Caesar: High-Speed and Memory-Efficient
Forwarding Engine for Future Internet Architecture

Mehrdad Moradit Feng Qian ¢ Qiang Xux Z. Morley Mao' Darrell Bethea* Michael K. Reiter

University of Michigan®

ABSTRACT

In response to the critical challenges of the current Internet
architecture and its protocols, a set of so-called clean slate
designs has been proposed. Common among them is an
addressing scheme that separates location and identity with
self-certifying, flat and non-aggregatable address components.
Each component is long, reaching a few kilobits, and would
consume an amount of fast memory in data plane devices
(e.g., routers) that is far beyond existing capacities. To
address this challenge, we present Caesar, a high-speed and
length-agnostic forwarding engine for future border routers,
performing most of the lookups within three fast memory
accesses.

To compress forwarding states, Caesar constructs scalable
and reliable Bloom filters in Ternary Content Addressable
Memory (TCAM). To guarantee correctness, Caesar detects
false positives at high speed and develops a blacklisting
approach to handling them. In addition, we optimize our
design by introducing a hashing scheme that reduces the
number of hash computations from k to log(k) per lookup
based on hash coding theory. We handle routing updates
while keeping filters highly utilized in address removals. We
perform extensive analysis and simulations using real traffic
and routing traces to demonstrate the benefits of our design.
Our evaluation shows that Caesar is more energy-efficient
and less expensive (in terms of total material cost) compared
to optimized IPv6 TCAM-based solutions by up to 67% and
43% respectively. In addition, the total cost of our design is
approximately the same for various address lengths.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network
communications; C.2.6 [Internetworking]: Routers

Keywords

Future Internet Architecture; Bloom Filters; Border Routers

1. INTRODUCTION

Aiming at providing a more secure, robust, and flexible
Internet, the networking research community recently has fo-
cused on developing new architectures for the next-generation
Internet. For example, AIP [12] introduces accountability
at the IP layer, thus enabling simple solutions to prevent
a wide range of attacks. XIA [21] supports an evolvable
Internet by providing the capability to accommodate poten-
tially unforeseen diverse protocols and services in the future.
MobilityFirst project aims at developing an efficient and
scalable architecture for emerging mobility services [9].

All of these proposals share two important features of
their addressing schemes: each address is decoupled from its
owner’s network location and permits its owner to crypto-
graphically prove its ownership of the address. The separa-

Indiana University *

NEC Labs* University of North Carolina *

tion feature enables improved mobility support and multi-
homing. The cryptographic aspect facilitates authentication
and authorization of control and data messages. However,
on the down side, both features require addresses to be in-
herently long and thus take up significant memory space due
to a lack of hierarchical structure to support aggregation.
For instance, in the design of MobilityFirst [9], each address
component can be a few kilobits in size. Not surprisingly, it is
expected to have forwarding tables on the order of gigabytes
in future Internet architecture designs [21]. Such addressing
schemes make the design and implementation of high-speed
border routers challenging as detailed below.

First, memory provisioning becomes more difficult com-
pared to existing network elements. The future Internet will
experience a tremendous surge in the number of addressable
end-points. Recent studies [8, 6] have predicted that the
number of connecting devices and active address prefixes will
jump to 50 billion and 1.3-2.3 million, respectively, by the
end of 2020. On the other hand, the current rapid growth of
the number of address prefixes (i.e., about 17% per year) is
the root of many existing problems for operators, who have
to continuously shrink the routing and forwarding tables of
their devices or upgrade to increasingly more expensive data
planes [13].

Second, power consumption of border routers is expected
to increase substantially. Most of high-speed routers and
switches utilize a specialized fast memory called Ternary
Content Addressable Memory (TCAM) due to its speed and
in particular its parallel lookup capabilities. TCAM is the
most expensive and power-hungry component in routers and
switches. It requires 2.7 times more transistors per bit [11]
and consumes an order of magnitude more power [35] com-
pared with the same size of SRAM. Therefore, increased
address length imposes substantial cost and power consump-
tion in particular on high-speed border routers with TCAM.
Although software-based solutions might seem viable, their
forwarding speed cannot compete with TCAM-based routers
that can support up to 1.6 billion searches per second under
typical operating conditions [3].

