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Abstract—In 3G cellular networks, the release of radio re-
sources is controlled by inactivity timers. However, the timeout
value itself, also known as the tail time, can last up to 15 seconds
due to the necessity of trading off resource utilization efficiency
for low management overhead and good stability, thus wasting
considerable amount of radio resources and battery energy at
user handsets. In this paper, we propose Tail Optimization Pro-
tocol (TOP), which enables cooperation between the phone and
the radio access network to eliminate the tail whenever possible.
Intuitively, applications can often accurately predict a long idle
time. Therefore the phone can notify the cellular network on such
an imminent tail, allowing the latter to immediately release radio
resources. To realize TOP, we utilize a recent proposal of 3GPP
specification called fast dormancy, a mechanism for a handset to
notify the cellular network for immediate radio resource release.
TOP thus requires no change to the cellular infrastructure
and only minimal changes to smartphone applications. Our
experimental results based on real traces show that with a
reasonable prediction accuracy, TOP saves the overall radio
energy (up to 17%) and radio resources (up to 14%) by reducing
tail times by up to 60%. For applications such as multimedia
streaming, TOP can achieve even more significant savings of
radio energy (up to 60%) and radio resources (up to 50%).

I. INTRODUCTION

In cellular networks, the release of radio resources is con-

trolled by inactivity timers. However, the timeout value itself,

also known as the tail time, can last up to 15 seconds [9]. This

value is usually empirically chosen to balance the tradeoff

among radio resource utilization, user experience, energy

consumption, and network processing overheads, based on

observed traffic patterns [9]. The tail time is an idle time

period corresponding to the inactivity timer value before radio

resources are released, leading to waste in radio resources in

the cellular network and battery energy of user equipments

(UEs, i.e., handsets). Based on measurements collected from

a large commercial cellular provider, we found that 34% of

the occupation time of the high-speed dedicated transmission

channels is wasted on the tail, as a result of the bursty nature

of the traffic.

We focus on the UMTS (Universal Mobile Telecommunica-

tions System) 3G network, which is among the most popular

3G mobile communication technologies. To manage radio

resources, UMTS maintains an RRC (radio resource control)

state machine for each UE device. A UE can be in one of

three states, each with different amounts of allocated radio

resources, affecting user experience and UE energy consump-

tion. A UE always experiences a tail, its length determined

by the inactivity timer, whenever the state is demoted from a

state with a larger amount of resources to one consuming less

resources. On the other hand, frequent state promotions may

lead to unacceptably long delays for UEs due to additional

processing overheads for the radio access network.

In this paper, we address the problem of mitigating the tail

effect in UMTS networks. Existing approaches for tail removal

can be classified into three categories.

Tuning inactivity timers. Previous work [14], [23] propose

tuning inactivity timers using analytical models by considering

radio resource utilization, UE energy consumption, service

quality, and processing overheads of the radio access network.

However, mitigating the tail effect requires reducing the inac-

tivity timers. Doing so inevitably causes the number of state

transitions to increase. Based on our measurements using real

traces collected from a large UMTS carrier, we found that

aggressively reducing the most critical timer from 5s to 0.5s

reduces the tail time by 50%, but increases the state promotion

delay by about 300%. This introduces significant processing

overhead for the radio access network [4], and increased delay

for users.

UE-based approach. The UE alters traffic patterns based

on the prior knowledge of the RRC state machine. For delay-

tolerant applications such as Email and RSS feeds, data

transfers can be delayed and batched to reduce the tail time [6].

However, such an approach is not suitable for more interactive

applications such as Web browsing, otherwise users may suffer

from delayed processing of their requests.

Cooperation between the UE and the network. The UE

applications may be able to predict the end of a data transfer

based on the application logic. If an idle time period that lasts

at least as long as as the inactivity timer value is predicted,

the UE sends a message to notify the network, which then

immediately releases allocated resources. This approach can

thus completely eliminate the tail if the prediction is accurate,

without incurring additional promotion delays. A feature called

Fast Dormancy has been proposed to be included in 3GPP [2]

to help realize this approach. Note that although this is a

standard already adopted by several handsets [3], to the best

of our knowledge, no smartphone application to date uses fast

dormancy, partly due to a lack of OS support.

In this paper, we propose Tail Optimization Protocol (TOP),

an application-layer protocol that bridges the gap between the

application and the fast dormancy support provided by the

network. Some of the key challenges we address include the

required changes to the OS, applications, and the implication

of multiple concurrent connections using fast dormancy. In

particular, TOP addresses three key issues associated with



allowing smartphone applications to benefit from this support.

First, our work is the first to propose a simple interface for

different applications to leverage the fast dormancy feature.

In our framework, applications define their logical transfers

and perform predictions of inter-transfer times. The prediction

can be easy accomplished for applications having limited or

no user interaction (e.g., video streaming), but it is more

challenging for user-interactive applications such as Web

browsing. The prediction methodology is not our focus in this

work. The application invokes a tail removal API provided

by TOP that automatically coordinates concurrent traffic of

multiple applications, as state transitions are determined by

the aggregated traffic of all applications. Our design minimizes

applications’ implementation overhead for tail removal. Note

that our proposed framework is also applicable to the 3G

EvDO (Evolution-Data Optimized) and the 4G LTE (Long

Term Evolution) cellular networks that also use inactivity

timers for releasing radio resources and therefore have the

tail effect [7], [19].

Second, by using cellular traces collected from a large

UMTS carrier, we are the first to quantify the tail effect for

nearly a million user sessions. We found that for the two RRC

states, 34.4% and 76.8% of the time is spent on the tail. By

using the traces, we also empirically derive critical parameters

used by TOP to properly balance the tradeoff between the

resource saving and the state transition overhead.

Third, we demonstrate the benefits of TOP using real

traces collected from a UMTS carrier and from our Android

smartphones. With a reasonable prediction accuracy, TOP

saves the overall radio energy (up to 17%) and radio resources

(up to 14%) by reducing up to 60% of the tail time. For some

applications such as multimedia streaming, TOP can achieve

even more significant savings of radio energy (up to 60%) and

radio resources (up to 50%).

