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ABSTRACT
The current LTE network architecture is organized into very
large regions, each having a core network and a radio access
network. The core network contains an Internet edge com-
prised of packet data network gateways (PGWs). The radio
network consists of only base stations. There are minimal in-
teractions among regions other than interference management
at the edge. The current architecture has several problems.
First, mobile application performance is seriously impacted
by the lack of Internet egress points per region. Second, the
continued exponential growth of mobile traffic puts tremen-
dous pressure on the scalability of PGWs. Third, the fast
growth of signaling traffic known as the signaling storm prob-
lem poses a major challenge to the scalability of the control
plane. To address these problems, we present SoftMoW, a
recursive and reconfigurable cellular WAN architecture that
supports seamlessly inter-connected core networks, reconfig-
urable control plane, and global optimization.

To scale the control plane nation-wide, SoftMoW recur-
sively builds up the hierarchical control plane with novel
abstractions of both control plane and data plane entities.
To enable scalable end-to-end path setup, SoftMoW presents
a novel label swapping mechanism such that each controller
only operates on its logical topology and each switch along
the path only sees at most one label. SoftMoW supports new
network-wide optimization functions such as optimal routing
and inter-region handover minimization. We demonstrate
that SoftMoW improves the performance, flexibility and
scalability of cellular WAN using real LTE network traces
with thousands of base stations and millions of subscribers.
Our evaluation shows that path inflation and inter-region
handovers can be reduced by up to 60% and 44% respectively.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.5 [Local and Wide-Area Networks]: Ap-
plications
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1. INTRODUCTION
The current LTE network architecture is organized into

very large and rigid regions. Each large region has a core
network and a radio access network. The core network
contains an Internet edge comprised of packet data network
gateways (PGWs). The radio network consists of only base
stations. In this architecture, there are minimal control
plane and data plane interactions among regions other than
distributed interference management at radio access networks
and limited coordination for mobility (e.g. no inter-PGW
mobility [25]). All users’ outgoing traffic must traverse a
PGW and possibly go through the Internet.

This rigid architecture is becoming harder and harder to
support new trends of mobile traffic. First, mobile applica-
tion performance is seriously impacted by the lack of Internet
egress points per region. Specifically, as shown by a recent
study [24], the lack of sufficiently close Internet egress points
is a major cause of path inflation, suboptimal routing, and
QoS degradation in large operators. Second, the continued
exponential growth of mobile traffic puts tremendous pres-
sure on the scalability of PGWs. Third, the fast growth of
signaling traffic known as the signaling storm problem [4]
poses a major challenge to the scalability of the control plane.

Rather than organizing mobile wide area networks as rigid
regions with no direct traffic transit, we argue that cellu-
lar networks should have a seamlessly inter-connected core
network with a logically centralized control plane. The inter-
connected core network should consist of a fabric of simple
core switches and a distributed set of middleboxes (software
or hardware). The control plane directs traffic through effi-
cient network paths that might cross region boundaries rather
than exiting to the Internet directly from the origin region.
The control plane should also globally support seamless UE
mobility and optimize the performance of mobile traffic. For
example, mobile traffic routing should be globally optimized;
regions should be reconfigured to adapt to its workload.

Such an architecture raises unique challenges in scalability
in comparison with data-center networks [12, 20] and inter-
data center WANs [16, 15] since the cellular WAN has its
own unique properties and challenges. First, the logically
centralized control plane needs to control tens of thousands
of switches and middleboxes, and hundreds of thousands of
base stations in the data plane. A control plane with many
controller instances in one data center cannot effectively han-



dle the signaling load (e.g., connection setups and handovers)
from hundreds of millions of subscribers distributed through-
out a continent. Second, without global network states and
a single controller exerting control, it will be hard to perform
network wide routing optimization and inter-region handover
minimization.

To address these problems, we present SoftMoW, a scalable
network-wide control plane that supports global optimiza-
tion and control plane reconfiguration. SoftMoW makes the
following contributions.
• First, SoftMoW recursively builds up the hierarchical con-

trol plane with novel abstractions consisting of both control
plane and data plane entities. Key to our SoftMoW ar-
chitecture is the controller. It is designed to be modular
which consists of the network operating system (NOS),
operator applications and the recursive abstraction appli-
cation (RecA). NOS provides core services such as routing
and path implementation. NOS does not handle cellu-
lar specific functions. Operator specific functions (e.g.
mobility management) are implemented as applications
on top of NOS. All recursive abstraction functions are
implemented in RecA.

• Second, to enable scalable end-to-end path setup, Soft-
MoW presents a novel label swapping mechanism such that
each controller only operates on its logical topology and
each switch along a flow’s path only sees at most one label.
This new mechanism reduces the states in the switches.

• Third, SoftMoW designs new network-wide optimization
functions such as optimal routing and region optimization
to minimize inter-region handover.

• Fourth, we demonstrate that SoftMoW improves the per-
formance, flexibility and scalability of cellular WAN using
real LTE network traces with thousands of base stations
and millions of subscribers. Our evaluation shows that
path inflation and inter-region handovers can be reduced
by up to 60% and 44% respectively.

2. SoftMoW DESIGN OVERVIEW
SoftMoW’s goal is to design a scalable cellular WAN ar-

chitecture (both the control plane and data plane) to enable
network-wide optimizations. We introduce the components in
a SoftMoW network, the design challenges and our solutions.

2.1 SoftMoW Components
SoftMoW does not require expensive, inflexible and special-

ized devices (e.g., PGWs and SGWs) that integrate control
and data plane operations with middlebox functions. Soft-
MoW does not change the LTE protocols used in the user
equipment (UE) and the protocols between UE and base
stations. SoftMoW has the following high-level architectural
components.

Nation-wide inter-connected core networks. Soft-
MoW distributes and inter-connects programmable switches
nation-wide. The network in one region should have enough
egress points through a subset of the switches. An egress
point can connect to other regions of the same carrier, other
carriers’ mobile networks, Internet service providers or con-
tent providers at peering points to exchange traffic. This
eliminates the internal path inflation problem caused by
the lack of sufficiently close egress points and enhances end-
to-end QoS metrics by offering better diversity of external
paths.

Radio access networks. Radio access networks consist
of base stations which are organized and inter-connected
into base station group (BS group) with different topologies
(e.g., ring, mesh, and spoke-hub) to ensure intra-BS-group
fast-path communications. BS groups are connected to core
network switches locally. We assume each base station has an
access switch performing fine-grained packet classifications
on traffic from UEs.

Middleboxes and service policies. SoftMoW departs
from the centralized policy enforcement at PGWs and uti-
lizes middleboxes which can be flexibly placed throughout
the cellular WAN. For scalability, middlebox functions will
be mostly limited to edge networks of the cellular WAN.
Middlebox instances can potentially implement any sophis-
ticated network functions. The functions can be specific
to application types (e.g., noise cancellation function and
video transcoding function) and operators (e.g., charging
and billing), and security (e.g., firewall, and IDS). A service
policy is then met by directing traffic through a partially
ordered set (also known as poset) of middlebox types. Given
the location and utilization of middlebox instances, the con-
troller can implement a poset using various combinations of
physical instances.

