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Abstract—Neural ordinary differential equations (NODEs)
provide better modeling performance with smaller amount of
model parameters in many tasks by embedding neural networks
(NNs) in ordinary differential equations (ODEs). They have
been shown to outperform in representing continuous-time data
and learning dynamic systems, and are promising for on-device
inference and training. However, an edge device is limited by
area and energy budget, and real-time operations have a tight
latency requirement. State-of-the-art NN accelerators are not
optimized for the area- and power-hungry memory storage and
access for NODE inference and training, and lack the flexibility
to incorporate dynamic latency reduction techniques. We present
eNODE by architecture-algorithm co-design to achieve efficient
and fast inference and training of NODEs. eNODE adopts
compact-size depth-first integration and depth-first training for
higher energy efficiency. Through function reuse, packetized
processing and a unified NN core design, the efficiency of
eNODE’s depth-first processing is further enhanced. We propose
algorithm innovations, including slope-adaptive stepsize search
and priority processing with early stop, to substantially shorten
the latency. A hardware prototype is synthesized in a 28 nm
CMOS technology for evaluation and benchmarking. eNODE
demonstrates up to 6.59× better energy efficiency, 2.38× higher
speed, and better area scalability over a SIMD ASIC baseline.

I. INTRODUCTION

Residual neural networks (ResNets) [14], [15] and their

variants [4], [16], [31], [32] have shown superior performance

in computer vision (CV), natural language processing and

many other tasks by enabling efficient training of very deep

neural networks (DNNs) [2], [12], [19], [20], [27], [28].

However, state-of-the-art ResNets and networks with residual

structures such as MobileNetV2 [26] feature a discrete layered

structure and lack the modeling capability for continuous-time

dynamic systems using moderate model size [5].

Continuous-time dynamic systems are often modeled math-

ematically by ordinary differential equations (ODEs). An ODE

is usually formulated based on a physical model f , and solved

by a numerical integrator over many time steps. With the

emerging use of neural network (NN) as a universal function

approximator, an ODE can be formulated based on an NN

model f trained based on the data collected by the dynamic

system. Similarly, the NN-based ODE can be solved by a

numerical integrator.

§These authors contributed equally to this work.
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Fig. 1. (a) A deep residual network defines a discrete sequence of finite trans-
formations. (b) A neural ODE network defines continuous transformations of
the state.

Interestingly, a residual block in ResNet [14] can serve as a

numerical integrator. A residual block consists of an embedded

NN f with a skip connection that resembles a one-step forward

Euler integrator as shown in Fig. 1(a): h(t+Δt) = h(t)+fΔt,
where h(t) and h(t+Δt) represent the input and the output

of the residual block, respectively, and Δt represents the

time step. A residual block is however a first-order numerical

integrator, and a ResNet has a fixed number of layers with

a fixed time step, limiting its ability in accurately modeling

continuous-time dynamic systems that require variable number

of layers and adaptive time step.

The performance for such systems can be greatly enhanced

by allowing more advanced numerical integrators, variable

number of layers and adaptive time step in the form of

neural ordinary differential equation (NODE) [5] as shown

in Fig. 1(b). Many NODE variants emerged soon after NODE

was invented [7], [9], [21], [30], [33], [34]. They are sub-

sequently generalized as a class of continuous-in-depth NNs,

or liquid NNs, [13], [24], where more complicated numerical

integrators like Runge-Kutta (RK) [25] are used to achieve
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stronger modeling smoothness and better performance.

A state-of-the-art NODE typically consists of a stack of

integration layers, similar to the layers in ResNet, but each

integration layer is subdivided into a set of evaluation points

at a suitable Δt time step, as shown in Fig. 2(a). At each eval-

uation point, a high-order RK integrator is called to perform

integration. To sum up, NODE introduces evaluation points

per integration layer at variable time steps and adopts high-

order integrators, providing better adaptivity and accuracy, but

costing one or two orders of magnitude higher latency and

complexity than conventional DNNs.

In continuous-time dynamic system modeling and control,

new data is collected continuously, requiring low-latency infer-

ence and quick updates to adapt to runtime changes. A cloud-

based solution is appropriate for handling the complexity of

NODE inference and training, but the latency of transferring

large amounts of data to the cloud can be significant, rendering

the cloud approach impractical. Moving NODE inference and

training to the edge, i.e., on robots, drones, probes, etc., pro-

vides low-latency data access, but an edge computing platform

is constrained in size and energy, posing significant challenges

to meet the latency requirement. In this work, we present

eNODE, a solution based on architecture-algorithm co-design

to bring energy-efficient and low-latency NODE inference and

training to the edge. We summarize the contributions of this

work as follows:

Depth-first integration and depth-first training: the

depth-first integration computes on the fly and extends the

pipeline of a high-order integrator, minimizing the local mem-

ory size and external memory access in every elementary step

of NODE inference and training. The depth-first training fur-

ther extends pipelining to reduce layer activation and gradient

memory usage. The aggressive memory reduction contributes

to a smaller size and a better energy efficiency.

