
Field-Programmable Crossbar Array (FPCA)
for Reconfigurable Computing

Mohammed A. Zidan , YeonJoo Jeong , Jong Hoon Shin , Chao Du,

Zhengya Zhang ,Member, IEEE, and Wei D. Lu , Senior Member, IEEE

Abstract—For decades, advances in electronics were directly driven by the scaling of CMOS transistors according to Moore’s law.

However, both the CMOS scaling and the classical computer architecture are approaching fundamental and practical limits, and new

computing architectures based on emerging devices, such as resistive random-access memory (RRAM) devices, are expected to

sustain the exponential growth of computing capability. Here, we propose a novel memory-centric, reconfigurable, general purpose

computing platform that is capable of handling the explosive amount of data in a fast and energy-efficient manner. The proposed

computing architecture is based on a uniform, physical, resistive, memory-centric fabric that can be optimally reconfigured and utilized

to perform different computing and data storage tasks in a massively parallel approach. The system can be tailored to achieve maximal

energy efficiency based on the data flow by dynamically allocating the basic computing fabric for storage, arithmetic, and analog

computing including neuromorphic computing tasks.

Index Terms—Cognitive computing, crossbar, memristor, non-von neumann, RRAM

Ç

1 INTRODUCTION

THE development of ever more powerful computing sys-
tems has primarily been driven by technology advan-

ces. Currently, billions of digital microprocessors play
critical roles in our daily lives and empower our imagina-
tions for a better future. However, modern computing tasks
such as big data analysis, artificial intelligence, and perva-
sive sensing require energy efficient computing that cannot
be fulfilled by the existing computing technology [1]. For
more than forty years, improvement in computer perfor-
mance has been enabled by scaling down of CMOS transis-
tors. This performance improvement slowed down after
hitting the heat wall and memory wall, respectively [2], [3],
[4], and is approaching its physical scaling limits by the mid
of 2020’s [5], [6]. Therefore, there is an urgent need to shift
to new technologies, at both architecture and device levels
where new physical phenomena and state variables can be
used to store and process information. One such example is
resistive random access memory, theoretically categorized
as memristive devices or memristors [7], [8], which has
attracted growing attention as a promising candidate for
future data storage and computing due to its fast-operating
speed, low power, high endurance, and very high den-
sity [9], [10], [11].

Along its history, digital computers have passed through
four generations, namely, Cathode Ray Tubes (CRTs), tran-
sistors, and Integrated Circuit (ICs)/microprocessors. Here
it is clearly noted that the transition from one generation to
the next is always marked by a technology advance at the
device level. It is thus reasonable to expect that the recent
advances in emerging device technologies [12] may usher in
a new computing era. For instance, the high-density mem-
ristor crossbar structure is widely considered one of the best
candidates for nonvolatile storage and Random Access
Memory (RAM) applications [13], [14], [15], [16], [17], [18].
Furthermore, analog resistive devices have been shown to
be well suited for bio-inspired neuromorphic computing
systems [19], [20], [21], [22] and can significantly outperform
classical digital computing in many “soft” computing appli-
cations where the task is complex but approximate solutions
are tolerated, with such examples including data classifica-
tion, recognition, and analytics [5], [23], [24]. At the other
end of the spectrum, many studies have been attempted to
perform accurate digital computations using binary resis-
tive memory devices [25], [26], [27], [28]. In both cases, sys-
tems based on these emerging devices are normally used as
accelerators for a subset of specialized tasks, e.g., data stor-
age, neuromorphic computing, and arithmetic analysis, and
each task uses different physical devices, circuits, and sys-
tem organizations to achieve a specialized goal. While uti-
lizing these subsystems in a traditional computing platform
is expected to achieve improved performance, particularly
for the target tasks, a general computing system that can
handle different tasks based on a uniform physical fabric in
a fast and energy-efficient manner is desired.

We believe that the optimal solution is to merge the three
tasks, memory, analog computing and digital computing,
together using a single physical fabric to achieve a general

� The authors are with the Department of Electrical Engineering & Com-
puter Science, University of Michigan, Ann Arbor, MI 48109.
E-mail: {mzidan, yjjeong, jhoons, chdu, zhengya}@umich.edu, wluee@eecs.
umich.edu.

Manuscript received 25 Jan. 2017; revised 26 Apr. 2017; accepted 18 June
2017. Date of publication 28 June 2017; date of current version 29 Jan. 2019.
(Corresponding author: Wei D. Lu.)
Recommended for acceptance by C.A. Moritz and P. Narayanan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMSCS.2017.2721160

698 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018

2332-7766� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3843-814X
https://orcid.org/0000-0003-3843-814X
https://orcid.org/0000-0003-3843-814X
https://orcid.org/0000-0003-3843-814X
https://orcid.org/0000-0003-3843-814X
https://orcid.org/0000-0001-5855-5066
https://orcid.org/0000-0001-5855-5066
https://orcid.org/0000-0001-5855-5066
https://orcid.org/0000-0001-5855-5066
https://orcid.org/0000-0001-5855-5066
https://orcid.org/0000-0002-5120-2716
https://orcid.org/0000-0002-5120-2716
https://orcid.org/0000-0002-5120-2716
https://orcid.org/0000-0002-5120-2716
https://orcid.org/0000-0002-5120-2716
https://orcid.org/0000-0001-5963-9018
https://orcid.org/0000-0001-5963-9018
https://orcid.org/0000-0001-5963-9018
https://orcid.org/0000-0001-5963-9018
https://orcid.org/0000-0001-5963-9018
https://orcid.org/0000-0003-4731-1976
https://orcid.org/0000-0003-4731-1976
https://orcid.org/0000-0003-4731-1976
https://orcid.org/0000-0003-4731-1976
https://orcid.org/0000-0003-4731-1976
mailto:
mailto:
mailto:


computing platform. In general, the memory wall needs to
be overcome [2], [3] by reducing the amount of slow and
power-hungry communications between the memory and
the processor. Moreover, computingmethodology should be
natively parallel at the fine grain level. Finally, it is desirable
for a new computing architecture to incorporate analog com-
puting capabilities to achieve better energy efficiency in tasks
such as data analytics, classification, and recognition [5]. We
believe these requirements can be satisfied in a novel com-
puting architecture which we term Field Programmable
Crossbar Array (FPCA). The proposed architecture is built
around the idea of having a universal core block that can be
dynamically reconfigured to serve different workloads opti-
mally, schematically shown in Fig. 1. In this approach, the
resistive crossbar’s inherent parallelism is optimally utilized
at the physical device level to directly perform different com-
puting and data storage operations efficiently, while at the
system level the architecture can dynamically reallocate
resources to optimally match the computing needs for the
incoming data. The main challenge here is how to utilize a
common physical fabric (the resistive crossbar and its inter-
face circuitry) to perform the three sets of diverse tasks that
typically require three completely different systems.

In this work, we show that the crossbar array based com-
mon physical block can indeed store data and process in-
memory processing in analog and digital fashion. Utilizing
binary resistive crossbar as the common physical block, we
show the system can efficiently implement binary neural net-
works, arithmetic tree reduction, and in-situ data migration.
These operations allow the proposed FPCA computing sys-
tem to provide three important functions. First, the ability to
process any arbitrary workload in its optimal computing
domain (digital or analog). Second, the natively modular
design of the system allows a high degree of scalability and
reconfigurability to tailor fit different workloads. Finally,
it merges processing and memory together at the lowest

physical level to achieve maximal efficiency and minimal
data migration. Our analysis shows an FPCA-based high-
performance computing system offers a much smaller
energy budget compared to classical VonNeumann architec-
tures in both classical and cognitive computing applications.

