
CSI: Inferring Mobile ABR Video Adaptation
Behavior under HTTPS and QUIC

Shichang Xu
University of Michigan

Subhabrata Sen
AT&T Labs – Research

Z. Morley Mao
University of Michigan

Abstract
Mobile video streaming services have widely adopted Adap-
tive Bitrate (ABR) streaming to dynamically adapt the stream-
ing quality to variable network conditions. A wide range of
third-party entities such as network providers and testing
services need to understand such adaptation behavior for
purposes such as QoE monitoring and network management.
The traditional approach involved conducting test runs and
analyzing the HTTP-level information from the associated
network traffic to understand the adaptation behavior under
different network conditions. However, end-to-end traffic
encryption protocols such as HTTPS and QUIC are being
increasingly used by streaming services, hindering such tra-
ditional traffic analysis approaches.
To address this, we develop CSI (Chunk Sequence Infer-

encer), a general system that enables third-parties to conduct
active measurements and infer mobile ABR video adapta-
tion behavior based on packet size and timing information
still available in the encrypted traffic. We perform exten-
sive evaluations and demonstrate that CSI achieves high
inference accuracy for video encodings of popular streaming
services covering various ABR system designs. As an illus-
tration, for a popular mobile video service, we show that CSI
can effectively help understand the video QoE implications
of network traffic shaping policies and develop optimized
policies, even in the presence of encryption.
ACM Reference Format:
Shichang Xu, Subhabrata Sen, and Z. Morley Mao. 2020. CSI: In-
ferring Mobile ABR Video Adaptation Behavior under HTTPS and
QUIC. In Fifteenth European Conference on Computer Systems (Eu-
roSys ’20), April 27–30, 2020, Heraklion, Greece. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3342195.3387558

1 Introduction
Mobile video streaming is increasingly popular, already ac-
counting for 60% of mobile data traffic, and is predicted
to grow to 78% by 2021 [40]. HTTP-based Adaptive Bit

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6882-7/20/04.
https://doi.org/10.1145/3342195.3387558

1720p

480p
360p

Track

Chunks
ManifestServer ClientNetwork

Index1 2 3
CSI

HTTP

IP packets
Buffer

Figure 1. ABR streaming overview

Rate (ABR) streaming (predominantlyHLS [75] andDASH [31])
has been widely adopted in industry for delivering satisfac-
tory Quality of Experience (QoE) over dynamic cellular net-
work conditions. The server encodes each video intomultiple
versions with different picture quality levels and encoding
bitrates (with higher bitrates for higher-quality encodings)
called tracks, and splits each track into shorter chunks, each
representing a few seconds worth of playback content (Fig-
ure 1). During streaming, the client downloads a metadata
file (called manifest) from the server which contains infor-
mation about all the tracks and their corresponding chunks.
Then it downloads (usingHTTP) and plays individual chunks
in order of increasing playback indexes (ie., playback posi-
tion in the video). The streaming is adaptive to time-varying
network conditions – for each playback index, the client dy-
namically selects one among the “ladder" of available tracks
for download, based on prevailing network conditions and
custom complex adaptation algorithms [56, 58, 69, 76, 84].

The ABR adaptation logic needs to deal with time-varying
network conditions and make complex tradeoffs between
(sometimes) competing QoE requirements (e.g., stream high-
quality video tracks/chunks that require high network band-
widths, but still minimize stalls that can occur when the
network bandwidth drops), and there is no single or simple
“optimal” adaptation logic design. Different mobile streaming
systems adopt different ABR strategies and tradeoffs. Their
clients exhibit substantially different adaptation behaviors
even under the same network conditions, and they keep
evolving over time [52, 80, 83].
In this work, we develop a novel and general system, CSI

(Chunk Sequence Inferencer), that provides the capability to
independently conduct activemeasurements and infer the adap-
tation behavior and delivered QoE of third party mobile video
services, for the increasingly common but challenging use case

https://doi.org/10.1145/3342195.3387558
https://doi.org/10.1145/3342195.3387558

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Shichang Xu, Subhabrata Sen, and Z. Morley Mao

where these services use encrypted (HTTPS/QUIC) communica-
tions between the client and the server. Such video streaming
systems are typically complex, highly customized and closed
source, making it challenging to understand their adaptation
designs. To address this, for a specific streaming service and
video asset, CSI streams the video under specific network
conditions of interest (§4). It then analyzes the associated
network traffic to infer (1) the identity of each downloaded
chunk, i.e., the index, the track it belongs to, whether it is an
audio or video chunk and (2) the time when each chunk is
downloaded. From such information, QoE metrics including
displayed video quality and stall occurrences can be further
analyzed.

CSI should be particularly useful to a wide range of third-
party entities who desire to independently evaluate and un-
derstand the adaptation behavior of popular mobile video
services. Examples include: (1) mobile network providers
desiring to understand whether popular video services are
able to deliver satisfactory QoE over their network, and to
inform the design of traffic shaping policies that can support
delivering good QoE while making efficient use of network
resources. (2) video services desiring to conduct comparative
analysis of the QoE performance of their service with other
video services for calibration purposes and to understand
how to improve their adaptation design , and (3) independent
testing services and researchers interested in profiling the
adaptation behavior of popular video services, to identify
potential deficiencies and drive better designs. A common
approach in these cases is to perform active measurements:
testers stream videos on the target ABR service in certain
network conditions (either in the lab or in the wild). They
collect and analyze the network traffic trace generated from
the testing to study player behavior dynamics and charac-
terize delivered QoE. Without a tool like CSI , it is extremely
challenging to conduct such measurements and study the
adaptation behavior of commercial streaming services from
encrypted network traffic.

One key challenge CSI addresses is that popular streaming
apps [34, 36] are increasingly adopting end-to-end encryp-
tion protocols like HTTPS and QUIC and encrypt packet pay-
loads. Existing active measurement approaches depend on
being able to extract application level information from the
network traffic between the client and server, and determine
the identity of each downloaded chunk using information in
the corresponding HTTP request URL ([45, 57, 68, 83]). Such
approaches are no longer viable in the presence of traffic
encryption as all HTTP level information, including the re-
quest URL information is encrypted. Even workarounds such
as Man-In-The-Middle (MITM [11]) proxies are becoming
increasingly less effective (see §8). Machine learning based
proposals [52, 70, 72–74, 79] also have various limitations,
including requiring labeled QoE data to train models, which
is hard to obtain in general (§8).

To address this challenge, CSI works by inferring the iden-
tities of downloaded chunks from the encrypted network
traffic (§3). It leverages the key insight that for commonly
used TLS traffic encryption, the data volume sent over the
network is similar to the corresponding object size before
encryption. Before running the active measurement, CSI ob-
tains the sizes of all chunks across all tracks for the target
test video. After running the video streaming session, it ana-
lyzes the IP-level information still available in the encrypted
traffic - specifically the packet sizes and timing information.
Conceptually, it analyzes the encrypted traffic to first infer
the packets corresponding to client requests for chunks, and
then estimates the size of each downloaded chunk based
on the traffic downloaded between consecutive requests. It
then uses the chunk size as a fingerprint to identify the cor-
responding playback index and track for each downloaded
chunk.

Our key contributions are:

• Foundational insights (§3). We perform extensive mea-
surements and develop two key insights that demon-
strate the feasibility of inferring chunk identities from
encrypted traffic. (1) Downloaded object sizes can be
accurately inferred from associated encrypted packets
(§3.2). (2) For the increasingly commonly used Vari-
able Bitrate (VBR) encoding, even with a relatively
short sequence of chunk sizes, consisting of a mixture
of chunks from different tracks, the identity of each
chunk in the sequence can still be identified with high
accuracy (§3.3).

• Design of CSI (§4). CSI enables automated and re-
peated active measurements for understanding the
adaptation behavior and delivered QoE of commer-
cial mobile video streaming under various network
conditions. CSI automates the measurement process
including performing network emulation, player UI
instrumentation, data collection and analysis.

• Inference algorithm that is a key component ofCSI (§5).
It is designed to cover a range of common ABR system
designs. To efficiently identify the chunk sequence
that matches size information from the traffic, CSI
formulates the matching problem as a shortest path
graph search. CSI also addresses additional challenges
introduced by QUIC’s unique properties, such as the
stream multiplexing feature [43].

• Evaluation (§6). We perform extensive evaluations and
demonstrate that CSI achieves high inferencing accu-
racy (1) across different chunk size variability across 6
popular services (2) across ABR systems with different
designs. In addition, the analysis is fast, typically tak-
ing only a few seconds to analyze a 10 min long video
session.

CSI: Inferring ABR Behavior under HTTPS and QUIC EuroSys ’20, April 27–30, 2020, Heraklion, Greece

• Use case (§7). We use Hulu as an example service and
illustrate how CSI can be used in practice to help un-
derstand the QoE implications of parameter settings in
token-bucket based traffic shaping policies and derive
optimized shaping policies for mobile networks (§7).

CSI is currently being incorporated into a popular open-
source mobile video streaming analysis toolkit widely used
in the industry. A new version of the toolkit including CSI
is being prepared for public release.
The design of CSI was primarily motivated by the need

to analyze complex adaptation behavior of closed-source
mobile apps in highly variable network conditions typical
of cellular networks. However, CSI can also be used for less
challenging scenarios such as more stable broadband home
networks and web-based ABR streaming.

2 Motivation
In this section, we review existing approaches to monitor
adaptation behavior of ABR streaming services and detail
the technical challenges introduced by the adoption of traffic
encryption. This motivates our effort to develop CSI .
Use of active measurements. Due to the closed-source na-
ture of the proprietary mobile streaming apps, third parties
typically resort to black-box active measurements to ana-
lyze their adaptation behavior and resulting QoE. This can
be done either with carefully crafted in-lab network emu-
lation (e.g., replaying varying bandwidth traces collected
from real networks etc.) or in-the-wild real network test-
ing. In each test, they monitor the network traffic during
video playback. Specifically, they analyze across time what
chunks are downloaded and the corresponding download
times (e.g., the 5th chunk in playback order is selected from
the 3rd track and downloaded at a certain time). Using such
information, testers can estimate the displayed video quality,
measure its variation across time, and analyze stall events
during playback.
Challenges introduced by traffic encryption. Existing
video streaming analysis techniques [45, 57, 67, 83] rely on
parsing HTTP requests information in the network traffic,
e.g., URLs, to identify the identity of downloaded chunks.
However, with the adoption of encryption protocols, such
information is encrypted and no longer available, making
existing techniques no longer viable.
In this work, we focus on the two dominant encryption

protocols used in video streaming, i.e., HTTPS (e.g., Net-
flix [34]) and QUIC (e.g., Youtube [41]). QUIC is a UDP-based
encrypted transport protocol with feature enhancements de-
signed for better performance [61, 65]. HTTP-over-QUIC is
being standardized as HTTP/3 [43] and attracted wide inter-
est from the industry. HTTPS and QUIC cover the vast ma-
jority of popular commercial streaming services, and hence
we focus on them in this paper.