II. BACKGROUND

As illustrated in Figure 1, the UMTS network consists of

three subsystems: User Equipment (UE), UMTS Terrestrial

Radio Access Network (UTRAN), and the Core Network

(CN) [13]. UEs are essentially mobile handsets. UTRAN

allows connectivity between UEs and CN. It consists of two

components: base stations, which are called Node-Bs, and

Radio Network Controllers (RNC), each controlling multiple

Node-Bs. Most UTRAN’s features (packet scheduling, radio

resource control, handover control, etc.) are implemented at

the RNC. The centralized CN can be regarded as the backbone

of the cellular network.

In the context of UMTS, the radio resource refers to

WCDMA codes that are potential bottlenecks of the network.

To efficiently utilize the limited radio resources, the UMTS

radio resource control (RRC) protocol introduces a state

machine associated with each UE. There are typically three

RRC states [12].

IDLE is the default state when a UE is turned on. The UE

has not established an RRC connection with the RNC, thus

no radio resource is allocated and a UE cannot transfer any

user data.

CELL DCH. The RRC connection is established and a

UE is usually allocated dedicated DCH transport channels in

both downlink (DL, RNC→UE) and uplink (UL, UE→RNC).

This state allows a UE to fully utilize radio resources for

user data transmission. We refer to CELL DCH as “DCH”

thereafter. When a large amount of UEs are in DCH state,

radio resources may be exhausted due to the lack of channel-

ization codes. Then some UEs have to use low-speed shared

channels although their RRC states are still DCH. A UE can

access HSDPA/HSUPA (High Speed Downlink/Uplink Packet

Access) mode, if supported by the infrastructure, at DCH state.

For HSDPA, the high speed transport channel is not dedicated,

but shared by a limited number (e.g., 32) of users [12].

CELL FACH. The RRC connection is established but there

is no dedicated channel allocated to a UE. Instead, the UE can

only transmit user data through shared low-speed channels that

are typically less than 20kbps. We refer to CELL FACH as

“FACH” from this point on. FACH is designed for applications

requiring very low data throughput rate.

RRC states impact a UE’s radio energy consumption. A UE

at IDLE state consumes almost no energy from its wireless

network interface. While within the same state (DCH or

FACH), the radio power is fairly stable regardless of the data

throughput when the signal strength is stable. Except during

transient and error situations, the state machine is synchronized

at both the UE and the RNC. Also both the downlink (DL)

and the uplink (UL) use the same state machine.

There are two types of RRC state transitions. State

promotions, including IDLE→FACH, IDLE→DCH, and

FACH→DCH transitions, switch from a state with lower radio

resource and UE energy utilization to another state consuming

more resource and UE energy. State demotions, consisting of

DCH→FACH, FACH→IDLE, and DCH→IDLE transitions, go

in the reverse direction. Depending on the starting state, a state

promotion is triggered by either any user data transmission

activity, if the UE is at IDLE, or the per-UE queue size,

called Radio Link Controller (RLC) buffer size, exceeding a

threshold in either direction, if the UE is at FACH.

The state demotions are triggered by two inactivity timers

configured by the RNC. We denote the DCH→FACH timer as

α, and the FACH→IDLE timer as β. At DCH, the RNC resets

the α timer to a fixed threshold T whenever it observes any

UL/DL data frame. If there is no user data transmission for

T seconds, the α timer times out and the state is demoted to

FACH. A similar scheme is used for the β timer.

Promotions involve more work than demotions do. In par-

ticular, state promotions incur a long “ramp-up” latency of

up to 2 seconds during which tens of control messages are

exchanged between a UE and RNC for resource allocation.

Excessive state promotions increase processing overheads at

the RNC and degrade user experience, especially for short

data transfers [4], [18].

Figures 2 and 3 depict state transition diagrams for two large

UMTS carriers denoted as Carrier 1 and Carrier 2, whose state

machine parameters (under good signal strength conditions)

are listed in Table I. They are inferred by our measurement
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TABLE I
STATE MACHINE PARAMETERS FOR TWO MAJOR CARRIERS (FROM [18])

Inactivity timer Carrier 1 Carrier 2

α: DCH→ FACH 5 sec 6 sec
β: FACH→ IDLE 12 sec 4 sec

Promotion time Carrier 1 Carrier 2

IDLE → FACH N/A 0.6 sec
IDLE → DCH 2 sec N/A
FACH→ DCH 1.5 sec 1.3 sec

RLC Buffer threshold Carrier 1 Carrier 2

FACH→ DCH(UL) 543 ± 25 B 151 ± 14 B
FACH→ DCH(DL) 475 ± 23 B 119 ± 17 B

State radio power Carrier 1 Carrier 2

DCH / FACH / IDLE 800/460/0 mW 600/400/0 mW

Promotion radio power Carrier 1 Carrier 2

IDLE → FACH N/A 410 mW
IDLE → DCH 550 mW N/A
FACH→ DCH 700 mW 480 mW

work [18] and have been thoroughly validated. In this study,

we use both in our state machine simulator for cellular traces

(§IV) to characterize the tail effect.

III. TOP OVERVIEW

The high-level idea behind our proposed Tail Optimization

Protocol (TOP) is straightforward. It involves invoking the fast

dormancy support (§V-C) that directly triggers a DCH→IDLE

or a FACH→IDLE demotion without experiencing timeout

periods, in order to save radio energy and radio resources.

However, doing so aggressively may incur unacceptably long

delay of state promotions, worsening user experience and

increasing processing overheads at the RNC. TOP employs a

set of novel techniques to address this key challenge by letting

individual applications predict tails and coordinating tail pre-

diction of concurrent applications for invoking fast dormancy.

Our design requires no changes at a UE’s firmware/hardware

given that fast dormancy is widely deployed, and is transparent

to the radio access network.

