provide the detailed pseudocode of updating ∆(E) and ∆(S) for burst Bi

in Algorithm 1. If ibti > Ttail and ibti is predicted to be long, for the original state machine,

the arrival ofBi+1 already triggers a promotion, so the prediction framework does not incur

any extra promotion overhead. Otherwise, if ibti ≤ Ttail, an extra promotion would occur.

7.4 Implementation and Evaluation

In this section, we first talk about the implementation of RP. Then we evaluate differ-

ent prediction models for IBT prediction using various machine learning algorithms, and

analyze the impact on energy saving and signaling overhead.
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7.4.1 Implementation

We implement the full RP system on Android to evaluate its running overhead and prac-

ticality. In addition, we implement the IBT prediction framework described in Section 7.1

in MATLAB, which allows us to evaluate a broader set of machine learning algorithms.

Android implementation : the test device we use is Samsung Galaxy S3 phone running

Android 4.0.4 (Ice Cream Sandwich), with 1.0GB RAM and Quad-core 1.4 GHz Cortex-

A9 CPU. We modify the tcpdump source code and cross-compile it for Android platform

to be our data collector. Specifically, our data collector aggregates the traffic information

into bursts in real time. For each burst, the features listed in Table 7.2.3 are collected.

Whenever an idle gap of BT is observed, indicating the previous packet marks the end of

the current burst, the data collector summarize all features of the current burst and feed

them to the IBT prediction framework. Currently, the data collector and IBT prediction

framework works in separate processes and the inter-process communication (IPC) is via

file read/write for simplicity, and better IPC mechanisms can be further investigated.

The IBT prediction framework is implemented as an Android application which runs in

the background and only periodically wakes up to check whether there is any burst pending

prediction. If there is a burst for prediction, the framework would predict the IBT based on

the features of the current burst and the prediction model based on previous burst history.

The purpose for the periodic wake-ups is to prevent the IBT prediction always acquiring the

CPU lock, thus wasting computational resources. The periodic cycle represents a tradeoff

between responsiveness and CPU overhead. In practice, we choose the cycle to be 0.2BT,

which at most incurs 0.2BT delay in making prediction and in the same while incus less than

1% CPU overhead, as the checking for a new burst is quite lightweight, i.e., checking the

last-modified time in our implementation. Our IBT prediction framework uses the machine

learning algorithm implementation included in the Weka library [84].

In order to implement the fast dormancy scheduler, we need both client and network
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support for actively invoking fast dormancy. However, we do not find any programming

interface for this purpose and we bypass this technical challenge, using the fact that fast

dormancy is available on our device and the timer for triggering fast dormancy can be

changed after the device is rooted. Specifically, we change the fast dormancy timer to be

BT, i.e., by default, fast dormancy is invoked after each idle gap of BT. When fast dor-

mancy scheduler decides to invoke fast dormancy, the default fast dormancy settings helps

achieve this purpose, and when the opposite, the fast dormancy scheduler sends small UDP

packets to extend the tail time. Assuming the default tail timer (without fast dormancy) is

Ttail and the timer for fast dormancy is Tfd (Tfd = BT in our implementation), fast dor-

mancy scheduler needs to keep sending the small UDP packets for Ttail − Tfd time, and

the gaps between such UDP packets should be slightly less than Tfd to ensure that no extra

promotion is triggered by these additional packets. Notice that this trick is a necessity with

fast dormancy invocation support, and we only use it for evaluation purpose.

MATLAB implementation: in order to easily evaluate a broader set of machine learning

algorithms, we implement the IBT prediction framework in MATLAB using its statistics

toolbox [85]. This implementation is intended to evaluate the accuracy and effectiveness

of different machine learning algorithms and parameter settings for the UMICH data set

traces. Specifically, we look at Naı̈ve Bayes, discriminant analysis, SVM, classification

tree, regression tree, Ensemble (RobustBoost) and Ensemble (bag). We only report the

representative ones with better performance in our following analysis.

We use MATLAB R2011b (7.13.0.564) running on a desktop with Intel Xeon CPU

(3.16GHz) and 16GB memory, running Linux 2.6.38. With the same C++ benchmark

programs, we observe that the running time on the studied Android device is around 4

times of the desktop. We use this ratio as a simple heuristic to estimate the training time

and prediction time of different algorithms. Notice that we only use this ratio to estimate the

running time of MATLAB machine learning algorithms on Android. For actual evaluation
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of the running overhead, we rely on the Android implementation and the experiments on

real Android devices.

7.4.2 Accuracy v.s. Performance Metrics

We start by discussing the impact of IBT prediction accuracy on the energy saving

∆(E) and signaling load change ∆(S) when RP is deployed.
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Figure 7.10: ∆(E),∆(S) v.s. prediction accuracy.

