
KnowOps: Towards an Embedded Knowledge Base
for Network Management and Operations

Xu Chen† Yun Mao† Z. Morley Mao§ Jacobus Van der Merwe†

† AT&T Labs - Research § University of Michigan - Ann Arbor

Abstract—The domain knowledge required to manage and
operate modern communications networks is still largely cap-
tured in human-readable documents. In this paper we take the
position that an embedded machine readable knowledge base
that directly supports network management and operations sys-
tems is required. We present a framework for such an approach,
called KnowOps, and illustrate how it complements and enhances
state-of-the-art network management and operation systems.

I. INTRODUCTION

The management and operations of modern networks and
network services involve an overwhelming array of opera-
tional tasks. For example, they typically include configuring
tens of thousands of devices, housed in thousands of physical
locations, often distributed across all continents; dealing with
(on a typical day) hundreds of planned maintenance activities,
tens of mass traffic events, tens of cable cuts and thousands of
hardware failures; processing (again on a typical day) billions
of measurements and test probes, and millions of alarms,
which can result in thousands of actionable tickets and tens of
service disruption reports; and, finally, dealing with a major
networking event often every other day.

State-of-the-art network management and operation infras-
tructures that enable operators to deal with the enormous
complexity and the scale of these tasks consist, by itself,
of complex software systems. Capturing and transferring the
collective knowledge base of what it takes to manage and
operate the network is a significant part of what these software
systems encode. Unfortunately, the capturing and transferring
of this knowledge base, mostly happens in a traditional
knowledge transfer and software development cycle. I.e., in
somewhat simplified form: equipment vendors describe the
capabilities of their equipment, how it is configured and
what alarms it will generate in prosaic vendor documents,
network operator domain experts (i.e., network engineers and
network operators) read these vendor documents and use
them as input to write network and service design documents
for the various operational tasks that operators face. The
operator design documents are then in turn used as input to
software development teams which encode the functions (and
knowledge base) into software systems.

In this paper we argue that, instead of capturing and
transferring the knowledge base associated with this process
manually via human readable documents, the knowledge base
itself should be encoded and captured in a systematic machine
readable framework, which can serve as input to the various
stages of the design process and be extended as needed by

each stage. Ideally this systematic framework should allow
domain experts to directly express their designs, without
requiring them to become software engineers. In this manner,
the knowledge base in effect becomes naturally embedded in
the network management and operations system itself.

The outline for the remainder of the paper is as follows.
To provide context for our discussion, in §II, we describe the
components in a modern end-to-end network management and
operations system. In §III we present the KnowOps frame-
work based on our philosophy of using embedded knowledge.
We argue for the use of a declarative language methodology
to form the basis for expressing this systematic knowledge
base. We illustrate the benefits of our approach using realistic
examples. We present related work in §IV before concluding
in §V.

II. STATE-OF-THE-ART NETWORK MANAGEMENT AND
OPERATIONS

Exactly what is network management and operations?
Broadly speaking, network management and operations per-
tain to all those actions that result in a “healthy” operational
network that efficiently support all intended services and
prevent unintended uses and abuses. As such it includes:
(i) planned maintenance, e.g., to upgrade or introduce new
equipment, (ii) emergency repairs, e.g., when a natural or
human induced event causes failure or malfunction, (iii) fault
management, e.g., to localize and replace faulty equipment,
(iv) configuration management, e.g., to enable new functional-
ity or customer features, (v) traffic/performance management,
e.g., to deal with traffic growth and dynamic traffic events, (vi)
security management, e.g., to handle security incidents like
worm outbreaks and DDoS attacks, (vii) network measure-
ment and monitoring, e.g., to detect anomalies, (viii) service
management, e.g., the realization and maintenance of new
services and service features. While each of these network
management/operations functions is distinct, they all pertain
to the same “organism”, i.e., the network. As such these
function are interdependent through the systems and processes
that realize their functionality.

