
1 978-4-86348-780-2 ©2021 JSAP 2021 Symposium on VLSI Circuits Digest of Technical Papers

VOTA: A 2.45TFLOPS/W Heterogeneous Multi-Core Visual Object Tracking
Accelerator Based on Correlation Filters

Junkang Zhu1, Wei Tang1, Ching-En Lee1, Haolei Ye2, Eric McCreath2, Zhengya Zhang1
1University of Michigan, Ann Arbor, MI, USA 2Australian National University, Canberra, Australia

Abstract

VOTA is a domain-specific accelerator for correlation filter (CF)-
based visual object tracking (VOT). It encompasses a Winograd con-
volution core, a FFT core and a vector core in a high-bandwidth star-
ring topology. VOTA’s frame-based instructions and execution ena-
ble a 537GFLOPS performance and reduce the code size. An instruc-
tion-chaining mechanism permits inter-core pipelining to improve the
utilization to 84.2%. A 10.2mm2 28nm FP16 VOTA prototype incor-
porating a RISC-V host CPU is measured to achieve 2.45TFLOPS/W
at 0.72V. Running OPCF, a CF-based VOT enhanced by adaptive
boosting and particle filters, the chip achieves 1157FPS on 640×480
input frames at 0.9V and 175MHz, consuming 296mW.

Introduction
VOT finds practical applications in surveillance, transportation, ro-
botics and human-computer interface. Tracking by detection using a
deep CNN is computationally expensive. CF is lighter and faster with-
out detection. CF tracks by correlating filters over an input, and the
target is located by the maximum response [1], [2] (Fig. 1). CF is com-
monly realized in the Fourier domain to simplify correlations to ele-
ment-wise multiplications, and the filter adaption is done in parallel.
CF is among the top performers in recent VOT Challenges [3].

An advanced CF tracker operates on features extracted by a light-
weight CNN. For each feature, a CF is learned. To track a set of fea-
tures associated with an object, multi-channel CFs are learned. After
correlation, the multi-channel responses are summed to locate an ob-
ject. To improve tracking robustness, we apply adaptive boosting to
adjust the weighting of the channels. To track fast motion, we add
particle filtering [4], a Monte Carlo method, to narrow down the likely
target regions. Our design is named oriented particle CF (OPCF) (Fig.
2) and it is representative of an advanced CF tracker. The computa-
tional kernels of such a CF tracker are diverse, including convolution
(conv), FFT/IFFT, and various real and complex vector operations
(Fig. 3). To support online training and Fourier-domain processing,
FP16 is required. A custom ASIC lacks flexibility as CF algorithm
parameters change, and a GPU does not provide the best efficiency.

We present visual object tracking accelerator (VOTA) to support
the class of advanced CF trackers. VOTA contains a Winograd conv
core (WINO), a FFT core (FFT) and a vector core (VEC), all in FP16,
to support the VOT computational kernels. WINO is optimized for
small-kernel conv; FFT is specialized for 2D complex FFT/IFFT; and
VEC provides flexible vector operations. VOTA’s frame-based in-
structions reduce the OPCF code size by 34×. By instruction-chaining
and inter-core pipelining, the hardware utilization reaches 84.2%.

System Design and Star-Ring Topology
VOTA is integrated with a RISC-V CPU, an instruction and a data
memory over an AXI interconnect (Fig. 4a). The RISC-V CPU serves
as the host to VOTA. The system is completed with an SPI and a
JTAG interface. To overcome the bandwidth limitation of a shared
global bus that is common in SoCs and avoid wide crossbars’ routing
congestion, we choose a star-ring topology to allow the three cores in
VOTA to pass data seamlessly through four wide-bandwidth 1Mb
memory modules (Fig. 4b). Based on common use cases, VEC is
placed in the center to handle vector processing, shaping, pre- and
post-processing for WINO and FFT. Each memory module supports
2Kb-wide word access with over 44GB/s bandwidth to each core. A
simple arbiter allows two cores to share a memory module in three
access modes: real/complex vector or random access.

Frame-based ISA and Microarchitecture
VOTA offers a frame-based ISA (Fig. 5a) to simplify programming
its three cores and reduce code size (Fig. 5b). A frame instruction (Fig.
5c) operates on a frame of 64×64 real (FP16) or complex (2× FP16)
numbers. The three cores implement frame-based processing by

breaking a frame into row operations (Fig. 5d). Multiple row execu-
tions are in flight in the processing pipelines.

