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ABSTRACT

Smartphones have become increasingly prevalent and important in
our daily lives. To meet users’ expectations about the Quality of
Experience (QoE) of mobile applications (apps), it is essential to
obtain a comprehensive understanding of app QoE and identify
the critical factors that affect it. However, effectively and
systematically studying the QoE of popular mobile apps such as
Facebook and YouTube still remains a challenging task, largely
due to a lack of a controlled and reproducible measurement
methodology, and limited insight into the complex multi-layer
dynamics of the system and network stacks.

In this paper, we propose QoE Doctor, a tool that supports
accurate, systematic, and repeatable measurements and analysis of
mobile app QoE. QoE Doctor uses UI automation techniques to
replay QoE-related user behavior, and measures the user-perceived
latency directly from UI changes. To better understand and analyze
QoE problems involving complex multi-layer interactions, QoE
Doctor supports analysis across the application, transport, network,
and cellular radio link layers to help identify the root causes. We
implement QoE Doctor on Android, and systematically quantify
various factors that impact app QoE, including the cellular radio
link layer technology, carrier rate-limiting mechanisms, app design
choices and user-side configuration options.

Categories and Subject Descriptors

C.4 [Performance of Systems]: [Measurement techniques]; C.2.1
[Computer-Communication Networks]: Network Architecture
and Design—Wireless communication

General Terms

Design, Measurement, Performance
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Quality of Experience (QoE); UI Automation; Cross-layer
Analysis; Mobile Applications; Cellular Network

1The views presented in this paper are as individuals and do not
necessarily reflect any position of T-Mobile.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IMC’14, November 5–7, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-3213-2/14/11 ...$15.00.

http://dx.doi.org/10.1145/2663716.2663726.

1. INTRODUCTION
As smartphones become more prevalent, mobile applications

(apps) become increasingly important to our daily lives, providing
access to information, communication, and entertainment. Users
would like apps to respond quickly to their requests, consume
less mobile data to reduce their monthly bill, and consume less
energy to ensure sufficient battery life. The degree to which apps
meet these user expectations is referred to as QoE (Quality of
Experience). Ensuring good QoE is crucial for app developers,
carriers, and phone manufacturers to sustain their revenue models;
thus it is essential to obtain a comprehensive understanding of app
QoE and the critical factors that affect QoE.

However, it remains a challenging task to effectively and
systematically study the QoE of popular mobile apps, such as
Facebook and YouTube. Prior work were relied on user studies
or app logs to evaluate QoE through subjective metrics such as
user experience scores and user engagement [20, 24, 23, 18, 17],
but these experiments are either costly in human effort or less able
to control user behavior variations. To overcome these limitations,
Prometheus [15] measures objectiveQoEmetrics, such as the video
rebuffering ratio, to eliminate the dependence on user behavior, but
it requires the application source code to log UI events, limiting
its applicability. Besides the methodology, another challenge is
that mobile app QoE is affected by factors at many layers of the
system and the network. For example, on cellular networks, the
radio link layer state machine transition delay can lead to longer
round-trip times, and thus increase user-perceived latency [35, 34].
These multi-layer dynamics and their inter-dependencies further
complicate QoE analysis.

To address these challenges, we design a tool called QoE Doctor
to support more accurate, systematic, and repeatable measurements
and analysis of mobile app QoE. QoE Doctor uses UI automation
techniques to replay user behavior such as posting a status on
Facebook, and at the same time measures the application-layer
user-perceived latency directly through UI changes on the screen.
Our tool does not require access to the application source code, or
modifications to the app logic or the underlying system, making
it applicable to QoE measurements of popular apps. In addition
to QoE measurements, QoE Doctor supports cross-layer analysis
covering the application layer, transport layer, network layer, and
radio link layer, in order to understand the root causes of poor QoE
caused by network activities and device-specific operations.

We implement QoE Doctor on the Android platform, and
systematically measure and analyze various QoE metrics in popular
Android apps, including Facebook’s post upload time and pull-
to-update time, the initial loading time and rebuffering ratio in
YouTube videos, and the web page loading time in popular
Android browsers. We quantitatively evaluate the important factors



impacting these QoE metrics, for example network conditions,
application and carrier. Some of our key findings are:

• Network latency is not always on the critical path of the end-
to-end user-perceived latency, such as when posting a status
on Facebook.

• Changing one Facebook default configuration can reduce
over 20% of mobile data and energy consumption.

• Carrier rate limiting policies can increase video loading time
by more than 30 seconds (15×) and increase the rebuffering
ratio from almost 0% to 50%.

• YouTube ads reduce the initial loading time of the main
video, but on cellular networks the total loading time is
doubled.

• The ListView version Facebook reduces device latency by
more than 67% (compared to theWebView version), network
latency by more than 30%, and downlink data consumption
by more than 77%.

• Simplifying the 3G RRC state machine can reduce web page
loading time by 22.8% for web browsing apps.

Our contributions in this paper are summarized as follows:
• To enable automated and repeated QoE data collection for

mobile apps, we design a QoE-aware UI controller, which is
able to replay QoE-related user interaction sequences on popular
Android apps and directly measure user-perceived latency through
UI changes.

• We design a multi-layer QoE analyzer, which provides
visibility across the application layer, transport layer, network
layer, and radio link layer, helping us systematically diagnose QoE
problems and identify the root causes.

• We use QoE Doctor to measure QoE metrics in popular
Android apps, and quantify how various important factors impact
these QoE metrics.

For the rest of the paper, we first provide background information
in §2 and a overview of QoE Doctor in §3. In §4 and §5,
we describe two major parts of QoE Doctor: a QoE-aware UI
controller and a multi-layer QoE analyzer respectively, and §6
summarizes the current tool limitations. In §7 we use QoE Doctor
to systematically study various factors impacting mobile app QoE.
We summarize related work in §8, and conclude the paper in §9.

2. BACKGROUND

Subjective and objective QoE metrics. QoE (Quality of
Experience) refers to the metrics end users use to judge the quality
of services they receive, such as web browsing, phone calls or
TV broadcasts. There is a strong incentive for these services to
maintain and improve QoE, as it is essential to their continued
financial success. To assess the QoE perceived by the end users,
one approach is to ask users to score the service experience,
which we call a subjective QoE metric. Another approach is to
directly measure service performance metrics that are related to
user satisfaction, such as the number of stalls when watching a
video, which we call objective QoE metrics. Much of the previous
work in this area [20, 42, 17, 24, 18] has focused on subjective
metrics. However, subjective evaluations usually require user
studies that are hard to repeat and automate, and may be hard to
reproduce due to varying user behavior. Thus, in this paper we
focus on objective QoE metrics.

RRC/RLC. In order to understand the root causes of QoE problems
on mobile devices, it is important to understand how various
performance problems in the network stack can affect app QoE. Of
particular interest are the RRC (Radio Resource Control) radio link
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Figure 1: 3G and LTE RRC state machine overview.

layer control plane messages used by the base station1 to coordinate
with the device. RRC state behavior has a significant impact on app
performance and power consumption [22, 33, 40, 41].

Typically, 3G has three main RRC states: DCH, FACH and PCH;
and LTE has CONNECTED and IDLE_CAMPED as shown in
Fig. 1. DCH and CONNECTED are high-power, high-bandwidth
states with dedicated communication channels, and PCH and
IDLE_CAMPED are low-power states with no data-plane radio
communication. FACH is an intermediate state with a lower-
bandwidth shared communication channel. The device promotes
from a low-power state to a high-power state if there is a data
transfer, and demotes from high-power state to low-power state
when a demotion timer expires.