Figure 1 depicts a somewhat simplified view of the systems
and processes involved in a typical state-of-the-art network
operations framework dealing with planned maintenance and
fault and performance management [7]. The figure attempts
to convey two sets of information. First, on the left, the
figure shows the network and the various systems involved in

network operations. Second, the right-hand side summarizes
the various inputs to the knowledge base that forms the
foundation to the network operations process and how that
knowledge base gets applied in the framework. We will now
consider the main functional components in more detail.

Network Configuration Management: The functionality
and services that a network provides is determined by the
collective configuration of all equipment (or all network
elements) deployed in the network. As shown in Figure 1,
the mechanism whereby network configurations get applied
to the system is through a network configuration management
system, which interacts with the network through a network
interface abstraction. State-of-the-art network configuration
management systems [5] rely on configuration templates (or
“configlets”), the parameters of which are populated from a
network inventory database, before they are pushed to the
network to realize network configuration change.

Consider now the knowledge base involved in enabling net-
work configuration management. As depicted in Figure 1, the
functionality of network equipments and more specifically the
way in which the equipments are to be configured to realize
such functionality, is typically described in human readable
vendor configuration manuals.1 Service provider networking
domain experts (network engineers) interpret these vendor
documents and typically experiment in lab environments to
produce provider service design documents, which capture the
specific functionality to provide and the configuration changes
required to realize that. Such provider design documents
might typically contain configuration templates and explain
how these templates are to be parametrized from network
inventory databases. Provider service design documents typ-
ically serve as input to software system domain experts,
who produce systems design documents (or more typically,
produce system change design documents) from which soft-
ware teams write code to add the desirable functionality to
the network configuration management system. This clearly
is a very human labor intensive and potentially error-prone
process.
Monitoring and Event Correlation: Once a network service
has been successfully deployed and configured, both network
and service specific monitoring needs to be deployed to
support its continued operation. Figure 1 depicts a simplified
view of how this is achieved. First, appropriate measurements
and/or monitoring needs to be deployed or enabled as part
of a network instrumentation layer. This would typically
include both passive monitoring, e.g., receiving SNMP traps,
as well as active monitoring, e.g., periodic ping tests or
other service-specific network measurements. Huge volumes
of unstructured monitoring data is received in this manner. To
facilitate (near) real-time fault and performance management,

1Vendors are migrating to systematic machine readable descriptions of
their devices, e.g., using XML schemas. We note, however, that this typically
provides structure to the syntax of configuration, but does not deal with
the semantics of configuration. Further, where this is available, the machine
readable specifications deal with network configuration on a per-device basis,
as opposed to a network-wide view that is ultimately required.

Network

Network
Instrumentation

Event
Correlation

System

Network
InventoryProcess

Automation

Ticketing
System

Network
Configuration
Mangement

Network
Interface

Event
Manager

Vendor
Configuration

Manuals

Provider Service
Design Documents

Operational
Experience/Domain

Knowledge

Network Operations/Management Systems

Knowledge Base

Operations
Systems

Design Documents

Operations
Procedural
Documents

Knowledge
Capture

Knowledge
Apply

Fig. 1. State-of-the-art Network Management and Operation

an event correlation system is deployed to add structure to this
data, as shown in Figure 1.2 State-of-the-art event correlation
systems [11] make use of service specific temporal and
spatial models to capture service and network dependencies to
allow related low level events to be correlated thus reducing
the volume of events and more importantly providing more
specific (“actionable”) information to the higher layers of the
network operations framework.

In terms of knowledge capture and transfer to realize
network instrumentation and event correlation systems, an
analogous, but parallel, process to configuration management
is followed. Again vendor documentation informs provider
design processes which are captured in provider design doc-
uments which serve as input to actual system development.
More so than in the case of configuration management,
provider operational experience and domain knowledge come
into play as providers need to take a truly holistic network-
wide perspective cutting across devices (possibly from differ-
ent vendors), across network layers and across services. Again
this knowledge informs the design process and ultimately gets
encoded in software systems.
Event Management and Automation: Returning to the left-
hand side of Figure 1, the output of an event correlation
system often feeds into a ticketing system which keeps track
of actionable events being worked by human event managers
(i.e., operations domain experts). Depending on their skill
level, these event managers might rely on their own do-
main knowledge, or, more typically, follow instructions from
knowledge captured in operations procedural documents.
State-of-the-art operations frameworks allow for automation
of many of the more mundane operational tasks through a
process automation system [7]. A process automation system
take the output of an event correlation system as input and
allows operators to specify rules to detect well understood
conditions and the corresponding action that need to be taken.
Rules are typically of the if <condition> then <action>
type and as shown in Figure 1, the automation system can
interact with the network (via the network interface abstrac-
tion), so that actions can be of arbitrary complexity. A typical