IP (source, destination)
TCP (port, seq)

TLS (length)
HTTP

UDP (port)

QUIC
(length, packet number)

StreamContent Stream
HTTP/3Encrypted

TLS 1.3

Figure 2. HTTPS/QUIC network stack (and available infor-
mation)

Symbol Description
𝐶𝑖 Chunk corresponding to the 𝑖𝑡ℎ request
𝑀𝑖 ,𝑇𝑖 , 𝐼𝑖 , 𝑆𝑖 Media type, track, index and size of𝐶𝑖

𝑆𝑖 The estimated size of𝐶𝑖 based on traffic
𝑆𝑎𝑘 The size of an audio chunk in the 𝑘th audio track

Table 1. The notation used in this paper

As shown in Figure 2, HTTPS and QUIC both use Trans-
port Layer Security(TLS) [3] to encrypt application layer
data. Only very limited information can be obtained by mon-
itoring this encrypted traffic, including IP packet timing,
IP addresses, TCP/UDP port number, TLS record length in
HTTPS and payload length in QUIC. Additionally, during
the TLS handshake phase, the server domain name can be
obtained from the Server Name Indication (SNI) extension
sent by the client. However, all application payload infor-
mation such as HTTP request URL and response cannot be
observed, defeating traditional traffic analysis techniques.
It is worth mentioning that compared to HTTPS, QUIC

has some unique properties which make its analysis even
more challenging: (1) A retransmitted HTTPS packet can be
detected from the SEQ number in the underlying TCP header.
But for QUIC, each packet carries a new packet number, even
those carrying retransmitted data. This makes it difficult to
identify retransmitted QUIC packets and therefore harder
to get an accurate estimation of the payload size from the
observed network traffic (§3.2). (2) QUIC supports multiplex-
ing multiple streams for multiple objects at the same time
within the same connection. This makes it more difficult to
infer the sizes of individual objects transmitted on a QUIC
connection. We will discuss later in §5 how we address these
challenges.

3 CSI Overview: Using Sizes as Fingerprint
In this section, we describe the high-level approach of CSI
and the key insights underlying it. We will describe practical
challenges and more CSI design details later in §4 and §5.
In the following, we denote the chunk corresponding to

the 𝑖𝑡ℎ request as 𝐶𝑖 , its media type (audio or video1), track,
index and size as𝑀𝑖 , 𝑇𝑖 , 𝐼𝑖 and 𝑆𝑖 respectively (in Table 1).
1Some ABR services multiplex audio and video content together and each
chunk contains both video and associated audio content. For such services,
we consider all chunks as video chunks.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Shichang Xu, Subhabrata Sen, and Z. Morley Mao

? ? ?

Uplink Downlink

Packet timing and size Estimated chunk sizes

1MB 0.6MB
2.1MB

T3,I3

Chunk identities

T1,I4 T2,I5

Chunk identity size

Manifest

Step 1 Step 2

Figure 3. Proposed analysis approach for encrypted traffic
(T: track, I: index, Tx,Iy means the𝑦𝑡ℎ chunk in the 𝑥𝑡ℎ track.)

3.1 High-level solution
In advance of running the actual streaming test, CSI gathers
the sizes of all chunks from all tracks of the test video. Note
this only needs to be performed once for each test video.
Then CSI runs the actual test, streaming the test video on
the target service under various network conditions. During
the test, CSI captures encrypted traffic going through the
device. Afterwards, CSI infers downloaded chunk identities
from the encrypted traffic using a 2 step process.
Step 1. Combining packet sizes and timing information, CSI
infers (i) packets corresponding to HTTP requests from the
player to the server in the upstream direction, and (ii) the
set of packets in the downstream direction that correspond
to the response (i.e., chunk) for each request. From this, CSI
estimates the sizes of the downloaded chunks. Assuming a
session with 𝑛 chunk downloads, we denote the estimated
chunk sizes as (𝑆𝑖)𝑛𝑖=1 to distinguish them from the corre-
sponding actual chunk sizes (𝑆𝑖)𝑛𝑖=1 CSI is trying to infer.
Step 2. Given the estimated downloaded chunk sizes (𝑆𝑖)𝑛𝑖=1,
CSI identifies the chunk sequence (𝐶𝑖)𝑛𝑖=1 (where different
chunks can belong to different tracks) whose size sequence
(𝑆𝑖)𝑛𝑖=1 most closely matches (𝑆𝑖)𝑛𝑖=1 as the likely set of chunk
downloaded in the session.

The feasibility of such an inference approach depends on
two key insights that we derive based on extensive measure-
ments. (1) For encrypted traffic, given a group of packets
associatedwith downloading a chunk, we can estimate chunk
sizes with relatively high accuracy. (2) Given the achievable
accuracy of chunk size estimation, we can accurately identify
the chunk identity based on the estimated size.

Next, we describe our measurement analysis that leads to
the above two insights.

3.2 Accuracy of chunk size estimation
We first investigate estimating the chunk size from a set of
encrypted packets associated with downloading the chunk.
We try to reduce potential inaccuracies as much as pos-

sible. For HTTPS, we remove retransmitted packets based
on the SEQ number in the underlying TCP header (§2). We
then estimate the chunk size as the sum of the TLS payload
lengths in the remaining packets (excluding IP/TCP/TLS

headers in Figure 2). For QUIC, we estimate the chunk size as
the sum of the QUIC payload lengths in all packets(excluding
IP/UDP/QUIC headers).
To evaluate the accuracy of the size estimation, we build

an Android app with Cronet [16], an HTTP library that
supports both HTTPS and QUIC, and download chunks with
sizes ranging from 50KB to 1MB using the two protocols. We
capture the associated network traffic and estimate download
file sizes following the above steps.We repeat the experiment
in different mobile network environments. Each object is
downloaded 100 times in total.

We compare the estimated size 𝑆𝑖 with the ground truth 𝑆𝑖
to measure the estimation accuracy. We find the estimation
is quite accurate for both protocols: the maximal error is only
1% and 5% for HTTPS and QUIC respectively. For HTTPS,
this error is mainly caused by potential TLS overheads. For
QUIC, the error rate is slightly higher since (1) we are unable
to identify and eliminate retransmitted QUIC packets based
on the packet header information still available (§2), (2) QUIC
is built on top of UDP and implements signaling such as
congestion control and flow control within the encrypted
QUIC payload. We are unable to eliminate the associated
traffic overhead of such signaling as well.
Based on the measurements, we have the following rela-

tionship between 𝑆𝑖 and 𝑆𝑖 .

𝑆𝑖 ≤ 𝑆𝑖 ≤ (1 + 𝑘)𝑆𝑖 (Property (1))

𝑘 represents the maximal estimation error (1% for HTTPS
and 5% for QUIC).

[49, 55, 59, 63, 71, 77, 78] also show that traffic analysis
can be performed to infer HTTPS payload sizes, as it does not
use TLS padding [17, 18] to obfuscate payload size, likely due
to significant associated data overhead and network resource
inefficiencies [53]. Our findings corroborate this observation
for HTTPS, and further show that a similar observation also
holds for QUIC.

3.3 Accuracy of chunk identification
Next, we explore the chunk size variability of video stream-
ing services to understand whether it is possible to use esti-
mated chunk sizes (given the achievable estimation accuracy
in §3.2) to accurately identify downloaded chunks among all
encoded chunks.
Streaming services traditionally mainly used Constant

Bitrate (CBR) encoding and encoded the video using fixed bi-
trates for each track. For the CBR case, the track that a down-
loaded chunk belongs to can be trivially identified based on
its size, as the sizes of all chunks in each track are tightly
clustered around and different tracks have very different
chunk sizes. Recently, services are increasingly adopting
VBR encoding [58, 76, 77, 83] due to its higher encoding
efficiency [64]. The encoder allocates higher bitrates to en-
code the chunks corresponding to complex scenes and lower

CSI: Inferring ABR Behavior under HTTPS and QUIC EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0 10 20 30 40
Indexes

0

1

2

3
Ch

un
k

siz
e

(M
B)

1 2 3 4 5
Tracks

Figure 4. Chunk sizes of a Youtube video (PASR 2.6).

bitrates to chunks corresponding to simpler scenes. This re-
sults in size variance even for chunks in the same track. As an
example, we plot the chunk sizes of a popular Youtube video
(Adele-Hello) in Figure 4. We can see that in a given track,
chunks at different places in the video exhibits significant
size diversity. Such diversity can be helpful in identifying the
identity of a chunk based on its size: assuming each chunk
has a different size, we can build a unique mapping between
the size and chunk identity. However, such VBR encoding
also presents challenges in such chunk identification. For ex-
ample, in Figure 4, some chunks from track 3 can even have
similar sizes with chunks from track 5. Such size overlaps
make it challenging to identify the track that a downloaded
chunk belongs to based on its size information.
To evaluate the feasibility of using chunk sizes as a fin-

gerprint to identify chunks with different VBR encodings,
we create videos with different size variabilities for our anal-
ysis. We define PASR (peak-to-average size ratio) to be the
ratio between the 95𝑡ℎ percentile chunk size and the average
chunk size within a track. We use FFmpeg [4] to encode
the commonly used Big Buck Bunny (BBB) test video [1]
into 10 different ABR streams (each with a ladder of tracks)
with PASR values ranging from 1.1 to 2.0 (increasing at 0.1).
For each stream, we encode the video into six tracks with
resolutions ranging from 144p to 1080p following the setting
suggested in [15]. When encoding the tracks, we follow the
three-pass encoding procedure in [50] and configure param-
eters -maxrate and -b:v to achieve desired PASR in each
setting. We then use MP4Box [12] to split each track into
5-sec chunks.
Q1: Canweuniquely determine the identity of a single
chunk given its estimated size?

If chunk sizes can be accurately obtained without any er-
ror, two chunks𝐶𝑖 and𝐶 𝑗 are indistinguishable based on the
size information only when their sizes 𝑆𝑖 = 𝑆 𝑗 . When there
is potential inaccuracy in size estimation (which is the case
for encrypted traffic), assuming the maximum error in size
estimation is 𝑘 , two chunks 𝐶𝑖 and 𝐶 𝑗 are indistinguishable
based on the size information if 𝑆 𝑗

1+𝑘 ≤ 𝑆𝑖 ≤ (1+𝑘)𝑆 𝑗 , as they
can be potentially estimated to have the same size. We define

such two chunks to be similar with threshold 𝑘 . Recall that
𝑘 is 1% for HTTPS and 5% for QUIC. We define a chunk to
be unique if there is no other chunk similar to it from any
track in the video.