Controller. The controller enforces a rich set of service
policies on subscribers’ network access through new global
network applications. These applications are based on a
global view of the inter-connected core networks, which are
not available in current LTE networks or recently proposed
cellular architectures such as SoftCell [23]. Specifically, the
controller sets up end-to-end optimal paths for aggregate
flows and minimizes the number of inter region handovers.

2.2 Design Challenges and Solutions
Challenge 1: scalable control plane. The logically

centralized control plane needs to control tens of thousands
of switches and middleboxes, hundreds of thousands of base
stations in the data plane. A control plane with many con-
troller instances in one data center (e.g., [17, 6]) will not
effectively handle the signaling loads (e.g., connection setups
and handover events) from hundreds of millions of subscribers
distributed throughout a continent. Also, a flat decentral-
ized architecture where local controllers only communicate
with their neighbors (e.g., [22]) is not scalable enough to
support fast and global optimizations. It requires distributed
algorithms that involve many rounds of message exchanges.

Solution: recursively build up a hierarchical and
reconfigurable control plane. SoftMoW hierarchically
constructs a network-wide control plane that is reconfigured
in response to the signaling loads and traffic patterns. The
control plane consists of geographically distributed controllers
that are organized into a tree structure. Recursively from the
leaf level, each controller (except the root) exposes a small
number of logical and reconfigurable data plane entities to its
immediate parent. These entities aggregate many switches,
middleboxes and base stations. To enable global optimiza-
tion such as routing optimization by ancestor controllers, the
exposed logical switches and their interconnections are de-
scribed as a virtual fabric with annotated bandwidth, latency,
and hop count information.

Challenge 2: scalable end-to-end path implemen-
tation. Our cellular WAN provides connections between
millions of UEs and thousands of Internet egress points, the
number of routing states in the core network switches is



tremendous. One way to implement the routes is to aggre-
gate flows traversing the same path, assign them one label
and route on labels (e.g. MPLS). In a decentralized flat
control plane, implementing a label-switched path involves
all controllers and switches on the path. To do this, each
controller has to know the global state. Keeping entire data
plane states consistent at each controller or storing them
into a central data base is not scalable. In SoftMoW, each
controller has a limited summarized view over a set of logi-
cal entities to improve scalability, but this makes the state
management and path implementation more challenging.

Solution: scalable recursive label swapping. Soft-
MoW leverages its tree structured control plane architecture.
Using a novel recursive label swapping approach, SoftMoW
implements end-to-end paths while keeping per packet over-
head minimal. An ancestor controller pushes labels onto
packets of matching flows traversing its logical and reconfig-
urable switches. Recursively, these labels will be replaced
with local labels by each lower level controllers. At the
physical data plane switches, only a local label is pushed
onto packets of matching flows, which each represents a local
regional path segment. When packets leaving a region, the
local label is popped off and an ancestor’s label is pushed.

Challenge 3: scalable topology discovery and main-
tenance. Topology discovery is easy in flat multi-controller
settings. Each switch is controlled by one controller instance.
A controller sends discovery messages from all ports of regis-
tered switches. When a switch receives a discovery message,
it forwards the message to the controller. The controller
then maintains the link between the source and destination
switches and stores link-specific information (e.g., port name,
link capacity). In SoftMoW, detecting links is more chal-
lenging because each cross-region link is visible to only one
non-leaf controller; the non-leaf controller needs to discover
it without breaking the abstraction.

Solution: recursive discovery protocol. We design
and introduce a novel global discovery protocol allowing re-
cursive discovery of topologies by each controller. Each leaf
controller first discovers its own physical topology. Then
the parent controller is exposed with a logical topology and
can discover the cross-region links it controls. This process
continues until the root controller discovers its topology. Con-
trollers at the same level can perform discovery at the same
time in parallel. The sequential process only applies to the
bootstrapping phase. During normal operations, periodical
discovery messages will be carried out concurrently.

Challenge 4: network-wide optimization. SoftMoW’s
goal is to enable global optimizations for control plane and
data plane functions such as optimal routing and inter-region
handover minimization. Maintaining and performing op-
timization with global network states for a country-wide
network is not scalable.

Solution: design algorithms on abstract topologies
of hierarchical controllers. SoftMoW supports global
network optimization without a global network state at each
controller. We demonstrate this feature using two important
network functions. First, application traffic may have its
own requirements on the path (e.g. low-latency path for
delay-sensitive VoIP). In SoftMoW, the path is computed
by controllers from the leaf to the root. If a local optimal
path meeting the application requirements is found, it is used
without further delegating to ancestor controllers. We show
that the root controller is guaranteed to find an optimal
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Figure 1: A 3-level SoftMoW Architecture

path in terms of performance metrics (e.g., latency and
hop count). Second, an inter-region handover requires the
involvement of an ancestor controller, the source controller
and destination controller. In this procedure, new paths
have to be implemented and in-flight packets have to be
diverted to the target base station. To minimize control plane
load, SoftMoW performs inter region handover optimization.
The optimization is done from the root controller to leaf
controllers. We show that the process converges if handover
traffic pattern does not change during the optimization.

3. SoftMoW CONTROL PLANE
We first give an overview of how we recursively construct

the control plane and the logical data plane, and present the
design of the controller architecture.

3.1 Recursive Constructions
As shown in Figure 1, SoftMoW hierarchically builds a

reconfigurable network-wide control plane. The control plane
consists of geographically distributed controllers that are
organized into a tree structure, each controller associated
with a level number and a globally unique ID. The topmost
node is the root controller which can make coarse-grained
decisions for the entire network, and level 1 nodes are leaf
controllers close to the physical data plane. The number of
levels, the number of children per node, and the geographical
location of each node can be determined based on fine-grained
latency budgets of control functions [3] as well as the density
and size of the physical topology.

SoftMoW partitions the physical data plane network into
logical regions whose borders can change over time based on
traffic and failure patterns. Each leaf region is managed by a
leaf controller. In Figure 1, leaf controllers (level-1) discover
their physical switches and build the level-1 data plane,
and they also abstract some entities for level-2 controllers.
The level-2 controllers obtain logical network entities from
the leaf controllers, discover their logical level-2 data plane
and also make logical network entities. Finally, the root
controller (level-3) obtains logical network entities from the



level-2 controllers and builds the level-3 data plane. When
building these data planes recursively from the leaf level, each
controller simplifies its topology and exposes the following
three types of logical and reconfigurable data plane entities
to its parent.
• Gigantic Switch (G-switch) aggregates a number of

physical or gigantic switches and the controller. A G-
switch is programmable and characterized by an ID, ports,
and a virtual fabric (will be clear in Section 3.2) and flow
table. Each port of a G-switch corresponds to border
ports of its constituent switches, i.e. is connected to either
Internet domains (e.g., ISP) or neighboring regions.

• Gigantic Middlebox (G-middlebox) hides physical or
G-middlebox instances of the same type and function (e.g.,
light weight DPI) and their controller. A G-middlebox can
be attached to G-switches, and is identified with the sum
of the processing capacities and utilization of constituent
instances.

