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Abstract— A correlation filter (CF) is a lighter and faster
solution for visual object tracking (VOT) compared with a
deep neural network (DNN). However, the CF-based track-
ers introduce diverse computational kernels and require FP16
computations. To address these challenges, we present a VOT
accelerator (VOTA), a domain-specific accelerator for CF-based
VOT that meets real-time performance at high efficiency, while
providing flexibility and programmability. The VOTA encom-
passes a Winograd convolution core (WINO), a fast Fourier
transformation (FFT) core (FFT), and a vector core (VEC)
for diverse kernels, integrated in a high-bandwidth star-ring
topology. The VOTA’s frame-based instruction set and execution
enable a 537 GFLOPS performance, adapt to variances of CF
trackers, and reduce the code size. An instruction-chaining mech-
anism permits inter-core pipelining and improves the hardware
utilization up to 84.2%. A 10.2-mm2 28-nm FP16 system on
chip (SoC) prototype incorporating the VOTA, an RISC-V host
CPU, and other supportive peripherals is taped out and measured
to achieve 2.45 TFLOPS/W at 0.72 V. Running the oriented
particle CF (OPCF), a CF tracker enhanced by adaptive boosting
and particle filtering, the SoC chip achieves 1157 frames/s (640
× 480 frame size) at 0.9 V and 175 MHz, consuming 296 mW.

Index Terms— Correlation filter (CF), multicore accelerator,
pipelining, visual object tracking (VOT), Winograd convolution.

I. INTRODUCTION

V ISUAL object tracking (VOT) is a computer vision
task. Given the first frame in a video and the initial

position of a target object, VOT obtains the positions of the
object in the subsequent video frames. VOT finds practical
applications in surveillance [1], transportation [2], robotics [3],
and human–computer interface [4].
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Many recent VOT approaches have been designed based
on deep neural networks (DNNs). Examples of DNN-based
trackers include MDNet [5], TCNN [6], and DNT [7], which
all apply a tracking-by-detection approach. However, a DNN-
based tracking by detection approach is expensive, requiring
on the order of 10 GOPS of computing for a low-resolution
input frame and accessing on the order of 100 MBs of
weight storage. For example, DNT [7] uses VGG16 [8] as its
backbone, which requires 36 GOPS of computing over each
224 × 224 RGB image and 276 MBs of weight access. These
translate to a high energy cost per frame. Online adaptation
by training of DNN is also impractical, given the costly DNN
training computation and long latency.

Correlation is a classic approach for signal detection and
pattern matching, and it has been widely used in signal
processing [9], [10], scientific experiments [11], and biomed-
ical imaging [12]. Bolme et al. [13] pioneered the correlation
approach in VOT by inventing the correlation filter (CF).
In the 2014 VOT Challenge [14], three CF trackers took
the top spots in performance. Since then, CF trackers con-
tinue to be among the top performers in the annual VOT
Challenges [15]–[20].

CF tracks by correlating filters over an input, and the target
is located by the maximum response [13], [21]. CF is com-
monly realized in the Fourier domain to simplify correlations
with element-wise multiplications, and the filter adaption is
done in parallel. Compared with DNN-based trackers, a CF
tracker is a lighter and faster approach without performing
detection on each frame. However, to support online training
and Fourier-domain processing, a floating-point format, such
as FP16, is required.

The state-of-the-art trackers combine convolutional neural
network (CNN) and CF [22]–[25]. The rationale is that instead
of operating on raw pixels, CF can operate in the feature
space to improve its performance. For an edge platform, it is
advantageous to combine a lightweight CNN front end with a
CF back end to provide a good performance while keeping the
complexity under control. Using this setup, a front-end CNN
extracts features. For each feature, a CF is learned. To track
a set of features associated with an object, multichannel CFs
are adopted. After correlation, the multichannel responses are
summed to locate the object.

In this work, we propose additional techniques to further
improve the tracking performance and robustness, including
adaptive boosting to adjust the weighting of each channel, and
particle filtering [26], a Monte Carlo method, to narrow down
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Fig. 1. Illustration of VOT: tracking a cup held by a hand.

the likely target regions to support fast motion. We name the
algorithm oriented particle CF (OPCF).

Computationally, OPCF is a representative of an advanced
CF tracker that requires diverse kernels, including convolution
for CNN processing, fast Fourier transformation (FFT)/inverse
FFT (IFFT) for conversion to Fourier domain for CF process-
ing, and various real and complex vector operations. A custom
application-specific integrated circuit (ASIC) is the most effi-
cient way to implement OPCF with a fixed set of parameter
choices. However, different problems require different sets of
parameters and processing routines, and an ASIC lacks the
flexibility to support a broad range of CF algorithms. A GPU
provides the best flexibility, but it may not achieve the highest
efficiency.