We find that even with a 𝑘 of 1%, all encoded videos have
less than 0.1% of unique chunks regardless of the encoding
PASR. In other words, 99.9% of chunks have at least 1 other
chunk with a similar size. With a relatively low PASR, there
is less variability in sizes of chunks in the same track, and
therefore multiple chunks in the same track are more likely
to have similar sizes. With a relatively high PASR, sizes in
the same track span larger ranges, and thus chunk sizes in
different tracks are more likely to overlap. In either case, it
is hard to guarantee that a single chunk has a unique size
among all the chunks across all tracks in the video. Taking
the video in Figure 4 as an example, we highlight chunks
with size 1MB (𝑘 = 1%). We can see that multiple chunks in
both the same track and different tracks have similar sizes.
The above analysis shows that starting from a certain

estimated size for a single chunk, it is very challenging to
uniquely identify the corresponding chunk regardless of the
encoding.
Solution. To reduce the ambiguity in chunk identification,
we leverage one common property during ABR streaming:
the indexes (i.e., playback positions in the track) of the down-
loaded chunks should grow contiguously.

𝐼𝑖 = 𝐼𝑖−1 + 1 (Property (2))

With this constraint, we can combine the estimated size infor-
mation of multiple consecutive chunks to jointly determine
their identities. Note that we do not assume 𝐼1 to be 1 as the
playback might not start from the beginning of the video in
the test (e.g., resuming from the end point of the previous
test).
Q2: Can we uniquely determine the chunk identities
given the estimated sizes ofmultiple consecutive chunks?
We denote a chunk sequence as a series of chunks (𝐶𝑖)𝑛𝑖=1
where the indexes of the chunks grow sequentially (they can
be from different tracks). We consider two chunk sequences
(𝐶1𝑖)𝑛𝑖=1 and (𝐶2𝑖)𝑛𝑖=1 to be similar if every pair of chunks 𝐶1𝑖
and 𝐶2𝑖 in these two sequences are similar. A sequence is
considered to be unique if there is no other sequence similar
to it.

The total number of chunk sequences increases exponen-
tially when the sequence length increases2. However, as
shown in Figure 5, for all VBR encodings, the percentage of
unique sequences decreases dramatically when the sequence
length increases by even small values. Even with a PASR
as low as 1.1, 99.9% of 3-chunk sequences are unique with
𝑘 of 1%, 92.6% of 6-chunk sequences are unique with 𝑘 of
5%. This implies that for many video services, even those
with relatively small chunk size variance in a track, given
2Each sequence is uniquely determined by the index of the first chunk and
the tracks of all chunks in the sequence

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Shichang Xu, Subhabrata Sen, and Z. Morley Mao

1 2 3 4 5 6
Sequence length

0
20
40
60
80

100

%
un

iq
ue

 se
qs 1.1

1.2
1.4
1.6
2

(a) HTTPS 𝑘 = 1%

1 2 3 4 5 6
Sequence length

0
20
40
60
80

100

%
un

iq
ue

 se
qs

(b) QUIC 𝑘 = 5%

Figure 5. Relation between chunk sequence length and per-
centage of unique sequences for videos with different PASR.
Each line represents results for a PASR.

a sequence of only a small number of contiguous chunks,
we can uniquely determine the identity of each chunk in the
sequence with a high probability.
In summary, our measurement results demonstrate the

feasibility of the proposed CSI approach. We will perform a
similar analysis on the encodings of commercial streaming
services later in §6 to validate the generality of the above
conclusion.
The robustness of the proposed chunk identification ap-

proach derives from its dependence on some enduring be-
haviors and features of streaming systems and encryption
protocols which are robust and difficult to alter in practice.
(1) VBR encoding is increasingly adopted by popular services
due to its higher encoding efficiency. Our analysis shows
that even with a low variance in chunk sizes in a track (e.g.,
PASR 1.1), with the sizes of 6 consecutive chunks, there is a
high probability (e.g., 92.6%) that we can uniquely determine
the identity of each chunk in the sequence. (2) In practice,
it is challenging for streaming services to adopt extensive
padding in the traffic for the purpose of obfuscating down-
loaded object size information, as it would cause significant
overhead in network traffic and cause potential degradation
in streaming QoE. (3) If the service adopts CBR encoding,
each track will have a distinct chunk size. As discussed ear-
lier, the track of each downloaded chunk will be even simpler
to identify based on chunk size information.

4 CSI System Design
Further to the description in §3.1, we present a concrete sys-
tem design of CSI (Chunk Sequence Inferencer) in Figure 6.
The key components include the controller, the gateway and
the mobile device. The controller automates measurements
and analyzes the collected data to infer the streaming be-
havior of the tested mobile video service running on the
mobile device. The gateway performs traffic shaping to emu-
late different network conditions and collects traffic passing
through. CSI also leverages web browsers on mobile devices
to collect required metadata about the test video, e.g., chunk
sizes across the tracks. We next detail how to use CSI to

study the adaptation behavior of proprietary closed-source
mobile streaming apps.

4.1 Collecting chunk sizes from all tracks
Recall (§3.1) that, in advance of running the actual streaming
experiment, CSI needs to gather the sizes of all chunks from
all tracks of the test video. Such information is essential for
the subsequent step of inferring the identities of downloaded
chunks based on the chunk sizes. CSI gets such information
from the corresponding ABR manifest which specifies infor-
mation on encoding tracks and chunks (see Figure 1). Clients
download the manifest at the beginning of playback to get
necessary information to fetch chunks. Many manifests di-
rectly specify the sizes of all chunks[76, 83]. CSI parses the
manifest to get the size information. In other cases, manifests
only provide the URLs of all chunks. In such cases, CSI sends
HTTP HEAD requests to query chunk sizes given the chunk
URL information in the manifest. Note this step only needs
to be performed once for each test video.

Depending on the streaming service features, CSI obtains
the manifest using one of the following approaches.
Approach 1: If the streaming service supports browser-

based streaming (most commercial services do),CSI plays the
tested video using a browser instead of mobile apps to get the
manifest. The reason is that browsers provide developer tools
(e.g., Chrome [2], Firefox [5]) to inspect all network activities
including the decrypted payload in encrypted traffic. We
find that unlike browsers, mobile apps do not provide such
access, but they typically share the server-side setting (e.g.,
track encoding and chunk sizes) with browser-based players.
Thus, even though CSI focuses on revealing the adaptation
behavior of mobile apps which are the predominant vehicle
for consuming video content on mobile devices [38, 42, 44],
CSI leverages the browser to glean the manifest.
Note that the browser-based streaming here is used just

for getting the manifest metadata, and we cannot use analy-
sis of ABR streaming behavior for the browser-based player
for understanding the behavior of native mobile apps: dif-
ferent streaming platforms tend to have very different im-
plementations with different client adaptation logic designs
(e.g., Java-based player libraries such as ExoPlayer [7] on
Android, AV Foundation framework on iOS, and Javascript-
based libraries such as Shaka Player [8] in browsers) and thus
different performance characteristics. As an illustration, we
stream a video on Youtube with a stable network bandwidth
of 1Mbps on and observe the player behavior using infor-
mation from stats-for-nerds displayed on the screen [28].
We find Youtube on different platforms selects tracks with
different encoding resolutions (480p for web and 360p for An-
droid and iOS) and has different maximum buffer durations
(90s, 120s and 60s for web, Android and iOS respectively),
which could lead to very different performance. Therefore,
we only utilize the additional information access offered by
developer tool facilities of browsers to obtain the manifest

CSI: Inferring ABR Behavior under HTTPS and QUIC EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Automation
CSI Inference

Gateway

Controller

Streaming servers

Web browsers

Mobile device
VPN server
MITM Proxy

Network emulator

VPN

Manifest downloader

Figure 6. The system architecture of CSI

file. The actual testing is still done with the target player
platform.

Approach 2: An alternate approach is to glean themanifest
from native apps using protocols (or platforms or devices)
where intercepting encrypted connections is feasible (see
more in §8). For example, there is no known technique to in-
tercept QUIC connections. But when QUIC traffic is blocked,
players typically fall back to providing service over HTTPS.
Thus, CSI blocks QUIC traffic on the gateway and uses Man-
In-The-Middle (MITM [11]) approaches to intercept HTTPS
connections to get the manifest where feasible. It then uses
the manifest information to help analyze the streaming be-
havior over QUIC, which can have substantially different
performance characteristics [65]. Another use case is that
newer Android systems no longer trust user-installed certifi-
cates and prevent MITM. In such a case, CSI could perform
MITM interception on older systems to get themanifest, then
use it to study the adaptation behavior of newer versions of
players on the latest Android systems.

In addition, for platforms such as Youtube, there are pub-
licly available tools (e.g., youtube-dl [30]) to download media
files of individual tracks. CSI could parse the file to obtain
individual chunk sizes within the track.

4.2 Streaming video and collecting data
After per-chunk size information is collected for all tracks,
CSI next conducts streaming experiments with the target
player for which testers desire to understand the adaptation
behavior and quantify QoE. CSI leverages the UI Automator
testing framework [24] to interact with the video player and
play the test video. The controller also controls the gateway
to perform traffic shaping using the Linux tool tc according
to the bandwidth trace provided by testers. The traffic from
the device is routed through the gateway using a virtual
private network (VPN) connection. The gateway captures
the transmitting encrypted traffic (and therefore the packet
size and timing information).
For some services, CSI also collects the identities of dis-

played chunks by analyzing the device screen. This is op-
tional and helps improve the inference accuracy of CSI . We
will perform evaluations to explore the inference accuracy

with/without such information in §6. The information about
displayed chunks can be collected in different approaches.
For example, the stats-for-nerds player overlay option in
YouTube shows the resolution of the currently displayed
track [28]. Netflix has test patterns that encode the track
number and frame number as an overlay on the videos [23].
Combining with OCR techniques (e.g., Tesseract OCR [22]
and GOCR [6]) to extract such information from the screen,
CSI gleans information on when and what chunks are dis-
played on the device.
Note that even when we are able to know the displayed

chunks, we need to still infer other information critical to
understanding performance, such as the time when each
displayed chunk was actually downloaded. Players typically
maintain a buffer to absorb network variance and download
chunks ahead of the playback time. The network condition
when the player downloads a chunk can be totally different
from the network condition when the player later displays
the chunk. To understand the player adaptation logic, it is
therefore essential to identify the time when each displayed
chunk was downloaded and associate it with the network
condition at that time.

4.3 Performing analysis
Given the collected information, CSI infers when and what
chunks are downloaded by the client player. It then com-
putes the client buffer occupancy across time and analyzes
streaming QoE including video quality and stalls. Combining
with information regarding the available network bandwidth
across time, testers can develop an understanding of how
clients react to different network conditions and gain more
insights about the design of the tested service. We detail the
CSI inference algorithm in the next section.

5 CSI Inference
Earlier in §3, we described the high-level analysis approach
of CSI to infer the identities of downloaded chunks from the
encrypted traffic. In this section, we describe the challenges
in developing it into a practical algorithm and present our
solution.