We also examine the layer 2 data plane protocol, RLC (Radio
Link Control) [14] . The smallest data transmission unit in RLC
is called a PDU (Protocol Data Unit). For 3G uplink traffic, the
PDU payload size is fixed at 40 bytes, while for 3G downlink traffic
and all LTE traffic the size is flexible and usually greater than 40
bytes. As shown in Fig. 2, an ARQ (automatic repeat request)
mechanism is used for reliable data transmission, which is similar
to the TCP group acknowledgement mechanism but triggered by a
polling request piggybacked in the PDU header.

3. OVERVIEW
In this paper, we develop a tool named QoE Doctor to support

automated and repeated measurements of objective QoE metrics
for popular mobile apps directly from the user’s perspective, as
well as systematically study various factors influencing these QoE
metrics across multiple mobile system and network layers. In this
section, we first introduce the target QoE metrics, and then provide
an overview of the tool design.

3.1 QoE Metrics
In this paper, we study three important objective mobile app QoE

metrics that directly influence user experience:
• User-perceived latency. This application-level QoE metric

is defined as the time that users spend waiting for a UI response
from the app. This includes the web page loading time in web
browsers, the post upload time in social apps, and the stall time in
video streaming apps.

• Mobile Data consumption. On mobile platforms, cellular
network data can be expensive if a data limit is exceeded. Thus, for
end users mobile data consumption is an important component of
mobile app QoE [23].

• Energy consumption. Smartphones are energy-constrained
devices, thus energy efficiency is a desired feature in mobile

1known as the Node B for 3G and the eNodeB for LTE



Poll Request

STATUS PDU

1

UE Node B

1

2

Figure 2: RLC PDU transmission

with ARQ-based group acknowledg-

ment mechanism

Cross-layer analyzer

Cross-layer analyzer

Control

configuration

Re-signed

APK file

QoE-aware UI controller Multi-layer QoE analyzer

UI

controller

App-specific

QoE-related

behavior

control

QoE-

related UI

logger

Network

logger

RRC/RLC

logger

Application layer

QoE analyzer

Transport/network layer

QoE analyzer

RRC/RLC layer

QoE analyzer

Figure 3: QoE Doctor design overview

apps [23]. In particular, we focus on the network energy
consumption of mobile apps since it consumes a large share of the
total device energy [19] and it is strongly influenced by app design
choices [35, 32].

Among these 3 metrics, user-perceived latency is the most
direct way for mobile end users to judge app performance. Thus,
it is the main focus of this paper. Unlike previous work [39,
15, 47], our measurement approach (described in §4) directly
calculates the latency from user’s perspective — the UI layer,
without requiring application source code or any OS/application
logic instrumentation, which enables us to study this QoE metric
broadly on any popular mobile apps of interest.

The other two QoE metrics, mobile data and energy
consumption, are more mobile platform specific. Unlike previous
work [43, 30, 35, 34], our analysis is driven by automatically
replaying user behavior from the application layer. This enables us
to study these QoE metrics from the user’s perspective, and repeat
experiments in a controlled manner.

3.2 Tool Design Overview
Fig. 3 shows the design of QoE Doctor. It includes 2 major

components: a QoE-aware UI controller and a multi-layer QoE
analyzer.
QoE-aware UI controller. This component runs online on the
mobile device, and uses UI control techniques to drive Android
apps to automatically replay user behavior traces, while collecting
the corresponding QoE data at the application layer, the transport
layer, the network layer, and the cellular radio link layer. This
allows us to efficiently collect QoE data, and enables controlled
QoE measurements without depending on varying user behavior.
Unlike previous work [15], our UI control technique does not
require access to application source code. Thus, QoE Doctor is
able to support QoE analysis for popular Android apps such as
Facebook and YouTube. At the UI layer, to accurately collect user-
perceived latency data, our UI controller supports direct access to
the UI layout tree. UI layout tree describes the app UI on the screen
in real time and thus can be used to accurately record the time a UI
change is made. We use tcpdump to collect network data, and a
cellular radio link layer diagnosing tool from Qualcomm to collect
radio link layer control plane (RRC) and data plane (RLC) data.
Multi-layer QoE analyzer. The collected QoE data are processed
and analyzed offline in this component with multi-layer visibility.
At the UI layer, user-perceived latency is calculated using the
timestamps of each QoE-related UI event. At the transport and
network layers, TCP flow analysis is used to separate network
behaviors from different apps based on DSN requests and TCP flow
data content. TCP flow analysis is also used to compute mobile

data consumption corresponding to the QoE-related user behavior
in the application layer. Mobile energy consumption is estimated
based on the cellular network behavior according to the RRC state
recorded in the radio link layer tool log. To more deeply analyze
the QoE measurement results, our analyzer supports cross-layer
mapping between the UI layer and the transport/network layer, and
between the transport/network layer and the RRC/RLC layer. This
allows us to better understand how user actions in the UI layer are
delayed by the network traffic, and helps us identify the potential
bottleneck in the cellular radio link layer that limits the TCP/IP data
transmission speed.

4. QOE-AWARE UI CONTROLLER
In this section, we describe how QoE-related user behavior is

automatically replayed and how the corresponding data is collected
in QoE Doctor’s QoE-aware UI controller.

4.1 Application control
As shown in Fig. 3, the QoE data collection in QoE Doctor is

driven by a UI controller. This component initiates UI interactions
such as button clicks, and thus controls the app automatically to
perform user behaviors of interest. It eliminates human effort, and
allows the same set of standardized user interactions to be replayed
each time. In our implementation on Android, we control the app
UI through the InstrumentationTestCase API [2] provided by the
Android system for UI testing during app development. It allows
UI interaction events to be sent to the app during testing, and the
only requirement is to re-sign the binary APK file by our debugging
key. Our work is the first to use the InstrumentationTestCase API
for the purpose of automated QoE analysis.

UI control paradigm. The UI control in QoE Doctor follows
a see-interact-wait paradigm. After launching the app, the see

component first parses the app UI data shown on the screen, then
the interact component chooses a UI element to interact with (e.g.,
by clicking a button or scrolling a page). After the interaction,
the wait component waits for the corresponding UI response. This
paradigm follows natural user-app interaction behavior, allowing
us to replay real user behavior. Using the InstrumentationTestCase
API, the controller is launched in the same process as the controlled
app, allowing direct access to the UI data as needed for the see

and wait components. Unlike prior work which require system
instrumentation or Android UI dump tools [21, 26, 29, 36],
direct UI data sharing enables convenient and accurate latency
measurements (described next).

The Wait component and accurate user-perceived latency

measurement. In our see-interact-wait paradigm, the wait



component measures the user-perceived latency: the time between
triggering a UI interaction event and receiving the corresponding
UI response. Thus, in our controller we log the start and end
timestamps of the waiting process to measure user-perceived
latency. The waiting process can either be triggered (1) by the user
(e.g., uploading a post in Facebook), or (2) by the app (e.g., a video
stall). To log the start timestamp, for (1) we log the time when
the controller triggers the user action, and for (2) we log the time
when the waiting process indicator (e.g., a progress bar) shows up.
For the end timestamp, we log the time when the wait-ending UI
indicator occurs (e.g., the progress bar’s disappearance). As the
controller shares the same process as the app, these UI element
events can be monitored directly.