2 FPCA COMPUTING ARCHITECTURE

The proposed FPCA architecture is organized in a hierarchi-
cal array structure, where the top layer is composed of
crossbar modules (Memory cores, M-Cores). Each M-Core
is a single crossbar that can compute with/in local memory.
Each M-Core is further (virtually) divided into a set of tiles.
While all the tiles are physically identical, each of them can
be dynamically re-configured to perform one of the three
different tasks, storage (S), digital computing (D), or analog
computing (A). Therefore, the system can offer different
modes of operations at the fine grain level. As will be shown
later, this approach enables natively scalable, reconfigurable
and energy-efficient computing. Fig. 1 shows a block dia-
gram illustrating the different layers of the FPCA architec-
ture, showing the M-cores at the system level and the
individual tiles within each M-core.

The new computing system can be configured either at the
system level or the core level. At the system level, an entire
M-core is assigned to a particular task, for example, one core
for analog computing. This core can be later reassigned to
digital computing or used as storage based on computational
need. Finer grain configuration can be achieved by assigning
different tiles of a given core to different tasks. Such a low-
level configuration is optimal for high throughput data proc-
essing and analysis, where the stored data can be processed
by the same core in both digital and analog schemes, without
the need tomove the data back and forth between processing
and storage cores. A more generic approach allows the
resource reconfigurations on the two levels simultaneously
based on the nature of the workload, as shown in Fig. 2a.
This configuration scheme is equivalent to having a pool of
generic resources, where they are assigned to perform spe-
cific tasks based on the workload requirements. The system
dynamically reconfigures to adapt to the workload. It should
be noted that one of the essential characteristics of the pro-
posed architecture is the resistive crossbar being natively
modular, parallel, and reconfigurable. This allows the sys-
tem to scale from a small scale IoT smart node chip to a
supercomputing type of architecture.

Besides reconfigurability, another aspect in the design of
the FPCA system is energy efficiency. It is challenging to

Fig. 1. Block diagram showing the different layers of the proposed FPCA
computing architecture.

Fig. 2. (a) Different configurations for an FPCA system based on different computing workloads. (b) 3D illustration showing the M-Cores monolithi-
cally fabricated over the CMOS layers.

ZIDAN ET AL.: FIELD-PROGRAMMABLE CROSSBAR ARRAY (FPCA) FOR RECONFIGURABLE COMPUTING 699



implement energy efficient systems at different scales since
there is no universal approach for energy efficient comput-
ing. For instance, small and medium computing systems
require partial or fully sleep mode to achieve energy effi-
ciency, as in smart nodes and mobile devices. FPCA
achieves this by utilizing the nonvolatile property of its
resistive memory devices, where the system can go to a
zero-power sleep mode without the need to spend power to
keep track of the system state. On the other hand, a large
computing system requires an energy efficient data flow
and parallel processing units, which already exist as the
core properties of the FPCA architecture. Combined with
the multi-domain computing capability where tasks can be
processed in the native domain (either analog or digital),
these features make the FPCA a very fast and energy effi-
cient computing system.

2.1 Reconfigurable M-Core

A key property of the FPCA architecture is the ability of an
M-core to be reconfigured to perform different tasks. Each
M-core is composed of a crossbar array and its interface cir-
cuitry, as shown in Fig. 1. A major challenge of the FPCA
architecture is to map different computing and storage tasks
to the single common physical fabric, the M-core. This starts
by selecting the right RRAM candidate. We found that
binary RRAM devices are suitable candidates to implement
the M-Cores that can perform the different operations
required by FPCA. These devices are well-known for their
very high density, low power consumption, and fast access
speed [29], [30]. Such outstanding properties make them
attractive as a future replacement for Flash-based memory
and storage, although their applications in computing is
less explored compared to analog memristors. Below we
show that the binary memristor devices can be optimally
utilized for both digital and analog computing tasks,
besides being used as data storage devices. With this
approach, all three subsystems (storage, analog and digital
computing) can be implemented using a common physical
fabric to allow the computing tasks to be performed effi-
ciently, as elaborated in the following sections.

2.2 3D Monolithic Chip

The FPCA system relies on recent advances in RRAM tech-
nology to provide the system with its computational and
storage capabilities [9], [11], [31]. Only a small CMOS compo-
nent is required to provide necessary peripheral functions
such as interface and control circuitry. In this regard, the
CMOS system can be considered as the accelerator compo-
nent while the M-Cores perform the general computing
tasks. We envision a monolithic approach to building a 3D
computing chip, where the high-density memristor crossbar
is fabricated on top of the CMOS circuitry as shown in
Fig. 2b. It has already been demonstrated that RRAM cross-
bar fabrication requires low thermal budget, and hence can
be safely fabricated on top of a typical CMOS process [13],
[32], [33], [34], [35] for memory and in-memory digital com-
puting applications. The monolithic integration allows dis-
tributed, local, and high-speed interface between the RRAM
layer the and CMOS layer underneath. The CMOS layer will
host the analog interface for the M-Cores, which includes

analog MUXs and ADCs. This will allow a parallel access to
a full tile per each M-Core. Additionally, the CMOS layer
will host fast interconnect and other digital periphery cir-
cuitry. The CMOS/crossbar integration will likely follow
earlier studies, where successful CMOS/RRAM hybrid sys-
tems have been demonstrated formemory applications [13].

3 IN-PLACE ARITHMETIC OPERATIONS

Arithmetic operations are the foundation of any digital
computational system, where the performance of digital
computers is typically measured in floating point opera-
tions per second (FLOPS). Almost every arithmetic opera-
tion relies on a tree reduction circuit to perform functions
such as multiplication, division, trigonometric operations,
matrix operation and multi-operand addition. In tree reduc-
tion, multi-operand additions are transformed to two-oper-
and additions. This seemingly simple task consumes most
of the arithmetic units’ area and energy budget. Typically
tree reduction is realized using successive stages of arithme-
tic counters and compressors (a generalized form of full
adders) [36]. There are various flavors of the arithmetic
trees, with clear tradeoffs between area and speed. How-
ever, all of them are built around the idea of cascading and
looping over arithmetic compressor units. An arithmetic
compressor counts the number of ONEs per input. For
instance, an n-operand adder is just a group of cascaded
arithmetic compressors.

Here, we propose to perform massively parallel arithme-
tic operations directly in an M-core, where the crossbar
structure is utilized as a giant arithmetic compressor. In the
presented technique, multiple tree reduction operations can
be performed simultaneously on the same crossbar array.
Moreover, masked tree reduction is also feasible, thus elimi-
nating the need for extra logic gates for many of the arith-
metic operations, e.g., in multiplications. These capabilities
allow M-cores to perform in-memory parallel digital proc-
essing efficiently and natively.

3.1 Counting the Ones

The basic concept of any arithmetic compressor is to count
the number of ONEs, and this can be achieved efficiently in a
crossbar structure. We first examine a single column inside a
crossbar, with all its rows biased with a reading voltage, as
shown in Fig. 3a. The output current is described as,

Iout ¼ Vr

X 1

Ri
: (1)

Fig. 3. Unmasked and masked crossbar activation.

700 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018



Knowing that Ri ¼ fRon;Roffg and Roff � Ron, the output
current can be rewritten as,

Iout � Nones
Vr

Ron

� �
; (2)

where “Nones” is the number of ONEs in the column, and
“Vr=Ron” is a constant value. The read current can then be
readily translated into a digitized value with the aid of the
common interface circuitry of the M-core, where the inter-
face circuit digitizes the crossbar readout current into binary
bits with the aid of the ADCs, where the same ADC cir-
cuitry will be utilized for different types of M-core’s opera-
tions. A masked version of the tree reduction can be
achieved by only biasing the rows of interest, as shown in
Fig. 3b. This significantly simplifies multiplication and divi-
sion operations by eliminating the need for AND gates. In
such case, the output current is written as

Iout ¼ V1

R1
þ 0þ V3

R3
þ V4

R4
þ 0þ � � � ; (3)

which is equivalent to the following summation,

S ¼ A ^W þB ^X þ C ^ Y þD ^ Z þ � � � ; (4)

where the equation is written using dummy variables. The
simple circuit realization of this equation is the key to the

crossbar based arithmetic calculations. The masked tree
reduction can be further extended to multiple columns in a
natively parallel fashion, as shown in Fig. 3c.

