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Abstract 

VOTA is a domain-specific accelerator for correlation filter (CF)-
based visual object tracking (VOT). It encompasses a Winograd con-
volution core, a FFT core and a vector core in a high-bandwidth star-
ring topology. VOTA’s frame-based instructions and execution ena-
ble a 537GFLOPS performance and reduce the code size. An instruc-
tion-chaining mechanism permits inter-core pipelining to improve the 
utilization to 84.2%. A 10.2mm2 28nm FP16 VOTA prototype incor-
porating a RISC-V host CPU is measured to achieve 2.45TFLOPS/W 
at 0.72V. Running OPCF, a CF-based VOT enhanced by adaptive 
boosting and particle filters, the chip achieves 1157FPS on 640×480 
input frames at 0.9V and 175MHz, consuming 296mW.  

Introduction 
VOT finds practical applications in surveillance, transportation, ro-
botics and human-computer interface. Tracking by detection using a 
deep CNN is computationally expensive. CF is lighter and faster with-
out detection. CF tracks by correlating filters over an input, and the 
target is located by the maximum response [1], [2] (Fig. 1). CF is com-
monly realized in the Fourier domain to simplify correlations to ele-
ment-wise multiplications, and the filter adaption is done in parallel. 
CF is among the top performers in recent VOT Challenges [3]. 

An advanced CF tracker operates on features extracted by a light-
weight CNN. For each feature, a CF is learned. To track a set of fea-
tures associated with an object, multi-channel CFs are learned. After 
correlation, the multi-channel responses are summed to locate an ob-
ject. To improve tracking robustness, we apply adaptive boosting to 
adjust the weighting of the channels. To track fast motion, we add 
particle filtering [4], a Monte Carlo method, to narrow down the likely 
target regions. Our design is named oriented particle CF (OPCF) (Fig. 
2) and it is representative of an advanced CF tracker. The computa-
tional kernels of such a CF tracker are diverse, including convolution 
(conv), FFT/IFFT, and various real and complex vector operations 
(Fig. 3). To support online training and Fourier-domain processing, 
FP16 is required. A custom ASIC lacks flexibility as CF algorithm 
parameters change, and a GPU does not provide the best efficiency. 

We present visual object tracking accelerator (VOTA) to support 
the class of advanced CF trackers. VOTA contains a Winograd conv 
core (WINO), a FFT core (FFT) and a vector core (VEC), all in FP16, 
to support the VOT computational kernels. WINO is optimized for 
small-kernel conv; FFT is specialized for 2D complex FFT/IFFT; and 
VEC provides flexible vector operations. VOTA’s frame-based in-
structions reduce the OPCF code size by 34×. By instruction-chaining 
and inter-core pipelining, the hardware utilization reaches 84.2%. 

System Design and Star-Ring Topology 
VOTA is integrated with a RISC-V CPU, an instruction and a data 
memory over an AXI interconnect (Fig. 4a). The RISC-V CPU serves 
as the host to VOTA. The system is completed with an SPI and a 
JTAG interface. To overcome the bandwidth limitation of a shared 
global bus that is common in SoCs and avoid wide crossbars’ routing 
congestion, we choose a star-ring topology to allow the three cores in 
VOTA to pass data seamlessly through four wide-bandwidth 1Mb 
memory modules (Fig. 4b). Based on common use cases, VEC is 
placed in the center to handle vector processing, shaping, pre- and 
post-processing for WINO and FFT. Each memory module supports 
2Kb-wide word access with over 44GB/s bandwidth to each core. A 
simple arbiter allows two cores to share a memory module in three 
access modes: real/complex vector or random access. 

Frame-based ISA and Microarchitecture 
VOTA offers a frame-based ISA (Fig. 5a) to simplify programming 
its three cores and reduce code size (Fig. 5b). A frame instruction (Fig. 
5c) operates on a frame of 64×64 real (FP16) or complex (2× FP16) 
numbers. The three cores implement frame-based processing by 

breaking a frame into row operations (Fig. 5d). Multiple row execu-
tions are in flight in the processing pipelines. 