5.1 Challenges
To implement the inference into a practical technique, we
need to surmount the following challenges.
Challenge 1: Transport multiplexing (MUX). In Step 1
(§3), we desire to identify packets associated with each chunk
and then estimate the individual chunk sizes. However, for
ABR systems using QUIC and with separate audio tracks,
when players send requests to download audio and video
chunks, video and audio traffic are multiplexed on the same
QUIC connection, making it challenging to separate the cor-
responding packets. In contrast, on each connection, HTTPS
does not send the next chunk request until the current chunk

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Shichang Xu, Subhabrata Sen, and Z. Morley Mao

Design type Audio track Protocol Transport MUX
CH Combined HTTPS N
SH Separate HTTPS N
CQ Combined QUIC N
SQ Separate QUIC Y
Table 2. The ABR streaming system design types

is finished downloading, making it easier to separate traffic
for different chunks.
Challenge 2: Large search space. In Step 2, we desire to
search for likely chunk sequences that closely match with the
estimated sizes from the network traffic. Existing traffic anal-
ysis work [45, 57, 67, 83] builds fingerprints for each website
or app. However, such approaches cannot be directly applied
to our problem, as the search space consisting of all possible
chunk sequences increases exponentially with the sequence
length 𝑛. For example, if we stream a 10min video with 5
video tracks and 5 s second chunk duration, the player down-
loads 125 chunks and there can be 5125 = 7 × 1083 potential
chunk sequences. Building fingerprints for all combinations
and performing exhausted searches quickly become infeasi-
ble as the number of chunks grows. It is therefore essential
to be able to efficiently hone in on the chunk sequence that
matches (as per Property (1)) with the sequence of estimated
sizes 𝑆𝑖 from Step 1.

5.2 Observations
Before we dive into the detailed algorithm we develop to
address the above challenges, we first describe a few obser-
vations that motivate our design.

Popular ABR streaming systems show high diversity in
various aspects of the system. We categorize all ABR stream-
ing designs into 4 different types based on the choice on the
following 2 key factors.
• Combined (C) or Separate(S) audio/video: whether the
server encodes the audio and video content into combined
tracks, or encode them as separate tracks.
• HTTPS(H) or the QUIC(Q) protocol.
This leads to 4 different design types we shall refer to

as {S/C}{H/Q} in Table 2. Various popular video streaming
services fall into different types, e.g.,Amazon Video iOS (SH),
Hulu Android(SH) and YouTube Android (both SH and SQ).

We perform measurements on popular streaming services
and observe that they share common design practices in the
following aspects.
• When separate audio tracks exist, popular services com-
monly use CBR to encode audio content, resulting in almost
fixed-size chunks in each audio track (typically there are
only 1 or a few audio tracks). In this paper, for simplicity
of exposition, we assume all audio chunks in the 𝑘th audio
track have a constant size

Network trace parsing Segment size inference

Candidate search Candidate combination

Step 1.1 Step 1.2

Step 2.2Step 2.1

Figure 7. Algorithm overview

• On each HTTPS/QUIC connection, players send at most
1 outstanding video chunk request and 1 outstanding audio
chunk request at any time. The likely reason for such be-
havior is that as the congestion control is performed at the
connection level, issuing more requests one the same con-
nection does not increase the connection’s share of available
network bandwidth. Instead, it increases the contention and
slows down the download of each chunk. This can increase
the potential for stalls and is therefore not preferable. In this
paper, we make such an assumption for requests on each con-
nection, in line with our observation of behaviors of popular
apps. Note that we do not make assumptions on the number
of TCP connections, as apps in practice may open multiple
connections and download multiple chunks concurrently.

5.3 Algorithm
We next detail the developed algorithm to identify down-
loaded chunks from the encrypted network traffic. We first
present CSI for the 3 design types that do not have transport
MUX (i.e., SH, CH and CQ) and are relatively easier to ana-
lyze. Then we present CSI for the remaining more complex
design type that uses transport MUX (i.e., SQ).

5.3.1 ABR designs without transport MUX
Figure 7 presents a more detailed breakdown of the 2 steps
mentioned in §3 for ABR design types that do not use trans-
port MUX.
Step 1.1 CSI parses the network trace and collects the video
streaming related packet information. It identifies video con-
nections using the server hostname from the SNI during the
handshake, e.g. “googlevideo.com" for YouTube. When SNI
information is missing, CSI infers server hostnames based
on DNS queries or server IP addresses.
Step 1.2 In the absence of transport MUX, on each connec-
tion, the player does not send the next request until the cur-
rent chunk is fully downloaded. Thus CSI groups downlink
traffic between the two consecutive requests and estimates
the chunk size as in §3.2. For HTTPS, the request packets
can be differentiated from uplink ACK packets using the
SEQ number in the TCP packet header. For QUIC traffic, us-
ing the instrumentation and setup in §6.2, we find the ACK
packets have sizes smaller than 80 bytes, while the request
packets are much larger. Thus, CSI uses the packet size to
differentiate them.

CSI: Inferring ABR Behavior under HTTPS and QUIC EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Step 2 Now that CSI has the estimated size sequence (𝑆𝑖)𝑛𝑖=1,
it needs to determine the chunk sequence (𝐶𝑖)𝑛𝑖=1 that sat-
isfies the size constraints in Property (1) for each 𝑖 and the
contiguous index constraint in Property (2). Notice that the
search space size of all possible contiguous chunk sequences
increases exponentially (𝑂 (𝑇𝑛), 𝑇 : total number of tracks)
with the sequence length. To perform the search efficiently,
CSI solves it using a two-level hierarchical approach. It first
searches for the chunks matching each individual estimated
size 𝑆𝑖 separately, then combines the chunks for different
requests into contiguous sequences by modeling the search
into the shortest path problem in a graph. Using the Dijk-
stra’s algorithm [51], the problem can be solved in 𝑂 (𝑛2).
We use SH as a representation to explain in detail how

CSI performs the two-layer search.
Step 2.1 For each 𝑆𝑖 , CSI searches across all video tracks
and locates the chunks with actual sizes satisfying Property
(1). We denote the𝑚 video chunks that match 𝑆𝑖 as chunk
candidates {𝐶𝑖1, ...,𝐶𝑖𝑚}. As SH has separate audio tracks,𝐶𝑖

could also be an audio chunk. We mark the possibility of 𝐶𝑖

to be an audio chunk (𝐴𝑖) as true if 𝑆𝑖 and a certain audio
chunk size 𝑆𝑎𝑘 satisfies Property (1). The actual downloaded
chunk 𝐶𝑖 will be among all these possible candidates.
Step 2.2 CSI combines the candidates for different requests
and find the chunk sequence with contiguous indexes sat-
isfying Property (2). The search problem becomes selecting
a candidate 𝐶𝑖 from {𝐶𝑖𝑚} for each 𝑖 , so that the indexes of
combined chunk sequence (𝐶𝑖)𝑛𝑖=1 are contiguous. CSI con-
verts these candidates into nodes in a graph and formulates
the search as the shortest path problem.

As the example in Figure 9a, for each request,CSI identifies
multiple chunk candidates (each as a node in the graph) in
the previous step. CSI adds an edge between candidates
corresponding to two consecutive requests if their indexes 𝐼𝑖
grow contiguously. For example, an edge is added between
𝐶11 and𝐶21 as 𝐼11 and 𝐼21 grows contiguously from 3 to 4. Also,
some requests have 𝐴𝑖 marked as true and could potentially
correspond to audio chunks. In that case, CSI also adds edges
between video chunk candidates corresponding to requests
surrounding this request if their indexes grow contiguously.
For example, an edge is added between 𝐶13 and 𝐶33 because
𝐴2 is true. Also, 𝐼13 and 𝐼33 grow contiguously from 1 to 2.
After the edges are added, each connected path represents a
chunk sequence with contiguous indexes. To search for the
contiguous chunk sequence corresponding to all requests,
CSI assigns the length of all edges to 0 and uses the Dijkstra’s
algorithm to find connected paths covering all requests.
Notice that in the search process CSI does not add as-

sumptions on the client adaptation algorithms and outputs
all possible sequences matching with the traffic. We will
evaluate how many sequences the algorithm usually outputs
and what are the accuracies of the output in §6. We find
that in many cases CSI finds a unique sequence. Even in the

V1

A1

V2 V4

A2 A3 A4

V3

A5

S1 S2 S3

Audio

Video

Figure 8. Types of split points: SP1 (e.g., S3), SP2 (e.g., S2)

case of multiple sequence candidates, the multiple sequences
typically are similar and result in similar QoE.

5.3.2 ABR designs with transport MUX
For system types performing transport MUX, i.e. SQ, CSI
needs to address one more challenge: the traffic correspond-
ing to multiple chunks could be transmitted concurrently on
the same connection, making it difficult to analyze individual
𝑆𝑖 for each chunk. To address this additional challenge, CSI
works slightly differently from §5.3.1.
Step 1.2 CSI intelligently detects the time points when there
is no outstanding request (i.e., all issued requests so far are
fully downloaded), and splits traffic into small groups at
these time points. With such splitting, each group includes
the traffic for a smaller set of complete chunks. For example,
in Figure 8, CSI splits the traffic at time S2 and S3, resulting
in 3 groups containing 5, 2 and 2 chunks.
A key question is how to find proper split points for the

groups. We hope to make each group as small as possible,
as it reduces the search complexity in later Step 2. In the
extreme case, assume each group only contains 1 chunk, it is
equivalent to the design types without transport MUX. But
meanwhile, the splitting needs to make sure all the traffic for
the same chunk is in one group and thus cannot be performed
arbitrarily. For example, S1 in Figure 8 cannot be used as a
split point, as otherwise chunk A2 is split into two groups.
CSI leverages common properties in video streaming and
identifies two types of split points for QUIC traffic.
The first type of split point SP1 is based on the common

ON-OFF traffic pattern that is widely observed in popular
players [58, 60, 83]. Due to buffer management, the client typ-
ically pauses fetching chunks if the video buffer occupancy
is higher than some threshold, and waits until the buffer
occupancy drops below another lower threshold, resulting
in a periodical ON-OFF pattern in the traffic. Thus CSI splits
traffic when the OFF period is observed. S3 in Figure 8 is
such a split point. In the implementation, the OFF period can
be detected using an idle period longer than some threshold.
This threshold typically can be set as a few seconds and can
also be tuned for each service.
The second type of split point SP2 is based on the com-

mon design that players only download at most 1 video and
1 audio chunk concurrently (§5.2). Thus CSI splits the traf-
fic when it observes the player sends out two requests at
the same time, as this indicates all previous downloads are
finished. S2 in Figure 8 is such a splitting point.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Shichang Xu, Subhabrata Sen, and Z. Morley Mao

Start
Node

T 3
I 2

T 2
I 3

T 1
I 1

T 4
I 7

T 5
I 9

T 1
I 2

T 3
I 4 T 3

I 5
End

Node

T 3
I 4

T 5
I 2

T 3
I 5

Request i 1 42 3

Ai False True FalseFalse

C11

C12

C13

C21

C22

C31

C32

C33

C41

C42

C43

SR Audio in between Shortest path

(a)

Start
Node

T 5 1 2
I 1 2 3

T 3 3 3
I 2 3 4

T 3 2
I 7 8

T 4
I 1

I 11
T 12

I 4 5
T 2 3

T 3 4
I 5 6 T 4

I 7
End

Node

T 3 4
I 5 6

T 7 8
I 10 11

T 5 5
I 7 8

Request i 1 2 3 4 5 6 12 137 8 9 10 11

Ai

Group 1 Group 2 Group 3 Group 4

N Y N Y N Y Y Y N YN N Y

Shortest path

(b)

Figure 9. Sample graph for CSI inferencing: (a) For 3 types without transport multiplexing. (b) For type SQ. T stands for
track, I stands for index.