2As part of a comprehensive network management and operation frame-
work, data from the network instrumentation layer would typically also be
archived to enable off-line processing and analysis.

Network

Network
Instrumentation

Event
Correlation

System

Network
Inventory

Process
Automation

Ticketing
System

Network
Configuration
Mangement

Network
Interface

Event
Manager

Network Operations/Management Systems

System Design and Runtime
Use of Knowledge Base

Vendor: Device and Service
Configuration and Dependency

KnowOps
Framework

Service Provider: Service
Specification

Systematic Machine Readable Specifications

Service Provider: Operational
Workarounds

Embedded
Knowledge

Base

Fig. 2. KnowOps: Network Management and Operation with an Embedded
Knowledge Base.

action might interact with the network to automatically collect
more information regarding an event, e.g., show commands
on a router, which could be added to the actionable event in-
formation passed to the ticketing system. More sophisticated
actions taken by the process automation system might in-
clude performing actions described by operations procedural
documents (once they have been transformed into machine
executable code). Considering how the knowledge base gets
applied for this part of the network operations framework, we
note that domain knowledge drives the rules and subsequent
actions that are encoded in the process automation system.

The description in this section is by necessity incomplete
and at a high level. However, it should be sufficient to
illustrate our position that in state-of-the-art network opera-
tions frameworks, obtaining and capturing domain knowledge
happen largely in a separate and adjunct manner to how that
knowledge is applied. In cases where domain knowledge is
directly encoded into network operations systems, e.g., in the
event correlation and process automation systems described
above, this happens in an ad-hoc and standalone fashion
where in effect each system starts with an “unstructured land-
scape” and attempts by itself to add structure to that landscape
without any systematic support from the operational frame-
work. In essence the knowledge base that holds the system
together is still largely based on human readable documents.
In the next section we propose a network management and
operations framework that systematically captures domain
knowledge in an embedded manner so that such domain
knowledge can directly inform the design and operation of
all operations systems.

III. EMBEDDED KNOWLEDGE BASE

We envision an environment where different stakeholders
and role-players can contribute knowledge, in a system-
atic, machine-readable manner, so that the knowledge base
can be seamlessly integrated into a comprehensive network
management and operations framework, and at the same
time allow automated reasoning to be performed by network
management tools and systems. Figure 2 depicts KnowOps,

our proposed framework for an embedded knowledge base
for network management and operation. As shown in the
figure, the embedded knowledge base in KnowOps directly
supports the main network operations systems introduced
in Section II, namely configuration management, network
instrumentation, event correlation and process automation.
Instead of separately deriving templates for managing con-
figurations, writing association rules for correlating events,
and composing operational rules for automating processes,
we envision these systems to share the same knowledge base.

We expect this sharing to have a positive impact on system
development times as system are developed against a common
knowledge base. Perhaps more importantly, however, we
expect our approach to cut down, and possibly eliminate,
the chances of inconsistency across support systems, e.g., a
slightly different interpretation of the configuration files may
result in drastic difference in the understanding of network
functionality.

Below in Section III-A, we first consider how a knowledge
base would be established, and the resulting requirements this
imposes on such a framework. In Section III-B, we consider
how an embedded knowledge base might add value to the
configuration management, event correlation and process au-
tomation functions. Finally, in Section III-C we consider the
more ambitious goal of KnowOps developing into a compre-
hensive reasoning framework whereby fundamental network
properties, e.g., the way a particular protocol behaves, can
simply be “plugged into” the framework with operations
components automatically adapting their behavior.