WINO adopts the Winograd algorithm [5] to minimize the com-
putational complexity of 3×3 conv that is popular in state-of-the-art 
CNNs. The Winograd algorithm realizes a 3×3 kernel by a 4×4 input 
conv using only 16 multiplications, a 2.25× reduction over the con-
ventional conv. The Winograd conv is computed by transforming 
weights and activations, followed by pointwise multiplications and in-
verse transform (Fig. 6a). A 3×3 kernel is transformed to a 4×4 weight 
matrix W in precomputation. A WINO unit computes a 3×3 kernel by 
a 4×4 input tile conv to produce a 2×2 output in four pipeline stages 
(Fig. 6b): 1) transform a 4×4 input tile to F, 2) pointwise multiplica-
tion of W⨀F, and 3) inverse transform in two stages. WINO contains 
32 units to process 32 overlapping 4×4 input tiles at a time, constitut-
ing 4 input rows in a frame (with padding) (Fig. 6c). In every cycle, 
two input rows are fetched, and two output rows are produced. Input 
registers provide input reuse between units and across cycles, and 
transformed weights are precomputed and broadcasted to the units to 
provide weight reuse (Fig. 6d). 1×1 conv can be realized by bypassing 
stages and 5×5 or larger conv can be done by overlapping 3×3 conv. 

FFT performs pipelined 64-point complex FFT with transpose 
buffering (Fig. 7a). 2D 64×64 patch FFT required for CF can be done 
by two passes through the FFT core with transpose (Fig. 7b). IFFT is 
computed by reversing the FFT core’s pipeline. VEC contains 64 
VEC units, each made of a pipelined FP16 floating point unit that per-
forms real and complex add, subtract, multiply, square and divide. 

Instruction-Chaining and Inter-Core Pipelining 
VOTA allows the cores to operate in parallel independently or in a 
pipeline. When the cores are pipelined, barrier instruction (BARR) 
needs to be inserted between instructions with data dependencies, but 
it results in a low utilization waiting for a core completing a frame 
instruction. To improve utilization and latency, we allow instructions 
with data dependencies to be packed and chained in a fine-grained 
pipeline (Fig. 8a). The instruction-chaining controller utilizes score-
boards to track resource availability to prevent hazards (Fig. 8b). 
When an instruction is dispatched, its data dependency is checked 
from the memory status table, and its instruction dependency is 
checked from the function unit status table. After an upstream instruc-
tion produces the first output row, the instruction status table is up-
dated, and the controller releases the downstream instruction without 
waiting for the entire frame to be ready. The fine-grained inter-core 
pipelining improves the hardware utilization to 84.2% for the OPCF 
workload (Fig. 8c) and shortens the processing latency by 63%. 

Chip Measurement Results 
A 12.96mm2 28nm chip is fabricated with a 10.2mm2 core area (Fig. 
9). The chip is measured to achieve 537GFLOPS at 0.9V and 175MHz 
in room temperature, dissipating 296mW (Fig. 10). The chip runs 
OPCF on 640×480 inputs at 1157FPS with a 0.86ms latency. At 0.72V, 
the chip achieves 2.45TFLOPS/W (Fig. 11). VOTA is the first pro-
grammable domain-specific accelerator for VOT to support advanced 
CF trackers. No direct comparison is available, but VOTA demon-
strates competitive FP16 compute density and power efficiency over 
recent DNN and vision processors (Table I). 
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Fig. 1. Visual object tracking (VOT) based on correlation filter.

Fig. 2. Oriented Particle Correlation Filter (OPCF) – a CF-based 
VOT enhanced by adaptive boosting and particle filters.

Fig. 3. The computational kernels of a CF tracker.
(a) (b)

Fig. 4. (a) Diagram of the VOT SoC integration, (b) the high 
bandwidth star-ring topology.

(d)

(a) (b) (c)

Fig. 5. (a) VOTA’s frame-based ISA, (b) reduction in code size by 
frame-based ISA over vector-based ISA, (c) format of a frame 
instruction, (d) frame-based processing.

(a)

(b)

(c)

(d)

Fig. 6. (a) Comparison between the conventional and Winograd 
convolution, (b) pipeline stages of a WINO unit, (c) mapping of 
input tiles to WINO units, (d) the dataflow in WINO and buffer 
states of input registers.

(a) (b)

Fig. 7. (a) FFT core with a 64-point complex FFT machine and a 
transpose buffer, (b) illustration of the execution of a 2D FFT.

(b)

(a)

(c)

Fig. 8. (a) Illustration of the format and execution of an instruction 
package, (b) diagram of the instruction-chaining controller, (c) 
comparison of the utilization with and without instruction-chaining.

Fig. 9. Chip photograph.

Table I: Comparison with Prior Works

Fig. 10. Power measurements. Fig. 11. Performance measurements.
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