• TOP leverages the knowledge of applications that predict

the idle period after each data transfer. The definition of

a data transfer depends on the application. Fast dormancy

is not invoked if the predicted idle period is smaller than

a predefined threshold called tail threshold to prevent

unnecessary state promotions (§VI-A).

• As described in §VI-C, we carefully tune the value of

the tail threshold and other parameters used by TOP

by empirically measuring traces collected from a large

UMTS carrier (§IV), in order to well balance the tradeoff

(§V-B) between the incurred state promotion overhead

and resource savings.

• The RRC state transitions are determined by the ag-

gregated traffic of all applications running on a UE.

TOP introduces a novel coordination algorithm to han-

dle concurrent network activities. TOP also handles tail

optimization for legacy applications that are themselves

unaware of TOP. We detail the coordination algorithm

design in §VI.

IV. THE MEASUREMENT DATA

This section describes the data used in our study. Our dataset

is a large TCP header packet trace collected from Carrier 1 on

April 13, 2009 in the normal course of operations. The col-

lection point is at the core network (CN) that primarily serves

UMTS users but also 2G GPRS users. Our trace contains 265

million TCP packets (169 GB data) continuously captured in

1.3 hours without any sampling in either direction. Due to

concerns of the large traffic volume and user privacy issues,

we only recorded TCP/IP headers and a 64-bit timestamp for

each packet, but no subscriber IDs or phone numbers.

We subsequently extract sessions from the trace, each con-

sisting of all packets transferred by the same UE identified

through the private client IP address in the trace. Multiple

TCP flows from concurrent applications may be mixed in the

same session. We use a threshold of 60 sec of idle time to

detect session termination. A different threshold value, e.g.,

45 or 75 sec, does not qualitatively affect the analysis results.

We will use this dataset in §V-A, §VI-C, and §VII-A. Our

common methodology is to replay sessions against a pro-

gram simulating the RRC state machine with desired settings,

and a tail removal algorithm to be studied, e.g., TOP, to

obtain statistics about the state machine’s behavior. Before

that, timestamps of the original trace were first calibrated

to eliminate promotion delays caused by the existing state

machine of Carrier 1. We detail the calibration methodology in

our measurement work [18]. Then the calibrated trace, whose

promotion delays are zero, can be applied to a different state

machine, and new promotion delays are injected separately by

the simulator. The calibration procedure also detects sessions

(about 17%) that violate the RRC state machine. Such sessions

are mostly caused by non-UMTS traffic mixed in the trace.

They are not used in our subsequent data analysis.

V. THE TAIL EFFECT

At DCH or FACH, when there is no user data transmission

in either direction for at least T seconds, i.e., the inactivity
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timer value, the RRC state will be demoted to save radio

resources and UE’s energy. However, during the wait time of

T seconds, a UE still occupies the transmission channel and

WCDMA codes, and its radio power consumption is kept at

the corresponding level of the state. We define a tail as the

idle time period matching the inactivity timer value before a

state demotion. We also refer to any non-tail time as active.

In typical UMTS networks, each UE is allocated dedicated

channels whose radio resources are completely wasted during

the tail time. For HSDPA [12], which is a UMTS extension

with higher downlink speed described in §II, although the

high speed transport channel is shared by a limited number

of UEs (e.g., 32), occupying it during the tail time can

potentially prevent other UEs from using the high speed

channel. Furthermore, tail time wastes a UE’s radio energy,

which contributes to up to half of a UE’s total battery energy

consumption based on our measurements using a power meter.

A. Measuring the Tail Time

We quantify the tail time by studying the trace described

in §IV. We feed the 0.82 million calibrated sessions into a

simulator for Carrier 1’s state machine whose state machine

transitions and parameters are shown in Figure 2 and Table I.

We decompose the total duration of all sessions into six

components: DCH active time, DCH tail time, FACH active

time, FACH tail time, the FACH→DCH promotion delay, and

the IDLE→DCH promotion delay, and then plot the fraction

of each component in Figure 4, which clearly shows that

considerable amount of time on DCH and FACH is wasted

by the tail effect. On DCH, 34.4% of the time belongs to

the tail, and on FACH, 76.8% of the time is spent on the

tail, which is even longer than the FACH active time, as the

β (FACH→IDLE) timer is set to be as long as 12 seconds.

For Carrier 2, 35.3% and 72.0% of the DCH and FACH time

belong to the tail, respectively.

B. Tradeoff Considerations to Optimize Radio Resources

From the carrier’s perspective, the most naı̈ve way to

mitigate the tail effect is to reduce the inactivity timer values.

However, doing so increases the number of state transitions.

As described in §II, completing a state promotion takes up to 2

seconds during which tens of control messages are exchanged

between a UE and RNC [12]. Such a delay degrades end user

experience and increases the RNC’s CPU processing overhead,

which is much higher for handling state transitions than for

performing data transmission [12].

In order to quantify this key tradeoff, we compute the

following four metrics: DT , D, S, and E. (i) The DCH tail

time DT captures radio resources (WCDMA codes) wasted

on tails that can potentially be saved. (ii) The total DCH time

D consists of DCH tail time (DT ) and DCH active time (non-

tail time). It quantifies the overall radio resources consumed by

UEs on dedicated DCH channels (we ignore radio resources

allocated for shared low-speed FACH channels). (iii) The total

promotion delay S is the total duration of all promotions. It

abstracts the overhead brought by state promotions that worsen

user experience and increase processing overheads at the RNC.

(iv) The radio energy consumption E is the total radio energy

consumed in all states and state promotions. The key tradeoffs

of radio resource optimization can then be stated as follows.

Increasing (decreasing) inactivity timers causes ∆DT , ∆D,

and ∆E to increase (decrease) while making ∆S decrease

(increase).

We compute DT , D, S and E using the simulation-based

approach described in §IV and parameters listed in Table I.