A. The KnowOps Knowledge Base Framework
A key question to consider is how an embedded knowledge

base would be established. As depicted in Figure 2, our
position is that the knowledge base would essentially be
contributed by the same role players that do so today. I.e.,
equipment vendor personnel, network engineers and opera-
tions personnel; however, instead of doing that through human
readable manuscripts, they would do so through machine
readable specifications. This has a number of fundamental
implications:

Ease of use: The domain experts who would contribute to
this knowledge base are in general not software developers.
However, they typically are very logical and systematic in
their work. Ideally then, a knowledge framework would be
easy to use and provide users with a toolset that can capture
their design, without requiring them to become low level code
writers.
Comprehensive tools: An ideal knowledge framework would
also go beyond simply capturing the knowledge, but instead
allow tools to reason about and verify the consistency of the
knowledge base.
Extensible and/or transposable: The key to our approach
is that different role players extend or add to “the same”
knowledge base. This calls for a knowledge framework that
is either extensible, or can easily be transposed to different
frameworks.

Network

Network
Inventory

Network
Interface

1: Vendor Rules
2: Service Rules

Process
Automation

Event
Correlation

Transactional Constraint Aware
Configuration Management

Configuration
Management

Correlation
Engine

Holistic Service Aware
Reasoning

3: Configuration Data Model (using 1,2)
(Reflecting actual network configuration.)

4: Network Status
Model (using 1,2,3)

5: Temporal and Spatial
Model (using 1,2 ,3)

Transactional Service Aware
Automation

6: Holistic Service Aware
Execution Model (using 1 to 5)7: Operational Rules

Active/passive
data collection

Network
Instrumentation

Meta Knowledge

Derived Knowledge

Data flow

Control Flow

Fig. 3. KnowOps System View

To realize this framework, we are exploring the use of
Drools [1], a unified automation framework that combines
rule-based and flow-based automation and event correlation.
We expect that our approach can be realized through other
means; however, the Drools framework is attractive because:
(i) It captures the required mechanisms of different network
operations in the same framework. (ii) The rules are proven
to capture domain knowledge in the realm of automating
business logic. (iii) The open-source nature of the software
allows us to integrate additional logic to drive different
components to better fit network management needs.

B. KnowOps Utility
Figure 3 illustrates in more detail the concept of knowledge

sharing across different management aspects in the KnowOps
framework. We first differentiate two types of knowledge,
meta and derived:

Meta knowledge abstracts how the network should work.
It can be provided by vendors (1 in Figure 3), describing
device capability, protocol dependencies, etc. For example,
it might capture the fact that instantiating an instance of a
Virtual Private LAN Service (VPLS) between two provider
edge routers requires (amongst other things) that the relevant
interfaces on both routers be configured and that working
instances of the BGP and LSP protocols be operating between
the routers. (We explore this example in more detail below.)
Meta knowledge can also be specified by service providers
(2 in Figure 3), indicating how services should be realized
and the associated operational constraints. For example, core
routers must form a full BGP mesh. Service providers can
also design operational procedures (7 in Figure 3) as part of
this meta knowledge, to ensure continuous and satisfactory
service delivery. For example, a link must be cost out first by
increasing its link weight before it can be shut down.

Derived knowledge is automatically generated to reflect
how the network actually operates, based on applying the
meta knowledge onto an actual network. Such knowledge
is not generated from a single source, but rather refined
and reused across different components. First of all, given
a list of network devices, their physical status, and the
configuration on them, we derive a configuration data model

Interface setups

LSP

MPLS RSVP OSPF

BGP

VPLS

Fig. 4. Simplified VPLS related dependency graph

(3 in Figure 3) to capture a network-wide view of the services
and functionalities therein. Currently, such a view must be
built via mental reasoning or specialized support systems.
We develop a network status model (4 in Figure 3) to give
structure and hierarchy to a sea of network events that are
previously stored in a flat space. We further build a temporal
and spatial model (5 in Figure 3) such that network events
are correlated together to identify root causes. Note that
the current event correlation system depends on a manual
specification of causal relationships across events, a process
that is unavoidably tedious, likely incomplete, and sometimes
incorrect. In KnowOps, such rules are systematically and
automatically derived from the network itself. Finally, we
establish an execution model (6 in Figure 3) to enhance
process automation, e.g., by intelligently scheduling task
executions to avoid negative network impact and prioritize
high-value services. Such process automation has been mostly
done by simple re-execution of stored procedures, without
considering network-wide effects.