• Gigantic Base station (G-BS) summarizes one or more
adjacent BS groups or G-BSes, and their controller. A
G-BS inherits the union of the radio coverage of underlying
base stations and connects to ports of a G-switch.
Abstracting the logical region for the parent. To

build the first logical data plane (level 2), each leaf controller
builds and exposes a single G-switch for all switches, a G-
middlebox for all middlebox instances of the same type, a
G-BS for one or more adjacent BS groups (will be clear in
Section 5.2). Intuitively, a parent’s logical region is the union
of regions exposed from its children in the tree. Recursively,
non-leaf controllers except the root (e.g., level-2 controllers
in Figure 1) perform the same procedure on G-middleboxes,
G-switches, and G-BSes located in their logical region.

Reconfiguration of logical data plane devices. Each
non-leaf controller can reconfigure logical entities exposed
from its children. This gives each controller the ability to
optimize its descendants’ control plane hierarchy and data
plane operations without a global state, solely based on its
partial view and abstract topology. Any non-leaf controller
can initiate a reconfiguration that indirectly causes controllers
in its subtree to level-by-level from bottom-to-top interact
with each other to modify the exposed logical entities. This
new feature enables interesting global applications such as
minimizing “east-west” control load in the cross-controller
handovers (see Section 5).

3.2 G-Switch Virtual Fabric
To enable global optimization, e.g., traffic engineering

and optimal routing, each controller in the tree hierarchy
should know a few pieces information about the internal
inter-connections behind its G-switches. SoftMoW exposes
a virtual switch fabric for each G-switch. A virtual switch
fabric (vFabric) is a succinct representation allowing the
parent controller to have three pieces of information per G-
switch port pair:latency, hop count, and available bandwidth.

Using standard shortest path algorithms, each child con-
troller constructs these metrics by computing multiple short-
est paths for each port pair in its topology. Note that, for
the bandwidth metric, different port pairs of the G-switch
can share bottleneck links. In this case, if the available
bandwidth exposed for a port pair in the child controller’s
data plane changes more than a predetermined threshold,
the child controller will recompute new bandwidths, update
the vFabric and notify the parent controller.

3.3 Controller Architecture
We design a modular controller architecture as shown in

Figure 2. A SoftMoW controller consists of a network operat-
ing system (NOS), operator applications and an application
called RecA that implements the recursive abstraction.
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Figure 2: SoftMoW Controller Architecture

Network operating system. SoftMoW expects a num-
ber of core services: path implementation, topology discovery,
routing and network information base (NIB) query. SoftMoW
NOS can reuse any existing controller platforms that expose
these services through a northbound API. SoftMoW NOS is
agnostic of cellular specific functions and other controllers
in the hierarchy. NOS communicates with switches (logical
or physical) using a southbound API, e.g. OpenFlow API
extended to support our virtual fabric feature.

Operator applications. SoftMoW cellular specific func-
tions are implemented as operator applications on top of the
NOS, e.g. functions similar to LTE such as home subscriber
server (HSS), policy charging and rule functions (PCRF),
mobility and new functions such as region optimization and
routing optimization. Applications can use the northbound
API to get network information (e.g. topology) and set up
their configurations (e.g. path setup, sending messages).

Recursive abstraction application (RecA). To imple-
ment the recursive abstraction, we design a NOS application
called RecA. RecA encapsulates all functions related to the
recursive abstraction and provides an eastbound API for op-
erator applications. RecA has two basic modules: agent and
topology abstraction. RecA’s topology abstraction module
queries the NIB using the NOS northbound API. It abstracts
a network topology (including switches, base stations and
middleboxes) as one G-switch, a number of G-BSes (border
BS groups need to be exposed in a specific way, will be clear
in Section 5) and one G-middlebox of each type. The RecA
agent communicates with a parent controller (if any). For
each logical device, the agent establishes a channel to its
parent controller. This way logical devices act as physical
ones (e.g., a G-switch acts as a physical switch).

RecA provides the eastbound API to other operator ap-
plications. An operator application can register its message
type in RecA, and give messages that it cannot handle to
RecA; then RecA will send the message to its parent con-
troller as a Packet-In event. The agent also handles messages
from the parent. If a message is about path implementation,
the agent sends it to the topology abstraction module, which
translates the message to multiple messages using the current
network view of NIB; if the message is of a type registered by
an operator application, it is sent to the application. RecA
and operator applications use the northbound API to send
messages to logical (child controllers) and physical data plane
entities.



Management plane. The management plane bootstraps
the recursive control plane. It configures all controllers in the
hierarchy via dedicated channels (e.g. assigns IP addresses,
and region identifier, and configures the tree structure). The
RecA at each controller exports its topology to the man-
agement plane. The region optimization applications com-
municate with the management plane to reconfigure local
or physical network devices. The management plane also
coordinates UE state transfer during region optimization.

4. CORE SERVICES
SoftMoW core services provided by the network operating

system includes the NIB, topology discovery, routing and
path implementation. Similar to the NIB in other controller
designs [17], SoftMoW’s NIB consists of network devices,
device type (e.g. base station, middlebox, switch), links and
their metrics. We assume standard mechanisms (e.g. those
in [17]) to gather NIB and maintain NIB’s consistency. The
NOS has visibility of its own local network topology (physical
or logical), does not maintain UE state, is not aware of any
ancestor or descendant controllers (may communicate with
peer controllers). Now we proceed to present the other three
core services.

4.1 Recursive Topology Discovery
SoftMoW presents the first topology discovery protocol

in a recursively built control plane architecture. Topology
discovery in SoftMoW is much more challenging than in flat
architectures. This is because only leaf controllers have direct
control over physical switches. Yet each inter G-switch link
is physical and is only visible to the ancestor controller of
both endpoints of the link.

In SoftMoW, each controller discovers a subset of total
links of the physical topology. Data plane switches and
links (logical and physical) are discovered sequentially from
bottom to top; controllers at each level can discover their
(inter G-switch) links in parallel. We now proceed to describe
the procedures of topology discovery: G-switch discovery,
inter G-switch link discovery and Computation of G-switch
abstraction. These procedures are performed by RecA and
the topology discovery module. Base stations, middleboxes
and links with them as endpoints can also be discovered
similarly. If base stations and middleboxes do not implement
our discovery protocol, they can also be configured by the
management plane.

4.1.1 G-switch Discovery
Similar to physical switches, the RecA agent of each non-

root controller connects to the parent controller. After a
controller starts, its topology discovery module first discovers
all switches (G-switches or physical switches) in its region.
If the switch type is G-switch, the controller also performs a
feature request to obtain the virtual fabric information. The
G-switch device information is stored in NIB. The controllers
use the southbound API (e.g., Openflow) to get the G-switch
information.

4.1.2 Inter G-switch Link Discovery
Link discovery message. After G-switch discovery, a

controller uses inter G-switch Link Discovery Protocol to find
the links between its G-switches. For each G-switch port, it
initiates a link discovery message, which has a meta data
field and a stack field. The link discovery message traverses

through the controller hierarchy down to the physical data
plane, goes through a physical link, and is reported from
the receiving switch back to its origin along the controller
hierarchy. The meta data field carries the properties of the
traversed physical link (e.g., latency and loss rate), which is
filled by the leaf controller on its path. The stack stores the
traversed path in the controller hierarchy with the format of
(Controller ID, G-switch ID, G-switch port).