Given a sequence of bursts B1, B2, · · · , Bn, let the IBT after Bi be ti. Ideally, the

prediction framework could accurately predict whether ti ≤ SBT. We calculate ∆(E) and

∆(S) as described in §7.3.3 by varying the binary prediction accuracy. Figure 7.10 shows

that ∆(E) and ∆(S) have a linear pattern as accuracy changes. When the accuracy is

0, namely all IBTs are predicted to be wrong, there is little energy saving of 2.6% with

∆(S) = 129.5%. The energy saving is so small because a large number of promotions also

incurs significant promotion energy. As accuracy increases, RP saves more energy with

reduced ∆(S). In the optimal case, when the accuracy achieves 100%, 59.8% of the total

energy could be saved while the signaling overhead increases by 85.4%. The signaling

overhead is not 0, because for IBTs smaller than Ttail but larger than SBT, even if the

prediction is correct, triggering fast dormancy would still incur an extra state promotion.

Such overhead is inherent for any optimization technique, such as a smaller static Ttail

setting and RadioJockey. The design goal of RP is to approach this optimal case.
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α = 100 500 1000 2000 5000
β = 1 81.5% 83.7% 84.2% 82.4% 80.2%
β = 2 80.1% 81.4% 82.9% 82.0% 80.0%
β = 5 79.8% 80.9% 81.4% 81.0% 79.3%
β = 10 79.4% 80.0% 80.9% 80.0% 79.0%
β = 20 78.9% 79.6% 80.2% 79.5% 78.7%

Table 7.3: Tuning α, β for MostRecent prediction model.

Name Description Accuracy

MostRecent
Use most recent α bursts to

84.2%
predict next β bursts (per user)

PerUser
Use n historical bursts of a user

80.8%
to train a fixed model (per user)

AllUsers
Use k historical bursts of all users

77.5%
train a fixed model (all users)

Table 7.4: Summary of prediction models.

7.4.3 Prediction Model Comparison

For IBT prediction, historical IBT information is needed to train a prediction model.

For RP, we propose to use the most recent historical information to train a model for each

user, denoted as MostRecent. Specifically, for each user, the most recent α bursts are

used to predict the next β bursts. We study the impact of changing α, β in Table 7.3, using

the Ensemble bagging [86] learning algorithm as an example (number of trees set to 20).

We calculate the prediction accuracy for different (α, β) settings. We observe that if α

is too small, there is not enough history information for learning; in the opposite, if α is

too large, the user is more likely to switch to new applications so old rules do not apply.

Based on Table 7.3, we choose α = 1000 and β = 1 that maximize the accuracy in the

experimental measurement. In practice, α and β could also be dynamically adjusted based

on prediction history.

In Table 7.4, we compare the MostRecent model with two other models, PerUser

and AllUsers. For fair comparison, we use the same machine learning algorithm (En-

semble bagging) as in Table 7.3. We set α = 1000 and β = 1 for the MostRecent model
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Settings (unit: sec) Accuracy ∆(E) ∆(S) ∆(E)
∆(S)

S0 BT: 1 SBT: 3 82.65% 52.10% 101.64% 0.513
S1 BT: 1 SBT: 2 84.80% 56.69% 158.99% 0.357
S2 BT: 1 SBT: 4 81.94% 49.07% 83.34% 0.589
S3 BT: 0.5 SBT: 3 84.71% 53.74% 100.36% 0.535
S4 BT: 1.5 SBT: 3 85.39% 58.85% 93.75% 0.628
S5 BT: 1/1.5 off/on

85.88% 59.07% 91.01% 0.649
SBT: 2.5/3 off/on

? All evaluations in this table for RP are using Classification Tree
with MostRecent prediction model (α = 1000, β = 1).

Table 7.5: Comparison of different parameter settings.

as discussed previously. Similarly, we set n = 10, 000 for PerUser and k = 10, 000 for

AllUsers (n and k are defined in Table 7.4). The values of n and k here are empirically

selected, which yield good prediction accuracy for each prediction model. We observe that

MostRecent has higher prediction accuracy than the other two modes, and PerUser is

more accurate than AllUsers. This suggests that it is necessary to have a separate model

based on the most recent history for each individual user.

7.4.4 Selecting Burst Thresholds

In the previous subsections, we only examine one setting of BT and SBT, i.e., BT =

1s and SBT = 3s. Here we study how different settings of these parameters affect the

performance of RP. In the top half of Table 7.5, we select some combinations of BT and

SBT values and compare them with the setting of S0. We notice that S1 sets SBT to be

2s, which significantly increases ∆(S). Among all settings explored, S4 yields the highest

∆(E)/∆(S) 3.