After the splitting, CSI gathers the packets for each traffic
group and estimates the total chunk size

∑𝑛
1 𝑆𝑖 for each group

in the downlink traffic and the corresponding number of
requests 𝑛 in the uplink traffic.
Step 2 CSI performs a two-layer hierarchical search simi-
larly to §5.3.1 to identify chunk sequences matching with the
traffic. It first searches short contiguous chunk sequences
matching each traffic group, then combines the short se-
quences for different groups into long contiguous sequences
by modeling the search into the shortest path problem.
Step 2.1 For each group CSI searches for contiguous chunk
sequence candidates given the chunk count and total esti-
mated size constraints. As long as the number of chunks
in each group is small, we can practically do an exhaustive
search over combinations to find the sequence candidates.
We evaluate the splitting in previous Step 1.2 using Youtube
with various network bandwidth profiles using the setup in
§6. Combining these two types of splitting points, 99.7% of
groups are no larger than 10 requests including both video
and audio chunks, which can be easily searched.
Step 2.2 Similar to §5.3.1, CSI combines the candidates from
different groups into a contiguous sequence by formulating
the search into the shortest path problem in a graph. The
only difference is that each node in the graph is a chunk
sequence candidate for a traffic group, instead of a single
chunk candidate for a single request. As Figure 9(b) shows,
one candidate sequence for traffic group 1, 𝐶11, consists of
3 video chunks with index 2,3,4 respectively and 3 audio
chunks (omitted in the figure). Another candidate sequence
for traffic group 2,𝐶21, consists of 2 video chunkswith index 5
and 6. CSI adds an edge between them as their chunk indexes
grow contiguously. After adding all edges, CSI searches for
a connected path that covering all requests.

6 System Evaluation
In this section, we first evaluate the generality of CSI across
encodings of popular streaming services. We then demon-
strate that CSI achieves high accuracy across different ABR
designs.

6.1 Different Encodings
The CSI approach builds on the key insights that there is
enough variability in chunk sizes and that given estimated
sizes (with certain errors) of multiple consecutive chunks,
the identities of these chunks can be uniquely determined.
We explore the generality of the insights on popular video
streaming services.
We analyze a number of ABR videos on 6 popular video

streaming services, including Youtube, FacebookWatch, Ama-
zon Video, Vudu, HBONow andHulu, and collect the individ-
ual chunk sizes across all tracks for each video. For Youtube,
we use its data API [29] to query videos with more than 1
million views from different categories. For other services,
we analyze videos on their landing page.

We find that for all the video services, there exists signifi-
cant size variability across chunks (Table 3). For all services,
more than half of the videos have a PASR value higher than
1.41. The prevalence of such high PASR values is due to 2
factors: (1) the wide adoption of VBR encoding in the indus-
try. (2) Newer proposed shot-based encoding schemes [14]
perform encoding and segmentation on a shot (scene) basis,
leading to variable chunk durations and thereby variable
chunk sizes. We envision such size variability will remain
in the future, considering the industry trend towards more
efficient encoding schemes.
We next analyze the feasibility of using chunk sizes as a

fingerprint to identify chunks. We find that with 𝑘 of 1% (see
§3.2), for every studied service, in more than half of all the
videos, more than 96.9% of 3-segment sequences are unique.
When the sequence length increases, higher percentage of
sequences have unique sizes. 100% of 6-segment sequences
are unique for every studied service. For QUIC where 𝑘 is
5%, the percentage of unique sequences is relatively lower,
but still, more than 90% of 6-segment sequences are unique.

Summary. Our evaluations show that size-based chunk
identity inferencing has high accuracy for video encodings
across a range of popular streaming services.

CSI: Inferring ABR Behavior under HTTPS and QUIC EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Service #Videos PASR % unique sequences (𝑘 = 1%) % unique sequences (𝑘 = 5%)
1 chunk 3 chunk 6 chunk 1 chunk 3 chunk 6 chunk

Amazon 111 1.35 (1.47) 0.0 (0.0) 96.9 (98.0) 100.0 (100.0) 0.0 (0.0) 16.0 (27.3) 92.8 (96.7)
Facebook 144 1.73 (2.19) 0.0 (0.0) 99.4 (100.0) 100.0 (100.0) 0.0 (0.0) 58.6 (93.9) 99.5 (100.0)
HBO Now 30 1.57 (1.58) 0.0 (0.0) 98.0 (98.4) 100.0 (100.0) 0.0 (0.0) 24.6 (35.5) 97.3 (98.2)
Hulu 30 1.35 (1.44) 0.0 (0.0) 97.3 (98.6) 100.0 (100.0) 0.0 (0.0) 20.9 (32.2) 90.3 (96.4)
Vudu 46 1.52 (1.58) 0.0 (0.0) 99.1 (99.9) 100.0 (100.0) 0.0 (0.0) 45.6 (81.9) 99.1 (100.0)
Youtube 1920 1.94 (2.13) 0.0 (0.0) 99.5 (99.9) 100.0 (100.0) 0.0 (0.0) 68.8 (89.7) 99.8 (100.0)

Table 3. The chunk size variability of popular video services and the percentage of chunk sequences with unique sizes. In
cells with format “A(B)", A and B are the median and 95𝑡ℎ percentile value across videos.

6.2 Using CSI for different ABR designs
We evaluate the accuracy of CSI for the 4 ABR designs out-
lined in §5.We upload 5 videos covering different genres with
durations ranging from 13min to 1 h to Youtube. Youtube
encodes each of the uploaded videos into an ABR stream
with multiple tracks. We then use a test player built from Ex-
oPlayer, a popular open-source Android media player used
by more than 10,000 apps [32, 33, 35, 39], to play the ABR
streams from Youtube servers. We use Youtube for our eval-
uation as it offers a convenient way to encode ABR streams
and does not cause Digital Right Management (DRM) related
complexities for user-generated content. Note that as shown
earlier in §6.1, CSI itself works for video encodings across a
range of popular services. The default ExoPlayer does not
support QUIC. Therefore, to test both HTTPS and QUIC, we
added Cronet as the underlying network stack in ExoPlayer
and configure it to use either protocol as needed. Two of the
four ABR designs involve combined video and audio content
in a single track. However, Youtube servers only encode sepa-
rate audio and video tracks. Hence we explore the combined
audio-video cases by creating a manifest file only including
the video tracks and excluding the audio tracks.
For repeatability reasons, we used network bandwidth

trace-driven replay experiments. Specifically, we ran exten-
sive throughput measurements in operational commercial
mobile networks, covering a wide range of scenarios cor-
responding to different signal strengths and locations, and
collected 30 bandwidth traces covering these scenarios. Then,
during the experiments, we let CSI perform traffic shaping
based on these collected bandwidth traces to emulate the
measured network conditions. These traces have an aver-
age bandwidth ranging from 600kbps to 40Mbps and dif-
ferent bandwidth variability. The very different bandwidth
characteristics trigger different adaptation behavior on our
ExoPlayer-based client. Note that CSI itself neither makes
any assumption regarding the track selection logic, nor is it
biased towards any specific adaption behavior. To address
any experimental noise, we rerun the test 5 times for each
video and bandwidth trace combination. In each test run,
we stream the video for 10 min. In total we test around 125
hours worth of video playback.

To obtain ground truth on the downloaded chunk identi-
ties for measuring the accuracy of the inferred results, we
instrument ExoPlayer to log the chunk request timing and
URL. As part of our evaluations, we also explore how infor-
mation on displayed chunks obtained from screen analysis
helps improve the accuracy. To get such information, we
also add instrumentation in our ExoPlayer client to log the
identities of the chunks that are displayed on the screen.

6.2.1 Case: ABR without transport MUX
For the 3 design types without transport MUX (Table 2), we
analyze the inference accuracy as follows. For each experi-
ment, the inference might return multiple candidate chunk
sequences. We calculate the accuracy of each inferred se-
quence and get the highest and lowest accuracy across the
sequences. The accuracy of an inferred sequence is calculated
as the percentage of correctly inferred chunks.

For CQ and CH, CSI always find the ground truth as one
of the inferred chunk sequences for every run (Table 4). In a
small proportion of cases, multiple chunk sequences could
have similar sizes and CSI would output all of them as can-
didate solutions. In our evaluations, for 84% of runs, the
inferred sequence is unique. Even in the cases where mul-
tiple inferred sequences are found, the identified sequence
with the most errors still achieves high accuracy: higher than
95% for 95.6% of runs. With additional displayed chunk infor-
mation, the accuracy can be further improved: CSI uniquely
infers the ground truth sequence for 92% of all runs.
For SH where audio content is encoded into separate

tracks, some requests are for audio chunks, increasing the
challenges for the inference. Though video chunks are gen-
erally much larger in size than audio chunks, some video
chunks from low bitrate tracks or with simple scenes could
be encoded with sufficiently low bitrates and have similar
sizes with audio chunks. Our evaluation shows that CSI still
infers the downloaded chunk identities with high accuracy.
For SH, the accuracy of the best-inferred sequence is 100%
for every run. Even the worst candidate for 91.7% of runs
had an accuracy exceeding 95%. With additional displayed
chunk information, the accuracy improves: the accuracy of
even the worst candidate sequence for 99.4% of runs is higher
than 95%.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Shichang Xu, Subhabrata Sen, and Z. Morley Mao

Case
Without displayed chunk information With displayed chunk information

Best output Worst output Best output Worst output
100%
match

>95% ac-
curacy

5 pct ac-
curacy

100%
match

>95% ac-
curacy

5 pct ac-
curacy

100%
match

>95% ac-
curacy

5 pct ac-
curacy

100%
match

>95% ac-
curacy

5 pct ac-
curacy

CH 100.0 100.0 100.0 64.3 93.6 86.0 100.0 100.0 100.0 94.9 100.0 99.7
SH 100.0 100.0 100.0 5.0 91.7 85.1 100.0 100.0 100.0 9.4 99.4 95.0
CQ 100.0 100.0 100.0 84.1 95.6 90.5 100.0 100.0 100.0 92.1 100.0 95.2
SQ 98.0 100.0 100.0 4.0 52.8 56.2 98.5 100.0 100.0 91.5 98.0 98.1

Table 4. The evaluation of inference accuracy with ExoPlayer. “100% match" means the percentage of experimental runs with
100% accuracy. “>95% accuracy" means the percentage of runs with accuracy higher than 95%. “5pct" means the 5 percentile of
accuracy across the runs.