WINO adopts the Winograd algorithm [5] to minimize the com-
putational complexity of 3×3 conv that is popular in state-of-the-art
CNNs. The Winograd algorithm realizes a 3×3 kernel by a 4×4 input
conv using only 16 multiplications, a 2.25× reduction over the con-
ventional conv. The Winograd conv is computed by transforming
weights and activations, followed by pointwise multiplications and in-
verse transform (Fig. 6a). A 3×3 kernel is transformed to a 4×4 weight
matrix W in precomputation. A WINO unit computes a 3×3 kernel by
a 4×4 input tile conv to produce a 2×2 output in four pipeline stages
(Fig. 6b): 1) transform a 4×4 input tile to F, 2) pointwise multiplica-
tion of W⨀F, and 3) inverse transform in two stages. WINO contains
32 units to process 32 overlapping 4×4 input tiles at a time, constitut-
ing 4 input rows in a frame (with padding) (Fig. 6c). In every cycle,
two input rows are fetched, and two output rows are produced. Input
registers provide input reuse between units and across cycles, and
transformed weights are precomputed and broadcasted to the units to
provide weight reuse (Fig. 6d). 1×1 conv can be realized by bypassing
stages and 5×5 or larger conv can be done by overlapping 3×3 conv.

FFT performs pipelined 64-point complex FFT with transpose
buffering (Fig. 7a). 2D 64×64 patch FFT required for CF can be done
by two passes through the FFT core with transpose (Fig. 7b). IFFT is
computed by reversing the FFT core’s pipeline. VEC contains 64
VEC units, each made of a pipelined FP16 floating point unit that per-
forms real and complex add, subtract, multiply, square and divide.

Instruction-Chaining and Inter-Core Pipelining
VOTA allows the cores to operate in parallel independently or in a
pipeline. When the cores are pipelined, barrier instruction (BARR)
needs to be inserted between instructions with data dependencies, but
it results in a low utilization waiting for a core completing a frame
instruction. To improve utilization and latency, we allow instructions
with data dependencies to be packed and chained in a fine-grained
pipeline (Fig. 8a). The instruction-chaining controller utilizes score-
boards to track resource availability to prevent hazards (Fig. 8b).
When an instruction is dispatched, its data dependency is checked
from the memory status table, and its instruction dependency is
checked from the function unit status table. After an upstream instruc-
tion produces the first output row, the instruction status table is up-
dated, and the controller releases the downstream instruction without
waiting for the entire frame to be ready. The fine-grained inter-core
pipelining improves the hardware utilization to 84.2% for the OPCF
workload (Fig. 8c) and shortens the processing latency by 63%.

Chip Measurement Results
A 12.96mm2 28nm chip is fabricated with a 10.2mm2 core area (Fig.
9). The chip is measured to achieve 537GFLOPS at 0.9V and 175MHz
in room temperature, dissipating 296mW (Fig. 10). The chip runs
OPCF on 640×480 inputs at 1157FPS with a 0.86ms latency. At 0.72V,
the chip achieves 2.45TFLOPS/W (Fig. 11). VOTA is the first pro-
grammable domain-specific accelerator for VOT to support advanced
CF trackers. No direct comparison is available, but VOTA demon-
strates competitive FP16 compute density and power efficiency over
recent DNN and vision processors (Table I).
Acknowledgements
The authors would like to thank Ford-UM Research Alliance for funding this
work and the TSMC University Shuttle Program for chip fabrication support.
References
[1] D. S. Bolme, CVPR 2010. [2] J. F. Henriques, TPAMI, 2014.
[3] M. Kristan, ICCV 2017. [4] P. Del Moral, J. Royal Stat. Soc., 2006.
[5] A. Levin, CVPR 2016. [6] P. N. Whatmough, VLSI, 2019.
[7] J. Oh, VLSI 2020. [8] J. Lee, ISSCC 2019.
[9] A. Suleiman, VLSI 2018.

C8-2

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:53:40 UTC from IEEE Xplore. Restrictions apply.

2 978-4-86348-780-2 ©2021 JSAP 2021 Symposium on VLSI Circuits Digest of Technical Papers

0
0

0
0

Filter(g) GT Image tile(d)BT B AAT

W(pre-computed) F
P

Y

0 0 0
0
0

0

0

0 0 0 0 0 0 0 0
0
0
0

WINO
Unit 0

WINO
Unit 1

WINO
Unit 2

WINO
Unit 31

…...