As suggested by previous work [83], a different parameter setting distinguishing screen-

on and screen-off could yield better optimization results given their traffic pattern differ-

ence, because screen-off traffic is very likely to be generated by background applications

3∆(E)/∆(S) is the average energy saving per unit signaling overhead, and we use it to quantify the
performance of a setting.
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without user interaction. A more aggressive setting could be applied to screen-off traffic to

save energy without incurring much signaling overhead. Specifically, here a more aggres-

sive setting means a smaller BT, which gives RP an opportunity to predict IBT earlier, and

a smaller SBT, which classifies more IBTs into the long category hence resulting in more

fast dormancy invocations. In Table 7.5, S5 is an example of such screen-aware setting that

yields good results. Compared with S4, S5 saves more energy with less signaling overhead

incurred. In fact, S5 achieves comparable optimization results as the optimal case shown in

Table 7.6 does.

In practice, given the training data, we can periodically search within a large range of

BT and SBT values for an optimal setting. The setting can also be made dynamic and

customized for each user.

To summarize, RP achieves radio energy saving by 59.1%, at the cost of 91.0% addi-

tional signaling overhead in LTE networks, outperforming previous proposals. Specifically,

as shown in Table 7.6, in order to achieve such energy saving (59%), the additional signal-

ing overheads incurred by MakeIdle and naı̈ve fast dormancy are as high as 305% and

215%, respectively. The maximal energy saving achieved by RadioJockey is 27% since it

is only applicable to background traffic, ideally generated by a single application running

in the background.

7.4.5 Comparing Resource Optimization Approaches

In Table 7.6, we compare various radio resource optimization techniques, including

the basic fast dormancy with static timers, RadioJockey [81], MakeIdle [82] and RP us-

ing different machine learning algorithms. Using the network and power model simula-

tors (§7.3.2), we apply the above optimization techniques to the UMICH data set. We ig-

nore the overhead of invoking fast dormancy, since invoking fast dormancy from the client

only requires sending one special message called Signaling Connection Release Indication

(SCRI). In contrast, a state promotion from the idle state to the connected state involves 12
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Name Description & Configuration ∆(E) ∆(S) ∆(E)/∆(S)a

Fast dormancy 1s Invoke fast dormancy after 1s idle time 62.7% 214.9% 0.29
Fast dormancy 3s Invoke fast dormancy after 3s idle time 40.9% 95.8% 0.43
Screen-aware FD Invoke FD after 3s idle time at screen on; 52.9% 115.1% 0.463s on, 1s off invoke FD after 1s idle time at screen off

RadioJockey RadioJockey applied to 30.1% 51.7% 0.58
Assuming 100% accuracy background trafficd (backgroundb)

RadioJockey RadioJockey applied to 27.2% 52.0% 0.52
Assuming 90% accuracy background traffic (background)

MakeIdle MakeIdle: based on previous M packets, 64.9% 305.2% 0.21M:1000, N:100 predict next N packets
MakeIdle MakeIdle: based on previous M packets, 44.9% 195.2% 0.23M:10, N:10 predict next N packets

RP: Naı̈ve Bayes Naı̈ve Bayes classification with mvmn: 53.0% 107.9% 0.49multivariate multinomial distribution
RP: Classification Tree Binary decision tree for classification 59.1% 91.0% 0.65

RP: Ensemble (Bag) Method: Bag; type: classification 59.3% 90.2% 0.66weak leaner: decision tree; # of trees: 20
RP: Optimal Predict all IBTs correctly 59.8% 85.4% 0.70

? All evaluations are using MostRecent prediction model with α = 1000 and β = 1, with setting S5 in Table 7.5.
a ∆(E)/∆(S) shows the average energy saving per unit signaling overhead. The higher this metric, the better.
b We use smartphone screen status to distinguish between foreground and background traffic.

Table 7.6: Comparison of different optimization algorithms.

or 30 signaling messages [81].

Basic fast dormancy : we simply change Ttail to be a constant smaller than its original

value.

Screen-aware fast dormancy : we use different Ttail settings for fast dormancy based

on screen status [83].

RadioJockey [81]: it uses system call traces to predict the end-of-session (EOS) for

background application with no user interaction, with the ideal usage scenario for a sin-

gle application. For multiple concurrent applications, it invokes fast dormancy only if i)

EOS of one application is predicted, and ii) there is no active session of any application.