6.2.2 Case: ABR with transport multiplexing
We next evaluate how well CSI handles the ABR system de-
sign that uses transport MUX, e.g., SQ (Table 2). As discussed
in §5, transport MUX makes it difficult to estimate the size
of each chunk and to infer their identities. Our evaluations
show that CSI finds multiple matching sequences for 96% of
the test runs. For 52.8% of runs even the worst candidate has
an accuracy higher than 95% and for 69.8% of experiments
with the worst candidate has an accuracy higher than 90%.
We also find that by utilizing displayed chunk information,
CSI can further improve and determine the ground truth as
the only output for 91.5% of runs.

6.2.3 Computation time for CSI
In terms of computation time, for system designs without
transport MUX, CSI typically takes a few seconds to analyze
a 10 min long trace on a commodity desktop. For system
designs with transport MUX, the analysis time can increase
up to around aminute due to the larger search space involved.
Such short response times are reasonable for active testing,
as the analysis is performed offline and does not require
real-time. We leave a more efficient implementation of CSI
to future work.

Summary. Our evaluations show that CSI achieves high
accuracy for a wide range of system designs, and with rea-
sonable computation times.

7 Demonstrating ABR analysis using CSI
We discussed earlier the need for third-party entities includ-
ing mobile network operators and app developers to perform
active measurement and study the adaptation behavior of
commercial mobile streaming systems. In this section, we
shall illustrate one such important use case for mobile net-
work operators, i.e., designing traffic management policies.
It is worth mentioning that the purpose of this section is
to demonstrate the need for using active measurement to
derive complex design decisions and how CSI helps support
such use cases. Determining the optimal traffic management
policy itself requires careful considerations of various factors
and tradeoffs and is out of the scope of this work.

Due to the associated massive traffic volumes, mobile net-
work providers commonly need to perform traffic manage-
ment for video traffic (e.g., [21, 62]). A typical approach in-
volves limiting the network bandwidth to a level such that
the player is still able to deliver good-quality Standard Defini-
tion (SD) content to smartphones. The underlying considera-
tion is that especially given the limited screen size of mobile
devices, streaming videos at too high quality and resolu-
tions would at best bring only marginal QoE improvements,
while consuming substantially more network data, leading to
draining the user’s limited data budget much faster, and also
potentially significantly increasing the load on the network.

A good traffic shaping policy needs to balance the data us-
age and delivered QoE. To design such a policy, it is essential
to understand the interactions between various parameters
in the policy design space and the mobile player’s adaptation
logic. In the following, as an illustration, we leverage CSI
to explore designing a token-bucket based shaping policy.
The token bucket is widely used for traffic shaping and per-
forms shaping based on the expenditure of tokens [54]. It
has 2 key parameters: token generation rate 𝑟 and bucket
size 𝑁 . Tokens fill the bucket at the rate of 𝑟 until the bucket
is full. When a packet of size 𝑠 arrives, if there are more
than 𝑠 tokens available, the shaper forwards the traffic and
consumes 𝑠 tokens. Otherwise, it queues the packet until
enough tokens are generated. The selection of each of these
parameters has to be done carefully, as it can substantially
impact the streaming QoE. Next, we use Hulu as an example
service to illustrate how CSI can be leveraged to determine
the QoE impact of different parameters of the token bucket.

We first useCSI to gain some basic insights into the adapta-
tion design of Hulu, which is essential for later understanding
the QoE impact of various shaping configurations. We select
a popular video on Hulu. It has 7 tracks (we refer to these
tracks as T1-T7, numbered in the order of increasing bitrate).
We perform a series of experiments within each of which
we emulate a stable network bandwidth. The bandwidth
ranges from 1 Mbps to 4 Mbps across runs. We find that at
the beginning of playback, the Hulu client always starts by
downloading chunks from T1, i.e., the lowest-bitrate track.
After downloading a few chunks, the client switches to a
higher-bitrate higher-quality track and continues streaming

CSI: Inferring ABR Behavior under HTTPS and QUIC EuroSys ’20, April 27–30, 2020, Heraklion, Greece

1.5 2 2.5
r (Mbps)

0
20
40
60
80

100
Tr

ac
k

di
st

rib
ut

io
n

(%
) (a) N=50KB, B1

1.5 2 2.5
r (Mbps)

(b) N=50KB, B2

50K 150K500K1.5M 5M
N

(c) r=1.5Mbps, B1

50K 150K500K1.5M 5M
N

(d) r=1.5Mbps, B2

0
20
40
60
80
100

Da
ta

 u
sa

ge
 (M

B)T7
T6
T5
T4
T3
T2
T1

Data
usage

Figure 10. The track distribution and data usage for Hulu with different shaping policy and network conditions.

0
1
2

Bandwidth Bitrate Throughput

0
2
4

0 50 100 150 200 250 3000
2
4

Time (s)

Bi
tra

te
 (M

bp
s)

(c)

(b)

(a)

Figure 11. Hulu behavior under (a) 2Mbps, (b) profile B2,
r=1.5Mbps, N=50KB, (b) profile B2, r=1.5Mbps, N=5MB.

chunks from that track as long as the network bandwidth
remains stable. We illustrate one example run in Figure 11(a)
with a stable bandwidth of 2Mbps. Our experiments indicate
that the encoding bitrate of the track that the client converges
to is at most half of available network bandwidth. We infer
buffer occupancy in the client across time using the total
duration of downloaded chunks that are not played yet. We
find the client pauses downloading the next segment when
the buffer occupancy reaches around 145 seconds’ worth
of playback content, and does not resume until the buffer
occupancy drops below this value. This behavior generates
a periodic ON-OFF traffic download pattern (after 50s in
Figure 11(a)).
We now explore how to properly configure 𝑟 and 𝑁 to

implement a traffic shaping policy that works well with Hulu.
To perform evaluations, we chain a Linux machine at the
upstream of the gateway (in Figure 6). On the Linux machine,
we configure tbf [25], a Linux tc module, to implement traffic
shaping policies using a token bucket with rate 𝑟 and size 𝑁 .
We also use tc on the gateway to emulate cellular bandwidth
conditions along the gateway to the mobile device network
path. In particular, we test 2 different bandwidth conditions
as an illustration: a condition with stable bandwidth 10Mbps
(denoted as B1), and a condition with bandwidth 10Mbps in
most of the time but occasionally low bandwidth such as
1Mbps (denoted as B2, see Figure 11).

To start with, we fix 𝑁 to be relatively small (50KB) and
test different 𝑟 values. As shown in Figure 10 (a)-(b), when 𝑟
increases, the player spends more time streaming better-
quality tracks and the fraction of streaming low-quality

tracks (e.g., T1) reduces. The data usage also increases ac-
cordingly. The reason is that a higher 𝑟 corresponds to higher
available network bandwidth and the client is able to stream
tracks with higher bitrates.
We next illustrate how the bucket size 𝑁 affects app be-

havior. As an example, we fix 𝑟 to be 1.5Mbps. As shown in
Figure 10 (c)-(d), for both network conditions, with a larger
𝑁 , the percentage of low-quality tracks reduces and the per-
centage of high-quality tracks increases. The reason is that
the token bucket accumulates tokens at startup or when the
cellular network condition is poor. Also, as the Hulu client
appears to select tracks whose encoding bitrates are at most
half of available bandwidth, its buffer is frequently full and
needs to enter "OFF" periods and pause for some time, lead-
ing to tokens accumulating in the bucket. With a larger 𝑁 ,
the bucket accumulates more tokens and allows for larger
bursts when the player resumes downloading chunks. For
example, as shown in Figure 11, compared with (b), in (c)
where 𝑁 is higher, the achieved instantaneous throughput is
much higher when the player resumes from OFF periods. As
a result, the player ramps up from low-quality tracks faster
and plays higher-quality tracks. However, a bigger 𝑁 leads
to higher user data usage. The data usage when 𝑁 is 5MB
is 2.2 times of the data usage when 𝑁 is 50KB (Figure 10(d).
A bigger 𝑁 also leads to potentially more frequent track
switches. In Figure 11(b), the player often selects tracks with
bitrate much higher than 1.5Mbps and quickly consumes all
tokens in the bucket. As a result, the player then is forced
to ramp down to a lower-bitrate track T1. Such dramatic
switches between high-bitrate high-quality tracks and low-
bitrate low-quality tracks are undesirable as they impair user
experience, and should therefore be avoided.
As shown above, both parameters 𝑟 and 𝑁 jointly have

complex interactions with the player adaptation behavior. To
create an optimal design, one would need to perform exten-
sive active measurements to test combinations of these pa-
rameters under a wide range of cellular network conditions
for different videos and streaming services. The optimization
effort should carefully consider the tradeoffs involving vari-
ous QoEmetrics as well as data usage, to achieve data savings
while delivering a good user QoE. As we illustrated above, in
the presence of encrypted traffic, CSI can help testers evalu-
ate the impact of different token bucket configurations on
the ABR streaming QoE for proprietary commercial services.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Shichang Xu, Subhabrata Sen, and Z. Morley Mao

8 Related work
To our best knowledge, CSI is the first system designed to
enable third-party entities to explore and understand the
adaptation behavior of closed-source ABR streaming ser-
vices in the presence of end-end traffic encryption. We next
summarize related work and their limitations.
Active measurement with no traffic encryption. Exist-
ing works [45, 57, 67, 83] identify downloaded chunks based
on HTTP request information (e.g., URLs) from unencrypted
traffic. However, with the wide adoption of traffic encryption,
such information is no longer available.
Encryption workarounds. There exist some workarounds
for testers to decrypt encrypted traffic, but various measures
are increasingly adopted by the ecosystem (e.g., device ven-
dors and app developers) to prevent such workarounds for
security and privacy considerations. In contrast, we specifi-
cally design CSI to work without the need to rely on fragile
workarounds, which include

• MITM. Some workarounds install a self-signed cer-
tificate on the device and perform MITM interception
using proxies [19, 20, 48]. But this is becoming harder
due to (1) more stringent ecosystem trust models, e.g.,
apps on Android 7 onwards by default no longer trust
user-installed certificates [37], (2) stricter protocol im-
plementations, e.g., there are no known working so-
lutions for MITM QUIC traffic, (3) use of certificate
pinning techniques which hardcode server certificates
in the app to prevent third-party interception [46].

• Rooting. Some workarounds use a rooted device to
intercept encrypted connections (e.g., by disabling cer-
tificate checking in the system etc.). However, this is
increasingly less effective due to (1) smartphone ven-
dors [26, 27] are making it much more difficult or even
infeasible to root the devices (e.g., Samsung S5 onwards
and iPhone), (2) many video apps such as Google Play
Movies, SkyGo and NowTV have logic to block access
if the device is detected to be rooted, likely due to
security and DRM considerations.

• App repackaging. Some approaches propose repack-
aging client apps to remove encryption. This is tech-
nically challenging and hard to generalize due to the
closed-source nature of commercial video apps. In ad-
dition, user agreement of streaming services (e.g., [9,
10, 13]) may disallow such approaches.