We present a programmable visual object tracking accelera-
tor (VOTA) [27] to efficiently support the class of advanced CF
trackers. VOTA employs three heterogeneous cores, a Wino-
grad convolution core (WINO), an FFT core (FFT), and a
vector core (VEC), all in FP16, to support the VOT computa-
tional kernels. The WINO is optimized for small-kernel con-
volutions; FFT is specialized for 2-D complex FFT/IFFT, and
VEC provides flexible vector operations. VOTA adopts image-
frame-based instructions to ease programming and reduce
the code size. VOTA supports “chaining” of instructions via
inter-core pipelining, allowing the hardware utilization to be
maximized. VOTA is integrated with an RISC-V CPU, which
acts as the host and provides the programmability.

The rest of this article is organized as follows. In Section II,
we provide the background of VOT approaches. In Section III,
we present OPCF, our benchmark workload. Section IV elab-
orates on the architecture of VOTA and its component designs.
In Section V, we introduce the instruction-chaining techniques
to improve the hardware utilization. Silicon measurement
results and system evaluations are presented in Section VI.
Section VII concludes this article.

II. CF TRACKERS FOR VOT

An example of VOT is shown in Fig. 1, where the initial
location of the cup is given, and VOT tracks the location of the
cup in each subsequent video frame highlighted in a bounding
box.

In general, a CF is a trained feature filter. When the CF
is applied to an input frame, it produces a response that
corresponds to the location of the object. As an illustration,
Fig. 2(a) shows an input target (t), a cup, and the CF ( f )
trained on tracking the cup. The input is correlated with the
CF, and the output is a Gaussian response (r ) that indicates the
presence and the center location of the cup. Mathematically,

Fig. 2. Illustration of CF operation. (a) Correlation between an input target
(t) and the CF ( f ) that produces a response (r). (b) Correlation performed in
the Fourier domain.

the correlation is described by

r [i, j ] =
k∑

p=−k

k∑

q=−k

f [p, q]t[i + p, j + q]. (1)

In CF, r , f , and t are all (2k + 1) × (2k + 1). The index of
t wraps around when it overflows or underflows out of the
range.

The correlation in the spatial domain can be computed
more efficiently in the Fourier domain [13]. As illustrated in
Fig. 2(b), correlations are computed by element-wise multipli-
cations after the input and the CF are converted to the Fourier
domain by 2-D FFT. The computation is described by

r̂ = f̂ � t̂ . (2)

The spatial response can be recovered by an IFFT.
The Fourier domain computation also simplifies CF training,

allowing CF training to be done alongside tracking, a sig-
nificant advantage compared with DNN-based trackers. Early
work by Bolme et al. [13] demonstrated online training of CF
directly from the input video frames. Subsequently, histogram
of oriented gradients (HOG) features [28] were used to train
multiple CFs, forming the multichannel CF approach [29].
However, multichannel CF raises a robustness issue that less
reliable channels may contribute to ambiguous responses.
Some techniques were proposed to improve the reliability.
CSRDCF [30] uses channel reliability scores to weigh channel
responses. MCCT [23] maintains multiple experts with each
one learning a certain combination of features, and it uses an
adaptive switch to select the most reliable expert that yields
the best performance for each frame.

The CF algorithm itself also evolved over the years.
KCF [21] applies nonlinear kernels to CF training and infer-
ence to allow the tracker to adapt to a wider range of target
variations. In more recent work, including DeepSRDCF [15],
[31], C-COT [22], MCCT [23], CFCF [24], and MFT [25],
CF trackers were combined with CNNs as dedicated feature
extractors, because extracted features capture the target object
more accurately than descriptor features [28] or hand-crafted
features. CF has also been combined with particle filter [32]
and Siamese network [33], [34] to improve the tracking
robustness.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:43:46 UTC from IEEE Xplore.  Restrictions apply. 



3492 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 11, NOVEMBER 2022

Fig. 3. Steps of the OPCF algorithm. (a) Feature extraction. (b) CF training. (c) CF inference. (d) Particle filtering.