Third, the critical-path fast memory components of high-
speed routers are small in size, and their capacity does
not increase at a rate that would accommodate the large
addresses of future Internet designs in the foreseeable future.
Moore’s law is only applicable to slow memories (i.e., DRAM)
but not to fast memories [4]. As a matter of fact, we have
observed that the TCAM capacity of the state-of-the-art high-
speed routers has remained mostly unchanged for several
years. As a result of limited memory, network operators still
have difficulties in dividing the memory space between IPv4
and IPv6 addresses [7].

To address these challenges, recent research has offered
scalable routing tables [29] and forwarding engines (e.g.,

storage-based [25] and software-based [21]) for the new ad-
dressing schemes. Unfortunately, these solutions have limited
performance due to the approach of storing addresses into
slow memories. Also, due to a lack of address compression, ef-
ficiency and scalability of their proposed schemes are inversely
proportional to the length of addresses. The same limita-

tion also makes a large body of research in IP lookup [27],

which optimizes longest prefix matching, ill-suited for flat

and non-aggregatable addresses.

This paper presents Caesar, a high-speed, memory-efficient,
and cost-effective forwarding and routing architecture for
future Internet border routers. At a high level, Caesar lever-
ages Bloom Filters [14], a probabilistic and compact data
structure, to group and compress addresses into flexible and
scalable filters. Filters' have been used in designing routers
for both flat (e.g., [33, 20]) and IP (e.g., [15, 31]) addresses.
These designs are optimized for small-scale networks (e.g.,
layer two networks) and do not provide guaranteed forward-
ing speed and full correctness. Therefore, Caesar focuses
on improving performance, memory footprint, energy usage,
and scalability of routers deployed at future Internet domain
borders. In particular, we make the following contributions:
e We propose a new method for grouping self-certifying

addresses into fine-grained filters. The grouping scheme
minimizes route update overhead and supports diverse
forwarding policies. We also design the first high-speed
forwarding engine that can handle thousands of filters
and forward almost all incoming packets within three fast
memory accesses.

e We design a backup forwarding path to ensure the cor-
rectness of forwarding. Our approach leverages the multi-
match line of TCAM to detect false positives at high speed.
We also introduce a blacklisting mechanism that efficiently
caches RIB lookup results to minimize the frequency of
accessing slow memory. In contrast, previous work either
accesses slow memory several times per packet [15] or
randomly forwards packets [33] when false positives occur.

e We strategically leverage counting filters [18] to support
address removal while keeping the memory usage benefits
of standard filters for high-speed forwarding. To achieve
the best of both worlds, for each standard filter in TCAM,
we construct a “shadow” counting filter in slow memory
and always keep standard filters highly utilized in address
removal and insertion procedures.

e Based on hash coding theory [36], we propose a hash
computation scheme for filters to reduce the number of
computations from k to log(k) per lookup (k is the number
of hash functions for a filter). We show that the lookup
processing overhead can be reduced by up to 70% com-
pared to the flat scheme. Also, our scheme requires at
most 1.161log(k) hash computations for finding k different
positions in a small filter while the flat scheme needs up
to 1.5 k computations.

e We perform analysis and extensive simulations using real
routing and traffic traces to demonstrate the benefits of our
design. Caesar is more energy-efficient and less expensive
(in terms of total material cost) compared to optimized
IPv6 TCAM-based solutions (e.g., [34]) by up to 67%
and 43% respectively. In addition, the cost of our design
remains constant for various address lengths.

"'We use “filter” as a shorthand for Bloom Filter throughout
this paper.