RadioJockey does not handle foreground traffic, because user interactions may violate the

correlation between system calls and EOS [81]. Given that we do not have system call

traces in the UMICH data set, we assume that RadioJockey could predict the EOS for each

of the applications, even when multiple applications are running concurrently. This is a

165



strong assumption, because the authors admit that the accuracy for prediction would be

lower for concurrent applications, and RadioJockey does not use real traces to evaluate

concurrent applications.

MakeIdle [82]: it relies purely on packet timing without considering signaling overhead,

i.e., it tries to find a wait time Twait which maximizes the energy saving if Ttail is set to

be Twait for the previous M packets, it then applies this Twait for the next N packets.

The range we search for an optimal Twait is [0.5, 11.5], as suggested by the author. No

recommendations have been made for the values of M and N , so we empirically select

their values. MakeActive, proposed by the same set of authors tries to reduce the signaling

overhead of MakeIdle. However, as we discuss in Chapter VIII, MakeActive is not a perfect

fix without causing bad user experiences, especially for foreground traffic.

RadioProphet : we explore various machine learning algorithms with the MostRecent

prediction model (α = 1000 and β = 1). Specifically, we look at Naı̈ve Bayes, classifi-

cation tree, and Ensemble (bag) algorithms in the MATLAB implementation. All of them

are off-the-shelf machine learning algorithms used widely. The IBT prediction accuracy

and performance are listed in Table 7.7. We observe that Classification Tree has better

accuracy than Naı̈ve Bayes, while Ensemble (bag) has slightly better accuracy than Clas-

sification tree. In Table 7.7, the training time and prediction is the estimated time running

these algorithms on Android. We use a suite of C benchmark programs that can run both on

Android and on the server to measure the speed difference of the two platforms. Assume

the total running time of the benchmark suite is Ta for Android and Ts for server, and as-

sume the training/prediction time of the MATLAB implementation measured on the server

is T , the estimated training/prediction time on Android is

T ′ =
Ta
Ts
T
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Name Training/prediction time (ms) Accuracy
Naı̈ve Bayes 25.7 / 9.8 76.1%

Classification Tree 547.7 / 23.7 85.9%
Ensemble (bag) 2504.2 / 426.2 87.4%

Table 7.7: Prediction performance and accuracy of different machine learning algorithms.

Notice that such estimation is only used for us to rough estimation and it may be inaccurate.

Later, we will talk about our evaluation by running machine learning algorithms on real

Android device. Based on Table 7.7, the running time overhead for Ensemble (bag) is

unacceptable and we choose to use Classification Tree, which has slightly lower accuracy,

but much lower running overhead.

In Table 7.6, we observe that “fast dormancy 1s” is an aggressive approach, saving

62.7% of energy while incurring 214.9% of signaling overhead. “Fast dormancy 3s” sig-

nificantly reduces ∆(S) to 85.4%, with less energy saving of 40.9% as expected. The

screen-are fast dormancy achieve a better balance between energy saving and signaling

overhead, and the ∆(E)/∆(S) is 0.46. For RadioJockey, by assuming the accuracy for

predicting EOS for each background application to be 90%, it saves 27.2% of energy with

52% of ∆(S). There is slight improvement when the accuracy increases to 100%. How-

ever, we are not able to evaluate RadioJockey for foreground traffic on which the prediction

accuracy is unknown. For MakeIdle, we pick two sample (M,N ) settings. For (1000, 100),

the energy saving is significant, but the additionally incurred signaling overhead has an un-

acceptable value of 305.2%. Even for (10, 10), ∆(S) is as high as 195.2%. This is because

MakeIdle does not consider balancing between energy saving and signaling overhead 4.

For RP, in the optimal case assuming there is an oracle with complete knowledge of

traffic, it saves 59.8% of energy with 85.4% of extra signaling overhead incurred. Note

that this signaling overhead depends on the choice of SBT and is inherent for any fast

dormancy based optimization. For example, if there are two packets P1 and P2, such that

4Another orthogonal approach proposed by [82] to reduce the signaling overhead (called MakeActive)
is not applicable, as it requires traffic shifting that could result in unacceptably negative impact on user
experience for foreground traffic.
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P2 arrives 11.5s after P1 and there is no other packet in between, in the default setting

where Ttail = 11.6s (Figure 2.1), there is no state promotion between P1 and P2. However,

if we want to eliminate the long radio-on period after P1, we have to invoke fast dormancy

at some time between P1 and P2, and then the extra state promotion at P2 is inevitable.

Among all explored machine learning algorithms, ensemble (bag) performs best, achieving

87.4% of accuracy, 59.3% of ∆(E) and 90.2% of ∆(S). Classification Tree, which is more

practical, achieve comparable performance

For the metric ∆(E)/∆(S), which quantifies how well the tradeoff between saving re-

sources and incurring signaling load is handled, RP outperforms other algorithms. Radio-

Jockey has comparable performance for background traffic, however, RP has good results

for both background and foreground traffic from concurrent applications.