The data stored in a column of n-bits can represent (n+1)
different symbols depending on the number of ONEs per
column. During a full column activation, each symbol
should have a distinguishable current level. However, since
the current flows through the rest of the crossbar cells, each
symbol is now represented by a distribution rather than a
single value as shown in Fig. 4a. We need to design our sys-
tem to properly differentiate different symbols and compen-
sate any undesired effects. Hence, we built an accurate
Python/HSPICE simulation platform to simulate the pro-
posed FPCA arrays. The platform is designed to simulate
the different modes of the FPCA operation for any arbitrary
set of data. Moreover, it also accounts for the different bias-
ing and connectivity schemes. The simulation platform
adopts experimental device models and accounts for cross-
bar parasitic nonidealities, such as the crossbar line resis-
tance and the switching circuitry. These usually overlooked
parasitic effects can potentially significantly alter the simu-
lation results as discussed in [14]. Fig. 4b shows an M-core
consisting of 256 tiles, each of which is in turn 1k bits
(32� 32) in size. One of the tiles is filled with a staircase pat-
tern with an increasing number of ONEs per column. All
the other tiles are filled with random data, and the system is
simulated with more than 44k different data patterns. The
purpose of these simulations is to verify the M-core’s ability
to count the number of ONEs correctly despite the
unknown content of the surrounding tiles and parasitic
effects such as the sneak paths. During operation, all rows
and columns of the tile of interest are activated simulta-
neously so that the number of ONEs per column for all the
tile columns can be read out in one step. Besides increasing
the degree of parallelism, this full tile access approach sig-
nificantly reduces the sneak paths effect. Finally, it should
be noted here that the RRAM device ON/OFF ratio needs
to be much higher than the number of active rows so that
the sum of the ZEROs is not misclassified as ONE. Luckily,
ON/OFF ratio of > 32 or 64 are readily achievable in binary
RRAM devices.

Fig. 5 shows the simulation results as a histogram distri-
bution of different output current levels, where each current
level indicates a different number of ONEs. The results
show that the center of the output distributions are equally
spaced from each other, where each step in the current is
equivalent to an extra ONE in the column count. The system
is simulated multiple times with different techniques for
connecting the unselected rows and columns. It turns out
that grounding the unselected rows and columns leads to

Fig. 4. (a) The ideal and the practical cases for a column readout cur-
rents in the absence and presence of sneak paths. (b) A sub array with
all its tiles filled with random data patterns, except for the target tile which
is filled with staircase like data to verify the ability of counting the number
of ONEs per a tile column.

Fig. 5. Histogram for the current readout from 32 different columns of a given tile, from 44,800 simulations points, where the rest of the M-Core is
filled with random data.

ZIDAN ET AL.: FIELD-PROGRAMMABLE CROSSBAR ARRAY (FPCA) FOR RECONFIGURABLE COMPUTING 701



more smeared (but still separable) output patterns, and
keeping the unselected rows and columns floating leads to
better outputs, as shown in Fig. 5. This is because grounding
the rows and columns encourages the current to sneak out
of its desired path. Hence, the measured current at the col-
umns of interest will depend on the data pattern in the
unselected tiles. On the other hand, floating unselected
rows and columns effectively utilizes the high nonlinearity
of the RRAM device to suppress sneak current. This effect is
clearly visible in Fig. 5, where the current spread is minimal,
and the separation is maximized. Grounding unselected
rows and columns also increases the total power consump-
tion because of the parasitic current component, but this
approach may be more preferable from a circuit designer’s
point of view. The total power consumption for counting
the number of ONEs in a given tile is 4.33, 1.1, and 1.06 mW
for grounded, half-selected, and floating terminals connec-
tion schemes respectively, where the RRAM device pre-
sented in [37] has been used in theses simulations.

3.2 Arithmetic Operations

The ability of the M-cores to perform in-memory parallel
tree reduction enables the implementation of different types
of arithmetic operations. The simplest operation that can be
implemented using the unmasked ONE-counting approach
is parallel vector addition. In this case, the output of each
column, which is the number of ONEs it contains, is written
back to the M-core for the next operation. This process is
repeated iteratively until the vector operation is reduced to
a simple 2-operand addition, as shown in Fig. 6a. The paral-
lel addition can then be extended to a more complex opera-
tion with the aid of masked tree reduction. For example, a
multiplication operation is typically implemented using a
tree adder, where the adder inputs are the different bits of
the multiplicand and the multiplier added together. This
can be illustrated in the following example showing a 3-bit
operands multiplication

A �B ¼ þ
B0A2 B0A1 B0A0

B1A2 B1A1 B1A0

B2A2 B2A1 B2A0

: (5)

Both the tree addition and the AND operation are per-
formed using masked tree reduction. The multiplication
process can be further extended to a dot-product operation.
This vector operation follows the same structure of the basic
multiplication operation, as shown in the following 3-bit
dot product example

A;B½ � � C

D

� �
¼

AoC2 AoC1 AoCo

BoD2 BoD1 BoDo

þ A1C2 A1C1 A1Co

B1D2 B1D1 B1Do

A2C2 A2C1 A2Co

B2D2 B2D1 B2Do

: (6)

Here, we need to implement this vector dot product opera-
tion using the masked tree reduction with minimal data
movement. This can be implemented using the following
proposed vector-vector multiplication algorithm. Let’s call
the first vector “input vector” and the second vector “data
vector”. The data vector will remain in its storage tile, while
the input vector values will be used to activate the tile’s row
inputs. The data vector is organized such that its elements
are arranged in a stacked form. The vector-vector multipli-
cation algorithm is given below:

(a) Use the first bit of all the elements of the input vector
to activate the rows, where the read voltage is
applied to a row in case of ONE; otherwise, the row
is kept floating.

(b) Digitize the readout current of all the columns of
interest, where the columns current is proportional
to the number of ONEs per column within the acti-
vated row region.

(c) Write the counting output, shift one bit to the right,
below the data vector, which we call compressed
rows.

(d) Repeat steps “a” to “c” for the whole multiplier vec-
tor width.

(e) Apply read voltage to the compressed data rows.
(f) Digitize the readout current of all the columns of

interest.
(g) Overwrite the compressed data with the new itera-

tion results.
(h) Repeat “e” to “g” steps until a two-operand addition

case is reached.
This algorithm can be extended to a vector-matrix mul-

tiplication as illustrated in Fig. 6b, where the vector-matrix
multiplication can be implemented in parallel by activat-
ing all the columns and thus requires the same number of
steps as a vector-vector multiplication. Using the same
scheme, matrix-matrix operation can be performed in the
crossbar structure. The proposed strategy applies to any
tree-reduction based arithmetic operation, that is, typically
any arithmetic operation other than incrementing or two
operand addition. It can also account for signed operations
with the aid of sign extensions. Finally, it should be noted
that the final output of the tree reduction is always a 2-
operand addition, which can be performed sequentially on
the crossbar or a simple 2-operand adder in the system’s
CMOS layer.

Fig. 6. (a) Parallel vector addition and (b) parallel vector-matrix multipli-
cation steps using an M-core.

702 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018



4 BINARY CODED NEURAL NETWORKS (BCNN)

Another important aspect of the proposed architecture
is the implementation of neuromorphic computing. This
approach is generally inspired by how the biological brain
processes data, where neural networks are used to execute
complex operations in parallel. Such a computational tech-
nique can be extremely power efficient when processing
cognitive applications compared to classical processors [38].
Previous studies have shown that high-density (analog)
memristive crossbar is one of the best candidates for realiz-
ing synaptic meshes in neural networks [20], [21], [23], [39].
In this study, we extend (analog) neuromorphic computing
to binary RRAMs, so that data storage, arithmetic, and neu-
romorphic computing can be performed on a single fabric.
This versatility, in turn, allows the functional tiles to be
readily reconfigured to compute different tasks optimally.
Moreover, using binary devices for neural computing offers
several advantages over analog devices. For example, the
digital binary synaptic weights can be stored more reliably.
The high ON/OFF ratio of binary devices helps improve
the reliability and power efficiency of the system.