2. BACKGROUND AND MOTIVATION

Caesar’s focus is on the generalized future Internet archi-
tecture. As illustrated in Fig 2a, the generalized architecture
is comprised of a set of independent accountable domains
(IADs). AnIAD represents a single administration that owns
and controls a number of small accountable domains (ADs).
For example, an AD can be a university or an enterprise
network. In this model, each end host uses a global identifier
(GID) to attach to ADs. In addition, a logically centralized
name resolution service stores GID <— AD mappings to in-
troduce new opportunities for seamless mobility and context
aware applications.

Packet forwarding at borders? The architecture has
different routing and forwarding mechanisms compared to
today’s Internet. In particular, borders routers sitting at the
edge of ADs build forwarding states or mappings between
destination ADs and next-hop ADs. Formally, when a border
router of AD; receives a packet destined to ADg : GIDy, it
forwards the packet, through a physical port, to a next hop
AD on the path to AD,4. The same procedure occurs until
the packet reaches a border router of ADy. Finally, based on
GIDyg, it is sent to an internal router where the destination
end host is attached. In this procedure, AD addresses are
cryptographically verifiable and thus they are long and non-
aggregatable. The length of addresses is typically between
160 bits [12] and a few kilobits [9] leading to forwarding tables
on the order of gigabytes [21]. In the future, larger address
lengths are expected to counter cryptanalytic progress.

Why Bloom filters? Caesar employs filters to compress
the forwarding states, i.e., AD to next hop AD mappings,
in the border routers. However, Caesar can be extended to
support forwarding schemes with more components in its
other pipelines (e.g., XIA [21]). It also supports various stan-
dard forwarding policies (e.g., multi-path and rate-limiting).
A filter is a bitmap that conceptually represents a group.
It responds to membership test queries (i.e., “Is element
e in set E?7”). Compared to hash tables, filters are a bet-
ter choice. First, they are length-agnostic, i.e., both long
and short addresses take up the same amount of memory
space. Second, a filter uses multiple hash values per key or
address, thus leading to fewer collisions. In the insertion
procedure, a filter computes k different and uniform hash
functions (hi, ha,...hy) on an input and then sets the bits
corresponding to the hash values to 1. In a membership test,
a similar procedure is followed; if all the bits corresponding
to hash results have the value of 1, it reports the element
exists otherwise the negative result is reported.

2.1 Caesar Design Goals and Challenges

Using filters for minimizing fast memory consumption
poses several design challenges that are unique to the future
Internet scale and Caesar’s role as a high-speed border router,
which make our work different from previous designs using
similar techniques (e.g., [20, 33, 31, 17]).

Challenge 1: Constructing scalable, reliable and
flexible filters. Compared to the future Internet scale, a
data center or enterprise network is very small in size with
orders of magnitude fewer addresses. In such single-domain,
small-scale networks, designing filters to compress forwarding
states of flat addresses (e.g., layer two (MAC) addresses) is
straight-forward. One widely used approach is to construct
multiple filters in each switch, each storing destination ad-
dresses reachable via the same next-hop port on the shortest

path (e.g., see [33, 20, 17]). Based on this approach, each
switch generates and stores a few very large filters in terms
of bit length and constituent members (addresses) since the
number of ports on a switch is limited.

We argue this filter construction is very coarse-grained
and thus not sufficiently scalable and flexible to be used
in Caesar, because our target network consists of multiple
independent domains and has a higher scale. First, there can
be millions of AD addresses in the future Internet, putting
tremendous pressure on the forwarding plane. It is neither
scalable nor reliable to store hundreds of thousands of AD
addresses into each filter. This is because even a single bit
failure in the filter bitmap can risk correctness by delivering
a large portion of traffic to wrong next-hop ADs. Second,
AD addresses are from various administrative domains, each
of which can publish extensive routing updates. Because of
storing many addresses into a few large filters, the above
approach interrupts or “freezes” packets in the forwarding
pipeline at a higher rate in response to each update. This
is because modifying a filter requires inactivating the entire
bitmap for consistency. For these reasons, the design of
Caesar benefits from fine-grained filter construction with
higher scalability and flexibility.