When changing inactivity timer values or using a new tech-

nique for tail removal, we are interested in relative changes

of DT , D, S and E compared to the default setting where

we use the default state machine parameters (Table I) without

removing tails. Let DT
1

and DT
0

be the DCH tail time in

the new setting and in the default setting, respectively. The

relative change of DT , denoted as ∆DT , is computed by

∆DT = (DT
1
− DT

0
)/DT

0
. We have similar definitions for

∆D, ∆S and ∆E, which will be revisited in §VI-C and §VII.

C. Fast Dormancy

The fundamental reason why inactivity timers are necessary

is that the network has no easy way of predicting the network

idle time of a UE. Therefore the RNC conservatively appends

a tail to every network usage period. This naturally gives rise

to the idea of letting UE applications determine the end of a

network usage period since they can make use of application

knowledge useful for predicting network activities. Once an

imminent tail is predicted, a UE notifies the RNC, which then

immediately releases allocated resources.

Based on this simple intuition, a feature called fast dor-

mancy has been proposed to be included in 3GPP Release 7 [2]

and Release 8 [3]. The UE sends an RRC message, which we

call the TTT message, to the RNC through the control channel.

Upon the reception of a TTT message, the RNC releases the RRC

connection and lets the UE go to IDLE (or to a hibernating

state that has lower but still non-trivial promotion delay). This

feature is supported by several handsets [3]. To the best of our

knowledge, no smartphone application uses fast dormancy in

practice, partly due to a lack of the OS support that provides

a simple programming interface.

However, based on measuring the device power consump-

tion, we do observe that a few phones (e.g., Google Nexus

One) adopt fast dormancy in an application-agnostic manner:

the UE goes to IDLE faster than other phones do for the

same carrier. In other words, they use a shorter inactivity timer

controlled by the device in order to lengthen the battery life.

The disadvantage of such an approach is well understood [4]:

the additionally incurred state promotions may introduce sig-

nificant processing overheads at the RNC and may worsen

user experience.



VI. TAIL OPTIMIZATION PROTOCOL

In this section, we describe our proposed Tail Optimization

Protocol (TOP), an application-layer protocol that leverages

the support of fast dormancy to remove tails. In TOP, ap-

plications define data transfers and predict the inter-transfer

time at the end of each data transfer (§VI-A) using a simple

interface described in §VI-B. If the predicted inter-transfer

time is greater than a tail threshold, the application informs the

RNC to initiate fast dormancy. We discuss how to set the tail

threshold in §VI-C and describe how TOP handles concurrent

network activities in §VI-D.

Our design of TOP requires small changes at UE appli-

cations (and optionally server applications, as a server may

provide a UE with hints about predicting a tail) and the UE

OS, but no change at a UE’s firmware/hardware given that fast

dormancy is widely deployed. Also TOP is transparent to the

UTRAN and CN. Therefore TOP is incrementally deployable.

Note that the TTT message is already supported by the RNC [2].

A. Feasibility of Tail Prediction

From applications’ perspective, tail eliminations are per-

formed for each data transfer, defined by applications to

capture a network usage period. For example, a data transfer

can correspond to all packets belonging to the same HTML

page. To use TOP, an application only needs to (i) ensure

that the current data transfer has ended, and (ii) provide TOP

with its predicted delay between the current and the next data

transfer, denoted as the inter-transfer time (ITT), via a simple

interface described in §VI-B. ITT is essentially the packet

inter-arrival time between the last packet of a transfer and

the first packet of the next transfer. Note that downlink (DL)

and uplink (UL) packets are not differentiated as both use the

same state machine.

We first consider the most simple scenario with no con-

current network activities. TOP sends a TTT message (i.e.,

invoking fast dormancy) to eliminate the tail if the predicted

ITT is longer than a threshold called Tail Threshold (TT).

A large value of TT limits the radio resource and energy

savings achieved by TOP while a small TT incurs extra state

promotions. We justify how we choose TT in §VI-C.

Clearly, the ITT prediction is application specific. It is easier

to predict for applications with regular traffic patterns, with

limited or no user interaction (e.g., video streaming), but it

is more difficult for user-interactive applications such as Web

browsing and Google Map, as user behaviors inject random-

ness to the packet timing. For example, in Web browsing, each

transfer corresponds to downloading one HTML page with all

embedded objects. The browser knows exactly when the page

has been fully downloaded. However, the timing gap between

two consecutive transfers may be shorter than the tail threshold

(e.g., a user can quickly navigate between pages). Thus the

browser should selectively invoke TOP. The second example

is multimedia streaming. A streaming transfer consists of a

single burst of packets of video/audio content (§VII-B1). The

application usually can predict termination of a streaming

burst. TOP can be applied if the timing gap between two

consecutive bursts (usually known by the application) is longer

than TT. As another example, interactive map applications

involve continuous user interactions, thus TOP may not be

applicable as it is very hard to define a transfer.

There are two issues related to ITT prediction. First,

applications may not predict ITT accurately: misprediction

can lead to increased promotion overhead due to predicting

a short ITT less than TT to be a long ITT greater than

TT, or lead to missing opportunities for tail removal due to

predicting a long ITT to be short. A comprehensive study of

prediction methodologies for interactive applications such as

Web browsing is beyond the scope of this paper and is our

ongoing work. Here we assume ITTs are predicted with a

reasonable accuracy (e.g., 80% to 90%).

The second issue is that, the existence of concurrently

running applications and independent components of the same

application (e.g., a streaming application with an advertisement

bar embedded) further complicates tail prediction. Clearly

applications cannot predict other applications’ concurrent net-

work activities that affect state transitions. But there is a

need to look across applications when deciding whether to

invoke fast dormancy. TOP is responsible for handling the

concurrency as will be described in §VI-D.

B. The Interface for Tail Removal

Unlike applications, TOP is unaware of the way applications

define their transfers. TOP instead schedules tail removal

requests at the connection level. A connection is defined

as usual by five tuples: srcIP, dstIP, srcPort, dstPort, and

protocol (TCP/UDP). Note that it is possible that either one

connection contains multiple transfers or one transfer involves

multiple connections. At the end of a transfer, after the last

packet is transmitted, an application informs TOP via a simple

API TerminateTail(c, δ) that the predicted ITT of

connection c is δ. In other words, the next UL/DL packet of

connection c belongs to the next transfer and will arrive after

δ time units.