Beginning in 2013 [35], the annual VOT Challenge ranks
participating trackers by accuracy and robustness. CF trackers
first made the top ranking in VOT 2014, and they have since
dominated the top-10 ranking. CF trackers’ excellent accuracy
and robustness are largely due to their support of online
training, a feature that DNN-based trackers lack due to the high
cost of DNN training. Furthermore, even with online training,
CF trackers generally require significantly less computation
than entirely DNN-based trackers. In VOT 2016 [16], the top-
two real-time bound trackers were CF trackers, Staple+ and
SSKCF. Even with adaptive techniques to eliminate the need
for complete online training, DNN-based trackers, such as
[5]–[7], are among the slowest trackers [15], [16].

III. CF TRACKER DESIGN AND

IMPLEMENTATION CHALLENGES

We create OPCF, a CF-based VOT algorithm for an edge
platform. OPCF is designed based on the state-of-the-art CF
trackers, and it captures their key computational features.
OPCF serves as a representative of advanced CF trackers.

A. Algorithm Description

OPCF operates on a continuous video stream divided into
64 × 64 snippets. OPCF comprises four steps, feature extrac-
tion, CF training, CF inference, and particle filtering.

1) Feature Extraction: At the beginning of tracking, a snip-
pet containing the target is selected from the first frame.
Then, such as modern CF trackers [22], [23], [31], OPCF
uses a pre-trained CNN as the front end to extract n features
from the target. Unlike a deep CNN used for recognition, the
CNN front end in a CF tracker is used for extracting features
and denoise only; thus, it is much shallower than a typical
deep CNN. A deep CNN is also not suitable for CF, because
the deep layers cause features to lose spatial information of
the target. A shallow CNN in a CF tracker also allows the
computation to be kept lightweight. In this work, the CNN
consists of three convolution layers, as illustrated in Fig. 3(a).
An autoencoder [36] can also be used in place of the CNN to
enable unsupervised training of the feature extractor.

Fig. 4. Computational steps of (a) CF training and (b) CF inference.

2) CF Training: After feature extraction, a CF is trained
for each of the n extracted features, as shown in Fig. 3(b),
producing n CFs. The training computation is done in steps,
as shown in Fig. 4(a), where x is the training input, y is the
expected Gaussian response, and α̂ is the computed CF in
the Fourier domain. CF training is performed in the Fourier
domain, so a 2-D FFT is applied to x and y to obtain x̂
and ŷ. The “kernel trick” from KCF [21] is adopted for
better adaptation to nonlinear transformations of the target.
In this work, we use a polynomial kernel to simplify the
computation. In the Fourier domain, the self-correlation p̂xx

is computed first by element-wise multiplication, followed by
computing the kernelized self-correlation k̂xx . Finally, the CF
is computed by element-wise division of ŷ by k̂xx . CF training
is mathematically described by

α̂ = ŷ

k̂xx + λ
(3)

where λ is a small value to avoid the divide-by-zero exception.
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TABLE I

COMPUTATIONAL KERNELS OF AN OPCF TRACKER

3) CF Inference: The inference is first done on the image
snippet at the location where the target is detected in the
previous frame or manually specified (in the first video frame
or upon a tracking failure). We use multichannel CF infer-
ence [29] where each CF trained is applied to an independent
channel, producing n channels of output, as illustrated in
Fig. 3(c). The steps of inference are shown in Fig. 4(b).
z is the input, and r is the output. CF inference is also
done in the Fourier domain. A 2-D FFT is first applied to
z to obtain ẑ. The cross correlation with the training input
x̂ is computed by element-wise multiplication, followed by
computing the kernelized cross correlation k̂xz . Finally, the
inference is computed by element-wise multiplication with the
CF α̂ and converted to the spatial domain. CF inference is
mathematically described by

r̂ = k̂xz � α̂. (4)

In practice, not all channels are of equal importance. Accord-
ing to the response quality of each CF, we assign a weight
to reward strong CFs over time. The responses from channels
are weighted and summed to produce the final response. The
weights {wi} are learned by adaptive boosting [23], [30] and
updated every time the target is successfully located. The
approach boosts the contribution of reliable channels and
suppresses unreliable ones. The final response peak is further
checked against a threshold: if it is above a threshold, the
target is located; otherwise, the target is missing, possibly due
to fast motion.

4) Particle Filtering: To adapt to fast motion, we utilize
particle filtering [26], a Monte Carlo method, to quickly nar-
row down the likely target regions using binary search. When
the target is missing in the current snippet, additional snippets
are sampled from the video frame according to the historical
distribution of the target appearance. CF inference is applied
to these additional snippets until the target is successfully
located. Compared with a brute-force search, particle filtering
uses binary search in the x- and y-directions to reduce the
processing complexity from O(n2) to O(log n). Modern CF
trackers such as MCPF [32] also adopted particle filtering.