Origination path. In more detail, when the topology
discovery module in a controller discovers inter G-switch
links, link discovery messages are sent out from each port of
G-switches (which is actually received by the corresponding
child controller). Intuitively, the link discovery message re-
cursively is passed to lower-level child controllers and finally
sent out of a port of a physical switch. The initiating con-
troller pushes its ID, the G-switch ID and the port onto the
stack. When the RecA agent of a child controller receives
the message from its parent, the message is forwarded to the
RecA topology abstraction module. This module extracts
the G-switch and port from the top of the stack, and maps
them to one of its G-switches and its port. Then, RecA
pushes its ID, the G-switch ID and port onto the stack. If
the controller is a leaf controller, it also encodes meta data
of the physical link into the meta data field. RecA calls
the northbound API SendMsg(switch, port, msg) to send the
message.

Return path. Both topology discovery module and RecA
register the link discovery Packet-In message from the lower-
level. When a controller receives a link discovery message
from one of its G-switches with an incoming port. It pops the
stack to get the (Controller ID, G-switch ID, G-switch port).
In the topology discovery module, if the popped controller ID
is its ID, the link discovery message has been originated by
itself, so a new inter G-switch link is discovered. This inter
G-switch link is added to the NIB of the current controller.
In RecA, if the controller ID is not its ID and the stack is not
empty, the link discovery message is reported to the parent
by the RecA agent; if the stack is empty, the link discovery
message is dropped indicating the link discovery message can
not return to the initiating controller and there is no inter
G-switch link on the path.
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Figure 3: A Link Discovery Example

Example. Figure 3 shows an example of inter G-switch
link discovery. The root controller intends to discover the
link between G-switch GS1 and GS2 on its logical data plane.
The link discovery protocol finishes in 4 steps. (i) The root
controller C0 initiates a link discovery message. It populates
the stack with its own ID C0 and the G-switch ID GS1 and
port number p1. (ii) The child controller C1 receives the link
discovery message. It translates the G-switch ID and port
number into the physical switch ID SW2 and port number
p2. Then, C1 pushes (C1, SW2, p2) onto the stack. (iii)
Physical switch SW3 receives the message at port p3 and



passes it to its controller C2. C2 encodes the receiving (SW3,
p3) into link discovery message. C2 pops the stack and find
the controller ID at the top of the stack is C1, which is not
its ID. So it translates the (SW3, p3) to corresponding ID
and port number of its abstract G-switch, which is (GS2,
p4), and passes the link discovery message to its parent C0.
(iv) C0 pops the stack and find the controller ID at the top
of the stack is its ID. In this way, it finds the inter G-switch
link between its G-switches (i.e. GS1 and GS2).

4.1.3 Computation of G-switch Abstraction
The RecA application in a controller uses the northbound

API topo=GetTopology() to get its G-switches and inter G-
switch links, and then it computes one abstract G-switch. In
an abstract G-switch, all internal ports (i.e. ports between
G-switches) are hidden, and all border ports are exposed.
SoftMoW also computes other properties between G-switch
port pairs, such as latency, bandwidth and hop count as
discussed in Section 3.2. The parent controller requests the
G-switch features (e.g. virtual fabric) from the RecA agent
in the child controller via the southbound API. G-BS and
G-middleboxes can also be computed similarly. We do not
go into the details in this paper.

4.2 Route Computation
SoftMoW must provide UEs with Internet access. The

routing service computes end-to-end optimal paths through
the northbound API (path, match fields)=Routing(request,
service policy). The inputs are a routing request and a service
policy. The outputs are a computed path and match fields
to classify the flow. The computed paths are implemented
using the path implementation service.

Interdomain routes. To perform routing, SoftMoW
interacts with ISPs and content providers through an inter-
domain routing protocol (e.g., BGP) at egress points. Similar
to a RCP server [7], leaf controllers run the route selection
procedure on behalf of their gateway switches, each keeping
a session with an eBGP speaking router in a neighbor ISP.
For each gateway switch, leaf controllers select interdomain
routes for all prefixes. In addition, the network performance
of each selected route is measured (e.g., hops, latency) [24].
Leaf controllers forward the selected routes to their parent
as Packet-In messages, each is associated with performance
metrics. The routing module in each controller registers
for interdomain routing messages, and puts them into NIB.
Recursively, the RecA agent reads the interdomain routes
from NIB and sends it to the parent (with translation to the
G-switch). This procedure finishes once the root receives
interdomain routes from its G-switches.

Recursive routing. When a controller has a routing
request from one of its operator’s applications (e.g., bearer
request), it first checks if its logical region has an interdomain
route to the destination on the Internet and the end-to-
end internal path satisfies the performance constraints if
specified in the request (e.g., latency). In addition, it checks
whether the middlebox poset can be met in its logical region
if specified in the service policy field. If so, the routing
module returns the path and match fields, and then the
application implements the path. If no path is found, the
operator application delegates the request to RecA agent,
which creates a routing request and sends to the parent, where
the application in the parent controller registers in the core to
get the message and process it. The application also registers

for the response in RecA (e.g., to store in local caches). The
delegation procedure increases the chance of satisfying the
request since the parent has a better global view due to
having a larger logical region. We will explain the routing
service usage in handling bearer requests (Section 5.1).

Optimality discussion. Each controller might need to
compute internal paths to interdomain routes through its
own egress points. Using the virtual fabric of G-switches,
the routing service can find a shortest path between the
logical or physical gateway switches and base stations. We
can guarantee a shortest path computed by a controller is
the shortest is in the controller’s region and its correspond-
ing physical topology. We call such paths locally optimal.
However, the shortest path in a controller’s region may not
be the global shortest path in the entire topology. We de-
fine shortest paths computed by the root controller in its
global abstract topology as globally optimal. In general, a
controller at a higher level is able to compute more optimal
paths compared to any controller in its subtree.
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Figure 4: Local Optimal v.s. Global Optimal

Example. Using the interdomain routing messages, we
know egress points E1 and E2 are 10 hops away from the
address prefix A in Figure 4. The leaf controller C2 receives
routing request (BS group= Group 2, destination=A) with
the constraint of the maximum end-to-end hop count of 14.
C2 computes the shortest path (SW2, SW3, SW4) going
through E2 since it satisfies the performance requirement.
This path is a local optimal path in C2’s region. With the
global network view, path (SW2, SW1) is one hop closer to
the destination. The virtual fabric of a G-switch contains
performance metrics for all port pairs. The root has the
virtual fabric of G-switches GS1 and GS2, so it can easily
compute the globally optimal path exiting from GS1.

4.3 Global Path Implementation
In SDN architectures where a controller has full visibility

of its physical data plane topology [16, 15], path setup is
straight-forward. The controller installs a match-action rule
on each switch along the path. The match-action rule can
match IP prefixes, VLAN tags, MPLS labels or some combi-
nations of them. In SoftMoW, a controller aggregates flows
on the same path, assigns them the same label and sets up
routing on labels. So the states in switches can be signifi-
cantly reduced. However, non-leaf controllers do not have
full visibility of the physical data plane topology. We present
a scalable mechanism that enables non-leaf controllers to im-
plement paths in their abstract topology onto the underlying
physical data plane. A northbound API PathSetup(match
fields, path) is provided to applications to set up an input
path with certain match fields.