When user interactions are involved, it may be difficult for

applications to predict the exact value of ITT. An application

can then performs binary prediction i.e., whether ITT ≤ TT
or ITT > TT . The API is only called in the latter case: if ITT

is predicted to be greater than TT, then TerminateTail(c,
δ) is invoked with δ set to a fixed large value (e.g., 60

sec). In fact, when no concurrent network activities exist,

the exact prediction of ITT is not necessary at all as long

as the binary prediction is correct. On the other hand, when

concurrency exists, the predicted ITT value may affect how

fast dormancy is invoked. Let the real ITT be δ0 and the

predicted ITT be δ. Underestimating δ0 (δ < δ0) may prevent

other concurrent applications from invoking fast dormancy

and overestimating δ0 (δ > δ0) may incur additional state

promotions. However, based on our empirical evaluation using

real cellular traces in §VII, we found that as long as the binary

prediction is correct, the actual prediction value of ITT is much

less important.

Calling TerminateTail(c, δ) indicates that the next

transfer belongs to an established connection c. Also an
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application may start the next transfer by establishing a new

connection that does not exist when TerminateTail is

called. For example, a Web browser may use a new TCP

connection for fetching a new page. Suppose that at the end

of a connection c, the application makes a prediction that the

next transfer initiates a new connection and the ITT is δ.

In that case, the application needs to make two consecutive

calls: (i) TerminateTail(null, δ), indicating that a new

connection will be established after δ time. The first parameter

is null as the application does not know about the future

connection. (ii) TerminateTail(c, ∞), indicating the

termination of c and the termination of the current transfer.

Note that the two calls trigger at most one TTT message. We

explain why the second call is necessary in §VI-D.

C. Determining the Tail Threshold Value

A tail threshold (TT) is used by TOP to determine whether

to send a TTT message when TerminateTail is called. When

no concurrency exists, TOP sends a TTT message if and only if

the predicted ITT is greater than TT. A large value of TT may

limit radio resource and energy savings, and a small TT may

incur extra state promotions.

Usually a UE is at DCH when a transfer ends. Assuming

this, a TTT message triggers a DCH→IDLE demotion. However,

in the current state machine setting, a UE will experience

two state demotions: DCH→FACH with duration of α, and

FACH→IDLE with duration of β. Therefore, the default value

of TT should be α+β to match the original behavior. In other

words, assuming the predicted ITT is δ, to ensure no additional

promotion occurs (if predictions are correct), TOP should not

send a TTT message unless δ > α+ β = TT . However, such a

default value of TT is large (17 sec for Carrier 1 and 10 sec

for Carrier 2), limiting the effectiveness of TOP.

The key observation here is based on our empirical mea-

surement shown in Figure 5(a), which is generated as follows.

We replay calibrated sessions (§IV) against both carriers’

state machines with different TT values, assuming that a

TTT message is sent whenever the packet inter-arrival time is

greater than TT. We measure the change of the total duration of

state promotions ∆S (§V-B). As expected, ∆S monotonically

decreases as TT increases, and reaches zero when TT = α+β.

Also we empirically observe that reducing TT to the value

of α incurs limited promotion overhead: 22% and 7% for

Carrier 1 and Carrier 2, respectively. Note that given a fixed

TT, Carrier 1 has a higher promotion overhead because it

has a much longer β timer. On the other hand, as shown

in Figure 5(b), which plots the relationship between TT and

the change of the total DCH tail time ∆DT , setting TT to

α+ β saves only 35% and 61% of the DCH tail time for the

two carriers, respectively, but reducing TT to α eliminates all

DCH tails (i.e., ∆DT = −1). Therefore we set TT to α since

it better balances the tradeoff described in §V-B.

D. Handling concurrent network activities

Tail elimination is performed for each data transfer deter-

mined by the application. As described in §VI-A, an applica-

tion only ensures that the delay between consecutive transfers

is longer than the tail threshold, without considering other ap-

plications. However, RRC state transitions are determined by

the aggregated traffic of all applications. Therefore, allowing

every application to send TTT messages independently causes

problems. For example, at time t1, TOP sends a TTT message

for Application 1 to cut its tail. But a packet transmitted by

Application 2 at t2 will trigger an unnecessary promotion if

t2 − t1 < TT .

Ideally, if all connections can precisely predict the packet

inter-arrival time, then there exists an optimal algorithm to

determine whether to send the TTT message. The algorithm

aggregates prediction across connections by effectively treat-

ing all network activities as part of the same connection, so

that fast dormancy is triggered only when the combined ITT

exceeds TT. At a given time t, let a1, ..., an be the predicted

arrival time of the next packet for each connection, then TOP

should send a TTT packet if min{ai} − t > TT .

In practice, however, TOP faces two challenges. First,

as mentioned in §VI-A, applications perform predictions at

transfer level. Therefore no prediction information is available

except for the last packet of a transfer. This may incur

additional promotions if, for example, Connection c1 invokes

fast dormancy when Connection c2 is in the middle of a

transfer. Second, legacy applications are unaware of TOP and

some applications may not use TOP due to their particular

traffic patterns. To handle both issues, we design a simple and

robust coordination algorithm described below.

The algorithm considers two cases to determine whether to

send a TTT message for fast dormancy. First, for all connections

with ITT prediction information, that is, TerminateTail is

called but the next packet has not yet arrived, fast dormancy

is triggered only when the combined ITT exceeds the tail

threshold. Second, we apply a simple heuristic to handle

connections without ITT being predicted, because either those

connections are not at the end of a transfer (TerminateTail

is not called after transmitting a packet in the middle of a

transfer) or they do not use TOP (TerminateTail is never

called). If such connections exist, a TTT message is not sent if

any of them has recent packet transmission activity within

the past p seconds where p is a predefined parameter, as

for an active connection, a recent packet transmission usually

indicates another packet will be transmitted in the near future.