Function reuse and packetized processing: a ring ar-

chitecture is designed to reuse function f in a high-order

integrator for energy-efficient processing in a compact size.

Forward and backward passes are supported by looping in

opposite directions along the ring. The depth-first integration

is packetized to ensure fully pipelining without stalling.

Unified NN core: a spatial array architecture is designed to

support convolution in both forward and backward directions

used by NODE inference and training. The design adopts

a processing element (PE) grouping to allow reuse of the

hardware during both forward and backward passes.

Expedited stepsize adjustments: two algorithmic tech-

niques are proposed to expedite the search of optimal step-

sizes: 1) slope-adaptive stepsize search uses slope history as

basis to predict the optimal integration stepsize; and 2) priority

processing and early stop prioritizes the processing of sections

of an input during a stepsize search to shorten the latency.

To the best of our knowledge, eNODE is the first hardware

architecture that supports all NODE features. An eNODE

prototype is implemented in RTL and synthesized in a 28nm

CMOS technology. The prototype demonstrates up to 2.38×
improvement in speed and 6.59× improvement in energy

efficiency over a SIMD ASIC baseline. Compared to an Nvidia

A100 deep learning GPU, eNODE provides 55× better energy

efficiency in training.

II. BACKGROUND

NODE models a dynamic system using a series of first-order

ODEs in the form (1).

dh(t)

dt
= f(t, h(t), θ), h(0) = x, t ∈ [0, T ], (1)

where h(t) is the system state at time t, and f is a shallow

NN called embedded NN with trainable parameters θ, i.e.,

weights in convolution layers. In the following, we will omit

θ and simply use f(t, h(t)) in describing inference.

A. NODE Inference

NODE inference involves solving initial value problems

(IVPs) to a series of ODEs like (1). For each ODE, given

an initial system state h(0), we compute h(T ), the system

state at time T as in (2). This is called one integration layer.

h(T ) = h(0) +

∫ T

0

f(t, h(t))dt. (2)

Numerical integration can be used to solve (2) over many

evaluation points spread over t ∈ [0, T ] with a stepsize Δt.
A numerical integrator is called at each evaluation point, as

illustrated in Fig. 2(a). The simplest integrator is an Euler

integrator (3), shown in Fig. 2(b).

h(t+Δt) = h(t) + f(t, h(t))Δt. (3)

A higher-order numerical integrator, such as the midpoint

integrator or the RK23 integrator illustrated in Fig. 2(b) can

be used to reduce the numerical integration error. Taking

RK23 as an example, it establishes a series of intermediate

integral states between the time interval [t, t+Δt]. These are

named k1, k2, k3, k4 in Fig. 2(b) and (c). The finer subdivision

into intermediate states enables better approximations of the

slope in each time step, but also increases the complexity as

obtaining each intermediate state requires an inference of the

embedded NN f . Readers can refer to [8] for other commonly

used RK integrators.

In short, NODE inference is done over a series of integration

layers, one per ODE that covers a certain time period. Each

integration layer is divided into evaluation points, where a

high-order integrator is called to perform fine-grained integra-

tion. A high-order integration requires multiple inferences of

the embedded NN f .

B. Stepsize Search for Numerical Integration

Other than the integration method and its order, the time
stepsize Δt between evaluation points determines the accuracy

of a numerical integrator. An adaptive integrator uses an

iterative stepsize search to find the optimal stepsize to achieve

the target accuracy while keeping the latency in check. An

estimated integration error e is computed after each search to

guide the adjustment.

803

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:43:11 UTC from IEEE Xplore.  Restrictions apply. 



f

f

+

(t) 

 

 

+

Midpoint RK-23

 

 

  

+

Euler

(t) 

Conv

BN

ReLU

Conv

BN

ReLU

 

f

(t) 

(t ) 

f +

f

f

+

f

+ +

e

 

 

 

RK-23 Equations

Trial Integration
 RK( ) 

Stepsize Adjustment

 
 

Stepsize Accept
 = 

factor   

if

if

Stepsize Init
 = C  or  =  

Accepted 
Stepsize

Eval. Point 3

Eval. Point 2

Eval. Point 1

Eval. Point n

1 

2 

3 

 

 

n 

Integration Layer 2

Integration Layer 1

A 4-integration-layer 
Neural ODE

Integration Layer 4

Integration Layer 3

(a) NODE inference with 4 integration layers (b) NODE with different ODE integrators: Euler is classical ResNet (c) Iterative stepsize search with RK-23 method

  

 

 

 

 

 

(t ) (t ) 

Fig. 2. NODE inference with RK23 integrator and iterative stepsize search.