User behavior replay. We select several popular Android apps
and identify critical QoE-related user behavior, along with the
corresponding user interaction sequence. Based on the interaction
sequences, control specifications are written for the UI control logic
implementation. To write the specification, only some familiarity
with Android UI View classes is required, so the average Android
app developer should be able to do so. In our design, we support
replaying the user interaction sequences both with and without
replaying the timing between each action. In §7 we use both
according to the experiment requirements.

To ensure the user interactions are sent to the right UI elements
during replay, we design a View signature describing the View
characteristics in the UI layout tree. This signature includes the
UI element class name, View ID, and a description added by the
developer. To support different Android devices, the Vew element
coordinates are not included in this signature.

4.2 App-specific Control Design and User-
perceived Latency Collection

According to a recent report [6], social networking app Facebook
and video app Youtube are the top 2 mobile applications used in
North America during peak periods, and web browsing is ranked
the third in the amount of aggregate mobile traffic globally. Thus,
we focus on these applications. Table 1 summarizes the QoE-
related user behavior that QoE Doctor replays and the associated
user-perceived latency metrics.

4.2.1 Facebook

For Facebook, we measure the following two user actions:
Upload post. One of the most common user actions on Facebook is
to post an update: posting a status, check-in, or uploading a photo.
For these actions, the user-perceived latency is the time from when
the “post” button is clicked to the time when the posted item is
shown on the news feed list. To measure this ending time, we put a
timestamp string in the post, and after the “post” button is clicked,
the wait component repeatedly parses the UI layout tree and logs
the end timestamp as the time when the item with the timestamp
string appears in the news feed.
Pull-to-update. Another common user action on Facebook is to
pull the news feed list down to update it. This can be generated
either by: (1) a pulling gesture, or (2) passively waiting for
Facebook to update the news feed list by itself. To replay the
former, our controller generates a scrolling down gesture. For the
latter, the controller just waits on the Facebook news feed list, and
uses the wait component to log the appearance and disappearance
time of the loading progress bar for the news feed list.

4.2.2 YouTube

For YouTube, we replay searching for a video by name and then
watching it.

Watch video. To replay this user behavior, the controller takes as
input a list of video names. It searches for the video and plays
it until it finishes. There are two user-perceived latency metrics
the wait component monitors: the initial loading time, and the
rebuffering ratio. The rebuffering ratio is the ratio of time spent
stalling to the sum of total play and stall time after the initial
loading. For the initial loading time, we start measuring when
the controller clicks on a video entry in the search results, and
finish measuring when the loading progress bar disappears. For
the rebuffering ratio, the controller parses the UI layout tree after
the video starts playing, and logs when the progress bar appears
and disappears as the video rebuffering start and end timestamps.

When an advertisement (ad) is shown before the video, we
measure the initial loading time and rebuffering ratio for the ad
and the actual video respectively. We configure the controller to
skip any ads whenever users are given that option, as a recent study
shows that 94% of users skip these ads [1].

4.2.3 Web Browsing

For web browsing apps, we choose Google Chrome and Mozilla
Firefox, which both have more than 50 million downloads in
Google Play, along with the default Android browser (named
“Internet"). For these browsers, we replay loading a web page.
Load web page. For web browsing, the most important
performance metric is the web page loading time. To replay page
loading, our controller takes a file with a list of URL strings as
input, and enters each URL into the URL bar of the browser app
line by line before sending an ENTER key. The wait component
logs the ENTER key sending time as the start time, and monitors
the progress bar in the UI layout tree to determine when the loading
completes. A more accurate way of determining the loading
complete time would be to log the time when the visible parts on
the page are loaded, for example by capturing a video of the screen
and then analyzing the video frames as implemented in Speed Index
metric for WebPagetest [8]. We plan to support this in our future
work by adding a screen video capturing into the controller, and
supporting video frame analysis in the application layer analyzer.

4.3 Data Collection
While replaying user behavior to measure QoE, the UI controller

collects data at multiple layers.

4.3.1 Application Layer Data Collection

Application layer QoE data is collected by the wait component
during the user behavior replay. The controller generates a log file,
called AppBehaviorLog, which records each user interaction
event sent to the controlled app, in particular the start and end
timestamps to calculate the user-perceived latency. The user
interaction for each app and the corresponding UI elements for
user-perceived latency measurements are described in §4.2, and
summarized in Table 1.

4.3.2 Transport/Network Layer Data Collection

To measure mobile data consumption and help identify the root
causes of QoE problems for other layers, our controller collects
traffic logs at the transport and network layers using tcpdump [9]
during the user behavior replay.

4.3.3 RRC/RLC Layer Data Collection

To collect RRC/RLC layer data, we use QxDM (Qualcomm
eXtensible Diagnostic Monitor), a cellular network diagnosis tool
from Qualcomm [12]. This tool provides real-time access to both
RRC and RLC layer information for all commercial handsets with a



Application User behavior User-perceived latency UI events to monitor for latency measurement

to replay to measure Measurement start time Measurement end time

Facebook Upload post Post uploading time Press “post” button Posted content shown in ListView
Pull-to-update News feed list updating time Progress bar appears Progress bar disappears

YouTube Watch video Initial loading time Click on the video entry Progress bar disappears
Rebuffering time Progress bar appears Progress bar disappears

Web browsing Load web page Web page loading time Press ENTER in URL bar Progress bar disappears

Table 1: Replayed user behavior and user-perceived latency metrics for Facebook, YouTube and web browsers

Qualcomm chipset, including popular Android phone models such
as Samsung Galaxy S3/S4. Recent work [44] exposes RRC state on
Intel/Infineon XGold chipsets by instrumenting the system, but it
cannot access RLC data, which is critical in our cross-layer analysis
in §5.4.2. To collect this data, we need to connect the mobile
devices to aWindows PC, and configure the QxDM software for the
corresponding network technology, either 3G or LTE. QxDM saves
all radio link layer information to a file on the PC. By parsing this
information, we isolate the RRC state transitions and RLC PDUs
with corresponding timestamps.

QxDM limitations. There are two major limitations of the QxDM
tool. First, as mentioned earlier, it requires a PC connection in order
to collect real-time user data outside the laboratory. QoE Doctor
helps reduce the impact of this limitation as we can replay real
user behavior using the UI controller. Second, the QxDM tool is
not designed to provide complete RLC PDU payload information.
Perhaps to reduce logging overhead, the RLC PDUs only contain 2
payload bytes, which makes the cross-layer mapping between RLC
PDUs and network packets non-trivial. We explain in §5.4.2 how
we use a technique we call long-jump mapping to overcome this
limitation.

5. MULTI-LAYER QOE ANALYZER
In this section, we describe how QoE metrics are calculated at

each layer using the data collected by the UI controller, and what
multi-layer analysis is supported to help study these QoE metrics.

5.1 Application Layer Analyzer
At the application layer, we can simply calculate the user-

perceived latency metrics based on the start and end timestamps
logged in the AppBehaviorLog by the UI controller. Unlike
previous work [22, 31], we calculate UI latency directly rather
than inferring it from network traces, which can capture the ground
truth, and also enables us to analyze apps having encrypted traffic
such as Facebook.