Not sending a TTT message at such a case reduces additional

promotions. We set p to α based on our empirical measurement

similar to the one described in §VI-C.

We now describe the coordination algorithm in detail by

referring to the pseudo code listed in Figure 6. The algorithm



01 struct CONNECTION {//per-conn. states maintained by TOP
02 TIME STAMP predict;
03 TIME STAMP ts;
04 BOOLEAN dummy; //false for any existing connection
05 };
06 TerminateTail(CONNECTION c, ITT δ) {
07 foreach conn in Connections{ //handle out-of-date predictions
08 if (conn.predict < tscur) { //tscur is the current timestamp
09 if (conn.dummy = true)
10 {Connections.remove(conn);}
11 else {conn.predict← null;}
12 }
13 }
14 if (c = null) { //create a dummy connection established soon
15 c← new CONNECTION;
16 c.dummy ← true;
17 Connections.add(c);
18 }
19 c.predict← tscur + δ; //update the prediction
20 foreach c′ in Connections{ //check the two constraints
21 if ((c′.predict 6= null && c′.predict < tscur + α)
22 || (c′.predict = null && c′.ts > tscur − α))
23 {return;} //fast dormancy is not invoked
24 }
25 send TTT message;
26 }
27 NewPacketArrival(CONNECTION c) {
28 c.ts = tscur;
29 c.predict← null;

30 }

Fig. 6. The coordination algorithm of TOP

maintains three states for each connection. ts and predict
correspond to the timestamp of the last observed packet, and

the predicted arrival time of the next packet, respectively

(Line 2-3). We explain the dummy state shortly. Whenever

an incoming or outgoing packet of connection c arrives, c.ts
is updated to tscur, the current timestamp, and c.predict is set

to null, indicating that no prediction information is currently

available for connection c (Line 27-30). At the end of a

transfer, after the last packet is transmitted, an application calls

TerminateTail(c, δ). Then TOP updates c.predict to

tscur + δ (Line 19) and sends a TTT message if both conditions

hold (Line 20-25).

min
c′

{c′.predict 6= null} > tscur + TT (1)

∀c′ : c′.predict = null → c′.ts < tscur − p (2)

where c′ goes over all connections and “→” denotes impli-

cation. Equation (1) and (2) represent two aforementioned

cases where connections are with and without prediction

information, respectively. Note that both the tail threshold TT

in Equation (1) (Line 21) and the p value in Equation (2) (Line

22) are both empirically set to α.

Recall that in §VI-B, when the next transfer starts in a new

connection, an application calls TerminateTail(null,
δ) then TerminateTail(c, ∞) at the end of connection

c, which is also the end of current transfer. TOP handles the

first call by creating a dummy connection cd (Line 14-18)

with cd.predict = tscur+ δ, and cd is considered in Equation

(1). The dummy connection cd is removed when its prediction

is out-of-date i.e., tscur > cd.predict (Line 9-10). For an

established (i.e., not dummy) connection c, c.predict is set to

null (no prediction information) when it is out-of-date (Line

11), and c is removed i.e., not considered by Equation (1) or

(2), when c is closed.

An application may call TerminateTail(null, δ) at

tscur, immediately after the last packet of connection c is

transmitted. However, it is possible that at tscur, c is not yet

removed by TOP although no packet of c will appear. In this

case, c.ts, the timestamp of the last packet of c, is very close

to tscur, making Equation (2) not hold. Thus a TTT message

will never be sent. The problem is addressed by the second

call TerminateTail(c, ∞) that sets c.predict = ∞.

Therefore making two calls guarantees that a TTT message is

properly sent even if c is not timely removed.

An application abusing fast dormancy can make a UE send

a large amount of TTT messages, each of which may cause a

state demotion to IDLE followed by a promotion triggered by

a packet, in a short period. To prevent such a pathological case,

TOP sends at most one TTT message for every t seconds even if

multiple TTT messages are allowed by the constraints of Equa-

tion (1) and (2)(not shown in the pseudo code). This guarantees

that repeatedly calling TerminateTail is harmless, and

that the frequency of the additional state promotions caused

by TOP is no more than one per t seconds. We empirically

found that setting t to 6 to 10 seconds has negligible adverse

impact on resource savings for normal usage of TOP.

We notice that the major runtime overhead of TOP is to

intercept packets and to record their timestamps (Line 27-30).

We implemented a kernel module for that task on an Android

G2 smartphone. By measuring the additional CPU utilization,

we found that the runtime overhead is negligible regardless of

the network throughput.

VII. EVALUATIONS

We use real traces to demonstrate radio resource and energy

savings brought by TOP, focusing on evaluating how well TOP

handles concurrent network activities. In §VII-A, we use the

passive trace described in §IV to study the impact of TOP on

a large number of users. In §VII-B, we perform case studies

of two applications using traces locally collected by Tcpdump

from an Android G2 phone.

We use ∆D, ∆DT , ∆E, and ∆S defined in §V-B as

evaluation metrics. They are computed using the simulation-

based approach described in §IV. The comparison baseline is

the default state machine configuration without using a tail

removal technique for the same carrier. For TOP, we set both

TT (§VI-C) and p (§VI-D) to the α timer value. TOP sends

at most one TTT message for every t = 10 seconds.

A. Evaluation using passive traces

The evaluation is performed at a per-session basis using the

calibrated passive trace described in §IV. For each session,

we extract connections (defined by 5-tuples) and classify them

into four types by the port number of UE’s TCP peer, since

only TCP headers are available: Web (80, 443, 8080), Email

(993, 995, 143, 110, 25), Sync (a popular synchronization



service of Carrier 1 using a special port number), and Other

(all other port numbers). They contribute to 78.8%, 15.1%,

0.2%, and 5.9% of the total traffic volume, respectively.

We use a threshold of 10 sec of idle time to decide that

a connection has terminated. Changing this value does not

qualitatively affect the simulation results.