We use the RK23 integrator as an example to describe

how an adaptive integrator works. Its description is shown in

Fig. 2(c). Using an iterative stepsize search algorithm [23], we

perform a trial integration with an initial stepsize Δttry based

on a pre-defined value C or the stepsize used in the previous

evaluation point Δtprev; compute the truncation error ẽtry;

and decide whether to accept or adjust Δttry . We repeat the

above steps until we find an acceptable stepsize to keep the

truncation error within a given tolerance ε.
A NODE inference pipeline, also called a forward pass,

is illustrated in Fig. 3, for one integration layer in an N -

integration-layer NODE (N is variable). A forward pass of an

integration layer consists of neval evaluation points. At each

evaluation point, the stepsize search is done over ntry times.

Each time it requires an integration trial using a high-order RK

integrator that evaluates f for s times to produce s integral

states. Therefore the compute complexity of a NODE inference

or a forward pass is O(N × neval × ntry × s), compared to

O(N) for a conventional DNN, posing challenges in energy

consumption and latency.

C. NODE Training

NODE training includes a forward pass and a backward pass

[5], [9], [33] as shown in Fig. 3. The forward pass is described

above. In the backward pass, a function called adjoint a(t) is

first computed that represents the loss gradients with respect to

the hidden state, or a(t) = ∂L
∂h(t) , where L is the loss function.

For each layer, a(t) is solved as an IVP to the ODE (4) [5] by

numerical integration backward in time from T to 0 for each

iteration layer.

da(t)

dt
= −a(t)T

∂f(h(t), t, θ)

∂h(t)
, a(T ) =

∂L

∂h(T )
. (4)

The parameter gradients are then calculated using the adjoint

by an integral described by (5) [5], and finally the model

parameters are updated.

dL

dθ
= −

∫ 0

T

a(t)T
∂f(h(t), t, θ)

∂θ
dt. (5)

A backward pass requires large memory to store inter-

mediate training states including the evaluation points and

the integral states at each evaluation point. The adaptive-

checkpoint-adjoint (ACA) method [33] reduces the memory

size while retaining the training accuracy. The ACA method

stores only evaluation points as checkpoints in each layer and

uses local forward steps to compute the intermediate states. In

particular, a backward pass repeats the following set of steps:

1) Local forward step: A forward integration is done from

a checkpoint ti to the next checkpoint ti+1 to recover

the intermediate states.

2) Adjoint calculation: With all the intermediate states from

ti to ti+1, the adjoint a(t) is computed backward from

ti+1 to ti via numerical integration to solve (4).

3) Parameter gradients calculation: The parameter gradi-

ents dL/dθ is calculated from ti+1 to ti via numerical

integration following (5).

An ACA backward pass pipeline is illustrated in Fig. 3 for

one integration layer. The compute complexity of an ACA

backward pass is O(N×neval×s) compared to O(N) for back

propagation in a conventional DNN. Note that a backward pass

adopts the stepsizes obtained in the preceding forward pass,

without needing stepsize search.

D. Performance and Memory Usage Profiling

In this study, we use a 4-integration-layer NODE with a

RK23 integrator (similar to the setup in [33], [34]) as shown

in Fig. 2(a). The NODE was trained with the classic CIFAR-

10 dataset [18] using the ACA method [33]. The numerical

integration error tolerance is set to ε = 10−6.

The NODE forward pass (inference) and backward pass are

profiled using an Nvidia A100 GPU on AWS. The average

latency breakdown for a training iteration is shown in Fig. 4(a).

We can see that the forward pass taking a large proportion

of the total latency. This is attributed to the long latency in

the iterative stepsize search. For applications that require a

high integration accuracy, the iterative stepsize search in the

forward pass is the major performance bottleneck, accounting

for 87% of the total latency as shown in Fig. 4(a).
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The memory usage profile is shown in Fig. 4(b) for NODE

inference (forward pass) and training (forward and backward

pass). The usage is compared to ResNet-100. Both NODE

inference and training cost more memory than ResNet, but

the difference in memory usage is much more pronounced

in training: NODE inference costs 2.5× more memory size

than ResNet, while NODE training costs 41.5× more memory

access than ResNet. The large difference is attributed to the

large increase of intermediate states that need to be stored in

and accessed from memory.

E. Design Goals and Applicability of NN Accelerators

The profiling above highlights the importance of designing

a NODE accelerator to minimize the high latency and high

memory usage. State-of-the-art NN accelerators can be used

for both NODE inference and training, but the inference en-

ergy and latency are expected to be at least two to three orders

of magnitude higher than NN inference, and the memory usage

and external memory access for training are expected to be at

least one order of magnitude larger. Given the higher compute

complexity and memory access, it becomes impractical to

deploy an NN accelerator for NODE operations in real time.