After the target is located in the current frame, the CFs
are trained and updated for inference for the next frame. The
pseudocode of the OPCF algorithm is listed in Fig. 5.

Fig. 5. Pseudocode of the OPCF algorithm.

B. Implementation Challenges

Table I shows the level of diversity of computation kernels
required by OPCF, which includes convolution, FFT/IFFT,
vector operations, and matrix transpose. The diverse kernels
present challenges for implementing CF trackers in hardware.
General-purpose solutions, such as GPU, do not provide the
best efficiency due to non-vectorized kernels such as FFT
and complicated control overhead such as single instruction,
multiple threads (SIMT) stack [37], operand collector [38],
and caches [39], [40]. The existing ASICs only support a
subset of kernels and lack flexibility [41]–[43]. In addition,
CF trackers such as OPCF rely heavily on online training,
which requires FP16 computations. FP16 is commonly not
supported by inference ASICs.

To address these design challenges, a domain-specific accel-
erator for CF trackers is needed to meet real-time performance
at high efficiency, while providing flexibility and program-
mability to accommodate variations of CF algorithms. The
design requirements of such a domain-specific accelerator are
as follows:
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Fig. 6. (a) VOTA SoC system and (b) VOTA’s multiple cores and memory
modules in a high bandwidth star-ring topology.

1) provide multiple heterogeneous cores to support all
computation kernels;

2) offer sufficient performance for real-time operations;
3) maintain high hardware utilization.

In the following, we describe the microarchitecture and
hardware design features of VOTA to address these require-
ments.

IV. VOTA MICROARCHITECTURE DESIGN

VOTA is a heterogeneous multicore accelerator made up of
three functional cores and four shared 1-Mbit memory mod-
ules. The three functional cores are a WINO, an FFT, and a
VEC, all in FP16, to support the diverse computational kernels
for VOT. The WINO is optimized for small-kernel convolu-
tions; the FFT is specialized for 2-D complex FFT/IFFT, and
the VEC provides vector operations. The cores are instruction
programmable. A controller decodes instructions to control
signals to enable executions on the three cores.

VOTA is integrated into an open-source RISC-V platform,
Pulpino [44], which includes an RISC-V CPU, an instruction
memory, and a data memory over an Advanced Extensible
Interface (AXI) interconnect, as shown in Fig. 6(a). The
RISC-V CPU serves as the host to VOTA. The host sends
instructions and inputs to VOTA through an instruction inter-
face and a memory interface, respectively. The instruction
interface is stream-based. It sets up the producer–consumer

pair where the host produces and sends instructions contin-
uously while VOTA receives and consumes them. The host
provides the flow control of a program. The memory interface
provides random access. The host can load data into any 32-bit
memory word.

A. Star-Ring Topology

The cores and memory modules are connected using a high-
bandwidth network-on-chip (NoC), as shown in Fig. 6(b). The
NoC allows the three cores pass data through the four shared
memory modules. Compared with a shared global bus that
can be a communication bottleneck and a crossbar that cannot
be implemented efficiently, we choose a star-ring topology to
fit the common communication patterns between the cores in
executing VOT programs.

Based on common communication patterns, VEC is placed
in the center of the star to handle vector processing, shap-
ing, passing, pre-processing, and post-processing for WINO
and FFT. The read/write access to the memory modules is
assigned, as shown in Fig. 6(b): the data flow is limited to
one direction for WINO and FFT to reduce the communication
bandwidth; VEC can initiate WINO and FFT processing by
writing to the source memory modules and read/move the
outputs of the two cores from the destination memory modules.

Each memory module supports wide word access with over
44-GB/s bandwidth to each core through multiple 2-Kbit-wide
interconnects. A simple arbiter allows multiple cores to share
a memory module in three access modes: 1) access a vector
of 128 real numbers that corresponds to two rows in a 64 ×
64 frame of real values; 2) access a vector of 64 complex
numbers that corresponds to a row in a 64 × 64 frame of
complex values; or 3) random access of any 32-bit word by
the host.

B. Frame-Based ISA

Despite the diverse computational kernels, all the processing
can be done on standard frames to streamline the data storage
and flow. Accordingly, we define a frame-based instruction set
architecture (ISA) for VOTA to simplify the programming of
the three functional cores and reduce the code size.