Challenge 2: Providing guaranteed high-speed for-
warding. Caesar’s goal is to achieve a forwarding rate simi-
lar to that of high-speed border routers (e.g., 100s of millions
of packets per second). However, compressing addresses into
filters creates a bottleneck in the processing pipeline. To
run a membership test on a filter, we need to compute k
hash functions and access the memory k times in the worst
case. Previous designs do not provide hash computation
optimization and also access filters naively (e.g., [15, 20]).
Thus they have limited peak forwarding speeds, on the order
of a few hundred kpps (e.g., [33]), even for fewer than a
hundred filters. This is orders of magnitude smaller than
Caesar’s objective. Also, instantiating more filters to support
fine-grained policies makes existing designs more inefficient.

Challenge 3: Avoiding Internet-wide false posi-
tives. One key limitation of compression using filters is
occasional false positives; that is, a filter incorrectly rec-
ognizes a non-existing address as its member due to hash
collisions. In this case, all positions that correspond to hash
values of the address have been set to 1 by insertions of
other addresses. For a filter, there is an inherent tradeoff
between the memory size and false positive rate. A filter
naturally generates fewer false positives as memory footprint
increases. For Caesar, false positives can result in Internet-
wide black holes and loops, thus disrupting essential Internet
services. To address this problem, multiple solutions have
been proposed (e.g., [24, 33]) that either are very slow, incur
domain-level path inflation or offer partial correctness. Cae-
sar cannot borrow them because, as a border router, it must
provide deterministic correctness at high speed.

Challenge 4: Updating filters and maximizing their
utilization. Routing and forwarding tables might need to
be updated. Supporting updates poses two challenges to
Caesar. First, a routing message can lead to address with-
drawal from filters. However, removing an address from
a standard filter inevitably introduces false negatives. An
address is mapped to k positions, and although setting any
of the positions to zero is enough to remove the address, it
also leads to removing any other addresses that use the same
position. Second, even with supporting address removal, the

total utilization of filters and the compression rate can be
negatively impacted if many addresses are removed from a
filter and distributed into other filters.

' path TCAM SRAMA !
; BFy = NH; |
S| Input 001 NHoyimary
21! Reg. | BF2 > NHy — '
Si— : ' s
5 E. : : M{VI line SRAMC:
a ol L Basic
<—(—-> O BFn NHn Policies
< | d Eihooser (AD, Port) |-»-
z|, 1 Ha
@ | ' '
a False
i Z'(Zs Positive ID| NH
% ! y, Resolver || :
: TNH
Backup(FPR’ Blacklist i DPackup
_ JiPath [Hash Table

RIB Counting Slow |
Hash Table Filters Memory| :

Figure 1: Caesar Architecture. The backup path result is
selected when MM (multi-match) flag is high.

2.2 Caesar Architecture Overview

Caesar benefits from two logical data structures: a routing
information base (RIB) and a forwarding information base
(FIB). The RIB maintains all paths to destinations ADs;
the FIB is used to match ingress packets to outgoing links.
Similar to modern hardware routers, Caesar implements the
RIB and FIB using slow and fast memories respectively.

Caesar has a novel FIB design as illustrated in Fig 1, which
consists of two forwarding paths or pipelines. Each pipeline
performs a different series of actions on the input packet,
but they both run in parallel. The vast majority of packets
go through the primary path that leverages our scalable and
flexible filters constructed in TCAM (Sec 3). The backup
path is built from the fast memory and handles uncommon
cases where the primary path is not reliable due to false
positives in the filters thus rarely is less efficient when it
accesses the RIB (Sec 4). In other words, the primary path
ensures the common-case high-speed forwarding while the
backup path guarantees the correctness.

Caesar minimally extends the RIB to support routing
updates and keep filters of the primary path highly utilized
in such events; it also optimizes the computational overhead
of hash functions to remove a potential processing bottleneck
(Sec 5). Our design provides a practical solution that can be
implemented by existing hardware (e.g., SDN switches) with
guaranteed performance. More importantly, our design can
be replicated to support specific future forwarding schemes
(e.g., XIA [21] having more address components and the
backward compatibility feature).