7.4.6 Running Overhead on Real Phone

We implement the prototype RP system on Android as discussed in §7.4.1, in order to

demonstrate its practicality for today’s smartphones. We breakdown the running overhead

into different components and evaluate each of them. Specifically, the overhead includes

data collection, model training and prediction, and invoking fast dormancy. As discussed

in previous work [81], invoking fast dormancy incurs negligible overhead compared with

state promotion. For “fast dormancy 3s”, the total promotion energy is only 2.3% of the

total energy. Hence, it is reasonable to ignore the fast dormancy invocation overhead.

Data collector : unlike RadioJockey requiring system call traces for all applications, RP

only needs to monitor packet traces, which is also required by RadioJockey. Our data

collector runs in the background and does not interfere with other user applications. It

incurs no more than 1% of CPU overhead when parsing packet headers and producing

output about burst features, although the overhead is much lower when the throughput is

low (e.g., less than 200 kbps). The additional power to run the data collector is less than
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17mW most of the time, which is only 1.6% of the tail power for the studied LTE network.

Model training and prediction : we use Classification Tree implementation from the

Weka [84] library for evaluation. We measure that the average model training time is

200ms and the average prediction time is 0.1ms. In terms of energy overhead, the incurred

power overhead is also very small, mostly coming from the CPU computation, and the

measured energy overhead is less than 1% of the tail energy.

In terms of the storage cost, for the MostRecent model, information of the α = 1000

historical bursts needs to be stored at the UE side, and according to our implementation,

the storage of one burst is less than 200 bytes. So the total storage cost is only 200KB,

negligible for modern smartphones.

7.5 Summary

We propose a novel, practical, and effective system called RadioProphet to address the

radio resource deallocation problem for cellular networks. RP takes as input the most recent

history information of UE traffic to build a prediction framework for traffic inter-burst

time (IBT), leveraging machine learning to predict IBT based on a list of lightweight and

carefully selected features. It performs resource deallocation only when IBT is sufficiently

long to ensure low signaling overhead. We demonstrate that RP can be implemented at

the UE transparently to applications, with negligible energy overhead and fast response

times. Using 7-month-data collected from 20 real users with accurate RRC and radio power

simulator for LTE 4G networks, we evaluated the performance of RP. With 85.9% of

accuracy in predicting IBTs, RP provides the option of saving radio energy by up to 59.1%,

at the cost of 91.0% of additional signaling overhead. We believe the RP system represents

a significant step in systematically optimizing energy and radio resource for 3G and 4G

LTE networks.
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CHAPTER VIII

Related Work

In this chapter, we summarize related work in different categories.

8.1 Characterizing Mobile Network Usage and Performance

Netdiff system [87] establishes a benchmark for comparing performance of differ-

ent ISPs. In our research, we attempt to establish an equivalent benchmark for compar-

ing network application performance on smartphones. Although there are some existing

tools available for such comparison, e.g., speedtest.net [35] and FCC’s broadband

test [36], which measure the throughput and latency in 3G networks, MobiPerf covers a

more comprehensive set of metrics, including DNS lookup, Ping to the first hop, TCP

handshake, and HTTP request to landmark servers, etc. Existing studies have compared

3G and WiFi performance on smartphones [88] and studied the influence of the packet size

on the delay in 3G networks [89]. Jiang et al. examine how large buffers in cellular net-

works contribute to significant TCP queuing delay [58]. Tan et al. carried out a similar

measurement study on multiple commercial 3G networks [90]. However, their study is

limited to one location (Hong Kong) and a few devices. Compared with their study, our

work covers significantly more users from many different locations. Netalyzr [37] carries

out network measurement for Internet users, not for smartphone users.

Regarding cellular network infrastructure, Xu et al. characterized 3G data network
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infrastructures, leading to an observation that the routing of cellular data traffic is quite

restricted as traffic must traverse through a small number of gateway nodes [43]. Wang et

al. unveiled cellular carriers’ NAT and firewall policies [91]. Balakrishnan et al. investi-

gated IP address dynamics in 3G networks. They found that cellular IPs embed much less

geographical information than wired IPs do [54].

Existing work has built tools to infer traffic differentiation policies from either local

experiments or public deployment [92, 93, 94]. And our work is among the first attempts

to systematically uncover the previously unknown network policy in cellular networks.