We now explain in detail how individual management
components benefit from such a knowledge base by using
VPLS VPNs as an example of a reasonably complex service
offered by ISPs. Figure 4 shows a simplified view of the
levels of protocols that must be configured to enable a VPLS
service that provides a layer-2 connectivity across different
customer sites. Each box in the figure represents configuration
elements on a distributed set of routers. For example, setting
up a VPLS instance requires configuring customer-facing
interfaces, as well as establishing iBGP sessions (for control
plane signaling) and label switching paths (LSPs, for data
plane) between the PE routers. A working LSP in turn
depends on configuring the core routers to enable various
distributed protocols, including MPLS, RSVP, and OSPF.

Configuration management: The ability to holistically rea-
son about network services is essential. From a bottom-up
perspective, we need to reason about the current network
inventory, status, and configuration to understand existing net-
work status, e.g., answering questions like How many VPLS
instances are enabled? Can the LA site reach NY site for cus-
tomer C? Answering these questions currently requires either
human reasoning or tailored support systems. At the same
time, we need to estimate the impact of a candidate change
to the network, e.g., Are any VPLS customers impacted if
this core link L is shut down? From a top-down perspective,
we must derive a set of low-level operational changes to
fulfill a high-level intention, e.g., What configuration on
what devices should be changed to enable a VPLS customer

connection? What is lacking today is also the support of
integrating such reasoning capability with operational logic.
For example, instead of blindly executing a sequence of
network configuration changes, a more sophisticated method
is to anticipate the potential impact and reject operations, like
database transactions, to prevent undesired outcomes such as
misconfigurations from making into the network.

In our earlier work on configuration management we
developed the COOLAID system [2], which is an example
configuration management system following a declarative
language approach. As such, COOLAID supports an explicit
knowledge base specified using a declarative language. Fol-
lowing this approach, if new services are offered or new
misconfiguration types are identified, device vendors and
service providers can simply provide new rules (as 1 and 2
in Figure 3). One of COOLAID’s key features is the ability
to perform holistic service-aware reasoning. By using a set of
declarative rules, COOLAID is able to derive network-wide
services based on low-level configurations, and automate con-
figuration changes from high-level intentions, e.g.,Configure a
VPLS instance spanning PE1 and PE2. Providing a database-
like transaction logic, COOLAID can reject operations that
cause misconfigurations and perform automatic role-back.
Event correlation: The ability to efficiently identify root
causes of network-impacting failures from a voluminous
collection of raw network events is critical for this component.
At the network instrumentation layer, we must place various
types of sensors to capture the running status of a network.
Due to the scale of modern networks and the deployment
and run-time cost of the monitoring infrastructure, network
designers must make explicit trade-offs between accuracy and
cost. At a higher correlation layer, events that are results of
the same root cause should be grouped together, such that
failure mitigation systems can act properly.

We can use the knowledge resulting from the configuration
model in KnowOps to inform and enhance the network
instrumentation. First, we can associate the events to a hier-
archy of services. Given the relative importance of different
services, we can intelligently determine the placement, gran-
ularity, delivery mechanisms, etc. for the network sensors,
e.g., monitor a small subset of routers to capture the top-
10 VPLS customers’ traffic. More importantly, such derived
knowledge is directly based on the actual dynamic network
setup, and thus the instrumentation layer can be reconfigured
accordingly.

Current event correlation depends on the manual or sta-
tistically inferred specification of causal relationships. For
example, a broken BGP session event and a disrupted VPLS
connection event that happened within a small time window
are correlated by applying a temporal rule. However, not
all BGP session downs will impact VPLS connections, so
additional spatial rules must be defined, e.g., the downed BGP
session must be connecting the two PEs of the VPLS con-
nection. In KnowOps, such causal relationship is accurately
captured by the configuration model and virtually comes
for free by reusing it from the configuration management

component. For example, COOLAID calculates the IGP path
between two PE routers, thus gathers a set of links that might
impact the higher layer BGP session.