In SoftMoW, a leaf controller can simply implement any
intra-region paths. Similar to SoftCell [23], the access switch
of base stations can perform fine-grained packet classification
and push labels onto packets matching flow rules. Then,
switches along the path are programmed to forward traffic
based on specified labels. A non-leaf controller does not
have control over physical switches, and multiple descendant
controllers make partial forwarding decisions; so its path
setup is more challenging. Similar to leaf controllers, a non-
leaf controller should be able to instruct the access G-switch
attached to each G-BS to classify packets and push virtual
labels into the traffic, and program its G-switches along any
desired path to operate based on pushed virtual labels.

To implement this operation, intuitively, when RecA agent
in each child controller receives virtual label switching or
packet classification rules, it translates them using its own
topology. Each virtual label switching rule is mapped onto
internal paths between the egress and ingress ports of the
child controller’s logical region, and the path computation
is performed by the routing module. During the recursive
translations, descendant controllers can establish any desired
number of internal shortest paths between the ingress and
egress points as long as the performance metrics of computed
paths comply with the parent’s virtual fabric. A descendant
controller should be able to push a separate local label on top
of the parent’s label to establish each local path. Accordingly,
the classification rule should be updated for each local path
and installed into constituent access switches, each attached
to a component G-BS.
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Figure 5: Recursive Label Swapping

High-overhead label stacking. To implement the re-
cursive translations of virtual rules onto physical switches
in underlying topology, a simple approach is to recursively
stack k labels in the packets where k is the level of the con-
troller initiating the path setup. Label stacking allows a
label specified by an ancestor controller to be visible and
available in the packets traversing across physical inter-G-
switch links detected by the controller itself. Label stacking
approach gives the illusion of packets traversing through the
region of controllers at different level. When traffic enters a
logical region at any level, the controller reads the label in
the stack at the same level. This approach is not scalable
in nation-wide mobile networks since it increases per-packet
overhead due to encapsulating k labels in each packet, which
exacerbates the bandwidth consumption as the number of
levels in the SoftMoW architecture increases.

Label stacking example. Figure 5 shows logical regions
of two leaf controllers, their parent, and the root controller

(controllers are excluded for simplicity). The root has a
single-path service policy for rate-limiting bidirectional traffic
between G-BS B and a destination address prefix. To satisfy
this policy, the root pushes label R at access switch of G-
BS B and then installs the corresponding virtual rule into
G-switch GS3 to forward traffic specified by label R. At the
level below, the parent controller receives the rules. Based
on its local view, it decides to stack label P on R (i.e., pushes
[R P]) onto the packets. It programs the G-switches GS1
and GS2 to process incoming traffic with label P. In this
approach, leaf controller 1 should at least push the stack [R
P] onto each packet at the base stations. This allows leaf
region 2 to read P from the stack and perform the forwarding.
Then the rest of the network reads label R of the egress traffic
from region 2. Intuitively, this gives the illusion of packets
traversing up to the parent region at S2, and traversing down
at S3. Also, the packet traverses up to the root level at S4.
It is easy to imagine an increase in the packet header space
and network bandwidth consumption, as SoftMoW levels
increases, due to stacking multiple labels in packets.

Scalable recursive label swapping. We propose a
novel recursive label swapping mechanism eliminating the
high bandwidth overhead per-packet. In our approach, each
packet has only one label at any given time. We have ob-
served that a label specified by a non-leaf controller only
needs to be visible across physical inter G-switch links de-
tected by the controller itself. Thus we instruct controllers to
perform label pop and label push operations. Each controller
at the ingress switch (physical or gigantic) of its logical re-
gion pops the label (specified by an ancestor who controls
the just traversed link) of the traffic. It then pushes an
internal label corresponding to each internal path. Finally, it
programs switches along each path. At the egress switch of
its logical region, the controller aggregates the internal paths
by popping their label. It then pushes back the ancestor’s
label onto packets of the flow. This mechanism guarantees
the global coordination between the controller by having
the necessary label at each switch while it minimizes the
bandwidth overhead.

Recursive label swapping example. In Figure 5, the
root adds label R to the traffic group at access switch of
G-BS A similar to the previous example. It then programs
G-switch GS3 to forward traffic based on label R to the
rest of network. In this step, the controller of parent region
receives the classification and forwarding rules. Using the
push operation, it only pushes its local label P due to the
local preference and does not mark the traffic with label R.
Using the pop operation, it pops P and pushes backs the
root’s label R at G-switch GS2 where it loses its control on
the egress traffic.

In the leaf region 1, the leaf controller decides to load
balance the packets between two rate limiters, so it imple-
ments two local paths with label 1 and 2. With the push
operation, it pushes label 1 and 2 at access switches of BS1
and BS2 respectively. With the pop operation, these two
labels are replaced with the parent’s label P at egress switch
S2, so the next leaf region can process the traffic. In the leaf
region 2, switch S3 is programmed to perform load balancing
on ingress traffic from region 1. The leaf controller imple-
ments two separate paths by pushing local labels 3 and 4,
and popping P at switch S3. These paths are aggregated at
egress switch S4. The local labels are popped off and the
root’s label R is pushed back onto the packets. As shown in



the physical data plane, packets always carry a single label
denoted with different patterns while many controllers make
partial decisions.

5. OPERATOR APPLICATIONS
A key cellular network function is mobility management

which includes setting up bearers (a bearer provides network
connectivity service to the UE) and handovers. Mobility man-
agement is performed by the Mobility Management Entity
(MME) in LTE whereas it is done by the mobility appli-
cation in SoftMoW. The key differences are: (1) mobility
application is simpler because of the use of the controller’s
northbound API which is not available in LTE; (2) it sup-
ports mobility better (e.g., LTE does not support inter-PGW
handovers [25]). LTE mobility management has many proce-
dures, due to the lack of space, we only discuss main functions
that highlight the differences. Besides the mobility manage-
ment, we present a new application, the region optimization
application, to reduce the handover load of the controllers.

NIB Path Implementation 

Routing Core Services 
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Path Table UE Table 

UE Management 

To Parent Controller 

Bearer 
Request 

Data 
Flow 
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Figure 6: UE Management Application

5.1 UE Bearer Management
In each SoftMoW controller, the mobility application reg-

isters for the bearer request message type in the core. It also
registers for the bearer response from the parent in RecA.
The mobility application maintains two tables (Figure 6): (i)
UE table where each row contains a bearer request and a
local path ID. (ii) Path table that maps path IDs to the their
details. A bearer request can be in the format of (UE ID,
BS ID, SRC IP, DST IP, REQ) where the “DST IP” is the
destination address on the Internet and “REQ” contains QoS.
For example, some UE applications can request for better
QoS on the end-to-end latency.

When a UE sends a bearer request to the base station,
the request is forwarded to the leaf controller as a Packet-
In message. The mobility application receives the request
from the core and associates a service policy (i.e., a mid-
dlebox chain) with it if necessary. If there is no precom-
puted path in the path table, the mobility application calls
the routing service using the northbound API (path, match
fields)=Routing(request, service policy). Then it calls the
northbound API (pathID, pathInfo)=PathSetup(path, match-
ing fields) provided by the path implementation service. Fi-
nally, the path information is cached in the path table and
the mobility application asks the base station to allocate the
resources. As discussed in Section 4.2, if the routing service
cannot find an end-to-end path that satisfies the bearer re-
quest and service policy, the mobility application sends the
bearer request to RecA, which is forwarded to the parent
controller.