A frame instruction operates on a frame of 64 × 64 real
(FP16) or complex (2 × FP16) numbers. The format of a
frame instruction is shown in Fig. 7(a). It consists of three
parts: 1) opcode that specifies the operation; 2) destination
that encodes the starting address where the output frame of
the instruction is written to; and 3) source that encodes the
starting address where the input frame is read from. Table II
summarizes the frame instructions supported by WINO, FFT,
and VEC. Two additional instructions, barrier (BARR) and
halt (HALT), are included for flow control. The frame-based
ISA significantly reduces the code size. Taking the example
of OPCF, the frame-based ISA reduces the code size by 34×
over a vector-based ISA, as shown in Fig. 7(b).

The three cores implement frame-based processing by first
decomposing a frame instruction into row operations, and then
executing the row operations by pipelined vector units. The
process is demonstrated in Fig. 7(c), and it exploits two levels
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Fig. 7. VOTA’s frame-based ISA. (a) Format of a frame instruction.
(b) Reduction in code size by frame-based ISA over vector-based ISA.
(c) Frame-based processing and two levels of parallelism.

TABLE II

VOTA’S FRAME-BASED ISA

of parallelism: 1) parallel processing of numbers in a row ➀

and 2) parallel processing of multiple rows ➁.

C. Functional Cores

The three functional cores, WINO, FFT and VEC, were
designed for frame-based processing.

1) WINO: It adopts the Winograd algorithm [45] as an
efficient way to compute 3 × 3 convolutions that are pop-
ular in the state-of-the-art CNNs. The comparison between a

Fig. 8. Comparison between the conventional convolution and the Winograd
convolution.

conventional convolution and a Winograd convolution is pre-
sented in Fig. 8. In this example, the conventional convolution
computes a 3 × 3 filter g by a 4 × 4 input d convolution in a
sliding window manner and generates a 2 × 2 output Y . In the
Winograd convolution, the 3 × 3 kernel g is first transformed
to a 4 × 4 weight matrix W in pre-computation. Then, three
more steps follow: 1) d transform: the 4 × 4 input d is
transformed to 4 × 4 matrix F ; 2) element-wise multiplication:
P = W � F ; and 3) inverse transform: the 4 × 4 product P
is transformed into a 2 × 2 matrix Y .

The Winograd convolution illustrated earlier uses 2.25×
fewer multiplications than the conventional convolution. The
reduction is attributed to two factors: 1) computing an
element-wise multiplication W � F in the Winograd convolu-
tion costs 16 multiplications, while computing a conventional
convolution costs 36 multiplications, and 2) the transforms and
inverse transforms in the Winograd convolution can either be
pre-computed (i.e., g transform) or done using only additions
and subtractions.

In VOTA, a WINO unit is designed to compute a 3 × 3 ker-
nel by a 4 × 4 input tile convolution in a four-stage pipeline:
d transform, element-wise multiplication, and two stages for
the inverse transform. The WINO contains 32 WINO units to
process 32 overlapping 4 × 4 input tiles at a time, constituting
four input rows in a frame (with padding). The assignment of
the input tiles is illustrated in Fig. 9(a). To support a stride-
of-1 convolution, each tile overlaps with the neighboring tile
by two rows/columns.

The inputs to the WINO units are through a set of input
shift registers, as shown in Fig. 9(b). Reg 0 to Reg 3 buffer
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Fig. 9. Illustration of WINO operations. (a) Mapping input tiles to WINO units. (b) WINOs’ operating steps.

the active region of computation. Reg 4 serves as the input
waiting area. In every clock cycle, two rows of an input frame
are fetched into Reg 3 and Reg 4, and the data buffered in the
registers are shifted downward. After two cycles of initial load-
ing, the active region contains four rows, and the 32 WINO
units start to compute. WINO produces two output rows in
each cycle. The output rows are buffered by an output register
before being written back to a memory module. The input
registers allow the input to be reused between adjacent WINO
units and across clock cycles. A weight register stores the
pre-computed weights W and broadcasts them to the WINO
units to allow weight reuse.

WINO also supports kernels of other sizes: a 1 × 1 convolu-
tion can be realized by bypassing stages, and a 5 × 5 or larger
convolution can be done by overlapping 3 × 3 convolutions.

2) FFT: It is designed to perform 2-D FFT and 2-D IFFT.
Fig. 10(a) shows the composition of the FFT. The FFT vector
machine is pipelined in seven stages for computing a 64-point
complex FFT or IFFT. The matrix transpose required by 2-D
operation is supported by a transpose buffer implemented in
a bidirectional shift register array.