User-perceived latency calibration. We measure user-perceived
latency by observing app-generated UI events by periodically
parsing the UI layout tree. Fig. 4 shows the process for measuring a
Facebook post upload, where the start timestamp is measured from
a UI controller action and the end timestamp is measured from the
UI layout tree. In QoE Doctor we want to measure tui, but due
to overhead in parsing the UI tree, the actual measured latency is
tm = tui+toffset+tparsing . To accurately calculate tui, we need
to subtract toffset and tparsing from tm. Assuming the end time of
the UI data update falls uniformly in the parsing time interval, the
expected value of offset time is toffset =

1

2
tparsing . We calibrate

the user-perceived latency by subtracting 3

2
tparsing from tm. This

calibration is used to correct the post uploading time, the web page
loading time, and the initial loading time in Table 1. For the other
two latency metrics, the start timestamp is measured by parsing the
UI tree, which is the same as the end timestamp measurement, so

the average offset time is toffset = 0. For these, we just subtract
tparsing from tm in the calibration.

5.2 Transport/Network Layer Analyzer
In the transport and network layers, we calculate the mobile

data consumption QoE metric from data collected by tcpdump.
Our analyzer parses the raw packet trace and extracts TCP flows,
defined by the tuple {srcIP, srcPort, dstIP, dstPort}, and then
associates each TCP flow with the server’s URL by parsing the
DNS lookups in the trace. Over repeated experiments, we identify
the TCP flows with common server URLs to associate the replayed
user behavior, and then calculate its network data consumption. We
also calculate the number of data retransmissions, the RTT (Round-
Trip Time), and the throughput for the TCP flows.

5.3 RRC/RLC Layer Analyzer
We obtain RRC state change information from QxDM logs.

Using the Monsoon Power Monitor [7], we obtain the power level
for each RRC state, and thus can calculate the network energy
consumption for the entire mobile device using a technique from
previous work [22]. To get the network energy consumed by the
controlled app only, we remove all other apps on the device and
log out all system app accounts to ensure that the network energy
calculation is not affected by unrelated traffic. We also calculate
tail energy as defined in previous work [34], and count all other
network energy as non-tail energy.

First-hop OTA RTT. QxDM logs both uplink and downlink
RLC PDUs, which include polling PDUs and the corresponding
STATUS PDUs, as mentioned in §2. Based on this feedback
loop, we calculate the first-hop OTA (Over The Air) RTT, which
is the time from when the device transmits a polling request until
when it receives the STATUS PDU. However, because of the group
acknowledgement mechanism, we may not find a corresponding
polling PDU for each STATUS PDU. Thus, we estimate the first-
hop OTA RTT for a PDU by finding the nearest polling PDU to a
STATUS PDU.

5.4 Cross-layer Analyzer
Besides analyzing data at individual layers, QoE Doctor also

supports cross-layer analysis across the application, transport,
network, and RRC/RLC layers to help perform root cause analysis.

5.4.1 Cross Application, Transport/Network Layers

To help identify root causes of QoE problems in the application
layer, we examine the transport and network layer behavior to
identify the critical path of the application layer delay and pinpoint
the bottlenecks. We first identify the start and end time of a
user-perceived latency problem logged in the AppBehaviorLog,
which forms a QoE window. Then we focus our analysis on the
network traffic which falls into this QoE window, and use flow
analysis to identify the TCP flows responsible for the application
layer delay. Through this cross-layer analysis, we can study fine-
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grained QoE metrics such as the initial loading time for Youtube,
which is otherwise indistinguishable from rebuffering events if only
analyzing network data, as done in previous work [18, 42].

5.4.2 Cross Transport/Network, RRC/RLC Layers

To understand the impact of the interaction between the
transport/network and the cellular radio link layers, QoE Doctor
supports cross-layer analysis between them.

Transport/network layer and RRC layer. From the RRC state
information logged by QxDM, we obtain the RRC state change
information. By finding an overlap between the QoE window
(defined in §5.4.1) and the RRC state transition window, we can
pinpoint cases where RRC state transitions occur during the period
of the user-perceived latency, which may help reveal the impact of
RRC state transitions on the user-perceived latency.

Transport/network layer and RLC layer. To understand how
network packets are transmitted in the lower layer, our analyzer
supports the mapping from IP packets to RLC PDUs using the fine-
grained RLC transmission information provided by QxDM. More
specifically, we map complete IP packets to the corresponding
fragmented RLC payload data bytes spreading among several
PDUs. Due to the limitation of QxDM mentioned in §4.3.3, for
each PDU only the first 2 payload bytes are logged, which provides
us with limited information to identify the corresponding IP packet.

To ensure an accurate mapping, we design an algorithm which
handles these limitations we have mentioned. As only 2 payload
bytes are captured, after matching these 2 bytes we skip over the
rest of the PDU, and try to match the first 2 payload bytes in the
next PDU as shown in Fig. 5, which we call long-jump mapping.
Since some PDUs may contain the payload data belonging to two
consecutive IP packets, according to the 3G specification [14] we
use the LI (Length Indicator) to map the end of an IP packet. If the
cumulative mapped index equals the size of the IP packet, we have
found a mapping successfully; otherwise no mapping is discovered.

We evaluate this mapping, and find that the percentage of
mapped IP packets is 99.52% for uplink and 88.83% for downlink.
The reason that we cannot achieve 100% accuracy is that
occasionally a small fraction of RLC PDUs are not captured
by QxDM, causing missing mappings for the corresponding IP
packets. In our cross-layer analysis, we only consider the IP
packets with successfully mapped RLC PDUs.

6. TOOL LIMITATIONS
The limitations of QoE Doctor are summarized as follows.

Manual efforts involved in the replay implementation. In
order to replay user behavior, QoE Doctor currently requires

manual identification of critical QoE-related user behavior, and
some familiarity with Android UI View classes for writing control
specifications. These manual efforts are necessary, as measuring
the QoE metric of interest requires identifying the natural way
a user interacts with the app. In future work, we will consider
using learning algorithms to automatically generate common user
behavior from user study logs.

Latency measurement imprecision. As shown in Fig. 4, although
we are directly measuring the UI data changes (tui), the result may
differ from the UI changes on the screen (tscreen), mostly due to
the UI drawing delay. In §7.1 we find the measurement error is less
than 4%.

Lack of fine-grained application layer latency breakdown. In
our latency measurements, only the end-to-end latency is reflected
in the UI layout data changes, and we cannot break down the
latency into more fine-grained operations such as the transaction
task delay and the inter-process communication delay. Without the
ability to track detailed UI operation sequences, it is hard to confirm
whether the network activity is asynchronous, which may mislead
the cross-layer analysis. In our design, we do not support it because
providing this information requires system or application logic
instrumentation [39, 47], which may limit the tool’s applicability.

Limitation related to RRC/RLC layer logger. Our analysis about
layer 2 data plane (RLC) information may not be 100% accurate
due to QxDM limitations as described in §4.3.3 and §5.4.2.

7. EXPERIMENTAL EVALUATION
In this section, we first evaluate the QoE measurement accuracy

and overhead of QoE Doctor, and then use QoE Doctor to
systematically and quantitatively study various factors which may
have impact on our 3 QoE metrics. In this paper, we consider
three factors potentially impacting QoE: (1) the network type and
quality, for WiFi and 3G and LTE cellular networks; (2) the app’s
design and configuration; and (3) the carrier, in particular carrier
rate limiting mechanisms for throttling. These factors are identified
based on either our experiences with the apps or practical problems
from real user experience identified by the authors at T-Mobile.
We summarize our experiment goals in Table 2. In this section, 2
carriers are involved in our experiments, which we denote as C1
and C2.