To map neuromorphic computing onto binary RRAM
devices, we propose to encode synaptic weights in an n-bit
binary representation and store a weight on n devices rather
than a single analog device. Since the word length of
weights used in neuromorphic computing can be quantized
to just a few bits in many applications, n can be kept rela-
tively small. In our proposed BCNN approach, each column
in an analog network is replaced by n-columns in the cross-
bar, as shown in Fig. 7. In this case, each neuron will be con-
nected through n-columns rather a single one, where these
columns are equivalent to one analog column.

The concept of using crossbar structure in neural com-
puting is based on its native ability to sum the currents
passing through a given column of synapses, weighed by
the conductance values of the memristive devices, and sup-
ply the summed current to the column’s (postsynaptic) neu-
ron. This process is equivalent to an analog dot product
operation of the input vector (represented by voltage
pulses) and the weight vector (represented by stored con-
ductance values). The same basic concept applies to the pro-
posed BCNN. For example, in the case of representing each
synaptic weight with n-bits, each neuron will be connected
to “n” columns rather than one. The output current of each
of the n (e.g., 4) columns represents the summation of the
input current multiplied by the binary weights of this

column. The equivalent analog dot product is then obtained
by a binary-scaled summation of the four columns of out-
put. Here each column output is digitized before scaling
and the final sum. Analog-to-digital converters (ADCs) and
adders are needed for implementing a digital neuron. We
note the same components are also shared by the other two
FPCA operations, namely digital computing and data stor-
age. Since all three functions use the same devices and cir-
cuit interface, building a heterogeneous computing system
using the same substrate and circuits becomes feasible.

4.1 Analog Image Compression

To verify the proposed concept, we performed analog
image compression using the BCNN implemented on an M-
Core structure. We start by training the network with a set
of training images using Oja’s rule and a winner-take-all
(WTA) scheme [21], such that only weights associated with
the winning postsynaptic neuron get updated as,

Dw ¼ wiþ1 � wi ¼ dyi xi � wiyið Þ; (7)

where “Dw” is update in the synaptic weights between
instances “i” and “iþ 1”, “d” is the learning rate, “xi” is the
presynaptic neuron input, and “yi” is the activity of the win-
ning postsynaptic neuron. The product “wiyi” value is the
propagation of the winner postsynaptic response towards
the presynaptic neurons. Due to the binary representation
of the weight, the weights are updated using an addition or
subtraction process.

The BCNN array is trained using a set of 37 images, each
is 512� 512 pixels in size. The training images are sliced
into 8� 8 pixels patches that are supplied to the network’s
64 input neurons, as shown in Fig. 8a. The network in this
example contains 200 dictionary elements (receptive fields),
where each receptive field is represented by 16 binary col-
umns during training, corresponding to 16-bit weights to
allow incremental weight updates. After training, lower
precision (e.g., 4-bit) can be used to store the trained
weights at the compute/inference stage. In this case, during
the training phase, more M-cores can be configured as

Fig. 7. (a) Multilevel versus (b) binary coded neural networks.

Fig. 8. (a) A training image sliced into smaller patches, where each
patch’s size matches the network’s input neurons. The analog tiles of an
M-core are then trained with the different patches. (b, c) Two hundred
dictionary elements (receptive fields) trained using the BCNN, showing
(a) the original dictionary elements with random elements and (b) dictio-
nary elements after training.

ZIDAN ET AL.: FIELD-PROGRAMMABLE CROSSBAR ARRAY (FPCA) FOR RECONFIGURABLE COMPUTING 703



analog resources to meet the incremental weight update
requirement, then the final weights can be mapped into a
system with shorter bit lengths and the stored weights can
be reused many times to perform the computational tasks.
Figs. 8b and 8c show the learned features by the network
through the FPCA simulation. As expected, the trained dic-
tionary elements resemble the receptive fields found in the
biological visual cortex. It should be noted that proper train-
ing typically requires many iterations. However, training
only needs to be performed once (or very infrequently),
compared to the actual computational tasks.

To test the BCNN network’s capability of analog image
compression and reconstruction, we adopt the locally com-
petitive algorithm (LCA) [40], which is an analog sparse
coding technique. The algorithm aims to reconstruct the
image using the trained dictionary set, resulting in an ana-
log compressed version of the original image while balanc-
ing sparsity (using as few neurons as possible) and
accuracy constraints. The LCA algorithm can be mathemati-
cally formulated as,

uiþ1 ¼ ui þ 1

t
si � ui þ hT � f� �

; (8)

where “ui” is the membrane potential of the postsynaptic
neurons at step “i”, “f” is the matrix of the synaptic weights,
“t” is the reconstruction time constant, “si” is the neuron
activation function, and “h” is the reconstruction error that is
applied to the network as new presynaptic input

hi ¼ xi � f � sT
i ; (9)

where “xi” is the original presynaptic input. The twodot prod-

ucts “hT � f” and “fi � sT
i ” are calculated by the propagation of

the pre- and postsynaptic responses through the BCNN in
backward and forwarddirections, respectively. For the neuron

activity, we adopted a soft threshold function defined as,

si ¼
0; uij j 	 0

4ui � 3�; 0:75� < uij j < �

ui; uij j > �

8<
: ; (10)

where “�” is the activation threshold, which in turn deter-
mines the sparsity of the reconstruction, where larger “�”
leads to higher compression ratio.

Fig. 9 shows the original and the reconstructed images
using LCA implementation on BCNN with different levels
of sparsity, where each synaptic weight is coded using 4
bits (implemented with four binary devices) only. We

treated each of the image color channels as a separate input
to the network, where each of the three color channels is
reconstructed separately using the gray scale dictionaries
shown in Fig. 8c. Output from the three channels are then
combined to form the reconstructed color image. We utilize
the YIQ rather than the RGB color scheme to reduce intra-
channel error effect to human eyes.

5 DATA STORAGE

Modern computing applications require high capacity and
high-performance memory and storage systems. Hence,
high speed, high density, and low cost per bit are the
desired properties of a memory system. However, there are
normally trade-offs between the goals, and current com-
puter architecture designs are based on a memory pyramid
hierarchy. At the bottom level, there is the large yet slow
permanent storage, and at the top level a small and very
fast cache memory and processor registers. The goal of an
ideal memory hierarchy is to approach the performance of
the fastest component and the cost of the cheapest one. To
this end, RRAM has recently emerged as a promising candi-
date for future memory and storage applications. At the
device level, resistive memory offers excellent scalability,
fast access, low power, and wide memory margin. These
attractive properties make it possible to create a simpler
and flatter memory system rather than the complex pyra-
mid memory hierarchy used today. However, a lot of
RRAM’s attractive features start to vanish at the system
level, due to the nonidealities such as sneak paths and series
line resistance that degrades the system performance.

The simplicity of the RRAM crossbar structure is also the
source of its problem, namely the parasitic sneak paths [18],
[41]. While accessing the array, current should flow only
through the desired cell. However, current can sneak
through other cells in the array. This parasitic current can
ruin the reading and writing operations, and consumes a
considerable amount of energy. Previous studies have
shown that integrating binary RRAM devices with a built-in
selector layer can significantly increases the nonlinearity of
the device [37], [42]. In turn, the effect of the sneak-paths
and the parasitic power consumption are decreased consid-
erably. Such devices can also operate and switch with very
low power consumption. However, the device nonlinearity
do not eliminate the sneak paths interference entirely.

Most of the techniques presented in the literature to
address the sneak path problem are based on the typical
memory hierarchy structure, where a single cell is accessed
in a sub-array at any instant of time. However, this is not the

Fig. 9. Original and reconstructed color images using the LCA algorithm implemented on the proposed binary coded neural networks.