A 64 × 64 2-D FFT is computed in two passes through
the FFT vector machine followed by a transpose after each
pass, as shown in Fig. 10(b). Within each pass, 1-D FFTs
are performed row-by-row by the FFT vector machine in a
pipelined fashion. IFFT is computed by reversing the pipeline
in the FFT vector machine to reuse the same set of compute
units.

3) VEC: It is responsible for the all vector operations.
It contains 64 VEC units, each made of a pipelined
FP16 floating-point unit (FPU) that performs real and com-
plex arithmetic operations. The supported operations are

Fig. 10. (a) Design of FFT that contains a 64-point complex FFT vector
machine and a transpose buffer. (b) Execution flow of a 2-D FFT.

summarized in the VEC section in Table II. The list includes
real and complex addition (rADD/cADD), real and complex
subtraction (rSUB/cSUB), real and complex multiplication
(rMULT/cMULT), real division (rDIV), real number square
(rSQ), and obtaining real and imaginary part (cREAL/cIMAG)
and conjugate (cCONJ) for complex numbers. The VEC also
handles direct data passing through move instructions for real
and complex vectors (rMV/cMV).

V. INSTRUCTION CHAINING AND INTER-CORE PIPELINING

VOTA is a heterogeneous multicore accelerator, and the
three functional cores can operate independently in parallel.
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Fig. 11. Design of the instruction-chaining controller.

However, the VOT program’s instructions are executed on all
three cores, and the instructions that share data dependencies
prevent the cores from running in parallel freely without data
hazards. To solve data hazards, a naive solution is to insert
a BARR instruction between any instruction pair with data
dependency, but BARRs result in low hardware utilization,
as a core needs to finish an entire frame instruction before the
next core can proceed.

In VOTA, the frame-based processing and the row-by-
row execution guide the design of each functional core and
expose regular computational patterns and parallelism. This
model also simplifies the tracking of data dependencies and
instruction issuing. As each frame instruction is broken into
row operations and each functional core produces one or
multiple rows of results in each cycle, it is possible to pipeline
the processing in units of rows, instead of frames, and allow
frame instructions with dependencies to run on multiple cores
in a fine-grained pipelined manner to improve core utilization.

To achieve this goal, VOTA adopts a hardware technique
that uses an instruction-chaining controller to track run-time
dependencies and issue instructions by exploiting inter-core
pipelining. Design of the instruction-chaining controller is
shown in Fig. 11. The instruction-chaining controller utilizes
several scoreboards to track data dependency and resource
availability to prevent data hazards. The functional unit status
table (FUST) tracks the usage of the cores. Data dependencies
are indicated by dependency tags T1 and T2, and the depen-
dent data sources are recorded in S1 and S2. The memory
status table (MST) tallies the availability of memory modules
and controls the arbitration of the wide memory connects.
The instruction status table (IST) informs the execution status
of each active instruction using two flags to indicate the
completion of the first row and the completion of the entire
frame processing. An incoming instruction is first decoded
and then registered in FUST. An instruction in FUST with
both dependency tags T1 and T2 cleared can be registered
in MST and IST and issued to a functional core to execute.
The instruction-chaining controller has negligible cost and
introduces only 0.005% and 0.029% overheads in area and
power, respectively, based on synthesis results.

Fig. 12. (a) Execution flow of an instruction package with instruction
chaining and inter-core pipelining. (b) Example of the execution of an
instruction-chaining package.

To align with the instruction-chaining controller, we aug-
ment VOTA’s frame-based ISA with a new structure called
instruction-chaining package in which instructions with data
dependencies are packed together and chained into an inter-
core pipeline. An example is shown as follows:

PKG:

CONV M2:L0 <= M0:L64

rADD M1:L0 <= M2:L0 M3:L0

FFT M3:L0 <= M1:L0.

In this instruction-chaining package, the second instruc-
tion (rADD) depends on the first instruction (CONV) as one
input operand of rADD is the output operand of CONV.
Similarly, the third instruction (FFT) depends on the sec-
ond instruction (rADD). As illustrated in Fig. 12(a), with
instruction chaining and inter-core pipelining, the downstream
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Fig. 13. Chip microphotograph.

instructions (rADD and FFT) do not need to wait for the entire
frame to be completed by their upstream instructions (CONV
and rADD, respectively) and can start whenever the first
row is produced by the upstream instructions. The inter-core
pipelining allows multiple cores to be active concurrently to
achieve a high hardware utilization.