In the following, we present our architecture-algorithm co-

design approach to address the energy and latency challenge

for NODE inference and training.

III. ENODE HIGH-LEVEL ARCHITECTURE

A diagram of the eNODE high-level architecture is illus-

trated in Fig. 5. The architecture consists of instances of NN
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cores. Each NN core contains a PE array and local buffers.

The cores share a global buffer, as well as an external DRAM

and auxiliary function units through a controller and a global

router. The whole system can be programmed by a configure

interface. The weight mapping, dataflow configuration and

memory allocation are determined at compile time based on

the hardware and the algorithm specification of the target

NODE. The system is fully configured before execution.

The following sections elaborate on each part of the eNODE

architecture. In Section IV, we present depth-first integration,

which forms the basis of eNODE. Section V describes an

efficient mapping of forward and backward passes on the

eNODE architecture. Section VI details an unified NN core

design to support both forward and backward passes. In

Section VII, we present algorithmic innovations to further

improve the system latency and energy efficiency. Finally, we

present benchmark evaluations in Section VIII.

IV. DEPTH-FIRST INTEGRATION

NODE inference and training require a large amount of

memory due to the explosion of intermediate integral states

and training states. These intermediate states are typically

stored in a two-level memory hierarchy: an external DRAM

and a smaller on-chip SRAM cache. Reducing access to the

external DRAM while keeping a compact on-chip SRAM is

essential for reducing the energy consumption and making a

compact design.
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NODE is made of integration layers, which are processed

by high-order numerical integrators. Inspired by the depth-first

NN processing [1], [10], [11], we propose transforming a high-

order integrator’s compute graph to reduce external DRAM

access and minimize the on-chip SRAM size.

A. Formulation of Depth-First Integration

Using the RK23 integrator as an example: assume the in-

tegration is done in a conventional layer-by-layer mechanism,

the data dependency requires buffering the initial state h(t)
and all integral states k1 to k4. These buffered states need to

be kept until we finish computing the next state h(t+Δt) and

the error state e. This translates to a larger on-chip memory

or more external memory access. To tackle this problem, we

propose depth-first integrator following two criteria: 1) the

processing steps are fully pipelined so that the outputs from

one step are streamed to the next step for immediate processing

to reduce buffer size, and 2) the processing is ordered such that

once an input is available, all the downstream processing steps

using this input are done in parallel to reduce the buffering

time window. The approach allows us to minimize the size of

on-chip memory and off-chip memory access.

The data dependency graph (DDG) of a depth-first RK23

integrator is illustrated in Fig. 6(a). The nodes of the DDG

are the states, including the initial state h(t), the final state

h(t + Δt), the error state e and the integral states k1 to

k4. We factor out the partial states in computing the integral

states, namely pi,j , i ∈ {2, 3, 4}, j < i, and the partial states

in computing the error state, namely ei, i ∈ {1, 2, 3}. The

integration is scheduled by connecting these nodes following

the order shown in Fig. 6(a): 1) the first-order integral state

k1 is computed by applying f on h(t); 2) k1 is scaled by RK

coefficients and is accumulated with h(t) to obtain the low-

order partial states pi,1, i ∈ {2, 3, 4}; 3) the low-order integral

states kj are scaled and are accumulated with the low-order

partial states pi,j−1, j < i, to obtain the higher-order partial

states pi,j ; 4) the integral states k2, k3 and k4 are computed

by applying f to partial states p2,1, p3,2 and p4,3; 5) the partial

error states ei are computed when the associated integral states

are available.

The partial states factoring and the ordering of the depth-

first integration allow an input to trigger all dependent pro-

cessing in parallel to consume that input. The data depen-

dency does not cross one stage in the DDG, indicating that

the buffered data can be purged or overwritten right after

consumption. Fig. 6(b) explains the operation of the depth-

first integration. To simplify the illustration, we assume f is

made of one 3×3 convolution layer (recall that f is usually

made of a shallow set of NN layers). Referring to Fig. 6(b),

when a new input pixel 1© in h(t) arrives, it is immediately

convolved with the 3×3 kernel to produce a partial sum (psum)

patch to update the patch 2© in k1. After the update, the upper-

left pixel 3© in the patch is finalized as the input to trigger

all downstream processing that requires the pixel. After proper

scaling and accumulation with corresponding pixel 4© in h(t),
the downstream pixels 5© in p2,1, 6© in p3,1, 7© in p4,1, and 8©

in e1 are computed. In the following, 3© and 4© are no longer

needed and retired from the buffer. The newly generated 5©,
6©, 7© and 8© will move forward in computing new pixels in

k2, p3,2, p4,2 and e2, respectively. The processing is ordered

such that an input is consumed by all downstream processing

that requires the input, so that the input can be quickly retired

from the buffer. The processing is fully pipelined and stalling

is eliminated by a packetized processing architecture to be

presented in Section V.B.