A key challenge of event correlation systems is data loss.
For example, we see a broken VPLS service, but may not
have any information regarding the underlying BGP and LSP,
which VPLS depends on, because of loss of events, delayed
delivery, etc. In existing systems, a common approach is to
simply ignore certain messages, which could lead to incorrect
understanding of the network. In KnowOps, since all the
dependencies are known in the configuration model, we can
easily identify the immediate dependent services and actively
retrieve the missing information from the network without
tolerating missing data.
Process automation: Various level of automation exists in
the current service provider environments. However, because
modern networks are shared in nature, any changes to a
production network have the potential of negatively impact-
ing existing services. Existing automation support, such as
script executions or more sophisticated automation engines,
which mostly focuses on individual and specific tasks, can
significantly cut down manual involvement, but still leaves
the operators’ expertise and manual involvement to ensure
network-wide wellness. Indeed, it is unreasonable to require
procedure (operation rule) designers to be aware of and
encode the handling of all the possible outcome and impact
on the network. For example, a procedure to automate a link
maintenance might be fine to execute in most cases because
of the resilience of an over-provisioned backbone, but such
automation should be stopped during a DDoS attack or a
peak hour due to a lack of available bandwidth. The blind
automation of any procedures without staying cognizant of
the network status will unavoidably cause network disruption.

By reusing the knowledge from the configuration model,
we can reason about the impact of and intelligently schedule
the network operations as the automation procedure pro-
gresses. As a result, the network designers can compose
operational rules in a familiar task-centric fashion. Similarly,
with the knowledge about the actual services running in the
network, such process automation engine has the visibility
into the importance of individual tickets it receives, e.g., some
link down events can be quickly recovered by IGP, while
others may cause network partitioning. By prioritizing the
handling of the events that have largest impact on the network,
we can improve network reliability and deliver higher service
guarantee to customers.

C. KnowOps as a Reasoning Framework
We observe that a significant part of the (sometimes im-

plicit) reasoning happening in the functions considered above
relate to modeling how the network behaves, or should be-
have. Returning to our running example, configuring a VPLS
instance in effect reasons about the protocol dependencies and
how they need to be configured to realize the configuration
goal. Event correlation reasons about the spatial and temporal
dependencies of events based on the expected behavior of

the network (or indeed sometimes looking for what is not
expected). This level of reasoning depends on a knowledge
base that captures service and protocol dependencies as we
have described above.

A more sophisticated level of reasoning might be needed if
understanding the dynamic nature of protocols are required.
For example, a traffic engineering system would require both
an understanding of the topology of the network and how it
is configured, but also need to understand more detail about
how specific protocol decisions, e.g., OSPF tie-breaking, is
implemented by the particular vendor implementation. Today
this kind of functionality is achieved by standalone systems
that reverse engineer these low level protocol details [10]. We
envision that the KnowOps framework would readily support
this kind of functionality provided that the knowledge base
accurately reflect the actual protocol implementation.

A more ambitious solution would be to develop a generic
mechanism that reasons and acts based on “pluggable protocol
knowledge”. For example, a generic monitoring and fault
diagnosis framework where we can just plug in the knowl-
edge representing the details of the underlying protocols.
In the first instance such an approach would again rely on
the knowledge base accurately reflecting the actual protocol
implementations. In a more extreme version of this, the net-
work implementation itself would be driven by a declarative
expression of the networking protocols. Such an approach has
been advocated [8], although without an understanding of how
that might impact network management and operations.

IV. RELATED WORK

Managing computer networks or distributed systems with
various forms of knowledge representation is a topic that
continuously receives attention. Most notably, Clark et al. pro-
posed the concept of knowledge plane [4], a distributed
cognitive system permeating the network. The 4D project
includes a decision plane, which builds a network-wide view
and issues control over the network elements [6], [12]. In
essence, KnowOps is similar to these approaches, but with a
more modest focus of targeting existing network management
systems in a single ISP setup.