An example of executing the above instruction-chaining
package is shown in Fig. 12(b). At the given time, the CONV
and the rADD instructions are in the pipeline, the status of
which are shown in IST: CONV has finished the first row,
so the data dependency tag T1 for the VEC in FUST has
been cleared, and rADD execution proceeds. Next, the FFT
instruction enters ➀. MST is read, and the data dependency
between the FFT and the rADD instructions is found ➁.
As a result, the data dependency tag T1 for the FFT is set.
The FFT waits for the VEC to finish the first row ➂. After
the VEC finishes the first row, the data dependency tag of
the FFT is cleared ➃, and the FFT instruction’s source and
destination memory modules are registered in MST ➄. Now,
the FFT instruction is ready to be issued ➅. The procedure is
followed for checking and clearing data dependency between
instructions.

The instruction-chaining controller performs in-order
instruction dispatch and issue, so the sequence of instructions
presented to the controller can affect the level of parallelism
the controller can see and exploit, which is characterized in
Section VI-A.

An alternative approach to our hardware implementation of
instruction chaining is with static scheduling by a compiler.
The compiler needs to step through the cycle-by-cycle oper-
ating scenarios to establish the static scheduling, making the
compilation more complicated. In comparison, our approach
incurs a light hardware overhead, but the compiler can be made
simple.

VI. CHIP MEASUREMENT RESULTS AND COMPARISON

VOTA is integrated with an RISC-V core in a system on
chip (SoC). The SoC was fabricated in a test chip in the TSMC
28-nm CMOS high performance compact mobile computing
plus (HPC+) process. The test chip has a core area of
10.2 mm2. A microphotograph of the chip is shown in Fig. 13.

Fig. 14. (a) Execution flow of a standard instruction-chaining program
(package by package). (b) Execution flow of an optimized program with
package interleaving. The instruction chaining packages are coded in gray
scales.

Fig. 15. Comparison of the hardware utilization of VOTA in three use
scenarios. (Scenario 1: a standard program without instruction chaining;
Scenario 2: a standard program with instruction chaining; Scenario 3: an
optimized program with instruction chaining.)

The chip contains a total of 3072 adders, 1536 multipliers,
and 128 dividers, all in FP16, and 576 kB of SRAM as the
instruction and data memory for the RISC-V core and the
memory modules in VOTA.

A. Hardware Utilization Analysis

The effectiveness of instruction chaining and inter-core
pipelining in improving the hardware utilization is evaluated
in three use scenarios: 1) a standard OPCF program executed
without instruction chaining; 2) a standard OPCF program
executed with instruction chaining and inter-core pipelining
enabled; and 3) an optimized OPCF program with optimal
instruction sequence executed with instruction chaining and
inter-core pipelining enabled.

The utilization in Scenario 1 is only 31%, because data
dependency between instructions limits that only one core
can execute most of the time. The same program is used
in Scenario 2 where only adjacent instructions are packed in
instruction-chaining packages. With instruction chaining and
inter-core pipelining, the utilization is more than doubled to
67% as multiple cores can be active concurrently through
fine-grained pipelining, as illustrated in Fig. 14(a). In Sce-
nario 3, the hardware utilization can be further improved
to 84% by optimizing the instruction sequence and inter-
leaving instruction-chaining packages. It results in a more
densely packed execution pipeline, as illustrated in Fig. 14(b).
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TABLE III

MEASURED THROUGHPUT OF VOTA RUNNING RELEVANT BENCHMARKS

Fig. 16. Measured throughput of VOTA running OPCF at 0.9 V in room
temperature.

Fig. 15 compares the hardware utilization of the three use
scenarios.

B. Chip Performance Results

The performance of the chip is evaluated at 0.9 V and
three different clock frequencies: 175, 154, and 100 MHz in
room temperature. The performance of VOTA is measured by
running OPCF as well as other VOT benchmarks, including
a standard CF [13], a KCF [21], and VGG16 for DNN-based
VOT [8]. The individual cores, WINO, FFT, and VEC, are
evaluated by executing Winograd convolutions, 2-D FFTs, and
vector-vector multiplications, respectively. In all evaluations,
a FLOP is defined as an addition, a subtraction, a multiplica-
tion, or a division in FP16.

The measured throughput for executing OPCF is plotted
in Fig. 16. The peak throughput of WINO, FFT, VEC,
and VOTA (total) measured in FLOP-per-second (FLOPS)
is shown in bars, and the throughput of executing OPCF
measured in frames/s is shown in the solid line. At 0.9 V
and 175 MHz, WINO, FFT, and VEC provide 403, 168,
and 67 GFLOPS, respectively, which sum up to 638 FLOPS in
total compute capacity. An optimized OPCF program operat-
ing on 640 × 480 inputs can utilize 537 FLOPS out of VOTA’s
compute capacity, enabling a 1157 frames/s throughput at a
0.86-ms latency. To demonstrate the versatility of VOTA, the
throughput of the chip running relevant benchmarks is listed
in Table III.