7.1 Tool Accuracy and Overhead
In this section, we report our evaluation results of the accuracy

and overhead of QoE Doctor. Table 3 summarizes the results
in the section along with the IP packet to RLC PDU mapping
performance reported in §5.4.2.



Section Experiment goal Relevant factor Application

§7.2 Device and network delay on the critical path for user-perceived latency Network condition, app Facebook

§7.3 Data and energy consumption during application idle time Network condition, app Facebook

§7.4 Impact of app design choices on user-perceived latency Network condition, app Facebook

§7.5 Impact of carrier throttling mechanisms on user-perceived latency Network condition, carrier YouTube

§7.6 Impact of video ads on user-perceived latency Network condition, app YouTube

§7.7 Impact of the RRC state machine design on user-perceived latency Network condition, carrier Web browsers

Table 2: Experiment goals and mobile applications studied in §7.

Item Value

User-perceived latency ≤40 ms (td)
measurement error ≤4% (td/tscreen)
Transport/network to 99.52% (uplink)

RLC data mapping ratio 88.83% (downlink)

CPU overhead 6.18%

Table 3: Tool accuracy and overhead summary of QoE Doctor.

QoE measurement accuracy. The mobile data consumption
metric is a precise value, calculated directly from data in the
transport/network layer. The network energy consumption is
calculated directly from RRC/RLC layer information using a well-
established model [22, 48]. For the user-perceived latency metric,
however, the UI data changes in the UI layout tree may not
precisely correspond to screen changes due to UI drawing delays
(Fig. 4). We evaluate the measurement accuracy by recording a
video of the screen at 60 frames per second for each of the user-
perceived latency tests we perform. Each experiment is repeated
30 times. The result shows that for all actions, the average time
difference td between tscreen and the measurement result from
QoE Doctor is under 40 milliseconds. We determine how the
user-perceived latency measurements are affected by calculating
the ratio of td to tscreen for each metric, as shown in Fig. 6. As
td is not proportional to tscreen, the ratio differences between the
5 metrics are due to tscreen. To calculate an upper bound on this
ratio, for each metric we use the shortest tscreen among all the
experiments in this section in Fig. 6. As shown, for all experiment
results the latency measurement error is less than 4%.

QoE measurement overhead. We use DDMS [3] to compare the
CPU time when manually inputting the target user behavior with
the CPU time when using QoE Doctor. We find the upper bound
of this overhead by running the most compute-intensive operation,
parsing the UI tree (Fig. 4), on the most computation-intensive
app operation: uploading a Facebook post. We run this test 30
times, and find the average worst-case CPU computation overhead
introduced by QoE Doctor is 6.18%.

7.2 Facebook: Post Uploading Time Break-
down Analysis

In this section, we focus on the action of uploading a post to
Facebook, leveraging our multi-layer analysis to break down the
roles the device and the network play in the user-perceived latency.

Experiment setup. We run the experiments on Facebook version
5.0.0.26.31 on a Samsung Galaxy S3 device with Android 4.3. We
use QoE Doctor to post status, check-in, and 2 photos every 2
seconds for C1 3G and C1 LTE network. Each action is repeated
50 times.

Finding 1: The network delay is not always on the critical

path. To understand the role of the device and the network in the

end-to-end delay, we break down the device and network latency
according to the steps of uploading a post shown in Fig. 4. To
separate out the network latency portion, we first identify the TCP
flows which are responsible for the post uploading using techniques
described in §5.4.1. Even though the trace is encrypted, it is
not hard to identify the flow with high confidence since in most
cases only one flow has traffic during the QoE window (defined
in §5.4.1). We then calculate the network latency as the timestamp
difference between the earliest and latest packet of this TCP flow,
and calculate the device latency by subtracting the network latency
from the user-perceived latency.

Fig. 7 shows the breakdown results for posting 2 photos, status
and check-in for C1 3G and C1 LTE network. In the figure, the
standard deviation values of the latencies for posting 2 photos are
all less than 0.7 seconds, and those for posting a check-in and a
status are all less than 0.25 seconds. Surprisingly, we find that the
network delay contributes little to the check-in and status uploading
latency. We double-checked the network trace, and found that
the corresponding TCP ACK packets for both actions are actually
outside the QoE window. This indicates that showing these posts on
the news feed list doesn’t depend on the response from Facebook
server. In other words, the Facebook app pushes a local copy of

status and check-in posts directly onto the news feed list to remove

the network delay from the critical path, which ensures low user-

perceived latency. Note that this only happens to posting a status
and a check-in; for posting 2 photos, the network latency always
falls inside the QoE window, suggesting that it is very likely to be
on the critical path, which is the case described in Fig. 4.

Finding 2: 3G RLC transmission delay contributes more than

expected in the end-to-end photo posting time. Unlike status and
check-in posting, Fig. 7 shows that for 2 photo uploading action
the network latency has more than 65% share in the end-to-end
latency. Using our cross-layer analysis between the application
and transport/network layers, we always see a clear pattern of
uploading then downloading two large chunk of data in the TCP
flow inside QoE Window. Interestingly, for this action 3G has
around 50% more network latency than LTE, while their device
latencies are similar. To find out the reason, we further break
down the network latency using our cross-layer analyzer between
the transport/network layer and the RRC/RLC layer as described
in §5.4.1.

In this more fine-grained network latency breakdown, we target
four metrics: IP-to-RLC delay (t1), RLC transmission delay (t2),
the first-hop OTA delay (t3), and other delay (t4) as shown in
Fig. 9. The IP-to-RLC delay is the time difference between an IP
packet and its first mapped RLC PDU when no other RLC PDUs
are transmitted. For the RLC transmission delay, we first identify
the periods where the device is “busy" transmitting RLC PDUs
using a burst analysis for RLC PDUs. We implement this analysis
by checking whether the inter-PDU time is less than the estimated
first-hop OTA RTT defined in §5.3. Then, the RLC transmission

delay is calculated by summing up all the inter-PDU time within
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tAB and tBC are the inter-IP packet times. Although tAB > 0,

A and B are transmitted back-to-back within one PDU burst

in the RLC layer. PDUs with letter P are polling PDUs. S1 and

S2 are STATUS PDUs.

each RLC burst. For the first-hop OTA delay, we notice that not all
the first-hop OTA RTTs are on the critical path. For example, the
RTT from A19 to S1 is not on the critical path but the RTT from
B36 to S2 is, because for the former the device is busy transmitting
B1 but not explicitly waiting for S1. Therefore, we define the
first-hop OTA delay as the summation of the first-hop OTA RTTs
which the device explicitly waits for. Other delay is calculated by
subtracting the end-to-end time by the IP-to-RLC delay, the RLC

transmission delay, and the first-hop OTA delay. The IP-to-RLC

delay, the RLC transmission delay, and the first-hop OTA delay

are all within one hop range from the local devices, so other delay

consists of the latencies outside of the one-hop range, for example
the latency in the switch/router, server processing delay, etc.

The breakdown results are shown in Fig. 8. In the figure, the
RLC transmission delay in C1 3G is significantly greater than that
in C1 LTE. We manually inspect the traces of posting 2 photos,
and find that there are on average 270 IP packets transmitted within
the QoE window, corresponding to 10553 RLC PDUs for C1 3G
and 4132 RLC PDUs for C1 LTE. Such 2.55× additional number
of RLC PDUs implies significant RLC PDU header processing
overhead, which could be the potential reason of the higher RLC
transmission delay in C1 3G.