For simplicity, we assume that there are four applications,

each involving one traffic type, running on smartphones. For

Web, Email, and Sync applications, a transfer is defined as

consecutive connections of the same traffic type whose inter-

connection time (the interval between the last packet of one

connection and the first packet of the next connection) is

less than 1 sec. Note that a transfer may consist of mul-

tiple connections and connections may overlap (e.g., con-

current connections supported by smartphone browsers). At

the end of each transfer, each application independently calls

TerminateTail with probability of z, which quantifies the

applicability of TOP, to perform binary predictions (whether

ITT is greater than TT, see §VI-B) with accuracy of w.

In other words, the probabilities of a correct prediction, an

incorrect prediction, and no prediction (TerminateTail is

not invoked) are zw, z(1−w), and 1− z, respectively. Since

binary predictions are performed, each application uses an ITT

of 60 sec if the ITT is predicted to be greater than TT. Varying

this from 30 sec to infinity, or using the exact prediction value

of ITT changes the results in Figure 7 by no more than 0.01.

We assume that the “Other” application is unaware of TOP.

Figure 7 plots the impact of TOP on ∆E, ∆S, ∆DT , and

∆D by varying w and z for Carrier 1. In each plot, the

z = 0 curve is a horizontal line at y = 0 corresponding

to the comparison baseline i.e., the default case where TOP

or fast dormancy is not used. Figure 7 clearly shows that,

increasing z, the applicability of TOP, brings more savings

at the cost of increasing the state promotion delay. On the

other hand, increasing w, the prediction accuracy, not only

benefits resource savings but also reduces the state promotion

overhead. Under the case where z = 0.8 and w = 90%,

TOP saves the overall radio energy E, the DCH tail time

DT , and the total DCH time D by 17.4%, 55.5%, and 11.7%,

respectively, with the state promotion delay S increasing by

14.8%. The results for Carrier 2 show similar trends. Under

the condition of z = 0.8 and w = 90%, TOP can save E,

DT , and D by 14.9%, 60.1%, and 14.3%, respectively with

S increasing by 9.0%.

We compare TOP with other schemes for saving the tail

time. In each plot of Figure 8, the X axis is the state promotion

delay ∆S, and the Y axis corresponds to saved resources

(∆E, ∆DT , or ∆D) for Carrier 2. A more downward or

leftward curve indicates a better saving scheme since given a

fixed ∆S, we prefer a more negative value of ∆E, ∆DT , or

∆D indicating higher resource savings. Each plot of Figure 8

contains four curves. The “TOP” curve corresponds to using

TOP with w = 80% and z being varied from 0.5 to 1.0.

The “FD” (fast dormancy) curve is generated using the same

parameters, but in the “FD” scheme, applications use fast

dormancy without being scheduled by TOP. In other words,

an application (Web, Email, or Sync) sends a TTT message

whenever its predicted ITT is greater than TT. The “timer”

curve corresponds to a strategy of proportionally decreasing

α and β timers that affect all sessions in the trace.

The “TE” curve denotes employing TailEnder [6] to save en-

ergy and radio resources. As described in §I, for delay-tolerant

applications, their data transfers can be delayed and batched

to reduce the tail time. TailEnder is a scheduling algorithm

that schedules transfers to minimize the energy consumption

while meeting user-specified deadlines by delaying transfers

and transmitting them together. The TailEnder algorithm was

implemented in our simulator using the default parameters

described in [6]. We apply TailEnder on all Email and Sync

transfers and vary the deadline (the maximally tolerated delay)

from 0 to 5 minutes. A longer deadline can potentially save

more resources but a user has to wait for longer time.

We discuss the results in Figure 8. TOP outperforms fast-

dormancy (FD), whose curve lies on the right of the “TOP”

curve. To achieve the same savings in D, E, and DT , the

state promotion delay of TOP is always less than that of

FD by 10% of the overall promotion delay in the default

scheme. Further, reducing inactivity timers incurs additional

state promotions, overwhelming the savings of D and E. The

fundamental reason for this is the static nature of the inactivity

timer paradigm where all packets experience the same timeout

period. We also notice that TailEnder can reduce the overall

state promotion delay (as indicated by the negative ∆S values)

due to its batching strategy. However, its applicability is very

limited, yielding much less savings, and it incurs additional

waiting time for users. The comparison results for Carrier 1

is qualitatively similar, implying that invoking fast dormancy

with a reasonable prediction accuracy (around 80%) surpasses

the traditional approach of tuning inactivity timers in balancing

the tradeoff, and TOP’s coordination algorithm effectively

reduces the state promotion overhead caused by concurrent

network activities.

B. Evaluation using locally collected traces

We perform case studies of two applications (Pandora

streaming and Web browsing) using traces locally collected

from an Android G2 phone using Carrier 2’s UMTS network.

We investigate each application separately without injecting

concurrent traffic, then apply the coordination algorithm on

the aggregated traffic of both applications.
1) Pandora radio streaming: Pandora [1] is an Internet

radio application. We collected a 30-min trace using Tcpdump

by logging onto one author’s Pandora account, selecting a pre-

defined radio station, then listening to seven tracks (songs).

By analyzing the trace, we found that the Pandora traffic

consists of two components: the audio/control traffic and the

advertisement traffic. Before a track is over, the content of

the next track is transferred in one burst utilizing the maximal

bandwidth. Then at the exact moment of switching to the next

track, a small traffic burst of control messages is generated.

The second component is periodical advertisement traffic from

an Amazon EC2 server for every one minute. Each such burst

can trigger an IDLE→DCH promotion.
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TABLE II
IMPACT OF TOP ON PANDORA

Fig. 8. Comparison of four schemes of saving tail time for Carrier 2: (a)∆S vs. ∆E (b)∆S vs. ∆DT (c)∆S vs. ∆D

We apply TOP on the trace by regarding each data/control

burst and each advertisement burst as a transfer. The results in

Table II indicate that TOP achieves remarkably good resource

savings for traffic patterns consisting of bursts separated by

long timing gaps. TOP eliminates all tails that contribute to

about half of the total DCH time with the state promotion

delay increasing by 3% regardless of using binary or exact

prediction of ITT. The radio energy usage decreases by 59%.