704 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018



case for M-core tiles, where all the tile columns are activated
at once, allowing reading an entire tile row. In this case, for a
tile of size “n2”, the sneak-path interference is distributed to
“n” cells rather than affecting a single cell. This improves the
signal-to-noise ratio of the readout current significantly.
Combining this property with RRAM devices that offer high
nonlinearity will effectively eliminate the sneak-path para-
sitic effect. Fig. 10a shows the simulation results for 30 k
readouts from different cells in a memory core filled with
30k random data patterns. The simulation results are based
on the FPCA simulation platform described earlier, and
adopts the nonlinear device presented in [37]. The results
show a large separation in the distributions of the two binary
values. Such a wide separation provides sufficient memory
margins to accommodate device variations.

The parallel readout not only improves the noise margins,
but also reduces the energy consumption significantly.
Fig. 10b shows the average array readout power per bit for
different tile sizes. The simulation compares the classical bit-
by-bit readout and the M-core based row-by-row readout.
For larger tile sizes row-by-row readout saves more than 50
percent of readout energy. In the same figure, we also com-
pare the operation of counting ONEs which is the core step
for arithmetic operations. Interestingly, the results show that
in-memory counting using the M-Cores can be cheaper than
just reading the data, which leads to an extremely fast and
energy efficient arithmetic operations. It should be noted here
that there is a clear dependence of the tile size on the interface
circuit size, where larger tiles require larger interface area.

6 IN-SITU DATA MIGRATION

Data movement is one of the biggest challenges facing
any modern computing system. The proposed architecture

directly addresses the vonNeumann bottleneck by effectively
merging the computing and the storage units together in a
single module at the physical level, and performing efficient
in-memory digital and analog computing schemes. However,
this does not eliminate the need for data movement
completely. For example, data still need to bemoved from the
output from one operation to the input of the next operation,
even though communication between processor andmemory
is no longer needed within an operation. An effective, fast
technique for internal data migration based on intrinsic prop-
erties of RRAM devices is presented in this section, for effi-
cient data migration within a tile, or between storage and
computing tiles. We analyze two types of data migration. The
first one is a shift movement, where data are copied either
between rows or between columns. The second migration
operation is the tilt movement, where data migrate between
rows and columns. The two types of movements combined
allow the data transfer to virtually any location in the crossbar
array. The proposed data migration techniques utilize the
non-linear threshold effect of RRAM devices so that properly
designed voltage biasing scheme can copy from the source to
the destination cellswithout distorting other cells in the array.

The data-shift method is performed in two stages as
shown in Fig. 11a. The first step is to reset the destination
cells to high resistance state, where ZEROs are represented
by high resistance (Roff ) and ONEs are represented by low
resistance (Ron). In the second step, a proper voltage (e.g.,
1.25x the write threshold) is applied across the source and
destination rows only. This will create a voltage divider
effect between the cells. In the case of the source cell storing
zero (Roff ), the voltage will divide equally between the
source and the destination and it causes no writes to occur
since the voltage across the destination cell is below the write
threshold. In the other case of the source cell stores ONE,
which is a low resistance state, almost all the voltage will
drop over the destination cell and switch it to the low resis-
tance state. After switching, the voltage drop is distributed

Fig. 10. (a) Readout current histogram for acceding a full row in a tile,
while the rest of the M-Core is filled with random data patterns. The his-
togram is constructed using 32,000 simulation points. (b) Average power
consumption per bit for different operations versus the tile size for a
256 kb subarray.

Fig. 11. (a) Unmasked and (b) masked in-situ data shift operation, where
Vw is the write threshold voltage, Vb is a bias voltage, and ‘0’ is ground.

ZIDAN ET AL.: FIELD-PROGRAMMABLE CROSSBAR ARRAY (FPCA) FOR RECONFIGURABLE COMPUTING 705



equally over the two cells causing no more change to the
state. Each source and destination cells in the same column
(or row)will form a voltage divider pair. For a partial row (or
column)migration, a masked version of the shift operation is
utilized as shown in Fig. 11b. In the masked shift, a bias volt-
age is applied to the unselected cells forcing the voltage drop
over them to be below the write threshold. This will prevent
any datamigration through themasked (unselected) cells.

To verify the proposed concept, a data shift operation is
simulated using the FPCA simulation platform discussed
earlier and the device presented in [37]. Fig. 12 shows the
simulation results for the designed shift process. In step
one, only the desired row will have enough voltage to reset
its state. All the other cells in the tile will experience a volt-
age drop below half the write threshold. In the second step,
the voltage divider between the source and destination cells
forces some destination cells to the set state based on the
source cells’ values. The simulation results show that the
other cells in the source and destination rows will experi-
ence a safe voltage drop below three-quarters of the write
threshold. Similar to data shift, the tilt operation follows the
same biasing concept utilized in the data shift operations
with a modified interface circuitry to support data transpose
operations. It should be noted that the proposed migration
process does not include any data readouts, and hence, we
do not have to know the value of the cells being moved.

7 SYSTEM INTEGRATION

7.1 Common Interface Circuitry

M-cores rely on two types of circuitry that are physically
stacked over each other, as shown in Fig. 2b. The top layer
is the RRAM crossbar, which provides the system with
computational and storage functions. In a typical memory
application, RRAM can be constructed in the same way as a
DRAM structure that is made up of subarrays, arrays, etc.,

to reduce capacitive loading and access delays. Similarly, an
FPCA is a many-core system where the maximum continu-
ous RRAM structure is expected to be on the order of 1
MByte acting as an M-core, whereas each M-core can be fur-
ther divided into multiple (identical) crossbar sub-arrays.
Each of the M-cores needs periphery circuits as decoders,
MUXs, ADCs, and DACs, which are built beneath the
RRAM array in the CMOS layer. The M-core can be recon-
figurably divided into many tiles. Each tile is a virtual con-
tainer, which is smaller than the sub-array physical size.
Typically, a tile is around 32 � 32 or 64 � 64 to perform a
single storage, arithmetic, or neuromorphic operation.

The decoders and the MUXs are essential for the random
access operation of the RRAM layer, while the DACs and
ADCs are required for sampling of the crossbar input and
output signals. The CMOS layer also hosts some digital cir-
cuitry used for control and simple processing operations.
Moreover, a centralized control circuitry may be needed to
facilitate the overall system operation. Core-to-core data
communications will be performed in the CMOS layer. It
should be noted here that one of the main merits of the
FPCA system is its in-memory data processing that reduces
data communications significantly, and in turn reduces the
interconnect circuitry complexity and area. Fig. 13a shows
the set of circuitry each of the FPCA layers contains. Taking
advantage of the monolithic fabrication of the system, the
two layers can be connected through very high-density
inter-layer vias (ILV).

To enable the different modes of operations of an M-core,
a common interface circuitry that can support storage, digital
and analog computing is a necessity. From the storage point
of view, a reliable readout circuit for RRAM is made of
ADCs and digital adders rather than a 2-bit comparator [14].
The same interface circuitry can be utilized for digital com-
puting, where the number of bits of the ADCs is determined
by the virtual tile size. Larger tiles requiremore ADC bits but
allow a higher degree of parallelism. Luckily, the BCNNdig-
ital neurons can adopt the same ADC/Adder interface. The
digital neuron samples the current output and performs the
leaky integrate operation using the digital adders. In addi-
tion, BCNN requires DACs to convert the native system
binary data to analog inputs for the neural network. It is
worth mentioning that many ADCs contain DACs within
their circuitry, which eliminates the need for separate DACs.
An important consideration is that the CMOS layer area
should be restricted to the same order of the RRAM layer
area, otherwise, the effective density of the RRAM crossbar
will diminish. On the other hand, a CMOS area can be uti-
lized by multiple interface circuitry to facilitate accessing

Fig. 12. SPICE simulation results for the data shift operation showing the
voltage drop over all the cells in an M-core tile.

Fig. 13. (a)The content of each of the two layers of the FPCA system. (b) FPCA system hierarchy.