The depth-first integrator cuts the buffer usage significantly.

The buffer usage for each state and partial state depends on

the lifetime of the data, defined as the period from when it is

first produced to when it is last used. For instance, the integral

states, k1, k2, k3 and k4, in the form of partial states, require

one row of buffer for each partial state as seen in Fig. 6(b),

due to a one-line lag between the production and consumption

of partial state pixels; the convolution layers each requires two

rows of buffer around the convolution window, which depends

on the size of the convolution kernel (3×3); and the buffering

for the rest is minimal. Altogether, the buffer size is reduced

from 5 full feature maps to store h(t), k1, k2, k3 and k4 (320

rows for 64× 64 feature maps) to only 15 rows.

B. Depth-First Training

Building upon the depth-first integrator, we propose depth-

first training to further reduce the memory cost of the in-

termediate training states in the backward pass. An example

backward pass using a RK23 depth-first integrator is illustrated

in Fig. 6(c). We assume f consists of 4 convolution layers.

The backward pass only computes the integral states k1,

k2 and k3. Starting from a checkpoint h(t), it uses a local

forward step to compute all the training states including the

integral states k1, k2 and k3 and the internal convolution

layer states. Then the adjoint a(t) and parameter gradients are

computed backwards using the training states. Since a depth-

first integrator is used, we can start computing the adjoint

when the last training state (k3’s conv4 state) has enough

inputs. The adjoint calculation also proceeds in the depth-first

manner, consuming inputs along the backward pass. Only the

early produced training states of longer lifetime need to be

stored to an external DRAM. Later produced training states

with shorter lifetime can be stored on chip for immediate use

by the adjoint calculation, as illustrated in Fig. 6(c). These

later produced training states can be quickly retired after use

to save on-chip memory.

In this example, given a 4-layer f , the memory size is

reduced by 4.85 times for layer size of 64×64. The reduction

leads to power savings, because SRAM and DRAM dominate

the training power consumption.

V. FUNCTION REUSE AND PACKET PROCESSING

A high-order integrator requires multiple evaluations of an

identical f function with identical weights. For example, an

RK23 integrator evaluates the same f function four times.

Therefore, a compact architecture can be made for one f
function and the function along with the loaded weights can be
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reused to implement one integrator to achieve high efficiency.

We design eNODE architecture to facilitate function reuse.

Function reuse requires folding the entire integrator onto

one set of hardware, which creates a problem for the imple-

mentation of the depth-first integration as it typically requires

unfolding the compute graph as illustrated in Fig. 6(a). To

enable depth-first processing in a folded architecture, We

propose to packetize depth-first processing.

A. eNODE Architecture for Function Reuse

As a prototype, we construct a 4-core system that consists

of 4 depth-first NN cores, and each maps a convolution layer

to implement a 4-layer f function, as illustrated in Fig. 7(a).

A NoC connects the 4 NN cores in a ring. A loop around

the ring completes one f evaluation. A high-order integration

requires looping through the ring multiple times. A forward

pass loops in the clockwise direction while a backward pass

loops in the counter-clockwise direction. The NN cores and

their stored weights are reused between loops. The function

reuse leads to efficient weight reuse.

The 4 NN cores are connected to a central hub that includes

a controller and a global router that can be programmed

to manage the data and control flow of different types of

integrators. Through the global router, the central hub accesses

four peripherals: an integral accumulator that performs scaling

and accumulation in an integration step; an integral state buffer

that stores the integral states; a function unit that computes loss

function and truncation error norm for stepsize search; and a

DRAM controller that accesses external data that cannot fit in

on-chip memory. The global router moves data between the

NN cores and the peripherals.

The dataflow of a forward pass is illustrated in Fig. 7(b).

The central hub routes the initial state from an external DRAM

to NN core 1 to start the computation. One loop around all NN

cores in the clockwise direction completes one f evaluation.

During the evaluation, each NN core keeps the buffered

lines of partial sums (psums) in convolution layers locally.

The integral accumulator then computes integral partial states

which are then stored to the integral state buffer. Due to the

reduction in buffering of integral states, the integral state buffer

can be kept small and implemented entirely on chip. The

function unit computes error and decides whether to accept

the current stepsize. If accepted, the final state of the current

step is stored to the external DRAM as one checkpoint.

A backward pass repeats sets of a local forward step and a

backward step. The local forward step reads a checkpoint from

the external DRAM and computes training states as shown

in Fig. 7(c). The training states that will be reused soon are

buffered on chip. The training states that will be reused later

are stored to the external DRAM. In a backward step, adjoint

and weight gradients are calculated with the training states in

the counter-clockwise direction around the NN cores as shown

in Fig. 7(d). The weights are updated locally.