...

0 0 0
0

0

0

0

0 0 0 0 0 0 0 0
0

0
0

WINO
Unit 0

WINO
Unit 1

WINO
Unit 2

WINO
Unit 31

…...

...

WINO
Unit 0

WINO
Unit 1

WINO
Unit 30

WINO
Unit 31...

Input Reg 0

Output Regpadding
1st row
2nd row
3rd row

padding
1st row
2nd row
3rd row
4th row
5th row

Cycle 0:
Read 1st & 2nd rows
No compute

Weight
Register

Input Reg 1

Input Reg 2 Input Reg 3

Input Reg 4

0 (reset value) 0 (reset value)

0 (padding) 1st row

2nd row

0 (padding) 1st row

2nd row 3rd row

4th row
Cycle 1:
Read 3rd & 4th rows
Compute on
1st, 2nd & 3rd rows

Cycle 2:
Read 5th & 6th rows
Compute on
2nd, 3rd, 4th & 5th rows

BTdB W F ATP A

=

Y

=
Filter(g) Image tile(d)

1a. g transformation 1b. d transformation
2. element-wise multiplication

3. inverse transformation
=

PG

Y

=
Filter(g) Image tile(d) Y

=
Filter(g) Image tile(d)

Y

=
Filter(g) Image tile(d)

Conventional Convolution

Winograd Convolution

2nd row 3rd row

4th row 5th row

6th row

The first 4 input
registers serve as a
buffer for image tile

Buffer

Buffer States:

to WINO Units

to WINO Units

to WINO Units

pa
dd

in
g

1st
 co

l.
2nd

 co
l.

3rd
 c

ol
.

4th
 c

ol
.

5th
 c

ol
.

6th
 c

ol
.

7th
 c

ol
.

64
th

 c
ol

.
63

rd
 co

l.
62

nd
 c

ol
.

pa
dd

in
g

0

10000

20000

30000

40000

conventional
conv

winograd
conv

M

ul
tip

lic
at

io
ns 2.25x Reduction1. 2.

3. 4.

Cycle 1:

Cycle 2:

Row Operation

Frame
Instruction

Broken into rows Executed by
pipelined vector

units

CONV M2:L0 M0:L128

Source: Frame starts at line
128 in memory module 0

Destination: Frame starts at line
0 in memory module 2

Opcode: Convolution operation on a
64x64 frame

...

t0

t0 + T
t0 + 2T
t0 + 3T

0.316

10.789

0 2 4 6 8 10 12

fram
e-based

vector-based

OPCF Code Size (KB)

Instruction

34x Reduction

Function Unit Opcode Description
WINO CONV convolution

FFT FFT
FFT/inverse FFT

IFFT

VEC

rADD

real number
arithmetic

rSUB
rMULT

rDIV
rSQ
rMV

move
cMV
cADD

complex number
arithmetic

cSUB
cMULT
cREAL
cIMAG
cCONJ

CONTROL BARR barrier
HALT halt

Decode

Function Unit Status Table

PKG:
CONV M2:L0 <- M0:L64
rADD M1:L0 <- M2:L0 M3:L0
FFT M3:L0 <- M1:L0

FU status op D S1 S2 T1 T2
WINO run CONV M2 M0 == == ==
VEC run rADD M1 M2 M3 == ==
FFT wait FFT M3 M1 == VEC ==

MEM R W
M0 WINO
M1 VEC
M2 VEC WINO
M3 VEC

insn first row ? finish ?
CONV yes no
rADD no no

Instruction Status Table Memory Status Table

first row ready

first row ready

CONV

rADD

FFT

time time

CONV
rADD FFT

❹Register
memory
usage ❷Read dependency

❶Register
instruction

❸Wait for dependency solved

❺Issue instruction

❻Clear entry
when finish

31.4%

84.2%

0%

20%

40%

60%

80%

100%

w/o Inst.
Chaining

w Inst.
Chaining

Ha
rd

w
ar

e
Ut

ili
za

tio
n

Object Tracking

Correlation Filter =

Target
Extracted Features

Px

Py

Gaussian
Location
Label

Feature
Permutation

CF

Train
(in Fourier-domain)