While the above workarounds currently may still be fea-
sible for certain scenarios, we envision them to be increas-
ingly less applicable. We therefore develop CSI to avoid such
workarounds as much as possible.
Passivemonitoringwith traffic encryption. Someworks
train machine learning models to monitor video streaming
QoE from encrypted network traffic characteristics such as
achieved throughput [52, 70, 72, 73]. Such approaches can-
not be directly applied for our use case of inferring ABR

adaptation behavior for the following main reasons. (1) They
require labeled data on QoE associated with various network
characteristics to train application-specific models to clas-
sify QoE. Such ground truth QoE data is difficult to obtain
without approaches such as CSI . Systems like CSI can be
used to help build models for in-network passive monitoring
purposes. (2) They only provide coarse-grained binary clas-
sification or qualitative labels on the QoE. In contrast, CSI
provides fine-grained information on how players adapt to
various network conditions and resulting QoE, which is es-
sential for many use cases such as performing QoE diagnosis
and deriving better designs.
Traffic analysis (TA).Manyworks in security/privacy space
perform TA to infer certain application-level information
from encrypted network traffic. For example, [47, 49, 55, 59,
63, 77, 78, 81, 82] infer details such as which website the
user visited, which video is played and which app the user
used etc. Different from these, our work is targeted at a very
different use case with its unique challenges (see more in
§5.1): inferring the identities of downloaded chunks dur-
ing ABR video streaming. Existing techniques cannot be
directly applied to our use case. For example, previous works
build fingerprints for each website or app. However, in ABR
streaming, the client makes a decision for the track of each
chunk. The search space of all possible chunk sequences
for a video can be extremely large (10 min’s playback could
have 1083 possible sequences), making existing fingerprint-
ing approaches infeasible. In addition, existing works focus
on HTTPS and do not examine QUIC which has its own
distinct features and properties like multiplexing that make
the traffic analysis task harder. Parallel work [66] uses very
specific assumptions on ABR adaptation logic to estimate
QoE metrics, but such assumptions do not hold in general.

9 Conclusions and Future Work
We presented CSI , a novel scheme for analyzing ABR stream-
ing behaviors of mobile apps in the presence of traffic en-
cryption (HTTPS and QUIC). Extensive evaluations using
real videos and network conditions show that CSI achieves
high inference accuracy and can effectively analyze complex
player behaviors, even for very challenging conditions like
encrypted transport multiplexing in QUIC. CSI is currently
being incorporated into a popular mobile video streaming
analysis toolkit.

10 Acknowledgements
We express our sincerest gratitude towards the anonymous
reviewers who provided valuable feedback to improve this
work, and our shepherd, Y. Charlie Hu, for guiding us through
the revisions. This material is based upon work partially sup-
ported by NSF under grants CNS-1827940, CCF-1628991 and
CNS-1629763.

CSI: Inferring ABR Behavior under HTTPS and QUIC EuroSys ’20, April 27–30, 2020, Heraklion, Greece

References
[1] [n.d.]. Big Buck Bunny. https://peach.blender.org/.
[2] [n.d.]. Chrome Devtools. https://developers.google.com/web/tools/

chrome-devtools/.
[3] [n.d.]. draft-ietf-quic-tls-13 - Using Transport Layer Security (TLS) to

Secure QUIC. https://tools.ietf.org/html/draft-ietf-quic-tls-13.
[4] [n.d.]. FFmpeg. http://ffmpeg.org.
[5] [n.d.]. Firefox Developer Tools. https://developer.mozilla.org/en-US/

docs/Tools.
[6] [n.d.]. GOCR. http://jocr.sourceforge.net/.
[7] [n.d.]. google/ExoPlayer: An extensible media player for Android.

https://github.com/google/exoplayer.
[8] [n.d.]. google/shaka-player: JavaScript player library / DASH client /

MSE-EME player. https://github.com/google/shaka-player.
[9] [n.d.]. HBO Now Terms of Use. https://play.hbonow.com/terms.
[10] [n.d.]. Hulu Terms of Use. https://secure.hulu.com/terms.
[11] [n.d.]. Man-in-the-middle attack. https://en.wikipedia.org/wiki/

Man-in-the-middle_attack.
[12] [n.d.]. MP4Box: GPAC multimedia packager. https://gpac.wp.imt.fr/

mp4box/.
[13] [n.d.]. Netflix Terms of Use. https://help.netflix.com/legal/termsofuse.
[14] [n.d.]. Optimized shot-based encodes: Now

Streaming! https://medium.com/netflix-techblog/
optimized-shot-based-encodes-now-streaming-4b9464204830.

[15] [n.d.]. Per-Title Encode Optimization. https://medium.com/
netflix-techblog/per-title-encode-optimization-7e99442b62a2.

[16] [n.d.]. Quick Start Guide to Using Cronet. https://chromium.
googlesource.com/chromium/src/+/master/components/cronet.

[17] [n.d.]. RFC 5246 - The Transport Layer Security (TLS) Protocol Version
1.2. https://tools.ietf.org/html/rfc5246.

[18] [n.d.]. RFC 8446 - The Transport Layer Security (TLS) Protocol Version
1.3. https://tools.ietf.org/html/rfc8446#section-5.4.

[19] [n.d.]. Squid web proxy SSL bump feature. https://wiki.squid-cache.
org/Features/SslBump.

[20] [n.d.]. SSL MITM Proxy. https://crypto.stanford.edu/ssl-mitm/.
[21] [n.d.]. Stream More Video, Use Less Data with Stream Saver - AT&T.

https://www.att.com/offers/streamsaver.html.
[22] [n.d.]. Tesseract OCR. https://github.com/tesseract-ocr/tesseract.
[23] [n.d.]. Test patterns | Netflix. https://www.netflix.com/title/80018499.
[24] [n.d.]. UI Automator. https://developer.android.com/training/testing/

ui-automator.
[25] [n.d.]. UI Automator. https://linux.die.net/man/8/tc-tbf.
[26] [n.d.]. Why is it so hard to ŕootá smartphone? https://www.

androidcentral.com/why-it-so-hard-root-smartphone.
[27] [n.d.]. Why you shouldnt́ root your Android

phone. https://www.howtogeek.com/132115/
the-case-against-root-why-android-devices-dont-come-rooted/.

[28] [n.d.]. Youtube brings us stats for nerds. http://tubularinsights.com/
youtube-stats-for-nerds/.

[29] [n.d.]. Youtube Data API. https://developers.google.com/youtube/v3/.
[30] [n.d.]. youtube-dl: Download videos from YouTube. https://rg3.github.

io/youtube-dl/.
[31] 2012. ISO/IEC 23009-1, Information technology - Dynamic adap-

tive streaming over HTTP (DASH). http://standards.iso.org/ittf/
PubliclyAvailableStandards/c057623_ISO_IEC_23009-1_2012.zip.

[32] 2016. ExoPlayer 2 - Why, what and when? https://medium.com/
google-exoplayer/exoplayer-2-x-why-what-and-when-74fd9cb139.

[33] 2016. ExoPlayer from the other side. https://medium.com/
google-exoplayer/exoplayer-from-the-other-side-5909553abae2.

[34] 2016. Protecting Netflix Viewing Privacy at
Scale. https://medium.com/netflix-techblog/
protecting-netflix-viewing-privacy-at-scale-39c675d88f45.

[35] 2016. WhatsApp For Android Devices. https://tech.blorge.
com/2016/09/23/whatsapp-2-16-274-download-available/

-android-devices-new-emojis/155538.
[36] 2016. YouTube’s road to HTTPS. https://youtube-eng.googleblog.com/

2016/08/youtubes-road-to-https.html.
[37] 2017. Android Network Security Configuration. https://developer.

android.com/training/articles/security-config.html.
[38] 2017. App share of total mobile minutes in leading on-

line markets. https://www.statista.com/statistics/692752/
app-share-of-mobile-minutes-countries/.

[39] 2017. Building Periscope for Android. http://nerds.airbnb.com/
building-periscope-for-android/.

[40] 2017. Cisco Visual Networking Index: Forecast and Method-
ology, 2016-2021. https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html.

[41] 2017. Openwave Mobility Mobile Video Index, Dec 2017. https://
owmobility.com/whitepapers/.

[42] 2017. The 2017 U.S. Mobile App Report. https://www.
comscore.com/Insights/Presentations-and-Whitepapers/2017/
The-2017-US-Mobile-App-Report.

[43] 2018. IETF QUIC working group. https://datatracker.ietf.org/wg/quic.
[44] 2018. Mobile App versus Mobile Website Statistics. https://jmango360.

com/wiki/mobile-app-vs-mobile-website-statistics/.
[45] Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis. 2011. An

experimental evaluation of rate-adaptation algorithms in adaptive
streaming over HTTP. In Proceedings of the second annual ACM con-
ference on Multimedia systems. ACM, 157–168.

[46] Johanna Amann, Oliver Gasser, Quirin Scheitle, Lexi Brent, Georg
Carle, and Ralph Holz. 2017. Mission accomplished?: HTTPS secu-
rity after diginotar. In Proceedings of the 2017 Internet Measurement
Conference. ACM, 325–340.

[47] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012.
Touching from a distance: Website fingerprinting attacks and defenses.
In Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 605–616.

[48] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contribu-
tors. 2010–. mitmproxy: A free and open source interactive HTTPS
proxy. https://mitmproxy.org/ [Version 4.0].

[49] Scott E Coull and Kevin P Dyer. 2014. Traffic analysis of encrypted
messaging services: Apple imessage and beyond. ACM SIGCOMM
Computer Communication Review 44, 5 (2014), 5–11.

[50] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron.
2016. A large-scale video codec comparison of x264, x265 and libvpx
for practical VOD applications. In Applications of Digital Image Process-
ing XXXIX, Vol. 9971. International Society for Optics and Photonics,
997116.

[51] Edsger W Dijkstra. 1959. A note on two problems in connexion with
graphs. Numerische mathematik 1, 1 (1959), 269–271.

[52] Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, and Konstantina
Papagiannaki. 2016. Measuring video QoE from encrypted traffic. In
Proceedings of the 2016 Internet Measurement Conference. ACM, 513–
526.

[53] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimp-
ton. 2012. Peek-a-boo, i still see you: Why efficient traffic analysis
countermeasures fail. In Security and Privacy (SP), 2012 IEEE Sympo-
sium on. IEEE, 332–346.

[54] Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pedrosa,
Yuchung Cheng, Tayeb Karim, Ethan Katz-Bassett, and Ramesh Govin-
dan. 2016. An Internet-wide analysis of traffic policing. In Proceedings
of the 2016 ACM SIGCOMM Conference. ACM, 468–482.

[55] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen. 2018. Walls Have
Ears: Traffic-based Side-channel Attack in Video Streaming. In INFO-
COM 2018-IEEE Conference on Computer Communications, IEEE. IEEE.