The eNODE architecture can be extended to support a

deeper f and each NN core can map multiple layers as shown

in Fig. 7(e), but a shallow f is the most common for NODE.

Layers can also be split and mapped on multiple NN cores.

B. Packetized Processing

In depth-first processing, data continues to move forward.

After the early data completes the first loop, it continues to the

second loop. An NN core in a ring needs to handle multiple

streams concurrently. In a conventional design, an NN core

blocks the second stream until the first stream completes,
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which defeats the purpose of the depth-first processing. We

propose to packetize the processing to unblock later streams.

The control mechanism of the packetized processing is

illustrated in Fig. 8 for computing the RK23 integrator. The

controller retains four state buffers to store the inputs for

the four f evaluations to compute k1, k2, k3 and k4, as

required by the RK23 integrator. A priority selector monitors

the availability of inputs in the state buffers and dispatches the

inputs for different streams. Inputs are packetized, each with

a tag to identify the stream it belongs to and its index (in our

prototype, an input packet size of R× S × C = 1× 1× 8 is

used). A later stream is given a higher priority to continue the

data consumption and free up buffer space.

At the start, BUF 1 input is dispatched to NN core 1 to start

the first stream to compute k1. After the first input is written to

BUF 2, the priority selector switches to BUF 2 and dispatches

input to NN core 1 to start the second stream to compute k2.

Similarly, when the first output of the second stream becomes

available, the third stream takes over, and so on. After the later

streams consume the outputs, the earlier streams resume. In

this way, the buffer usage is minimized.

In the example illustrated, eNODE reuses the NN cores in

packetized processing. It supports various types of integrators

and different orders that can be used for NODE. The hardware

utilization depends on the balance between an NN core’s

compute capacity and the bandwidth of the ring that links the

controller and the NN cores. In particular, the link bandwidth

needs to be sufficiently high to maintain a high utilization of

the NN cores. In the 4-core, 4-layer f example above, the NN

core is designed for a 576 GFLOPS compute capacity, and it

requires 1 GB/s link bandwidth for full utilization.

VI. UNIFIED NN CORE DESIGN

Each NN core in eNODE is a depth-first NN engine that

supports both forward pass and backward pass used by NODE

inference and training. The design of an NN core is shown in

Fig. 9(a). The NN core includes a channel collector, a PE array,

a line buffer, a pre-/post-processing unit and a training state

buffer. The channel collector packetizes inputs and distributes

them to the PE array. The PE array is a MAC array with an

adder tree to perform convolution. The line buffer caches lines

of psums for depth-first convolution. The pre-/post-processing

unit computes Norm and ReLU layers. The training state

buffer caches training states.

In our prototype design, the PE array contains 64 PEs

to support the processing of 8 input channels and 8 output

channels. A convolution layer with more than 8 input channels
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and output channels can be mapped to the PE array by time-

multiplexing. Each PE caches a 3×3 kernel for input channel

C and output channel M and is labeled PECM (simply as CM
in Fig. 9(a)). The PEs are organized in groups to facilitate the

reuse of the adder tree in both forward and backward pass. An

example is shown in Fig. 9(a), where the 64 PEs are divided

into 8 groups. Group 0 contains PEi,i, i ∈ {0, 1, ..., 8}; Group

1 contains PEi,(i+1)%8; Group 2 contains PEi,(i+2)%8; and so

on, where % is the modulo operator.

The grouping unifies the processing of convolution in both

forward pass and backward pass. In a forward pass, an input

packet of 8 input channels are broadcast to the PE array.

Within each group, the 8 PEs each take one input channel from

the packet and perform multiplications to compute 9 psums for

input channel C and output channel M . For example, PE74

in Group 5 multiplies an input with its cached 3×3 kernel

to obtain a set of 9 psums at C = 7 and M = 4. This

set of psums are accumulated with 7 other sets of psums

(C = {0, 1, 2, 3, 4, 5, 6},M = 4), one set from each of the

remaining groups to compute the summation as illustrated in

Fig. 9(b). The adder tree contains 8 parallel lanes to perform

parallel summing of psums from 8 output channels.

In a backward pass, the adjoint is computed by convolution

in the backward direction. In the convolution, the input and

output channels switch their roles, but the processing pipeline

is completely reused with flipped weight kernel shown in

Fig. 9(c). For example, PE74 in Group 5 multiplies an adjoint

input with the flipped 3×3 weight kernel to obtain a set of 9

psums at M = 4 and C = 7. This set of psums are accumu-

lated with 7 other sets of psums (M = {0, 1, 2, 3, 5, 6, 7}, C =
7), one set from each of the remaining groups to compute the

summation using the same adder tree. Weight gradients (ΔW )
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are computed using the same PEs. The unified forward and

backward convolution pipeline allows the reuse of the PEs,

the cached weights and the adder tree.