706 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018



multiple tiles per M-core concurrently for a higher through-
put. To gain some insights into the CMOS layer require-
ments, we analyzed the ADCs, which are the largest
interface units. For instance, in the case of utilizing 50 nm
RRAM feature size, each 1MB M-core is expected to occupy
an area of 0:084 mm2. A state-of-the-art 40nm 6-bit ADC [43]
occupies 580 mm2, which is equivalent to 0.7 percent of a sin-
gle M-core crossbar area. 64 of such 6-bit ADCs will occupy
45 percent of the underneath CMOS layer, and is sufficient
for counting the ONEs in a fully active 64� 64 tile in a paral-
lel fashion. However, in the case of analog neuromorphic
computing, the 6-bit ADC can only handle 8 rows (consum-
ing 3-bits of the ADC) and a multi-level input of 8 states
(another 3-bits). The 64 rows of the tiles can then be activated
in a time multiplexed fashion in 8 time steps. The effective
states of the analog input can also be increased with the aid
of time multiplexing, if needed. The time multiplexing
requirements are expected to be reduced or eliminated
through ADC technology scaling. Other components such as
DACs needed for neuromorphic computing typically con-
sume much smaller areas compared to ADCs [44]. The
remaining CMOS layer components, including the digital
adder andMUXs, usually occupy a negligible area compared
to the other analog components. Finally, it is worth mention-
ing that recent research shows the feasibility of RRAM-based
MUXs and Decoders [17], which in this case, can be built in
the RRAM layer rather than in the CMOS layer.

7.2 System Scaling

The proposed FPCA architecture relies on medium-sized
(e.g., 1 MB) M-cores to provide the computing power for
the system. Hence, a full system is composed of thousands
of M-cores. Here arises a major challenge in how the vast
number of cores will be connected together. Although in-
memory data processing significantly reduces the required
amount of data communications, keeping a full connectivity
among all the cores is still challenging and can limit the sys-
tem scaling. Here we propose two levels of hierarchy to
enable a modular and scalable FPCA computing system:
with a dense, locally connected structure at the lower level
and a loosely connected structure at the higher level, as
shown in Fig. 13b. The lower hierarchical level is the M-pro-
cessor, which is made of an array of fully connected M-
cores. From a functional point of view, an M-processor is a
digitally interfaced computing unit. Internally, the M-pro-
cessor distributes the workload on analog or digital config-
ured cores/tiles based on the workload’s nature. Hence,
looking from outside, an M-processor is seen as a digital
processing/memory unit, while internally the computations
are performed in both analog and digital domains.

At the top hierarchical level, the FPCA system is made
of many of the digitally interfaced M-processors with low
communication rate between them. The different levels of
data communication rates are a result of the locality prop-
erty of the data, where nearby M-cores, within the same
M-processor, need to communicate more frequently than
cores belonging to different processors. It should be noted
here that, the two-level processor hierarchy is also utilized
in GPU systems to manage their enormous number of tiny
cores, where each set of cores are grouped in a multipro-
cessor unit. However, GPUs employ a totally different

communications scheme that suites the graphical process-
ing nature. In our case, the two-level hierarchy facilitates
both system scalability and internal data communication
requirements. Designing the FPCA as a multi-processor
many-core computing system also makes it easier to con-
trol and reconfigure the system.

7.3 Performance Estimation

The widely-accepted FLOPS metric is not the optimal
method to evaluate the performance of big data and cognitive
applications, where memory access and matrix operations
play a significant role. Formany congestive applications, ana-
log neural networks are believed to outperform classical
architectures. However, benchmarking analog computing
versus digital processors is still an open question. Here, we
utilize a 2D performance plane to assess the FPCA perfor-
mance versus classical and neuromorphic computing archi-
tectures, as shown in Fig. 14. On one axis, the peak double-
precision performance is used to show the arithmetic capabil-
ity of different systems, while the second axis represents the
system’s capability to deal with congestive problems (e.g.,
neuromorphic applications). Typically, conventional digital
implementations of neural computing algorithms consist of
successive sparse matrix-vector multiplications (SpMV).
Thus, the software implementation of neural networks on a
classical processor can be estimated using SpMV perfor-
mance. Fig. 14 shows the peak SpMV performance of various
CPU and GPU implementations reported in the litera-
ture [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], where it
is clearly visible that for neuromorphic and congestive appli-
cations classical processors can only achieve a small fraction
of its peak FLOPS performance. This is due to many factors
including the memory wall limitation, which is fundamen-
tally addressed in the proposed FPCA system. Neuromor-
phic digital processors, like IBM’s TrueNorth, can deliver
equivalent CPU/GPU congestive performance at a signifi-
cantly lower power consumption budget [38]. On the other
hand, such hardware implementations have only been used
in very limited application spaces and cannot be readily
reconfigured for general purpose and hard computing, e.g.,
arithmetic-based applications.

In order to estimate the FPCA performance, we adopted
experimentally measured device and circuit data. ADCs

Fig. 14. Classical, Neuromorphic, and FPCA computing platforms per-
formance in Giga operations per second for traditional and congestive
applications.

ZIDAN ET AL.: FIELD-PROGRAMMABLE CROSSBAR ARRAY (FPCA) FOR RECONFIGURABLE COMPUTING 707



and DACs are assumed to occupy less than 50 percent of
the CMOS footprint, and the whole interface circuit is
designed to work at a rate of 50 MHz. This rate accounts
for communication delays and eases the constraints on the
interface circuitry design. Applying these constraints into
the system routine enables the estimation of the peak sys-
tem performance for both classical and congestive applica-
tions. An FPCA system with a 8 GByte RRAM system can
deliver up to 3.39 Tera double precision (DB) operations/
second, which is empowered by the natively parallel cross-
bar-based M-cores. However, this peak DP performance
does not tell the whole story. Calculations show that for
congestive applications, the FPCA system can perform
SpMV operations orders of magnitude faster than both
classical and digital neuromorphic architectures. For an
all-digital FPCA implementation, where SpMV operations
are performed using M-core arithmetic operations, the sys-
tem shows 1.7 Tera DP operation/s in congestive perfor-
mance. This number increases to 6.55 Tera operation/s in
the case of utilizing the analog BCNN for neuromorphic
computing, after considering the time multiplexing effect.
It worth mentioning here that this analog performance can
be improved by using larger ADCs (thus reducing the
time-multiplexing steps), but at the expense of the digital
performance. Future ADCs fabricated at smaller CMOS
technology nodes should further improve both the analog
and digital performance. Finally, it should be noted that
the system peak performance scales with the total RRAM
size (i.e., total number of M-cores).

8 CONCLUSION

Continued improvements in computing power is expected
to be achieved by compute- near or in memory architec-
tures. Instead of developing accelerators based on applica-
tion specific integrated circuit (ASIC) systems that need to
be re-designed for each new task, the proposed FPCA sys-
tem acts as a general, efficient computing fabric that can
be dynamically re-configured at both the system level and
the core-level to optimally perform different tasks. Based
on a common physical resistive memory-centric fabric, the
FPCA system can efficiently handle traditional and emerg-
ing computational tasks in a massively parallel approach.
Each of the FPCA cores can be partially or fully configured
to perform digital, neuromorphic, or storage operation,
while largely eliminating conventional memory bottle-
necks. The crossbar structure allows arithmetic operations
to be performed in a natively parallel fashion that can han-
dle concurrent vector and matrix operations. New techni-
ques were also developed that allow the binary resistive
devices to efficiently perform neuromorphic computing
and in-situ data migration tasks. Altogether, the system
can be tailored to achieve maximal energy efficiency based
on the data flow, by dynamically allocating the basic com-
puting fabric to storage, arithmetic, and analog including
neuromorphic computing tasks. Simulations verified the
potential of the proposed reconfigurable FPCA architec-
ture to deliver orders of magnitude improvements in per-
formance compared with conventional approaches, while
offering the flexibility to satisfy general purpose comput-
ing requirements.

ACKNOWLEDGMENTS

The authors thank Dr. R. Dreslinski Jr. for valuable sugges-
tions and fruitful discussions.This work was supported in
part by theNational Science Foundation (NSF) through grant
CCF-1617315 and by the Defense Advanced Research Pro-
gramAgency (DARPA) through awardHR0011-13-2-0015.