PDFx

PDFy
Particles

PDFx

PDFy

Expectation

t+1'

t+1

t

Trained
CNN

Particle Filter CF Inference

CF TrainingFeature Extraction

CF
k

CF
1+

Peak

X

X

Xw0

w1

wk

CF
0

Adaptive Boosting

SPI
Controller

AXI Interconnect

Debug
Unit

Inst.
Memory

Data
Memory

RISCV
Core

SPI JTAG

MEM MEMFFT

VEC

WINOMEM MEM

Controller

Instruction
Interface Memory Interface

VOTA

Memory
Module 1

Memory
Module 2

Memory
Module 3

Memory
Module 0

WINO
Core

VEC
Core

FFT
Core

2Kb Connect

r w

rw

r/w
r/w
w

w64 banks

64 banks 64 banks

64 banks

Memory
Module

0

Memory
Module

2

Memory
Module

3

Memory
Module

1

WINO Core

VEC Core

FFT Core

RISCV

3.3 mm

3.6 mm

3.1 m
m 3.6 m

m

Fig. 1. Visual object tracking (VOT) based on correlation filter.

Fig. 2. Oriented Particle Correlation Filter (OPCF) – a CF-based
VOT enhanced by adaptive boosting and particle filters.

Fig. 3. The computational kernels of a CF tracker.
(a) (b)

Fig. 4. (a) Diagram of the VOT SoC integration, (b) the high
bandwidth star-ring topology.

(d)

(a) (b) (c)

Fig. 5. (a) VOTA’s frame-based ISA, (b) reduction in code size by
frame-based ISA over vector-based ISA, (c) format of a frame
instruction, (d) frame-based processing.

(a)

(b)

(c)

(d)

Fig. 6. (a) Comparison between the conventional and Winograd
convolution, (b) pipeline stages of a WINO unit, (c) mapping of
input tiles to WINO units, (d) the dataflow in WINO and buffer
states of input registers.

(a) (b)

Fig. 7. (a) FFT core with a 64-point complex FFT machine and a
transpose buffer, (b) illustration of the execution of a 2D FFT.

(b)

(a)

(c)

Fig. 8. (a) Illustration of the format and execution of an instruction
package, (b) diagram of the instruction-chaining controller, (c)
comparison of the utilization with and without instruction-chaining.

Fig. 9. Chip photograph.

Table I: Comparison with Prior Works

Fig. 10. Power measurements. Fig. 11. Performance measurements.

0
100
200
300
400
500
600

50 100 150 200 250

Po
w

er
 (m

W
)

Frequency (MHz)

Supply Voltage

1.05V1.00V0.90V0.80V0.72V

*Derived from a figure **Fixed-point in VFE ***Floating-point in BE

Kernel Feature Extraction CF Training CF Inference Adaptive Boosting Particle Filter
Convolution 

FFT/inverse FFT   
Real Vector Addition     

Real Vector Multiplication    
Real Vector Division 

Complex Vector Addition   
Complex Vector Multiplication   

Complex Number Conjugate  
Matrix Transpose   

...

...

Output Reg

FFT Vector Machine

Transpose Buffer
(Bi-directional shift

register)

Input Reg

❶Row-wise
1D FFT

❷Transpose

❸Row-wise
1D FFT

❹Transpose

❺Writeback

Input 1st pass through FFT 2nd pass through FFT

This Work Whatmough[6] Oh[7] Lee[8] Suleiman[9]

Application Visual Object
Tracking

DNN, DSP,
Security DNN Training DNN Training Visual-inertial

Odometry

Technology
(nm) 28 16 14 65 65

Area (mm2) 10.23 25 9.844 16 16.07
SRAM 576KB 9MB 2MB 372KB 854KB

Frequency
(MHz) 60 - 230 353.8 - 732.48 1000 - 1500 50 - 200 62.5**/83.3***

Power (mW) 90 - 508 - - 43.1 - 367 27

Throughput 193 - 720
GFLOPS (FP16) 10 - 100 GOPS* 2000 - 3000

GFLOPS (FP16)
>300 GFLOPS

(FP16)

10.5 – 59.1
GOPS**/

1 - 5.7
GFLOPS***

Power
Efficiency

2.45 TFLOPS/W
(FP16) 1.04 TOPS/W 1.4 TFLOPS/W

(FP16)
1.74 TFLOPS/W

(FP16) -

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:53:40 UTC from IEEE Xplore. Restrictions apply.

		2021-07-26T18:00:33-0400
	Preflight Ticket Signature