3. PRIMARY FORWARDING PATH

We first describe our design of the primary forwarding
path. A simple approach to compressing forwarding states is
to group all destination addresses reachable through the same
outgoing interface into a filter (e.g., Buffalo [33]). In this
section, we first discuss how our high-speed filters minimize
data path interruptions, improve the reliability, and allow
rapid false positive handling compared to the simple method
(Sec 3.1). Then we describe how we dynamically instantiate
filters and perform parallel membership tests (Sec 3.3)

Resolution
Service

GID: AD

(a) Generalized future Internet architecture

3.1 Scalable and Reliable Filters

As shown in Fig 2b, Caesar’s control logic stores forward-
ing states into multiple fine-grained filters in the data path,
presenting a new abstraction. Each filter encompasses a
group of destination AD addresses and is mapped to forward-
ing actions or instructions. To forward an incoming packet,
the data path in parallel performs membership tests on filters
and then learns how to deliver the packet to outgoing ports.
At the control plane, Caesar introduces two primary proper-
ties to group and store destination AD addresses into filters.
AD addresses that have the same properties at the same time
get an identical group membership, and consequently are
encoded into the same logical filter. Caesar’s control plane
is also flexible to define additional properties to form various
groups. The primary properties are as follows (the design
rationale will be clarified in subsections 3.1.1 and 3.1.2):

e Location property separates destination ADs that are
advertised and owned by the same TAD from the others.

e Policy property separates destination ADs that are un-
der the same forwarding policy, which is determined by
the Caesar’s control plane, from the others.

Caesar’s control logic continuously determines the FIB
entries, and forms groups and constructs filters based on
the local properties. Then, it couples each filter to the
forwarding policy of the group. For simplicity, we focus on a
basic forwarding policy below, even though Caesar supports
more complex policies (e.g., rate-limiting). For a destination
AD address, Caesar’s basic policy or next-hop information
includes all (next-hop AD, outgoing port) pairs that are
selected by the control plane for forwarding ingress traffic
destined for the AD. For multi-path forwarding, the next-hop
information simply consists of multiple such pairs.

Example. In a multi-path scenario, filters of border router
R are shown in Fig 2b. Based on the Caesar’s control logic
outputs, destination ADs with the same policy and location
properties are filled with the same pattern, each representing
an address group (Fig 2a). Then the groups are stored into
five filters in the Caesar’s data path (Fig 2b). In this example,
traffic to each of the addresses AD4 and ADj5 is desired to
be forwarded on multiple paths. For input packets, the data
path runs parallel membership tests on the filters to retrieve
the next-hop information at high speed (Sec 3.3). We save
memory from two aspects. First, we hash each long address

I1AD;

Filter # Members Next Hop Pairs
1AD4 {AD4, AD, ADg} (ADg,1)
IAD4, {AD,4, ADg} (ADg,3), (ADg,2)
1AD,4 {ADg AD;} (ADg;3)
1AD34 {ADg} (ADg,1)
1AD3, {ADg} (ADg,2)

(b) Caesar approach. Filter TAD;; denotes jth filter assigned to
Filter # Members Next Hop Pair
1 {AD,, AD,,AD;,ADg }| (ADg,1)

2 {AD ,, ADg,ADg) (ADg,2)
3 {AD,, AD;,ADg,AD;} | (ADg3)

(c) Simple approach (e.g., Buffalo [33]). Filter ¢ is assigned to

out
Figure 2: Caesar’s scalable and reliable fi

%Oing porti |
ter construction in border router R.

into a few positions within a small filter. Doing so consumes
significantly less memory than storing the original address
does. Second, we reduce the memory usage of the next
hop information by decreasing the number of FIB entries.
Caesar further minimizes the overhead of maintaining next-
hop information (Sec 3.4).