VII. EXPEDITED STEPSIZE ADJUSTMENTS

As seen from the profiling in Section II.C, the forward pass

in NODE inference and training dominates the overall latency.

The key contributor to the long latency is the iterative stepsize

search at each evaluation point. We propose slope-adaptive

and priority processing techniques to shorten the latency of

the iterative stepsize search.

A. Slope-Adaptive Stepsize Search

The stepsize is the unique and the most important knob in

NODE. The optimal size of a step is the largest size for the

step that meets the error tolerance. In a conventional stepsize

search, a fixed starting stepsize is used. Then through each

search trial, if the stepsize results in an unacceptable error,

the stepsize is scaled down. The stepsize choice affects the

latency: smaller stepsizes result in more evaluation points and

longer latency, while larger stepsizes result in larger errors and

require more search trials and thus longer latency to meet a

given error tolerance.

The problem with the conventional stepsize search method

is that it uses a nearly fixed scaling factor and ignores

how fast the state changes. If the slope is fast-varying, the

stepsize needs to be adjusted more aggressively. We present an

improved stepsize search method based on the recent history

of the evaluation points and adapt the scaling factor to reach

more optimal stepsizes using fewer search trials.

Our method is illustrated in Fig. 10. The stepsize Δttry
is initialized to either a constant stepsize C or Δt from the

previous evaluation point. We use a counter Cacc to track the

number of consecutive evaluation points that accept the initial

stepsize before the current evaluation point. An increase in

Cacc indicates that current stepsize Δttry is small and the error

tolerance is always met. It could also indicate that the slope is

increasing. We set a threshold sacc, such that if Cacc ≥ sacc,

the scaling factor is set to β+ = sigmoid(Cacc), β
+ > 1, to

opportunistically increase the stepsize to reduce the number

of evaluation points. Similarly, we use another counter Crej to

track the number of consecutive evaluation points that reject
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Fig. 11. Number of trials per integration layer and training accuracy using
slope-adaptive stepsize search across different datasets with ε = 10−6.

the initial stepsize. An increase in Crej indicates that the

current stepsize Δti is too large and/or the slope is changing

quickly. We set a threshold srej , such that if Crej ≥ srej , the

scaling factor is set to β− = sigmoid(−Crej), 0 < β− < 1,

to decrease the stepsize to reduce the number of search trials.

Experimented in solving classic image classification prob-

lems (CIFAR-10 [18] and MNIST [6]) and modeling two

representative dynamic systems (Three-Body equations [3]

and Lotka-Volterra equations [29]), the slope-adaptive stepsize

search can effectively reduce the latency by up to 6.7× (for

CIFAR-10 dataset) as shown in Fig. 11. However, as an

approximation algorithm, it may impact the accuracy. Using a

threshold of sacc = srej = 3, the accuracy degradation across

different datasets can be kept within 1%, while still achieving

similar trial reduction as sacc = srej = 1. Further increasing

the thresholds improves the training accuracy, but diminishes

the trial reduction as indicated in Fig. 11.

B. Priority processing and early stop

At each evaluation point, search trials are performed to

adjust the stepsize until the L2 norm of the truncation error

‖e‖2 falls within the error tolerance ε. Each trial traverses the

entire input feature map to compute the intermediate integral

states k’s and estimate the truncation error norm ‖e‖2 as shown

in Fig. 12(a), representing a significant latency bottleneck. We

observe that the truncation error norm is often dominated by

only a portion of the output feature maps, namely, the high

error region. Therefore, we propose priority processing and

early stop as explained by Fig. 12(b), where the high error

region is identified and prioritized for processing, aiming to

stop the search trial early for latency and energy saving.

The depth-first integrator computes e incrementally, if a

partially computed ‖e‖2 exceeds ε, a search trial can be

terminated early to cut the latency. To make it even more

effective, the processing needs to be priority-ordered as shown

in Fig. 12(b). At each evaluation point, we use the first

search trial as initialization, where we compute the entire trial

integration and identify the region of input that contributes

high error. This high error region is outlined by a number of
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Fig. 13. Number of trials per integration layer and training accuracy using
priority processing and early stop in (a) image classification workloads and
(b) dynamic system workloads with ε = 10−6.

consecutive rows in the truncation error map (e) that have the

largest ‖e‖2 and corresponds to a priority processing window

of height Ĥ at the input feature map. Then, in subsequent

search trials, the high error region is processed first by the

depth-first integrator. If partial ‖e‖2 of the high error region is

still less than ε, the depth-first integrator continues to process

the remaining rows; otherwise the trial can be stopped early.