Example. In Figure 6, the UE requests for a path with
a larger bandwidth, which cannot be found by the routing
service of C1 in its region; the request is sent to the root

controller C0. C0 computes the path, stores the UE and
path information, and sends the UE bearer response to C1’s
RecA. The C1’s RecA implements the local path in it region,
and C1’s mobility application registers in its RecA to get the
path information. Also, C2’s RecA implements the rest of
path in its region once it receives the virtual rule from C0.

The bearer state is synchronized between the UE and the
mobility application. If the UE becomes idle, its bearers
will be deactivated. We add two more fields to the UE table
indicating whether a UE is active or idle, and whether the
UE request has been handled locally or by the parent. When
the mobility application deactivates a bearer, it updates
the tables and also asks the path implementation service
with the northbound API deactivatePath(pathID, pathInfo)
to deactivate its path. If the UE bearer has been handled by
the parent controller, the mobility application continues to
request bearer deactivation from its parent via RecA.

5.2 UE Mobility
LTE has many handover procedures depending whether

the source base station and target base station has a direct
connection or not and whether the UE’s current associated
MME, or the serving gateway needs to be changed or not, etc.
Similarly, there are many handover procedures in SoftMoW.
We only discuss two main types of handovers: intra region
and inter region. The handovers are performed through the
coordination of the mobility application, RecA, the routing
service and the path implementation service.

The Intra region type is used to handover a UE between
a source base station and a target base station when both
of them are in the same leaf region. This type of handover
is easy, so we focus on complex inter region handovers. In
inter region handovers, the source and target base stations
are located in different leaf regions. Thus each corresponding
border G-BS is exposed by a separate leaf controller. To
simplify the inter region handover procedure and allow fine-
grained region optimizations, we assume controllers do not
aggregate gigantic stations and physical BS groups sitting at
the border of their logical region with others in the recursive
abstraction procedure. A leaf controller abstracts each bor-
der BS group as a single G-BS for its parent, and non-leaf
controllers expose a single G-BS for each G-BS located at
their region’s boundaries. However, controllers can group,
abstract, and expose their internal G-BSes and BS groups in
different ways.

To handover a UE from the source base station to the
target base station in inter region handover, SoftMoW only
requires base stations abstracted as a border G-BS to adver-
tise the corresponding G-BS ID along with other information
periodically through the physical broadcast channel. When
the source leaf controller and the UE agree on the handover
target, the source leaf controller sends a handover request to
its parent. The request contains at least source and target
G-BS IDs and BS IDs. The mobility application registers for
the handover request in the core. If the current controller is
the ancestor of both the source and target leaf controllers,
it starts a procedure to handle the request; otherwise the
request is sent to RecA and forwarded to the parent con-
troller recursively. For simplicity, we explain the inter region
handover procedure through an example.

Example. To handover a UE from BS1 to BS2 in Figure 4,
C1 sends a handover request from (G-BS1, BS1) to (G-BS2,
BS2) to the root. The root requests G-BS2 to allocate the



resources at the BS2 to the UE. Then, it implements a new
path between G-BS1 and G-BS2 to transfer in-flight packets
and establishes some paths E2 and G-BS2 for new flows.
Once the handover finishes, the root asks G-BS1 to release
the resources. It then removes old paths between G-BS1 and
E1 as well as between G-BS1 and G-BS2.

5.3 Region Optimization and Reconfiguration
Inter region handovers increase “east-west” control plane

load because they require the intervention of at least three
controllers: the source and target leaf controllers, and the
ancestor controller. Allocating more resources to busy nodes
in the controller hierarchy is difficult due to the geographical
distribution and also increases the intra-node coordination
costs. Thus the regions should be refined to reduce this type
of load; each non-leaf controller should reconfigure its own
logical region to minimize the inter region handover load it
handles. To achieve this goal, the region optimization appli-
cation changes borders between sub-regions, each exposed by
an immediate child controller, based on handover patterns.
Handover patterns vary across time-of-day. Thus it is difficult
to find static borders using an offline and static approach,
so each controller should be able to perform optimizations
periodically and on a slow time-scale. In particular, we are
interested in minimizing inter region handovers at the root
(level L) first because a handover request processed and han-
dled by the root goes through more controllers. Similarly, the
controllers at the level n – 1 have a higher priority compared
to the controllers at the level n – 2. Hence we should run
the handover optimization algorithm first at the root. Once
the root is done, all controllers at level n – 1 can run the
optimization in parallel, and similarly for the levels below.

5.3.1 Region Optimization Algorithm
We now discuss the optimization algorithm for a non-leaf

controller which we call the initiator controller.
Handover graph input. When the mobility application

processes handover requests, it can log these processing.
Then a handover graph can be computed, in which each
node of the graph is a G-BS and an edge shows the number
of handover in the past time window (e.g., several hours)
between two nodes. The region optimization application can
fetches all handover graphs from the mobility application.
The two applications can communicate through mechanisms
such as inter-process communication. We do not provide any
further details for lack of space.

Example. For a two-level SoftMoW architecture, Fig-
ure 7b represents a global handover graph built by the root
through aggregating histories. Figure 7a shows the leaf re-
gions’ BS group-level handover graph. As discussed earlier,
to allow the root to run fine-grained optimization at the
site-group level, leaf controllers have abstracted each border
BS group (e.g., BS groups 3 and 2) as a single G-BS (e.g.,
G-BS 3 and 2) and have exposed to the root. However, they
have abstracted adjacent internal BS groups all together. A
similar rule applies to any other non-leaf controllers.

Greedy algorithm. Using the handover graph, the re-
gion optimization application in the initiator controller com-
putes the reconfiguration of its logical data plane by refining
sub-regions, each exposed from a child controller. The re-
gion optimization informs the management plane about the
changes. The management plane performs the actual recon-
figuration. In handover-specific reconfiguration, the initiator

detaches a border G-BS connected to a source G-switch and
then re-associates it with a destination G-switch. The source
and destination G-switches are connected through an inter
G-switch links (discovered by the initiator). This operation
transfers the control of the border G-BS to new descendant
controllers in the initiator’s subtree. We propose a simple
greedy local search algorithm to decide which border G-BS
should be reconfigured by the initiator. In our algorithm,
the initiator at each step selects a border G-BS connected
to a G-switch, which yields the maximum gain. The gain
is defined as the reduction in the amount of inter region
handovers requiring the intervention of the initiator.

Example. Figure 7b shows the root level handover graph
before the optimization showing the root handles 900 inter
region handovers between G-switches A and B or the corre-
sponding leaf regions shown in Figure 7a. Based on the gain
function, the controller selects border G-BS 3 for the reconfig-
uration since it gives the maximum gain 200 (=500-200-100).
The root associates the G-BS with G-switch GSA.

Constraints. We assume we have the lower bound LBi

and the upper bound UBi on the amount of control plane
loads (e.g., UE arrival) that each G-switch (or actual child
controller) can handle. When the initiator picks the max-
imum gain border G-BS, it avoids reducing the load of a
G-switch GSi to below LBi or increasing it to above UBi,
assuming the load of each type of control plane events (e.g.,
bearer arrival) incurred by a G-BS is given.