3.1.1 Why Separation by Forwarding Policy?

At the high level, the policy property isolates destination
AD addresses under the same forwarding actions from the
others, and allows us to guarantee data path correctness. For
any action or policy supported in the data path of Caesar
routers (e.g., rate limiting, ACLs, or next-hop information),
the policy property ensures each address is only inserted
into one group and thus leads to disjoint filters. This is a
key design decision that allows our false positive detection
procedure to work at high speed (will be detailed in Sec 4.1).

Multi-match uncertainty problem. Existing address
grouping approaches used in previous filter-based routers
mostly store an address into multiple filters and inevitably
make the reasoning about membership tests both hard and
slow (e.g., [20, 31, 15, 33]). For example, Fig 2c shows how
Buffalo [33] establishes a simple approach to construct one
filter per outgoing port, which is referred as “simple grouping
method” in this paper. Buffalo suffers from an uncertainty in
its data path operations in multi-path forwarding scenarios
as follows. Assume we are interested in splitting incoming
traffic destined for an AD address into multiple outgoing
links. The simple grouping method installs the AD address
into multiple filters, each assigned to one of the egress links.
For example, Buffalo inserts AD4 and AD5 into filters 2 and
3 in Fig 2c to perform load balancing. This potentially equiv-
ocates the lookup operation output. If there are multiple
matching filters, it is impossible to immediately distinguish
between two states: 1) true multiple matches in the multi-
path forwarding; and 2) multiple matches due to one or more
false positives.

Current solutions. There are two solutions in the liter-
ature for mitigating the multi-match uncertainty problem
in filter-based routers and switches. The first category of
solutions accesses the RIB stored in slow memory and checks
all candidates sequentially [15, 31] when multiple matches
happen in a lookup. The other category of solutions forwards
packets randomly without further checking or randomize fil-

ters [33, 28]. Because of insufficient performance and poor
correctness, Caesar constructs disjoint filters, each of which
is coupled and mapped to the entire forwarding actions of
the group (e.g., all specified next-hop pairs in multi-path
scenarios) in its data path. For instance, in Fig 2b, Caesar
stores AD4 and ADs only into the filter IAD;2 that is as-
sociated with both next-hop pairs as its forwarding actions.
Therefore, Caesar expects exactly one matching filter from
the lookup operation. Note if there are other policies or
actions in addition to next-hop pairs, we can aggregate them
in a similar way to build up disjoint filters.

3.1.2 Why Separation by Location?

As shown in Fig 2, the location property isolates destina-
tion AD addresses of different TADs into separate logical
groups and makes constructed filters flexible and reliable. It
minimizes processing interruption and performance degra-
dation when the control plane updates a forwarding state
in the FIB once it receives route updates or locally enforces
new forwarding policies.

First, given there can be millions of AD addresses in
the future Internet, the location-based isolation systemati-
cally ameliorates the reliability challenges by making defined
groups small in size and shrinking filters in width substan-
tially. Therefore a small portion of the Caesar’s FIB becomes
“frozen” when a desired filter is inactivated during its bitmap
update, or when a bit failure occurs in a bitmap. How-
ever, existing designs that use the simple filter construction
method (e.g., Buffalo [33]) can disrupt traffic forwarding to
many destinations and are prone to more failure. This is
because they store millions of addresses into a few very large
filters.

One can use other properties to make groups more specific
and smaller, but the location-based separation also limits side
effects of Route flapping events, which have been identified by
other work [16]. In the future Internet context, these events
occur because of a hardware failure or misconfiguration in a
border router of an IAD. In this case, the router advertises
a stream of fluctuating routes for ADs in its owner [AD
into the global routing system. However, Caesar’s data
plane keeps the majority of filters protected from any bitmap
modification in response to such route updates, except those
filters built for that problematic TAD.