[56] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei
Han. 2018. Favor: fine-grained video rate adaptation. In MMSys.

https://peach.blender.org/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://tools.ietf.org/html/draft-ietf-quic-tls-13
http://ffmpeg.org
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
http://jocr.sourceforge.net/
https://github.com/google/exoplayer
https://github.com/google/shaka-player
https://play.hbonow.com/terms
https://secure.hulu.com/terms
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://gpac.wp.imt.fr/mp4box/
https://gpac.wp.imt.fr/mp4box/
https://help.netflix.com/legal/termsofuse
https://medium.com/netflix-techblog/optimized-shot-based-encodes-now-streaming-4b9464204830
https://medium.com/netflix-techblog/optimized-shot-based-encodes-now-streaming-4b9464204830
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://chromium.googlesource.com/chromium/src/+/master/components/cronet
https://chromium.googlesource.com/chromium/src/+/master/components/cronet
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446##section-5.4
https://wiki.squid-cache.org/Features/SslBump
https://wiki.squid-cache.org/Features/SslBump
https://crypto.stanford.edu/ssl-mitm/
https://www.att.com/offers/streamsaver.html
https://github.com/tesseract-ocr/tesseract
https://www.netflix.com/title/80018499
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://linux.die.net/man/8/tc-tbf
https://www.androidcentral.com/why-it-so-hard-root-smartphone
https://www.androidcentral.com/why-it-so-hard-root-smartphone
https://www.howtogeek.com/132115/the-case-against-root-why-android-devices-dont-come-rooted/
https://www.howtogeek.com/132115/the-case-against-root-why-android-devices-dont-come-rooted/
http://tubularinsights.com/youtube-stats-for-nerds/
http://tubularinsights.com/youtube-stats-for-nerds/
https://developers.google.com/youtube/v3/
https://rg3.github.io/youtube-dl/
https://rg3.github.io/youtube-dl/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c057623_ISO_IEC_23009-1_2012.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c057623_ISO_IEC_23009-1_2012.zip
https://medium.com/google-exoplayer/exoplayer-2-x-why-what-and-when-74fd9cb139
https://medium.com/google-exoplayer/exoplayer-2-x-why-what-and-when-74fd9cb139
https://medium.com/google-exoplayer/exoplayer-from-the-other-side-5909553abae2
https://medium.com/google-exoplayer/exoplayer-from-the-other-side-5909553abae2
https://medium.com/netflix-techblog/protecting-netflix-viewing-privacy-at-scale-39c675d88f45
https://medium.com/netflix-techblog/protecting-netflix-viewing-privacy-at-scale-39c675d88f45
https://tech.blorge.com/2016/09/23/whatsapp-2-16-274-download-available/-android-devices-new-emojis/155538
https://tech.blorge.com/2016/09/23/whatsapp-2-16-274-download-available/-android-devices-new-emojis/155538
https://tech.blorge.com/2016/09/23/whatsapp-2-16-274-download-available/-android-devices-new-emojis/155538
https://youtube-eng.googleblog.com/2016/08/youtubes-road-to-https.html
https://youtube-eng.googleblog.com/2016/08/youtubes-road-to-https.html
https://developer.android.com/training/articles/security-config.html
https://developer.android.com/training/articles/security-config.html
https://www.statista.com/statistics/692752/app-share-of-mobile-minutes-countries/
https://www.statista.com/statistics/692752/app-share-of-mobile-minutes-countries/
http://nerds.airbnb.com/building-periscope-for-android/
http://nerds.airbnb.com/building-periscope-for-android/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://owmobility.com/whitepapers/
https://owmobility.com/whitepapers/
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report
https://datatracker.ietf.org/wg/quic
https://jmango360.com/wiki/mobile-app-vs-mobile-website-statistics/
https://jmango360.com/wiki/mobile-app-vs-mobile-website-statistics/
https://mitmproxy.org/

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Shichang Xu, Subhabrata Sen, and Z. Morley Mao

[57] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and
Ramesh Johari. 2012. Confused, timid, and unstable: picking a video
streaming rate is hard. In Proceedings of the 2012 ACM conference on
Internet measurement conference. ACM, 225–238.

[58] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell,
and Mark Watson. 2015. A buffer-based approach to rate adapta-
tion: Evidence from a large video streaming service. ACM SIGCOMM
Computer Communication Review 44, 4 (2015), 187–198.

[59] Alfonso Iacovazzi, Andrea Baiocchi, and Ludovico Bettini. 2013. What
are you Googling?-Inferring search type information through a sta-
tistical classifier. In Global Communications Conference (GLOBECOM),
2013 IEEE. IEEE, 747–753.

[60] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2014. Improving fairness,
efficiency, and stability in http-based adaptive video streaming with
festive. IEEE/ACM Transactions on Networking (TON) 22, 1 (2014),
326–340.

[61] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-
Rotaru, and Alan Mislove. 2017. Taking a long look at QUIC: an
approach for rigorous evaluation of rapidly evolving transport proto-
cols. In Proceedings of the 2017 Internet Measurement Conference. ACM,
290–303.

[62] Arash Molavi Kakhki, Fangfan Li, David Choffnes, Ethan Katz-Bassett,
and AlanMislove. 2016. Bingeon under the microscope: Understanding
T-Mobiles zero-rating implementation. In Proceedings of the 2016 work-
shop on QoE-based Analysis and Management of Data Communication
Networks. ACM, 43–48.

[63] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas
Devadas. 2015. Circuit fingerprinting attacks: Passive deanonymiza-
tion of tor hidden services. In 24th USENIX Security Symposium
(USENIX Security 15).

[64] TV Lakshman, Antonio Ortega, and Amy R Reibman. 1998. VBR video:
Tradeoffs and potentials. Proc. IEEE (1998).

[65] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, et al. 2017. The QUIC transport protocol: Design and Internet-
scale deployment. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 183–196.

[66] Tarun Mangla, Emir Halepovic, Mostafa Ammar, and Ellen Zegura.
2018. eMIMIC: Estimating HTTP-based Video QoE Metrics from
Encrypted Network Traffic. In IEEE/IFIP Conference on Traffic Measure-
ment and Analysis 2018.

[67] Tarun Mangla, Emir Halepovic, Rittwk Jana, Kyung-Wook Hwang,
Marco Platania, and Mostafa Ammar. 2018. VideoNOC: Assessing
Video QoE for Network Operators using Passive Measurements. In
Proceedings of ACM Multimedia Systems Conference. ACM.

[68] Ahmed Mansy, Mostafa Ammar, Jaideep Chandrashekar, and Anmol
Sheth. 2014. Characterizing client behavior of commercial mobile
video streaming services. In Proceedings of Workshop on Mobile Video
Delivery. ACM, 8.

[69] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural
adaptive video streaming with pensieve. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication. ACM,
197–210.

[70] M Hammad Mazhar and Zubair Shafiq. 2018. Real-time Video Quality
of Experience Monitoring for HTTPS and QUIC. In INFOCOM 2018-
IEEE Conference on Computer Communications, IEEE. IEEE.

[71] Brad Miller, Ling Huang, Anthony D Joseph, and J Doug Tygar. 2014. I
know why you went to the clinic: Risks and realization of https traffic
analysis. In International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 143–163.

[72] Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov.
2016. Youtube QoE estimation based on the analysis of encrypted
network traffic using machine learning. In Globecom Workshops (GC
Wkshps), 2016 IEEE. IEEE, 1–6.

[73] Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov.
2017. A machine learning approach to classifying YouTube QoE based
on encrypted network traffic. Multimedia tools and applications 76, 21
(2017), 22267–22301.

[74] Wubin Pan, GaungCheng, HuaWu, and Yongning Tang. 2016. Towards
QoE assessment of encrypted YouTube adaptive video streaming in
mobile networks. In 2016 IEEE/ACM 24th International Symposium on
Quality of Service (IWQoS). IEEE, 1–6.

[75] Roger Pantos and William May. 2016. HTTP live streaming. (2016).
[76] Yanyuan Qin, Shuai Hao, KR Pattipati, Feng Qian, Subhabrata Sen,

Bing Wang, and Chaoqun Yue. 2018. ABR streaming of VBR-encoded
videos: characterization, challenges, and solutions. In Proceedings of
the 14th International Conference on emerging Networking EXperiments
and Technologies. ACM, 366–378.

[77] Andrew Reed and Benjamin Klimkowski. 2016. Leaky streams: Identi-
fying variable bitrate DASH videos streamed over encrypted 802.11 n
connections. In Consumer Communications & Networking Conference
(CCNC), 2016 13th IEEE Annual. IEEE, 1107–1112.

[78] Andrew Reed andMichael Kranch. 2017. Identifying HTTPS-protected
Netflix videos in real-time. In Proceedings of the Seventh ACM on Con-
ference on Data and Application Security and Privacy. ACM, 361–368.

[79] Paul Schmitt, Francesco Bronzino, Sara Ayoubi, Guilherme Martins,
Renata Teixeira, and Nick Feamster. 2020. Inferring Streaming Video
Quality from Encrypted Traffic: Practical Models and Deployment
Experience. Proceedings of the ACM on Measurement and Analysis of
Computing Systems (2020).

[80] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA:
near-optimal bitrate adaptation for online videos. In Computer Com-
munications, IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on. IEEE, 1–9.

[81] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russell, Venkata N
Padmanabhan, and Lili Qiu. 2002. Statistical identification of encrypted
web browsing traffic. In Security and Privacy, 2002. Proceedings. 2002
IEEE Symposium on. IEEE, 19–30.

[82] Andrew M White, Austin R Matthews, Kevin Z Snow, and Fabian
Monrose. 2011. Phonotactic reconstruction of encrypted voip con-
versations: Hookt on fon-iks. In Security and Privacy (SP), 2011 IEEE
Symposium on. IEEE, 3–18.

[83] Shichang Xu, Subhabrata Sen, Z Morley Mao, and Yunhan Jia. 2017.
Dissecting VOD services for cellular: performance, root causes and best
practices. In Proceedings of the 2017 Internet Measurement Conference.
ACM, 220–234.

[84] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A
control-theoretic approach for dynamic adaptive video streaming over
HTTP. In ACM SIGCOMM Computer Communication Review, Vol. 45.
ACM, 325–338.

	Abstract
	1 Introduction
	2 Motivation
	3 CSI Overview: Using Sizes as Fingerprint
	3.1 High-level solution
	3.2 Accuracy of chunk size estimation
	3.3 Accuracy of chunk identification

	4 CSI System Design
	4.1 Collecting chunk sizes from all tracks
	4.2 Streaming video and collecting data
	4.3 Performing analysis

	5 CSI Inference
	5.1 Challenges
	5.2 Observations
	5.3 Algorithm

	6 System Evaluation
	6.1 Different Encodings
	6.2 Using CSI for different ABR designs

	7 Demonstrating ABR analysis using CSI
	8 Related work
	9 Conclusions and Future Work
	10 Acknowledgements
	References