Prior efforts [95, 96, 97] deploy smartphone user studies and collect data from tens to

hundreds of participating users. Those studies investigate various aspects including the di-

versity of smartphone users, the popularity of mobile applications, and the effectiveness of

compression techniques on cellular traffic etc. Our study features a much larger user base

of around 300K customers using the LTE networks whose characteristics are far from being

well understood. Some previous studies also perform large-scale measurement of mobile

networks and smartphones. Sommers et al. compare cellular and Wi-Fi performance us-

ing crowd-sourced data from speedtest.net covering 15 metro areas, focusing on

throughput and latency [59]. Xu et al. profile diverse usage behaviors of smartphone ap-

plications [53]. Qian et al. perform network-wide measurement studies of cellular periodic

transfers [30]. In contrast, our investigated spectrum is more diverse, covering traffic char-

acteristics, network performance, protocol interaction, bandwidth utilization, and applica-

tion usage in the increasingly popular LTE networks. We also compare our results with

those presented in [59]. Some previous studies [98, 57] also examined mobile handsets

using Wi-Fi networks.

8.2 Characterizing Smartphone Application Performance

There have been several studies focusing on mobile users from the perspective of appli-

cations, such as a study no the bottlenecks of web browsers’ performance [47], a study [99]
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which characterizes the relationship between users’ application interests and mobility, and

another study [54] which examines the possibility of geolocating IP address in 3G net-

works. Other related measurement works of cellular data networks include a study of

traffic characteristics on mobile devices [100], and performance analysis of TCP/IP over

3G network with rate and delay variation [101].

Our work is inspired by numerous network and application measurement studies [102,

46, 99], e.g., Trestian et al. characterize the relationship between users’ application inter-

ests and mobility [99], Zhuang et al. investigate application-aware acceleration to improve

application performance [46], and Liu et al. study the interaction between the wireless

channels and applications [103]. Our work complements these works with different focus

and methodology.

While many applications are built on TCP, their actual user-level performance does not

match that of TCP alone due to various adaptation strategies and overheads induced by the

applications. Realizing this problem, Chesterfield et al. [104] evaluated the performance

of streaming media application over a WWAN (Wireless Wide Area Network). But their

work is limited to a customized streaming application named vorbistreamer. In a sepa-

rate study, Chakravorty et al. [102] measured the performance of TCP and web browsing

over WWANs. However, that study is also different from ours because they focus only on

comparing the overall throughput across different link layers.

Unlike previous studies, e.g., [103, 102, 105], which perform measurements on desktop

or laptop systems, relying on cellular network data cards or phones tethered through USB

as a modem, in this study, the application performance data is collected directly from end-

users’ devices, thus more accurately reflecting the user-perceived performance.

8.3 Radio and Energy Optimization for Cellular Networks

In cellular networks, there exists a radio resource control (RRC) state machine that

manages the handset radio interface. It is the key coupling factor bridging the application
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traffic patterns and the lower-layer protocol behaviors. Previous studies [20] and [12] ex-

amine the RRC state machine and its interaction with cellular traffic, for 3G UMTS and

4G LTE networks, respectively. We study for hundreds of thousands of users their state

transition delay and transport-layer idle time, two key factors incurring signaling load and

energy overhead, respectively, due to the LTE RRC state machine.

DRX in 4G LTE networks. Zhou et al. [16] model the DRX mechanism as a semi-

Markov process, with which they analytically study the effects of DRX parameters on the

performance, as well as the tradeoff between the power saving and wake-up delay. Kolding

et al. [18] also investigate the balance between throughput and power saving by chang-

ing the configuration of DRX parameters, using a web-browsing traffic model. Bontu et

al. [17] further considers the impact of DRX parameters on different applications with var-

ious delay sensitivities. Wigard et al. compares a long-DRX-only scenario and a scenario

with both long and short DRX, in terms of throughput and power consumption. All above

studies employing analytical models suffer from an inherent limitation: the expressiveness

of an analytical model is quite limited and is unlikely to capture the characteristics of real-

world traffic patterns using a statistical distribution with a few parameters. The existence of

concurrent applications accessing the network further increases the difficulty of modeling

the packet dynamics. In contrast, our work is the first empirical study to investigate the

impact of the configurations of DRX parameters and tail timer. We overcome the above

limitation by employing network traces from real smartphone users, thus more realistically

revealing the complex tradeoffs incurred by various DRX parameters.

Smartphone power modeling has also been investigated by previous empirical mea-

surements. The Bartendr project [45] studies the relationship between signal strength

and smartphone radio power usage. PowerTutor [75] collects power traces for individ-

ual hardware components under controlled experiments then uses multi-variable regression

to compute the coefficients for a linear power model considering all hardware components.