PACMAN [3] represents a system that uses a petri-net
model to capture network operational workflow logic and
further encode network-wide reasoning into the execution
of management tasks. COOLAID [2] proposes to use a
declarative language to capture domain knowledge from both
device vendors and service providers, such that the resulting
rules can be applied onto a database-like abstraction of
an entire network to automate various network operations.
KnowOps unifies these systems in the same framework, and
further extends using the same knowledge base to more
general network operations, such as fault and performance
management.

Many past projects have focused on designing effective
troubleshooting, root cause analysis, and diagnosis support
for large IP networks. Our work is complementary to these
systems in the objective of providing the event correlation

utility. For instance, The G-RCA system [11] is a generic
root cause analysis platform for service quality management
system based on a comprehensive service dependency model
and allows customization by operators using a rule specifi-
cation language. Within the same problem space, the NICE
system [9] is an infrastructure to troubleshoot chronic network
conditions using statistical correlation across multiple data
sources. KnowOps provides for a more formal and systematic
knowledge base to replace the somewhat ad-hoc approaches
adopted by these systems.

V. CONCLUSION

In this paper we take the position that an embedded,
machine readable knowledge base is essential to comprehen-
sively tie together the various systems that make up an end-to-
end network management and operations infrastructure. We
presented such a framework and argued that a declarative
language approach presents attractive properties to form the
basis for such an embedded knowledge base. We showed, by
way of considering the functions involved with managing a
real world service, how such an embedded approach provide
benefits over current state-of-the-art network management and
operations systems.

REFERENCES

[1] Drools: Business logic integration platform. http://www.jboss.org/
drools.

[2] Xu Chen, Yun Mao, Z. Morley Mao, and Jacobus van der Merwe.
Declarative Configuration Management for Complex and Dynamic
Networks. In Proceedings of ACM CoNEXT, 2010.

[3] Xu Chen, Z. Morley Mao, and Jacobus Van der Merwe. PACMAN:
a Platform for Automated and Controlled network operations and
configuration MANagement. In Proceedings of ACM CoNEXT, 2009.

[4] David D. Clark, Craig Partridge, J. Christopher Ramming, and John T.
Wroclawski. A knowledge plane for the internet. In Proceedings of
ACM SIGCOMM, 2003.

[5] William Enck, Patrick McDaniel, Subhabrata Sen, Panagiotis Sebos,
Sylke Spoerel, Albert Greenberg, Sanjay Rao, and William Aiello. Con-
figuration management at massive scale: system design and experience.
In Proceedings of USENIX ATC, 2007.

[6] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers,
Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang.
A Clean Slate 4D Approach to Network Control and Management . In
Proceedings of ACM SIGCOMM CCR, 2005.

[7] Charles R. Kalmanek, Sudp Misra, and Y. Richard Yang, editors. Guide
to Reliable Internet Service and Applications, chapter Network Man-
agement: Fault Management, Performance Management and Planned
Maintenance. Springer, 2010.

[8] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of ACM SIGCOMM, 2005.

[9] Ajay Mahimkar, Jennifer Yates, Yin Zhang, Aman Shaikh, Jia Wang,
Zihui Ge, and Cheng Ee. Troubleshooting Chronic Conditions in Large
IP Networks. In Proceedings of ACM CoNEXT, 2009.

[10] Aman Shaikh and Albert Greenberg. OSPF Monitoring: Architecture,
Design and Deployment Experience. In Proceedings of NSDI, 2004.

[11] He Yan, Lee Breslau, Zihui Ge, Dan Massey, Dan Pei, and Jennifer
Yates. G-RCA: A Generic Root Cause Analysis Platform for Service
Quality Management in Large IP Networks. In Proceedings of ACM
CoNEXT, 2010.

[12] Hong Yan, David A. Maltz, T. S. Eugene Ng, Hemant Gogineni, Hui
Zhang, and Zheng Cai. Tesseract: A 4D Network Control Plane. In
Proceedings of NSDI, 2007.