7.3 Facebook: Background Traffic Data
Consumption and Energy Analysis

To ensure that users can get interesting content from their social
network at any time, Facebook app keeps communicating with the
server even when it is not in the foreground. Howmuch mobile data
and energy are consumed by these background network events?
How can we as users reduce cost and battery power usage while
still getting timely updates? In this section, we use QoE Doctor to
explore the answers.

Experiment setup. We use two devices, a Samsung Galaxy S3
device with Android 4.3 (referred as device A) and a Samsung
Galaxy S4 device with Android 4.3 (referred as device B), and
configure the accounts on device A and B to be mutual and
exclusive friends with each other. Then, we use QoE Doctor’s
controller on device A to post statuses with texts of identical
lengths, causing device B to receive these status updates. We
change the settings of the account in device B so that it receives
a notification for every news feed post from device A. Thus,
device A simulates Facebook friends or public pages from which
the user with device B wants to get updated with no delay. We
consider these content to be time-sensitive. On device B, we only
use the data collection functionality of QoE Doctor controller.
Since our target is Facebook background traffic, we use flow
analysis and only analyze TCP flows which talk to Facebook DNS
domain names. For energy consumption, we use QxDM RRC state
machine logs as described in §5.3.

Finding 3. Facebook’s non-time-sensitive background traffic

adds non-negligible overhead to users’ daily mobile data and

energy consumption. To see how uploading frequency impacts
mobile data and energy consumption, we set the uploading
frequency on device B to be every 10 minutes, 30 minutes, 1 hour,
and no uploading. We run the experiment for 16 hours, and the
results are shown in Fig. 10 and Fig. 11. For uploading every 10
minutes, 30 minutes and 1 hour, the results are expected: data
and energy consumptions are strictly proportional to the upload
frequency of device A. These content is time-sensitive for device
B, so these overhead is acceptable. However, to our surprise,
when device A’s only friend, device B, posts nothing, device
A still has around 200 Kilobytes mobile data consumption and
around 300 J mobile network energy every day! We repeat the
experiment and check the news feed content on device B, and find
out that this traffic mainly comes from Facebook friends and page
recommendations in the news feed list. Compared to the posts of
device B’s friends or public pages (simulated by device A), for
which device B wants to get updated with no delay, we consider
this traffic to be non time sensitive. For these content, even if it
is not updated in the background, only a few seconds of waiting
time is needed to update the list after the app launches. From our
experiment results, if device B has time-sensitive updates every
1 hour, around half of the data and energy is spent on non-time-
sensitive traffic, doubling the mobile data and energy overhead.

Finding 4. Changing one Facebook configuration can reduce

mobile data and energy consumption caused by non-time-

sensitive background traffic by 20%. In Facebook app’s settings,
an item called “refresh interval” determines how frequently the
news feed list is refreshed in the background, which controls the
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refresh frequency of the non-time-sensitive background traffic. In
Fig. 10 and Fig. 11, the refresh interval we use is the default value,
1 hour. To explore how to configure the refresh interval, we fix
the device A uploading frequency to 30 minutes to simulate the
activity of its friend on device B, and change device B’s refresh
interval to 30 minutes, 1 hour, 2 hours and 4 hours. We collect
data for 16 hours for each configuration. The results are shown in
Fig. 10 and Fig. 11. As shown, the 2-hour configuration reduces
mobile data consumption by 25% and mobile network energy
consumption by 20% compared to the default 1-hour configuration.
Another observation is that the data and energy consumptions
are similar between the 2-hour and 4-hour configurations. After
inspecting the traces closely, we find that the network traffic is
mainly generated by status upload notifications from device A
every 30 minutes, which are time-sensitive for device B. Thus, for
users who think that delaying non-time-sensitive information for a
while is acceptable, changing the refresh interval from 1 hour to 2
hours is likely to be a good balance between content timeliness and
data, and energy consumption: it reduces mobile data and energy
consumption by more than 20%, while only delaying non-time-
sensitive content by 1 hour.

7.4 Facebook: Application Design Impact on
News Feed Update Latency

In this section, we leverage QoE Doctor to study the impact
of app design choices on user-perceived latency. We compare
Facebook app version 1.8.3 and version 5.0.0.26.31. The major
difference between them is that Facebook app changed the way of
showing news feed list from an Android WebView to a ListView.
The goal of our comparison is to identify and quantify impact of
this change on QoE. We choose to relay pull-to-update action using
QoE Doctor, which is an updating process related only to the news
feed list.

Experiment setup. All experiments are launched on the same
Samsung Galaxy S4 device with Android 4.2.2. Like §7.3, we use 2
devices, denoted by A and B. Their Facebook accounts are mutual
and exclusive friends. Using QoE Doctor we have device A posting
a status every 2 minutes for 6 hours. Device B passively waits for
the news feed list to update by itself, which is also every 2 minutes,
and measures the update latency. Facebook app version 1.8.3 does
not self-update every 2 minutes, so we generate a scrolling gesture
every 2 minutes to trigger the updating. We launch the experiment
under both C1 LTE and WiFi. For all the experiments, we choose
the same time period of a day to avoid time-of-day effect. We also
choose the same place to run the experiments to ensure that the
cellular and WiFi signal strengths in the comparison are the same.

Finding 5. The ListView design reduces device latency by

more than 67% , network latency by 30%, and download data

consumption by more than 77% compared to the WebView

design. Fig. 14 shows the news feed list updating time distribution

for both the WebView design and the ListView design under C1
LTE and WiFi. Under both network conditions, the user-perceived
latency is greatly affected by the design – the average latency of
the WebView design is more than 100% longer than that of the
ListView. At the same time, the latency of the ListView has less
variance. To understand the root cause, we break down the device
and network delay using the same technique as in §7.2. As for
posting photos in §7.2, in this experiment the network latency for
news feed list updating is always inside the QoE window. As
shown in Fig. 15, both network and device latency are improved
by at least 67% and 30% respectively after changing the WebView
design to the ListView design. We hypothesize that the reason for
the device latency improvement is that WebView updating is quite
complex compared to the ListView since it involves iterated content
fetching and HTML parsing, which leads to a less responsive UI.
For the network latency improvement, we further calculate the
network uplink and downlink data consumption for the TCP flow
responsible for the news feed list updating, which is shown in
Fig. 16. For both C1 LTE and WiFi, the only difference is that
the amount of downlink TCP data in the WebView design is more
than 77% more than that in the ListView design. Thus, the network
latency improvement in the ListView design is caused by much less
network data to download. We think the reason is that WebView
needs to display HTML content, thus compared to ListView it
requires extra data to specify layout, structure, CSS, etc. Note
that these results just suggest that using the ListView may lead to
lower user-perceived latency compared to using the WebView, but
the actual amount of improvement also depends on other factors
such as app traffic characteristics.

7.5 YouTube: Carrier Throttling Mechanism
Analysis

Most mobile users have limited monthly data plan contracted by
different carriers. Normally users will be charged for over-limit
data usage, while C1 uses another policy: users are still provided
free data services even after exceeding the data limit [13], and the
penalty is that carrier will throttle the network bandwidth on the
base station. In this section, we use QoE Doctor to study how this
policy may impact app QoE.