ARO [26] employs an approach similar to [75] but focusing only on radio power usage. It
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performs more fine-grained simulation of transmission queues to capture state transitions.

Our LTE power model is also empirically derived, but it differs from all aforementioned

models in two aspects. First, it considers DRX in RRC CONNECTED, a new power manage-

ment mechanism in LTE networks. Second, it further takes into account both uplink and

downlink data rates, resulting in a more accurate estimation of the radio power consumption

when the throughput is high, as is a common case in LTE networks.

Investigation of the inactivity timers in cellular networks. Inactivity timers, which

determine the tail times, are the most important parameters in cellular radio resource man-

agement. Radio Resource Control (RRC) tail [21], is necessary and important for cellular

networks to prevent frequent state promotions (resource allocation), which can cause un-

acceptably long delays for the UE, as well as additional processing overheads for the radio

access network [23, 24]. Today’s cellular carriers use a static and conservative setting of the

tail time in the order of many seconds, and previous studies have revealed this tail time to

be the root cause of energy and radio resource inefficiencies in both 3G [20, 21, 106, 107].

Recent work [108] investigates impact of traffic patterns on radio power management pol-

icy. The impact of inactivity timers on the UMTS network capacity [107] and the UE

energy consumption [109, 110] has also been studied. Another study [20] makes a fur-

ther step by characterizing the impact of operational state machine settings with real traces

and conclude that the fundamental limitation of the current cellular resource management

mechanism is treating all traffic according to the same RRC state machine statically and

globally configured for all users, therefore, it is difficult to balance various tradeoffs of

resource utilization.

Adaptive resource release. Distinct from using static timers, Liers et al. [111] propose

to determine inactivity timers dynamically, based on the current load, radio resources, and

processing capability. However, they only address the problem from the perspective of

network capacity as to reducing the call blocking and dropping rate, and the same timer

values are applied globally to all UEs at any given time. In comparison, RP is based on fast

174



dormancy where resource release is requested by each individual UE. Such fine-grained

control leads to much more significant savings of the radio resource and the UE energy

consumption.

Fast dormancy (FD) [31, 32] is a mechanism in 3G networks for reducing the amount

of tail time incurred by a device by quickly demoting it to a low energy RRC state with-

out waiting for the tail timer to expire. TOP [22] proposes to leverage fast dormancy to

eliminate the tail whenever possible. It assumes each individual application can predict

an imminent long IBT with reasonable accuracy, and fast dormancy is only invoked when

the predicted aggregate idle time across all concurrent applications is long enough. While

TOP provides framework and mechanism for optimization, it does not solve the problem of

prediction. In this study, we solve the open research problem of predicting IBTs. Unlike

TOP being a proposed framework with unsolved assumptions, our system RP is a practical

working system.

MakeIdle [82] uses packet timestamp information to calculate the optimal idle time be-

fore fast dormancy should be invoked that maximizes the energy saving. However, MakeI-

dle does not look at the application context and other useful features used in RP, resulting

in worse performance as shown later. Moreover, MakeIdle algorithm does not consider

the balance of energy saving and signaling overhead, and leaves the job of reducing the

signaling overhead to another algorithm called MakeActive [82], based on shifting packets

(batching). MakeActive does not work for foreground traffic, and even for background traf-

fic, there is no guarantee that it would not affect user experience, since it may incur up to

seconds extra delay. In this study, to minimize such negative impact on user experience, RP

does not rely on any traffic shifting techniques, especially because the goal for the design

of RP is to be working for all traffic, both foreground and background.

RadioJockey[81] is another closely related study. It uses system call traces to deter-

mine the end-of-session (EOS) for each application and triggers fast dormancy if there is

no active session for any of the applications. However, RadioJockey only works for back-
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ground application with no user interaction, and the authors point out that the prediction

accuracy would be lower for foreground traffic since user interactions may violate the cor-

relation between system call patterns and EOS; while for RP, there is no such limitation

and we achieve even better performance for all traffic than RadioJockey for screen-off traf-

fic. Also, RadioJockey treats different applications separately and could not predict the

start-of-session (SOS), hence when there are multiple concurrent applications, the predic-

tion accuracy would be jeopardized, with higher instrumentation and prediction overhead.

Our approach uses aggregate traffic from all applications and does not suffer from these

problems. Further, RadioJockey requires complete system call traces for all applications

in addition to the network traces, which incurs higher overhead than RP. In the evaluation

section later, we compare both MakeIdle and RadioJockey with RP and ignore MakeActive

because it alters user traffic resulting in negative impact on user experience, which is not

acceptable especially for foreground traffic.