Termination and Convergence After the above steps,
the initiator controller can enter into a new iteration of re-
configuration computation by selecting the next G-BS. The
algorithm terminates when there is no more positive gain.
The sequential-parallel approach converges because the han-
dover optimization at an initiator controller, which is done by
refining its logical sub-regions under its control, neither pro-
duces nor removes any gains for ancestor controllers except
for the initiator itself, and controllers in its subtree. This
is because a controller cannot affect inter region handovers
seen at ancestor controllers.

5.3.2 Reconfiguration Protocol
Region optimization application computes the reconfigura-

tion and sends reconfiguration messages to the management
plane.

Finding leaf controllers. The management plane sub-
scribers to topologies changes from NIB and abstraction
changes from RecA. Using the topology information and
configuration information, the management plane finds the
source and destination leaf controllers, and instructs them
to fulfill the G-BS re-association request from the region
optimization application.

Reconfiguration. At this step, the source leaf controller
finds a cut containing switches that are necessary to transfer
the border BS group (abstracted as a single G-BS to allow
fine-grained optimization) to the target leaf’s region. It then
communicates with the switches and component base sta-
tions to seamlessly add the target leaf controller as their
new controller. In this procedure, the source leaf controller
sets the role of the target leaf controller to the equal role
(e.g., OpenFlow “OFPCR ROLE EQUAL”). This role means
both the source and target leaf controllers receive all events
generated by data plane devices (i.e., BS group, switches,
and middleboxes). The management plane instructs: (i) the
source leaf controller to handle events generated by existing
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Figure 7: Inter Region Handover Optimization

rules and avoid installing new rules. (ii) the target leaf con-
troller to process all new requests (e.g., handover, routing,
UE arrival, and path implementation). To make states con-
sistent, the source controller transfers existing UE states and
path information to the target controller in advance. When
old communications finish, the source controller disconnects
itself from the data plane devices and the new controller gets
the master role.

Updating logical data planes. After a successful con-
trol transfer at the leaf level, the logical regions are updated
from bottom to top in a recursive fashion to reflect new
abstract topologies. Recursively, each RecA agent along the
path modifies the G-switch ports and the virtual fabric for
its parent. Next, the parent automatically discovers new
inter G-switch links. Also, the RecA agents need to update,
register, or deregister G-BSes. This is because some internal
BS groups in the source leaf region become border BS groups,
which should be reflected recursively. Figure 7c shows the
root’s handover graph after reconfiguring G-BS 3. The pro-
cedure transfers the control of BS group 3 from the source
region B to the target region A. As a result, the new border
BS group 1 is separated from IB, abstracted as border G-BS 1
and exposed to the root. This leads to updating the internal
G-BS IB to I′B which has lost BS group 1. Also, the target
leaf controller might need to treat previous border BS groups
as internal BS groups due to an expansion of its region.

6. DISCUSSION
We discuss how a basic SoftMoW can handle the controller,

switch, and link failures, and implement consistent paths.
Controller failure recovery. To guarantee the reliabil-

ity of the control plane, each logical node in the tree structure
contains master and hot standby instances. For each node,
NIB is decoupled from the controller logic and stored in a
reliable storage system (e.g. Zookeeper [5]). The NIB is
shared between the master and standby. The standby uses a
heartbeat protocol to detect the failure of its master. Also,
each physical or logical (i.e., master and standby) switch
connects to both master and standby instances. All messages
from a physical or a gigantic switch are duplicated and deliv-
ered to both instances. If a master is alive, the standby does
not do anything. Otherwise, it takes over the master’s work
immediately. When the master controller receives an event,
it first logs the event arrival in the NIB, and then processes
it. When the master fails, the hot standby detects this and
immediately checks the event logs and redo unfinished events.

Switch and link failure recovery. When a link failure
occurs, the leaf or ancestor controller, which discovered the
link, is notified through our recursive discovery protocol. If
the failure affects the exposed G-switch and virtual fabric in
a way that cannot be masked from the ancestor controllers,
changes are reflected bottom up which may cause upper-level

controllers to recompute new paths. Otherwise the controller
finds affected local paths and implements alternative shortest
paths with the same performance.

Consistent path setup. In SoftMoW, path implemen-
tations by a controller are pushed top-down. However, the
topology updates propagate bottom-up. If we want to pro-
vide strong consistency between controllers in neighboring
levels, messages needs to be ordered (e.g., paxos, locks) which
impacts the agility of path implementations. SoftMoW guar-
antees eventual consistency. If a failure happens due to
inconsistency (e.g., path implementation during topology
changes), SoftMoW’s controllers recomputes new paths. To
guarantee a packet goes through a consistent path during
path updates, the new path and packets are assigned a new
version number. The packets with the old version number
can still use old rules to guarantee reachability.

7. IMPLEMENTATION AND EVALUATION
We prototype the architecture of SoftMoW to show the

performance gains of SoftMoW compared with current rigid
LTE architecture and evaluate the scalability of our topology
discovery protocol. Finally we show the effectiveness of inter
region handover optimization using trace-driven simulations.

7.1 Prototype and Methodology
Data plane. We prototype SoftMoW on top of the Flood-

light [1] and Mininet [18]. Leaf controllers use the OpenFlow
protocol to communicate with switches while other controllers
interact with logical data plane elements through a custom
API similar to OpenFlow. We build realistic data plane
topologies using the RocketFuel dataset [21]. We present the
results for a data plane containing 321 software switches. To
attach radio access networks, we use our LTE data set. We
connect each BS group to an access switch. Each BS group
contains at most 6 inferred base stations organized in a ring
topology. The minute-level uplink and downlink traffic rates
of BS groups is obtained from the dataset. We set the delay
and bandwidth of links to 5ms and 1Gbps respectively.

LTE dataset. We collected about 1TB traces from a
large ISP’s LTE network during one week in the summer
of 2013. The dataset covers a large metropolitan area with
more than 1000 base stations and 1 million mobile devices.
The trace is bearer -level. A radio bearer is a communication
channel between a UE and its associated base station with a
defined Quality of Service (QoS) class. The trace includes
various events such as radio bearer creation, UE arrival to
the network, UE handover between base stations. From
the trace, we compute the uplink and downlink traffic per
minute per base station. When a flow arrives and there is
an existing radio bearer with the same QoS class, the flow
will use the existing radio bearer. Radio bearers time out
in a few seconds, so a long flow may trigger several radio
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bearer creation and deletion events. Because the data set
does not contain flow-level information, we use radio bearers
to estimate flow activities.

BS group inference. Our LTE dataset does not contain
BS-group level information, so we infer BS groups by a simple
algorithm. We assume each group has at most 6 base stations
organized based on the ring topology. Our algorithm aims
to find groups maximizing the weight of intra-group edges
in the global handover graph. The optimal solution is NP-
hard, so we design a greedy algorithm. In each iteration, the
edge with the lowest weight is removed and then strongly
connected components with fewer than 6 base stations are
computed. We remove the components from the working
graph and mark each as a new BS group. Finally, inferred
BS groups are partitioned to form approximately equal-sized
logical regions with similar cellular loads. We carefully assign
a geographical location to each BS group to preserve the
neighborhood relationship among them.