Second, the location-based isolation allows Caesar to en-
force business-specific policy efficiently. For example, Cae-
sar’s control plane can dynamically stop forwarding traffic to
ADs in a specific IAD (e.g., due to political reasons [32]) with-
out interrupting traffic forwarding to other AD addresses.

3.2 Memory Technology for Filters

In practice, the number of filters generated based on the
two primary properties can be high. This is because Caesar
constructs more specific and fine-grained address groups. We
approximate the worst case number of filters that might
be constructed in our forwarding engine. To achieve our
performance requirement, the approximation is used to find
the best memory technology for filter implementation.

Let d denote the total number of IADs throughout the
Internet. Also, let p be the total number of different for-
warding policies that can be defined by the control plane of
a Caesar router. Then the number of filters is O(dp). For
example, 2M filters are generated for p = 20 and d = 10° in
the worst case. This poses performance challenges because

Caesar must test filters very fast to achieve a high forwarding
rate (e.g., 100s of millions of packets per second (Mpps) [2]).

SRAM is the fastest memory technology in terms of access
delay (about 4ns based on Table 1). However, it can provide
high-speed forwarding rates only when it stores a small
number of filters, and the performance dramatically degrades
to a few kpps even when a few hundred filters are tested
in a lookup [33]. This is because the memory bandwidth
is limited (even for multi-port SRAMs) and there is a lack
of parallelism in accessing multiple filters, each requiring k
memory accesses in a membership test in the worst-case (k
is the number of hash functions). Therefore serialization and
contention become intensified as many fine-grained filters are
instantiated.

To overcome the above limitations, we propose to realize
filters using TCAM due to its three advantages over SRAM.
First, it supports parallel search operation that can be used
to lookup filters in one clock cycle (Sec 3.3). Second, we can
intelligently leverage one of its flags to handle false positives
(Sec 4). Third, it has less implementation complexity com-
pared to the approach of using distributed SRAM blocks [23].

3.3 Parallel Lookup of Filters

As shown in Fig 1, Caesar encodes filters that are heteroge-
neous in bit width and constituent members in TCAM data
entries to attain its desired forwarding rate. TCAM is an
associative memory that is made up of a number of entries.
All data entries have an identical width, which is statically
configurable by combining multiple entries. For example, a
TCAM with a base width of 64 bits can be configured to
various widths such as 128, 256, and 512 [10]. As shown in
Fig 3, each bit of the memory and input register can be set
to either 0, 1, or * (don’t-care). To search a key, TCAM in
parallel compares the content of the input register, which
contains a search key, with all memory entries in one clock
cycle. When there are multiple matches, it returns the index
of the matching entry with the highest priority. Typically,
an entry at a lower address has higher priority.

Heterogeneous filters. Since each IAD manages a dif-
ferent number of ADs, top tier I ADs that form the core of
the future Internet can own a lot more ADs compared to
others. Hence the grouping properties can produce heteroge-
neous filters from three aspects: for a filter, the number of
inserted addresses, the filter bit width, and the number of
hash functions (in the insertion and test procedures) can be
different from the others. We can show it is possible to store
such heterogeneous filters in TCAM. For example, we can
extend short-width filters by filling the don’t-care values into
different positions, but the memory space is wasted and the
filter management becomes complex in terms of the insertion
and membership test procedures.

Caesar memory allocation strategy. To avoid the low
utilization and memory management overhead, we construct
equal-sized filters that have identical bit width (w) and
use the same k-hash functions. Caesar defines a global
maximum capacity for filters by which it restricts the number
of ADs in them. This maximum capacity, Nmaz, can be
configured by the router’s bootstrap program. By defining
the maximum capacity, we can limit false positives in practice,
and theoretically calculate an upper bound on their rate.
Instead of storing all addresses of a group into a large filter,
Caesar allocates, releases, and combines equal-sized filters
depending on the size of a group that might change over

time due to address insertion and removal into the data
path (details in Sec 5.2). In the evaluation, we conduct
experiments to study how different n,q.. and w values affect
the trade-off between the filter utilization and false positive
rate (Sec 6.2). Below, for simplicity, we focus on the lookup
procedure in the primary path when 1,4, and w values are
given.