Traffic scheduling There exists various traffic scheduling algorithms (e.g., piggyback,

batching [30, 112], TailEnder [21], and Intentional Networking [113]) for optimizing re-

source consumption in cellular networks. For example, in piggyback [30], transfers can

be shifted earlier, or be postponed till later, so that they can potentially be overlapped with

non-target transfers, thus reducing the total tail time. TailEnder [21] schedules transfers

to minimize the energy consumption while meeting user-specified deadlines by delaying

transfers and transmitting them together. In addition, specialized energy saving techniques

for mobile applications have been proposed for specific applications [114, 115] and for

specific protocols [116]. The major limitations of these approaches is that they are only

applicable to delay-tolerant traffic (RSS feeds, push notification etc.). RP can be applied to

any type of traffic (in particular, delay-sensitive traffic triggered by users), and can be used

together with the aforementioned scheduling techniques.

Traffic modeling and prediction has be explored by various previous works. A linear

prediction-based time series forecasting technique is used to predict future no-data intervals
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for multimedia data streaming [117]. Hidden Markov Models are also used for modeling

and predicting traffic of several Internet applications [118]. In our work, we look at the

aggregate traffic, including all different applications, and predict whether inter burst time is

longer than a threshold, which is a joint effect of packets generated by all applications, and

hence is more challenging and better for practical use. This specific, yet important problem

for energy and network resource saving has not been studied before in mobile platforms

with a large real-world data set as ours.
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CHAPTER IX

Conclusion and Future Work

My dissertation is dedicated to understand and optimize the performance and energy

footprint of smartphone applications, given their wide popularity. These issues are impor-

tant for smartphone users, application developers, smartphone vendors, content providers

and cellular network operators because improving the end-user experiences is their com-

mon interest.

Given that smartphones and 3G/4G cellular networks are relatively new and such re-

search topics are not well-studied, we have to solve many challenges and take some of

the first steps in this area. For example, in order to characterize application performance,

we need to understand the network characteristics of the underlying cellular networks and

MobiPerf tool is built for this purpose. Also, in order to optimize the energy footprint of

smartphone applications, we have devised a smartphone power model for 3G and LTE net-

works with real devices. The MobiPerf tool and the smartphone power model, along with

the network and power characterization results, can potentially help other researchers in

both industry and academia for their related research projects.

With controlled experiments separating individual factors on application performance,

we are able to narrow down the bottleneck factors for web browsing applications and un-

derstand the effect of various performance optimization techniques. In addition, we study

the interplay between TCP, application behavior and LTE network with a data set consisting
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of over 300,000 real LTE users and spot serious performance problems while identifying

their root causes.

With the knowledge of smartphone power model and cellular radio resource manage-

ment, we design and implement the RP system that makes intelligent decisions to dy-

namically release radio resources based on traffic pattern prediction. RP is implemented

on Android incurring negligible CPU and energy overhead, while achieving radio energy

savings and minimizing additional signaling overhead, significantly outperforming exist-

ing proposals. In addition, we also propose screen-aware optimization, which can better

balance the key tradeoffs in cellular networks.

Throughout my research study, I make sure that the measurement results are represen-

tative, e.g., via deploying smartphone applications to hundreds of thousand of real smart-

phone users and collect data directly from end devices. We also pay special attention to user

privacy and only the anonymous measurement results that are beneficial for research are

collected and all user identification information has been properly hashed. When designing

systematic solutions for either measuring performance or optimizing energy footprint, we

keep in mind that the best solution should be general, practical and long-lasting. Whenever

possible, we implement and evaluate our system, e.g., RP, on real devices, instead of sim-

ulations or synthetical analysis. We also pay special attention for the new LTE network,

making sure we have thorough understanding of its network and power characteristics and

our solutions are applicable for it, as it is believed to be a long-lasting cellular technology

expected to exist for decades [2].

9.1 Future Research Agenda

As future directions, I will continue to extend my previous works in the following

aspects:

• Cellular Network Performance Characterization. We will continue the development
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MobiPerf and make it into a general mobile measurement platform that can benefit

the entire research community. In addition, we will make use of the data set collected

by MobiPerf to make more analysis on cellular network performance and this data

set [119] is also available for other researchers.

• Energy Optimization for Cellular Networks. We will improve the prediction algo-

rithm of RP to consider TCP-level and application level context, which may further

increase the prediction accuracy.

• Effect of Network Protocol and Application Behavior on Performance for LTE Net-

works. We will improve the design of the bandwidth estimation algorithm that we

used to quantify the network utilization ratio of existing applications in the LTE net-

works. We will also explore the predictability of the available bandwidth in the LTE

networks and study its implications and applications.
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