Experiment setup. To study the throttling mechanism’s impact on
QoE, we use QoE Doctor to play videos in YouTube app version
5.2.27 on a Samsung Galaxy S4 device with Android 4.3, with a
throttled and an unthrottled SIM card for both C1 3G and C1 LTE.

Video dataset. We use “a” to “z” as keywords to search for videos
in YouTube app, and choose the top 10 videos for each keyword
to form our video dataset of 260 videos. This dataset is quite
diverse in both the video length (1 minute to half an hour) and
video popularity (several thousand views to more than 10 billion
views). In this dataset the total video length is about 34.6 hours.
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Finding 6. Network bandwidth throttling causes more than

30 seconds (15×) more initial loading time and increases the

rebuffering ratio from around 0% to 50% on average. We
randomly play 100 videos from our video dataset under both
throttled and unthrottled conditions in C1 3G and C1 LTE, and the
results are shown in Fig. 17. For C1 3G, the initial loading time
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increases by 30 seconds after the bandwidth throttling, which is
15× more compared to the unthrottled case. For C1 LTE, it is even
worse: the increased initial loading time is more than 1 minute,
which is 48× more! For the rebuffering ratio, without throttling
there are nearly no rebuffering events, but with throttling, more than
50% and 75% of the total playback time is spent in rebuffering for
C1 3G and C1 LTE respectively, which makes the user experience
highly negative.

Besides the effect of bandwidth throttling, from Fig. 17 we have
another interesting observation: both the value and the variance of
the initial loading time and the rebuffering ratio for throttling in C1
3G are much smaller than those for throttling in C1 LTE. Next, we
use QoE Doctor to further investigate the root cause.

Finding 7. The throttling mechanism choice causes more

variance in the initial loading time and the rebuffering ratio

in C1 LTE. By contacting carrier C1, we find out that C1
3G and C1 LTE actually adopt different throttling mechanisms:
C1 3G uses traffic shaping, and C1 LTE uses traffic policing.
Both throttling mechanisms use the token bucket algorithm for
rate limiting, but when the traffic rate reaches the configured
maximum rate, traffic policing drops excess traffic while traffic
shaping retains excess packets in a queue and then schedules the
excess for later transmission [11]. Using our application layer
and transport/network layer analyzer, we compare the C1 3G
and C1 LTE throttling impact in Fig. 18. In the network trace,
compared with C1 LTE, in C1 3G there are relatively fewer TCP
retransmissions, which implies less TCP packet drops on 3G base
station. Thus, the average throughput variance for C1 3G is smaller
than that for C1 LTE. These are consistent with the more bursty
traffic pattern expected in traffic policing [11], which is very likely
the reason for more variance in the initial loading time and the
rebuffering ratio in C1 LTE.



Finding 8. A simple video resolution adaptation in YouTube

increases the initial loading time by 50% and doubles the

rebuffering ratio in C1 LTE compared to C1 3G. Throttling
mechanism choice can explain the QoE variance differences
between C1 3G and C1 LTE, but it does not explain the value
differences. To understand the relationship between throttling
bandwidth and the video QoE with rebuffering events, we utilize
a Linux traffic control tool tc [10]. We select a small video set
(26 videos) randomly from the videos with less than 90 seconds
lengths in our video dataset, and automatically play them using
QoE Doctor. We repeat the bandwidth limits of 100 kbps, 200
kbps, 300 kbps, 400 kbps, and 500 kbps for both C1 3G and C1
LTE network, and the results are shown in Fig. 19 and Fig. 20. In
these figures, for all bandwidth limits, the rebuffering time ratio and
initial loading time for C1 LTE is consistently much higher than
that of C1 3G. Using our cross-layer analyzer, we find that the root
cause lies in the total downloaded video data: in C1 LTE around
96.6% (∼ 40 MB) more data is downloaded than that in C1 3G.
From the MediaPlayer log [5] in Android logcat [4], we find out
the reason: the default video resolution is 320×180 px for 3G and
640×360 px for C1 LTE. Due to this default adaptation, in Fig. 17
YouTube videos on throttled C1 LTE have 50% higher initial
loading time and double the rebuffering ratio than on throttled C1
3G. LTE has better maximum throughput than 3G, but it does not
imply that the throughput in LTE is always better in any network
conditions. We suggest that to improve its video QoE, YouTube

should adapt the video resolution based on more fine-grained real-

time network performance instead of simply based on network type

information.

7.6 YouTube: Advertisement Impact on
Initial Loading Time

Ads that play in the video stream before the actual video (known
as “pre-roll ads") are a popular monetization approach for major
video providers. Previous work [25] has studied the effectiveness
of video ads as measured by their completion and abandonment
rates. We instead focus on the impact of pre-roll ads on the initial
loading time for YouTube.

Experiment setup. We use the same experimental setup and video
data set as §7.5. We use QoE Doctor to play 100 random videos
from the dataset (in total 13.5 hours) under C1 3G, C1 LTE and
WiFi. In our experiments, the cellular signal strength for C1 3G
and C1 LTE is around -95 to -105 dbm. Note that the ad loading
latency in the results in this section might be shorter in areas with
better network condition.

Finding 9. Advertisements reduce the initial loading time of the

actual video, but double the total initial loading time. Fig. 21
shows the distribution of initial loading time under C1 3G, C1 LTE
and WiFi. We measure four values: “video after ad" refers to the
time to load the video after a pre-roll ad; “video, no ad" refers to
the time to load a video in the absence of a pre-roll ad; “ad" refers
to the ad loading time, and “ad + video" refers to the combined
loading time for both ad and video in the presence of a pre-roll ad.
Interestingly, the ad loading time is longer than the actual video

loading time for every network. We use the cross-layer analyzer
to examine the network traffic inside the QoE Window, and find
that the video appears to be pre-loading while the ad is loading
as well. Despite this pre-loading, the total initial loading time is

roughly doubled. Most interestingly, on WiFi the video loading
time is largely masked by the ad loading time, but on cellular
networks there is still a substantial loading delay for the actual
video. By examining network traffic, the root cause is that the
ad loading process often has to compete with traffic to analytics
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Figure 21: CDFs of video loading times for different network

types, in the presence and absence of ads

services. Overall, cellular network has an additional delay of 4-
6 seconds of loading time when an ad is played, on top of the 5
seconds the user must spend in watching an ad before skipping it.

7.7 Web Browsing: RRC State Machine
Impact on Web Page Loading Time

As described by a previous study [33], the RRC state machine
in 3G network generally consists of 3 states shown in Fig. 1.
Surprisingly, during our experiment we find from QxDM that C2
has simplified its 3G RRC state machine into a 2-state model,
which is shown in Fig. 22. This finding makes us curious about
the possible influence this RRC state machine model change may
have on mobile app QoE. In this section, we use QoE Doctor to
study the impact of different RRC state machine models on the web
page loading time in Android Google Chrome web browser version
18.0.1025469.