2) Web Browsing: We show the applicability of TOP to

Web browsing. As described in §VI-A, here a transfer can

be naturally defined as packets belonging to the same Web

page (including embedded objects) downloaded in a burst.

Usually a browser can precisely know the termination of a

transfer, and the challenging part is to predict inter-transfer

times (ITTs) that involve user interactions, as a page download

is mostly triggered by clicking a link, and ITTs correspond to

a user’s reading or thinking time. A comprehensive study of

the prediction methodology is beyond the scope of this paper.

Here we describe our preliminary study showing that even

very simple heuristics can lead to good prediction results for

some popular websites.

We simultaneously collected user input event traces (e.g.,

tapping the screen) and packet traces from eight users while

they visited the three websites listed in Table III. The traces

we collected have a total duration of 298 minutes with each

between 7 and 20 minutes long. Then we extract individual

transfers by examining HTTP headers and by correlating

packet traces with user input events. We found that all transfers

were triggered by users i.e., a user input is observed within

0.5s (to tolerate the processing delay) before a transfer starts.

Figure 9 plots the CDF of ITTs for the three websites. Each

curve consists of ITTs of all eight users. We call an ITT whose

value is greater than TT, which is 6 sec, a long ITT. Otherwise

it is a short ITT. Ideally a TTT message should only be sent for

a long ITT. Figure 9 clearly indicates the wide disparity of

traffic patterns among websites due to their different contents.

For cnn and amazon, 92% and 91% of ITTs are long. In
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Fig. 9. CDF of inter-transfer time (ITT) for three websites

TABLE III
IMPACT OF TOP ON TRACES OF THREE WEBSITES

Website m.cnn.com amazon.com m.facebook.com

% long ITT 91.2±4.8% 91.4±6.5% 38.1±5.9%

∆DT -90.7% -88.7% -36.7%
∆D -51.4% -48.0% -22.2%
∆E -61.1% -57.4% -21.6%
∆S +8.4% +9.8% +51.5%

contrast, facebook has much less long ITTs (only 38%).

The second row of Table III shows the average ratio of long

ITTs for each user. The small standard deviations indicate that

the long-ITT ratio is relatively stable among the eight users.

Figure 9 suggests that a browser can adopt a simple ap-

proach where for websites with historically observed high

long-ITT ratios, the browser always predicts an ITT to be

long by setting ITT to a large value (we use 60 sec, assuming

browsers cannot predict the exact values of ITT and do

only binary predictions). The simulation results are shown

in Table III. For cnn and amazon, TOP saves about half

of the total DCH time and 60% of the radio energy with

less than 10% of increase on the state promotion overhead.

However, for facebook, the savings are much less and the

promotion overhead becomes high due to its small long-ITT

ratio. The browser can thus use a fixed long-ITT ratio threshold

for deciding whether or not to apply TOP for each website.

3) Evaluation of mixed traces: To evaluate the coordination

algorithm, for cnn and amazon, we concatenate traces of 2



TABLE IV
IMPACT OF TOP ON MIXED TRACES (PANDORA AND CNN)

Pandora+CNN ∆DT
∆D ∆S ∆E

Default 0 0 0 0
TOP -88±3% -41±2% +17±3% -48±2%
FD -100±0% -50±2% +66±9% -58±2%

to 4 randomly selected users, then mix the concatenated trace

(roughly 30 min) with the 30-min Pandora trace. We assume

that three application components concurrently use TOP: Pan-

dora audio (exact prediction of ITT), Pandora advertisement

(exact prediction), and the browser application (always predict

ITT to be long). For each website, we generate 100 mixed

traces and feed each of them into the simulator for the three

schemes listed in Table IV: “Default” (the comparison baseline

where TOP or fast dormancy is not used), “TOP” (using TOP),

and “FD” (only using fast dormancy). Table IV (Pandora +

cnn) clearly shows the benefits of TOP, which significantly

decreases ∆S from 66% to 17% by reasonably sacrificing

savings of other three dimensions. The results for Pandora

+ amazon are very similar.

VIII. RELATED WORK

With the increasing number of 3G network users, radio

resource management has become a critical topic for both

academia and industry. Much effort has been put on the study

of the inactivity timers used in radio resource release. These

studies can be classified into two categories, those that attempt

to determine optimal inactivity timer values by doing theoret-

ical analysis and simulation, and those that study the impact

of the deployed timers on smartphone energy consumption

and network performance. There exists previous work for

selecting optimal inactivity timer values, but most are based on

particular traffic models. In [8] the impact of inactivity timers

on the UMTS network capacity was studied by simulating the

performance of web browsing. [14], [23] proposed analytical

models to measure the energy consumption of user device

under different timer values. [15], [21] also discussed the

influence of different timeout values on both service quality

and energy consumption. In addition, several other projects

studied network resource management [10], [20]. Distinct

from finding the optimal inactivity timer values, Liers et

al. [16] proposed to decide timeouts dynamically and specif-

ically based on the current load, radio and code resources,

and processing resources. Based on the deployed inactivity

timers in current commercial networks, [22], [11], [17] carried

out measurement studies to examine the energy consumption

and network performance on smartphones. [5] attempted to

optimize network performance and increase energy efficiency.

To save the energy of UEs by requiring less radio resources,

researchers have proposed to shift the traffic pattern to adapt

to the existing timers, such as TailEnder proposed by [6].

IX. CONCLUDING REMARKS

By leveraging fast dormancy, TOP enables applications to

actively inform the network of a tail that can be eliminated via

a simple interface. Our design of TOP enables significantly

better radio resource usage and substantial energy savings

for cellular networks. More importantly, our work opens new

research opportunities for designing effective tail prediction

algorithms for smartphone applications (especially for appli-

cations involving user interactions), which is the major part of

our ongoing work. In addition, we are seeking ways to build

a real implementation of TOP on Android phones.
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