REFERENCES

[1] Rebooting IT revolution: A call for action, 2015. [Online]. Available:
https://www.src.org/newsroom/rebooting-the-it-revolution.pdf

[2] S. Borkar and A. A. Chien, “The future of microprocessors,” Com-
mun. ACM, vol. 54, no. 5, pp. 67–77, 2011.

[3] P. Kogge, et al., “Exascale computing study: Technology chal-
lenges in achieving exascale systems,” Defense Advanced
Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Arlington, VA, USA, 2008, https://www.
sdsc.edu/~allans/Exascale_final_report.pdf

[4] R. Nair, et al., “Active memory cube: A processing-in-memory
architecture for exascale systems,” IBM J. Res. Develop., vol. 59,
no. 2/3, pp. 17:1–17:14, Mar.–May 2015.

[5] J. M. Shalf and R. Leland, “Computing beyond Moore’s law,”
Comput., vol. 12, pp. 14–23, 2015.

[6] M. M. Waldrop, “The chips are down for Moore’s law,” Nature
News, vol. 530, no. 7589, 2016, Art. no. 144.

[7] L. Chua, “Memristor-the missing circuit element,” IEEE Trans.
Circuit Theory, vol. 18, no. 5, pp. 507–519, Sep. 1971.

[8] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83,
2008.

[9] International technology roadmap for semiconductors (ITRS).
[Online]. Available: http://www.itrs2.net/

[10] K.-H. Kim, S. Hyun Jo, S. Gaba, and W. Lu, “Nanoscale resistive
memory with intrinsic diode characteristics and long endurance,”
Appl. Physics Lett., vol. 96, no. 5, 2010, Art. no. 053106.

[11] M.-J. Lee, et al., “A fast, high-endurance and scalable non-volatile
memory device made from asymmetric Ta2O5- x/TaO2- x bilayer
structures,” Nature Materials, vol. 10, no. 8, pp. 625–630, 2011.

[12] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu,
“Observation of conducting filament growth in nanoscale resistive
memories,” Nature Commun., vol. 3, 2012, Art. no. 732.

[13] K.-H. Kim, et al., “A functional hybrid memristor crossbar-array/
CMOS system for data storage and neuromorphic applications,”
Nano Lett., vol. 12, no. 1, pp. 389–395, 2011.

[14] M. A. Zidan, A. M. Eltawil, F. Kurdahi, H. A. Fahmy, and K. N.
Salama, “Memristor multiport readout: A closed-form solution
for sneak paths,” IEEE Trans. Nanotechnol., vol. 13, no. 2, pp. 274–
282, Mar. 2014.

[15] H.-S. P. Wong, et al., “Metal–oxide RRAM,” Proc. IEEE, vol. 100,
no. 6, pp. 1951–1970, Jun. 2012.

[16] H. Akinaga and H. Shima, “Resistive random access memory
(ReRAM) based on metal oxides,” Proc. IEEE, vol. 98, no. 12,
pp. 2237–2251, Dec. 2010.

[17] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Strazn-
icky, and R. S. Williams, “Writing to and reading from a nano-
scale crossbar memory based on memristors,” Nanotechnol.,
vol. 20, no. 42, 2009, Art. no. 425204.

[18] M. Zidan, et al., “Single-readout high-density memristor cross-
bar,” Sci. Rep., vol. 6, 2016, Art. no. 18863.

[19] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devi-
ces for computing,” Nature Nanotechnol., vol. 8, no. 1, pp. 13–24,
2013.

[20] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W.
Lu, “Nanoscale memristor device as synapse in neuromorphic
systems,” Nano Lett., vol. 10, no. 4, pp. 1297–1301, 2010.

[21] P. M. Sheridan, C. Du, and W. D. Lu, “Feature extraction using
memristor networks,” IEEE Trans. Neural Netw. Learn. Syst., vol.
27, no. 11, pp. 2327–2336, Nov. 2016.

[22] M. Prezioso, F.Merrikh-Bayat, B.Hoskins, G.Adam,K.K. Likharev,
and D. B. Strukov, “Training and operation of an integrated neuro-
morphic network based on metal-oxide memristors,” Nature,
vol. 521, no. 7550, pp. 61–64, 2015.

[23] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classifica-
tion by memristive crossbar circuits using ex situ and in situ train-
ing,” Nature Commun., vol. 4, 2013, Art. no. 2072.

708 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018

https://www.src.org/newsroom/rebooting-the-it-revolution.pdf
https://www.sdsc.edu/~allans/Exascale_final_report.pdf
https://www.sdsc.edu/~allans/Exascale_final_report.pdf
http://www.itrs2.net/


[24] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 640M pixel/s 3.65
mW sparse event-driven neuromorphic object recognition proces-
sor with on-chip learning,” in Proc. IEEE Symp. VLSI Circuits,
2015, pp. C50–C51.

[25] G. Snider, “Computing with hysteretic resistor crossbars,” Appl.
Physics A, vol. 80, no. 6, pp. 1165–1172, 2005.

[26] K. K. Likharev and D. B. Strukov, “CMOL: Devices, circuits,
and architectures,” in Introducing Molecular Electronics. Berlin,
Germany: Springer, 2006, pp. 447–477.

[27] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘Memristive’ switches enable ‘stateful’ logic oper-
ations via material implication,” Nature, vol. 464, no. 7290,
pp. 873–876, 2010.

[28] Q. Xia, et al., “Memristor-CMOS hybrid integrated circuits for
reconfigurable logic,”Nano Lett., vol. 9, no. 10, pp. 3640–3645, 2009.

[29] S. H. Jo, K.-H. Kim, and W. Lu, “High-density crossbar arrays
based on a Si memristive system,” Nano Lett., vol. 9, no. 2,
pp. 870–874, 2009.

[30] M. N. Kozicki, M. Park, and M. Mitkova, “Nanoscale memory ele-
ments based on solid-state electrolytes,” IEEE Trans. Nanotechnol.,
vol. 4, no. 3, pp. 331–338, May 2005.

[31] S. Gaba, F. Cai, J. Zhou, and W. D. Lu, “Ultralow sub-1-nA operat-
ing current resistive memory with intrinsic non-linear character-
istics,” IEEE Electron Device Lett., vol. 35, no. 12, pp. 1239–1241,
Dec. 2014.

[32] M. M. Shulaker, et al., “Monolithic 3D integration of logic and
memory: Carbon nanotube FETs, resistive RAM, and silicon
FETs,” in Proc. IEEE Int. Electron Devices Meeting, 2014, pp. 27–4.

[33] M. M. S. Aly, et al., “Energy-efficient abundant-data computing:
The N3XT 1,000 x,” Comput., vol. 48, no. 12, pp. 24–33, 2015.

[34] B. Chakrabarti, et al., “A multiply-add engine with monolithically
integrated 3D memristor crossbar/CMOS hybrid circuit,” Sci.
Rep., vol. 7, 2017, Art. no. 42429.

[35] H. Li, et al., “Hyperdimensional computing with 3D VRRAM in-
memory kernels: Device-architecture co-design for energy-
efficient, error-resilient language recognition,” in Proc. IEEE Int.
Electron Devices Meeting, 2016, pp. 16.1.1–16.1.4.

[36] M. J. Flynn and S. F. Oberman, Advanced Computer Arithmetic
Design. Hoboken, NJ, USA: Wiley-Interscience, 2001.

[37] M. Wang, J. Zhou, Y. Yang, S. Gaba, M. Liu, and W. D. Lu,
“Conduction mechanism of a TaOx-based selector and its applica-
tion in crossbar memory arrays,” Nanoscale, vol. 7, no. 11,
pp. 4964–4970, 2015.

[38] P. A. Merolla, et al., “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Sci.,
vol. 345, no. 6197, pp. 668–673, 2014.