The measured power consumption of the chip with volt-
age and frequency scaling is shown in Fig. 17. At 0.72 V
and 100 MHz, the chip achieves the peak power efficiency
of 2.45 TFLOPS/W running the OPCF program, dissipat-
ing 124 mW. At the nominal voltage of 0.9 V, the chip

Fig. 17. Measured power consumption with voltage and frequency scaling.

Fig. 18. Performance comparison with Whatmough et al. [46].

consumes 296 mW at 175 MHz for a power efficiency of
1.81 TFLOPS/W.

C. Comparison With Prior Work

VOTA is a programmable domain-specific accelerator for
VOT to support advanced CF trackers. VOTA encompasses
three heterogeneous cores connected in a high-bandwidth star-
ring topology to support high-throughput computation involv-
ing different kernels. VOTA supports fine-grained inter-core
pipelining to improve utilization. VOTA also enables adaptive
online training with FP16 computations. Compared with recent
DNN and vision processors, VOTA demonstrates a high power
efficiency and a competitive compute density, as shown in
Table IV.

Whatmough et al. presented a highly flexible heterogeneous
SoC [46] for DNN and DSP that can potentially execute a CF
tracker. In particular, the convolution kernel can be mapped
to datapath accelerators and executed in a sliding window
manner at high power efficiency. The FFT kernel can be
mapped to eFPGA tiles. Within the eFPGA, DSP tiles can
easily perform the FFT computation, and the interconnection
networks in logic tiles can be customized for handling the FFT
butterflies. Matrix transpose and other vector operations can
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TABLE IV

COMPARISON WITH PRIOR WORK

also be realized in logic tiles. Alternatively, vector operations
can be executed by the ARM CPUs or by the single instruction,
multiple data (SIMD) units. The throughput of the datapath
accelerators and the throughput of the eFPGA tiles are both
around 100 GOPS, lower than the WINO and the FFT in
VOTA. Furthermore, the bit width of the on-chip data link
is limited to 128 bit, which limits the total throughput of
the chip to 40 GOPS if inter-core pipelining is adopted. For
this reason, activating cores in series is the optimal way to
run a CF tracker in [46]. Fig. 18 shows the performance
of VOTA compared with the estimated performance in [46]
for VOT benchmarks. VOTA outperforms [46], especially in
OPCF where the kernels are diverse and heavy in computation.
Finally, [46] only supports integer operations, which is not
suitable for advanced CF trackers that require Fourier-domain
processing and online training.

Navion [47] is a heterogeneous ASIC designed for
visual-inertial odometry (VIO)-based simultaneous localiza-
tion and mapping (SLAM) for autonomous navigation. It con-
sists of two front-end modules (VFE and IFE) that process
camera and sensor inputs and a back-end module (BE) that
solves equations and produces the object’s trajectory. Navion
adopts clock gating and fixed-point arithmetic in VFE for
high energy efficiency. However, Navion’s lack of instruction
programmability and inflexible processing pipeline, and lack
of FP16 support make Navion unsuitable as a domain-specific
accelerator.

VII. CONCLUSION

We present VOTA, a programmable domain-specific accel-
erator for advanced CF trackers. VOTA consists of three

FP16 cores: WINO, FFT, and VEC to support advanced CF
trackers’ diverse computational kernels. The cores are linked
in a star-ring topology to enable high-bandwidth connectivity
between the cores and to fit the communication patterns
between the cores in executing VOTA programs. VOTA is
integrated in an RISC-V platform, and it uses the RISC-V
CPU as the host in executing programs.

VOTA adopts frame-based ISA, and its instructions operate
on standard 64 × 64 frames to simplify programming. Inter-
nally, VOTA cores decompose frames to rows to be executed
by pipelined vector units. As a row is the smallest work
unit, fine-grained inter-core pipelining between cores is made
possible by chaining instructions to improve the hardware
utilization.

A 10.2-mm2 VOTA test chip was fabricated in the TSMC
28-nm CMOS HPC+ process. The chip is measured to provide
2.45 TOPS/W at 0.72 V and 100 MHz. When executing OPCF,
it achieves a throughput of 1157 frames/s (640 × 480 frame
size). Compared with a state-of-the-art SoC, VOTA’s through-
put is up to 5× higher with more than twice the power
efficiency.
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