7.2 Routing Performance
We first focus on a two-level architecture with 4 leaf re-

gions. We approximately place the leaf controllers in the
center of their region. The root controller runs in the mid-
dle of the complete topology. SoftMoW’s inter-connected
core network increases the choices of Internet egress points
so that the control plane can compute optimal end-to-end
paths. We compare the two-level SoftMoW architecture with
an existing rigid LTE region for the same number of base
stations. To model egress points, we use iPlane [2] consisting
of traceroute information from PlanetLab [10] nodes to In-
ternet destinations. To consider routing changes, we replay
the hop counts and latencies from multiple snapshots. The
root implements internal shortest paths for traffic by taking
into account both internal hop counts (from the G-BS to an
egress point) and external hop counts (from an egress point
to the destination).

Figure 8 illustrates the distribution of end-to-end hop
counts as a function of the number of egress points for 11590

destinations on the Internet. We observe the average hop
count decreases from 20.83 to 16 as the number of egress
points increases from 2 to 8. This is because internal path
inflation disappears since the traffic is directed through suf-
ficiently close egress points, and also diversity of external
paths improves the Internet access performance. In particu-
lar, SoftMoW with 8 egress points can reduce the average
end-to-end hop count by 36% compared to LTE network. In
addition, SoftMoW can also reduce end-to-end latencies by
computing globally optimal paths at the root. Figure 9 de-
picts the CDF of RTT latency. We observe the 75th and 85th
percentile RTT latencies reduce by 43% and 60% when we
switch from the LTE network to the 8-egress point SoftMoW.

7.3 Discovery Protocol Performance
In the same setting, we now measure the convergence time

of our recursive discovery protocol. The convergence time
is measured per controller and starts from the beginning of
a discovery period until all links and ports are discovered
and become stable. We compare our results to the standard
discovery protocol (e.g., LLDP) when a single controller is
placed at the root’s location and discovers all the links and
ports.

Figure 10 shows the average convergence time for different
controllers in our architecture and the flat control plane. We
observe SoftMoW’s controllers detect their topology between
44% and 58% faster compared to the flat discovery by the sin-
gle controller. We identified the queuing delay at controllers
is the root cause of such differences and the propagation de-
lays between the controllers and switches have insignificant
effects. The queuing delay is in proportion to the number of
ports and links in topology.

Basically, SoftMoW is more scalable and can detect faults
faster compared to flat single controller deployments because
a large portion of links and ports are masked from each
controller. Table 1 shows the leaf controllers on average
have exposed 20.75% of total ports discovered in their logical



Table 1: SoftMoW Controller Abstractions
Discovered Exposed Exposed

SW Ports Links Ports Ports (%)
Leaf A 55 218 80 58 26
Leaf C 79 250 99 52 20
Leaf B 68 213 87 39 18
Leaf D 98 416 167 81 19
Root 4 230 115 - -
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Figure 12: Handover Optimization

region to the root controller. Also, 73% of total links are
hidden at the root level.

7.4 Handover Optimization
We characterize the cellular load on the leaf controllers

and the effectiveness of inter region handover optimization
through network measurement and simulation. We simulate
a SoftMoW with two levels. In the first level, we define four
and eight roughly equal-sized logical regions, each assigned
to a leaf controller. In the second level, the root controller
manages the abstract topology.

Cellular loads. Each leaf controller should handle three
types of cellular events in addition to exposing logical devices
to the root: bearer arrival, UE arrival, handover request. In
practice, each type of cellular event can triggers multiple
rounds of message passing between the controller and the
logical data plane. Figure 11a shows the CDF of bearer
arrivals. We observe each leaf controller handles as high as
105 bearer arrivals per minute. We use the bearer arrivals as
the estimate of the number of packet-in messages received by
the leaf controllers. Figure 11b shows leaf controllers receive
and process between 1000 and 3000 attachment requests from
UEs connecting to a base station in their region, which are
triggered when users turn on their device. Figure 11c depicts
the aggregate intra region and inter region handover requests
processed by leaf controllers that varies between 1000 and
4000 per minute.

Optimization results. Periodically, the root refines the
abstract sub-regions exposed from the leaf controllers based
on its global handover graph. It strives to reduce the load
of inter region handovers, which also improves the handover
performance. In the optimization, we avoid drastically un-
balancing the three cellular loads on each leaf controllers.
Figure 12 shows the number of inter region handovers handled
by the root over 48 hours for 8-region and 4-region settings.
We observe the number of handover requests increases (i)
in peak hours and (ii) by doubling the number of logical
regions. The root runs the reconfiguration algorithm every 3
hours by collecting local handover graphs. We assume each
GS (i.e., leaf controllers) should not handle more (less) than

30% of their maximum (minimum) initial cellular loads per
minute. Given these constraints, Figure 12 depicts the root
can reduce the load of inter region handovers by 38.08% to
44.61% using our iterative greedy reconfiguration algorithm.

8. RELATED WORK
Scalable control planes. Maestro [8] utilizes parallelism

to achieve high scalability on multi-core machines. SoftMoW
can benefit from the proposed techniques to make logical and
physical rule installations faster at each node. HyperFlow [22]
and Onix [17] are multi-controller designs without any explicit
hierarchical structure. Kandoo [14] improves HypeFlow by
leveraging a two-level controller. Unlike SoftMoW, Kandoo
cannot be extended to more than two levels and can run
specific applications such as elephant flow detection. In
contrast to SoftMoW, these systems do not offer sufficient
scalability to support continent-wide global applications.

Scalable data planes. To scale the data plane, Soft-
MoW, PNNI [11], XBar [19] hierarchically abstract a given
network as logical entities. To control their specific target
network and satisfy requirements, each of them offers differ-
ent abstractions. PNNI’s abstractions is designed for ATM
networks. SoftMoW is the first complete recursive and recon-
figurable architecture with richer abstractions suitable for
cellular WAN operators. Unlike XBar and PNNI, SoftMoW
builds virtual fabrics for its G-switches to enable network-
wide optimization such as routing. In addition, SoftMoW
runs a novel recursive label swapping mechanism to minimize
the bandwidth overhead and data plane states.

Inter-DC control plane. Control plane architectures for
data center WANs such as B4 [16] and SWAN [15] are specific
to inter-DC traffic engineering. Inter-DC WAN topologies
have several order of magnitudes fewer nodes and edges
compared to the cellular WAN topologies [9]. SoftMoW’s
recursive and reconfigurable abstraction scales the network
much better.

Cellular network control plane. Recently, researchers
have also proposed flexible control plane architectures for
cellular networks. SoftRAN [13] is a design specific to radio
access networks. SoftRAN handles intelligent resource block
allocation to optimize utilities. SoftCell [23] focuses on pro-
viding operators with fine-grained policies and compresses
data plane rules. In contrast to prior work, SoftMoW handles
inter-connected cellular core networks.

9. CONCLUSION AND FUTURE WORK
Cellular wide area networks have become an integral part

of our society. However, they are remarkably inflexible and
inefficient. This is exacerbated by the continued exponential
growth of mobile data. To address this important problem,
in this paper, we present SoftMoW, a scalable architecture
that is based on on effective recursive and reconfigurable
abstractions for both control plane and data plane. We de-
signed a recursive link discovery protocol and virtual fabrics
to allow automatic topology construction and support global
resource management. SoftMoW optimizes network-wide
objectives such as inter-region handover, path implementa-
tion, and routing. SoftMoW achieves these goals using novel
algorithms benefiting from our scalable abstractions. Our
evaluation results show that SoftMoW is very efficient and
scalable. For future work, we would like to deploy SoftMoW
in a large testbed.
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