[39] P.-Y. Chen, L. Gao, and S. Yu, “Design of resistive synaptic array
for implementing on-chip sparse learning,” IEEE Trans. Multi-
Scale Comput. Syst., vol. 2, no. 4, pp. 257–264, Oct.–Dec. 2016.

[40] C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen, “Locally
competitive algorithms for sparse approximation,” in Proc. IEEE
Int. Conf. Image Process., 2007, pp. IV-169–IV-172.

[41] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-based memory: The sneak paths problem and sol-
utions,”Microelectron. J., vol. 44, no. 2, pp. 176–183, 2013.

[42] J. Zhou, F. Cai, Q.Wang, B. Chen, S. Gaba, andW. D. Lu, “Very low-
programming-current RRAM with self-rectifying characteristics,”
IEEE ElectronDevice Lett., vol. 37, no. 4, pp. 404–407, Apr. 2016.

[43] K. D. Choo, J. Bell, and M. P. Flynn, “Area-efficient 1GS/s 6b SAR
ADC with charge-injection-cell-based DAC,” in Proc. IEEE Int.
Solid-State Circuits Conf., 2016, pp. 460–461.

[44] J. Zhang, Z. Wang, and N. Verma, “A machine-learning classifier
implemented in a standard 6T SRAM array,” in Proc. IEEE Symp.
VLSI Circuits, 2016, pp. 1–2.

[45] A. Dziekonski, A. Lamecki, and M. Mrozowski, “A memory effi-
cient and fast sparse matrix vector product on a GPU,” Progress
Electromagn. Res., vol. 116, pp. 49–63, 2011.

[46] W. T. Tang, et al., “Optimizing and auto-tuning scale-free sparse
matrix-vector multiplication on Intel Xeon Phi,” in Proc. IEEE/
ACM Int. Symp. Code Generation Optimization, 2015, pp. 136–145.

[47] E. Saule, K. Kaya, and €U. V. Çataly€urek, “Performance evaluation
of sparse matrix multiplication kernels on Intel Xeon Phi,” in Proc.
Int. Conf. Parallel Process. Appl. Math., 2013, pp. 559–570.

[48] M. Kreutzer, A. Pieper, G. Hager, G. Wellein, A. Alvermann, and
H. Fehske, “Performance engineering of the kernel polynomal
method on large-scale CPU-GPU systems,” in Proc. IEEE Int. Par-
allel Distrib. Process. Symp., 2015, pp. 417–426.

[49] W. Liu and B. Vinter, “A framework for general sparse matrix–
matrix multiplication on GPUs and heterogeneous processors,”
J. Parallel Distrib. Comput., vol. 85, pp. 47–61, 2015.

[50] B.-Y. Su and K. Keutzer, “clSpMV: A cross-platform OpenCL
SpMV framework on GPUs,” in Proc. ACM Int. Conf. Supercomput-
ing, 2012, pp. 353–364.

[51] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,”
in Proc. ACM Int. Conf. Supercomputing, 2013, pp. 273–282.

[52] Vienna computing library (ViennaCL)-sparse matrix-vector prod-
ucts, Accessed Jul. 2016. [Online]. Available: http://viennacl.
sourceforge.net/viennacl-benchmark-spmv.html

[53] N. Bell and M. Garland, “Efficient sparse matrix-vector multipli-
cation on CUDA,” Nvidia Corporation, Santa Clara, CA, USA,
Tech. Rep. NVR-2008–004, 2008.

[54] W. Yang, K. Li, Z. Mo, and K. Li, “Performance optimization using
partitioned SpMV on GPUs and multicore CPUs,” IEEE Trans.
Comput., vol. 64, no. 9, pp. 2623–2636, Sep. 2015.

Mohammed A. Zidan received the BSc and MSc
degrees in electronics and communications engi-
neering from the Institute of Aviation Engineering
and Technology (IAET) and Cairo University, in
2006 and 2010, respectively, where he was
ranked first in both of them, and the PhD degree
in electrical engineering from the King Abdullah
University of Science & Technology (KAUST),
Saudi Arabia, in 2015, with a GPA of 4.0. He is
currently a postdoctoral fellow with the University
of Michigan, Ann Arbor. His research interests

include RRAM Circuits & Systems, non-von Neumann computing, and
computer arithmetic. He is a recipient of the IEEE Circuits and Systems
(CAS) Society Pre-Doctoral Fellowship, which is offered annually to two
PhD students worldwide. In 2015, he attended the Lindau Nobel Laure-
ate Meeting, where 650 among the most qualified young scientists
worldwide were invited to the event.

YeonJoo Jeong received the BS degree from
the College of Engineering Sciences, University
of Tsukuba, Tsukuba, Japan, in 2007, and the
MS degree in electronic engineering from the
University of Tokyo, Tokyo, Japan, in 2009. He is
currently working toward the PhD degree at the
University of Michigan, Ann Arbor, Michigan, and
his current research interests include memristor
devices and its network applications, with an
emphasis on biomimetic memristor-based neural
network.

Jong Hoon Shin received the BS and MS
degrees from the Department of Physics, Seoul
National University, Seoul, Korea, in 2008 and
2010, respectively. He has conducted research
on device physics in III-V semiconductors at LG
Electronics from 2011 to 2014. He is currently
working toward the PhD degree at the University
of Michigan, Ann Arbor, and his research interests
include the optimization of memristive devices
and its application for neuromorphic computing.

Chao Du received the BS degree in microelec-
tronics from Tsinghua University, Beijing, China,
in 2011, and the PhD degree in electrical engi-
neering from the University of Michigan, Ann
Arbor, Michigan. His main research fields include
analog memristor behavior investigation, memris-
tor fabrication optimization, and memristor-based
neuromorphic applications.

ZIDAN ET AL.: FIELD-PROGRAMMABLE CROSSBAR ARRAY (FPCA) FOR RECONFIGURABLE COMPUTING 709

http://viennacl.sourceforge.net/viennacl-benchmark-spmv.html
http://viennacl.sourceforge.net/viennacl-benchmark-spmv.html


Zhengya Zhang received the BASc degree in
computer engineering from the University of
Waterloo, Waterloo, ON, Canada, in 2003, and
the MS and PhD degrees in electrical engineering
from the University of California at Berkeley (UC
Berkeley), Berkeley, California, in 2005 and
2009, respectively. He has been with the faculty
of the University of Michigan, Ann Arbor, since
2009, where he is currently an associate profes-
sor in the Department of Electrical Engineering
and Computer Science. His current research

interests include low-power and high-performance VLSI circuits and sys-
tems for computing, communications, and signal processing. He was a
recipient of the National Science Foundation CAREER Award in 2011,
the Intel Early Career Faculty Award in 2013, the David J. Sakrison
Memorial Prize for outstanding doctoral research in Electrical Engineer-
ing and Computer Sciences at UC Berkeley, and the Best Student Paper
Award at the Symposium on VLSI Circuits. He has served as an associ-
ate editor of the IEEE Transactions on Very Large Scale Integration
(VLSI) Systems since 2015. He was a past associate editor of the IEEE
Transactions on Circuits and Systems–Part I: Regular Papers (2013-
2015) and the IEEE Transactions on Circuits and Systems–Part II:
Express Briefs (2014-2015). He is a member of the IEEE.

Wei D. Lu (SM’05) received the BS degree in
physics from Tsinghua University, Beijing, China,
in 1996, and the PhD degree in physics from Rice
University, Houston, Texas, in 2003. From 2003
to 2005, he was a postdoctoral research fellow
with Harvard University, Cambridge, Massachu-
setts. In 2005, he joined the faculty of the EECS
Department, University of Michigan, where he
is currently a professor. His research interests
include high-density memory based on two-termi-
nal resistive switches (RRAM), memristor-based

logic circuits, aggressively scaled transistor devices, and electrical trans-
port in low-dimensional systems. He is a recipient of the NSF CAREER
Award, associate editor of the Nanoscale. He is a senior member of the
IEEE, and member of the APS, the MRS, and an active member of sev-
eral IEEE technical committees and program committees.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

710 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