TCAMA

10100010010 |{a1,a
0 0100010010 |[{a1,as}

/\ 00101100010 |{as, as}

1k k k] kkkkkk

Input Register A

10001010001 |[{as5, ag}

11000100010 |{a7,as}

(a) Option 1
TCAM B

ba *00%00%000* || {01, 02}

10010000000

Input Register B

00%0%*000*0 |13, ba}

*0*000*00*0 |{0s5, b6 }

*%000%*000%0 |{b7,bs}

. . (b) Option 2 . .
Figure 3: Two options for a parallel membership test in

TCAM when there is no false positive and k is 2

Caesar’s parallel filter lookup. Assume Caesar’s TCAM
contains a set of w-bit disjoint filters, each storing at most
Nmaz destination AD addresses. Each equal-sized filter oc-
cupies a memory entry, as shown in Fig 3. We design two
options in Caesar to perform parallel filter lookups. Suppose
we would like to retrieve the basic forwarding policy or the
next-hop pairs of an incoming packet destined for ADj.,.
First, k hash functions (H={h1, h2, ... hi}) are computed on
ADpey. In the first option (Fig 3a), we set all the positions
of the input register that do not correspond to H (i.e., not
set by any of the k hash functions) to the don’t-care value,
and set all other positions to 1. When the search is issued,
the TCAM locates the target filter by matching 1s in one
clock cycle. In the second option (Fig 3b), we set all the
positions of the input register that correspond to H to 1, and
set all other positions to 0. When we issue the search, the
TCAM locates the filter whose positions that correspond to
H have the don’t-care value. Finally, we retrieve the next-hop
information mapped to the matching filter to continue the
packet processing.

Design implications. The first difference between the
two options is how filters are represented in the TCAM.
In the second option, all 1s within standard filters need to
be changed to don’t-cares. The second difference is about
the number of writes to the input register bits. Assume
the input register has the default value of 0, the second
option requires setting only k£ positions in the input register
while the first option needs to modify all w bits to 1s or *s.
Although the power to toggle the memory and input register
bits can be very small in practice, one can benefit from one
of the options to perform hardware-specific optimizations for
write-intensive workloads. Note that the encoding options
do not change the false positive rate or incur false negatives.
Also, unlike IP routers that keep address prefixes sorted in
decreasing prefix-length order to implement the longest prefix

matching algorithm, the order of entries does not matter
Caesar, except in uncommon cases where there are matches
of multiple entries due to false positives. In this case, there
is no unique ordering with which we can deterministically
mask all false positives, so the backup forwarding path is
triggered (Sec 4).

3.4 Reducing Next-Hop Fast Memory

Because routers usually have a limited number of (next-hop
AD, outgoing port) pairs, often many filters with different
location properties are mapped to the same next-hop infor-
mation (e.g., ADs and AD; in Fig 2). We can eliminate the
memory redundancy in storing next-hop information and
make Caesar’s data path more agnostic to the address length.
At a cost of an extra fast memory access per lookup, we
can store all different next-hop information into a separate
fast memory space (i.e., SRAM C in Fig 1), and then map
each filter to a pointer (N H) pointing that memory. Each
N H-pointer can be realized by using only one byte in most
cases because of limited number of ports on a router. This
approach minimizes the fast memory overhead, in particular
when TCAM contains a large number of filters. A similar
technique can be applied when other forwarding actions or
policies are supported in addition to (next-hop AD, outgoing
port) pairs for filters.

Primary path performance implication So far, we
have encoded AD addresses into the primary path such that
the next-hop information can be retrieved in at most three
memory access, each taking about 4ns delay based on Table 1.
With using faster TCAMs [3], the primary path can support
up to 1.6 billion filter searches per second under typical
operating conditions

4. BACKUP FORWARDING PATH

We now describe the backup forwarding path and introduce
a blacklisting mechanism to handle false positives as s