Experiment setup. In order to evaluate over real user experiences,
we conducted a user study with 20 students from University of
Michigan for 9 months. We installed tcpdump on 20 Samsung
Galaxy S3 devices to collect network traces, and we anonymized
device identities to protect user privacy. Using TCP and HTTP
analysis, we separate the traffic generated by the Chrome browser
app, and then filter out the the URLs visited by the real users
along with the inter-request timings. In this filtering process,
we first parse the traces to extract the links inside the HTTP
requests, and then clean up the links manually to make sure that
they are delivering web pages with meaningful content instead of
downloading objects such as images, icons and scripts. QoEDoctor
takes the filtered URL list in and replays the web browsing behavior
in Google Chrome app on the C1 3G network and C2 3G network.
C1 uses the 3-state model and C2 uses the simplified 2-state model
in Fig. 22. As RRC state machine behavior is sensitive to the timing
between network-related actions, in the experiment we not only
replay the sequence of user actions, but use the URL visiting time
intervals as well to ensure that the timings between user actions are
also replayed.

In the experiments, the generated URL list for replay is 4 hours
in length and has 597 URLs belonging to 71 different sites with a
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Figure 22: C2’s RRC state

machine has only two states,

omitting FACH.

RRC transition C1 C2

DCH 76.6 % 93.5 %

DCH→FACH→DCH 3.2 % —

FACH→DCH 16.0 % —

PCH→FACH→DCH 4.2 % —

DCH→Disconnected→DCH — 0.2 %

Disconnected→DCH — 6.3 %

Table 4: RRC state transition distribution in the user

study trace. C1 experiences a RRC state transition

23.4% of the time, while C2 only experiences 6.5%.
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wide range of content types, including news, movies, sports, social
networking, google search results, and travel guides. Between the
experiment for C1 and the experiment for C2, the average relative
download data size difference is only 1.94%, which is mainly
caused by changes in the HTTP metadata such as time, encoding
mechanism, etc. instead of the web page content.
Finding 10. The 2-state RRC state machine model has a 16.9%

lower chance to experience RRC state transitions, which causes

22.8% lower web page loading time than the 3-state RRC state

machine model. To understand the impact of different types of
RRC state machine transitions, we classify the loading time based
on the RRC promotion and demotion events that happen inside the
QoEWindow. Fig. 24 shows the web page loading time distribution
for different types of transitions for C1 and C2’s 3G networks,
and Table 4 shows the percentage of different types of transitions.
Consistent with previous work [35, 34], the loading time in Fig. 24
for C1 and C2’s 3G networks becomes longer when it involves
RRC state machine transitions. The situation is the worst if the
loading time involves both the state promotion and demotion –
the page loading time at least doubles. In Table 4, between the
2-state model of C2 and 3-state model of C1, the web page loading
in the 2-state model has a 16.9% lower chance to involve RRC
state transitions. Based on QxDM logs, for C1 the DCH→FACH
and FACH→PCH demotion timers are 3 seconds and 6 seconds,
while for C2 the DCH→Disconnected timer is 10 seconds, which
is roughly equal to the sum of the demotion timers in the 3-state

model. Thus, the main cause for fewer state transitions in C2 is the
simplified state machine design which removes the middle state:
it stays in DCH most of the time, and once it promotes, it is very
unlikely to demote. This results in 22.8% lower loading time in
the 2-state model of C2 compared to the model of C1. We also
calculate the energy consumption using the technique described
in §5.3. As shown in Fig. 23, although the overall energy is similar,
due to the lower chance of demotion, C2 has 92.5% lower tail
energy compared to C1 according to the definition of tail energy
in previous work [34]. For these results, we believe that they are
generalizable to other apps besides web browsing apps, since the
root cause lies in the RRC state machine design.

8. RELATED WORK
UI automation. UI automation tools are a common approach
for dynamically analyzing applications for various purposes.
Application bug detection is the most common application. In
this category, Dynodroid [29], A3E [16], VanarSena [37], and
ContextualFuzzing [27] are designed to uncover application bugs
and crashes by automatically exploring all possible internal states,
and exposing them to various external contexts. Accessibility

policy checking is also a popular target. AMC [26] automatically
explores app UI states to check for violations of UI requirements
for vehicular apps. DECAF [28] uses UI automation to
detect ad fraud. UI automation is also used for security and

privacy purposes. For example, AppsPlayground [36] provides
a framework using fuzz testing for malware analysis. Finally,
PUMA [21] generalizes the common procedures for all the systems
above, and provides a generic programmable framework. Unlike
PUMA, QoE Doctor in this paper does not aim to expose abnormal
behavior in mobile apps, but instead aims to analyze the QoE for
normal mobile application usage. For example, we have a specially
designed wait component in our UI automation (detailed in §4)
for the accurate measurements of user-perceived latency, which
in previous work was usually implemented using heuristic waiting
timers.
QoE measurement. Previous work have measured application
QoE using subjective evaluations from users such as evaluation
scores. D. Joumblatt et. al. [24], Chen et. al. [20], and Ickin et.
al. [23] define a target QoE metric based on user satisfactions and
dissatisfactions. Schatz et. al. [42] and Balachandran et. al. [17, 18]
use user engagement as the target QoE to predict. Unlike them, we
focus on objective QoE metrics, which are reproducible and can be
measured repeatedly and automatically. Like us, Prometheus [15],
AppInsight [38], Timecard [39], and Panappticon [47] measure
objective QoE metrics, but they either require access to app source
code, or require instrumentation of the app logic or the underlying
system, which QoE Doctor does not.



Rather than directly measuring subjective and objective QoE,
QoE estimation from network traffic is also a popular approach.
D. Joumblatt et. al. [24] predicts the QoE of network applications
from network metrics. Schatz et. al. [42] and Balachandran et.
al. [17, 18] build a predictive framework to find the relationships
between measurable user engagement metrics and actionable video
delivery mechanisms in the network (e.g., the bit rate, initial
loading time, and buffering ratio). Prometheus [15] predicts
objective QoE metrics such as the buffering time with passive
network measurements. Unlike them, QoE Doctor does not predict
or estimate QoE metrics, but rather directly measures the ground
truth values of QoE metrics.
QoE improvement. There has also been work on improving the
QoE of mobile apps. Timecard [39] instruments a mobile OS to
ensure that user-perceived delays can meet deadline requirements.
Proteus [46] predicts future network performances over cellular
networks in real time, and increases QoE for RTC applications.
Sprout [45] builds a UDP-based end-to-end protocol for mobile
apps such as video conferencing which requires both low latency
and high throughput. Our work is complementary: QoE Doctor
can be used to automatically and repeatedly collect and analyze
QoE data for validating these systems, and can potentially uncover
root causes of new QoE problems, shedding light on future areas
for QoE improvement.
Cross-layer analysis. Cross-layer analysis has been less
extensively explored. RILAnalyzer [44] uses cross-layer analysis
approach to uncover how RRC states affect app performances.
Compared to it, QoE Doctor supports automatically collecting
objective QoE values from UI changes directly, instead of relying
on user studies and studying network layer performance metrics
such as TCP operations which are less directly related to user-
perceived latency. ARO [35] analyzes tcpdump traces to uncover
app performance issues. However, compared to QoE Doctor, their
work mainly focuses on radio resource efficiency problems rather
than app QoE.

9. CONCLUSION
In this paper, we built a tool, QoE Doctor, which automatically

replays user interaction sequences of interest to measure mobile
app QoE, record relevant QoE metrics, and allow the root causes of
QoE problems to be analyzed across multiple layers, covering both
the system and network stacks. Using this tool, we systematically
study various QoE metrics for popular apps, and quantitatively
evaluate the impact of various QoE-related factors on these QoE
metrics. With QoE Doctor, we uncover several significant QoE
problems along with the potential root causes of them for major
applications and carriers.
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