The trial reduction and impact on accuracy by priority

processing and early stop are illustrated in Fig. 13(a) and (b)

for different choices of window size Ĥ . In general, applying

the approach helps reduce the number of trials, but a smaller

window size tends to degrade the accuracy. For the image

classification workloads (CIFAR-10 and MNIST), keeping

the accuracy degradation within 3% requires a window size

Ĥ ≥ 16. For the dynamic system workloads (Three-Body

problem and Lotka-Volterra equations), a window size of

Ĥ ≥ 8 ensures less than 3% accuracy drop. One can choose

a proper combination of sacc, srej and Ĥ to meet the target

accuracy for a given workload.

VIII. EVALUATIONS AND BENCHMARKING

We developed a parameterized cycle-accurate model of eN-

ODE for performance analysis and memory access profiling.

A prototype of eNODE was also implemented in RTL and

synthesized in a 28 nm technology for performance, area

and power evaluation. We used PrimeTime to estimate the

power consumption based on activities of running complete

integration steps of the benchmarks. The power consumption

of DRAM accesses was estimated by the Ramulator DRAM

simulator [17]. For comparison, a cycle-accurate model and a

RTL implementation of an ASIC baseline were also developed.

The ASIC baseline was designed in a weight-stationary SIMD

architecture with local psum accumulation [22]. It processes

NODE layer by layer. The baseline contains the same number

of MAC units as the eNODE prototype for a fair comparison.

All designs use FP16 precision to support ODE applications.

Designs were evaluated by running training and inference

on two image classification workloads: CIFAR-10 [18] and

MNIST [6], and two dynamic system workloads: Three-body

equation [3] and Lotka-Volterra equations [29]. These are

the most common benchmarks used by the NODE algorithm

community.

The Three-Body equation describes the trajectories of plan-

ets and interactions in space. The equation is given in (6),

where G is the gravitation constant; ri is the location of planet

i, each of dimension 3; r̈i is the second derivative with respect

to time; and mi is the mass of planet i.

r̈i = −σj �=iGmj
ri − rj

|ri − rj |3 . (6)

Lotka-Volterra equations describe the dynamics of a biolog-

ical system in which two species, predator and prey, interact.

The equations are given in (7), where x is the number of preys;

y is the number of predators; ẋ and ẏ are the first derivatives

with respect to time t; others are the parameters of a biological

system.

ẋ = αx− βxy, ẏ = δxy − ηy. (7)

A. Memory Size and Area

The baseline design for NODE needs to buffer the entire

initial state h(t) and all integral states ki. eNODE’s depth-

first integration reduces memory usage for integral states,

but requires additional line buffers to store lines of psums

for convolution layers. However, as stated previously, shallow

810

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:43:11 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 14. Normalized integral states storage size for different integrators, layer
sizes, and number of conv layers in f .

Fig. 15. (a) Normalized training states storage size for different integrators,
layer sizes, and number of layers in f . (b) The effectiveness of a local buffer to
eliminate external DRAM access for training states. The example uses RK23
integrator with 4 conv layers in f . (c) Area scalability comparison of eNODE
with the ASIC baseline.

NNs, e.g., 4-layer f , are the most common for NODE, limiting

the line buffer size. Fig. 14 summaries the reduction with

different choices of integrators, layer sizes and number of

convolution layers in f . The memory size reduction depends

on the layer size and more reduction is possible for large layer

sizes. This is because for a layer of size H×W×C, eNODE’s

memory size is O((W +1)×C) while the baseline’s memory

size is O(H × W × C). For example, for a layer size of

64× 64× 64, eNODE’s memory size is 60% smaller than the

baseline; and for a layer size of 256 × 256 × 64, eNODE’s

memory size is 90% smaller than the baseline.

eNODE’s depth-first training reduces storage for training

states as summarized in Fig. 15(a). The reduction is also

dependent on the layer size and the depth of f . For a 4-layer

f , the storage size is reduced by more than 45%. With the

sizable reduction, we can opt for a smaller on-chip memory

to eliminate the external DRAM access for training states.

As shown in Fig. 15(b), a 1 MB on-chip memory reduces

the external DRAM access for training states in eNODE to

0.48 MB, a 21× reduction compared to the baseline; and

a 1.25 MB on-chip memory in eNODE fully eliminates the

DRAM access for training states. In comparison, a 6 MB on-

TABLE I
MEMORY AND AREA BREAKDOWN OF BASELINE AND ENODE

Baseline eNODE

MB mm2 MB mm2

Configuration A For Layer Size: 64×64×64
Core & Control - 3.53 - 3.66
Weight Buffer 2.25 5.34 2.25 5.34

Integral State Buffer 2 9.24 0.44 2.03
Line Buffer - - 0.5 2.31

Training State Buffer 1.25 5.78 1.25 5.78
Total 5.5 23.89 4.44 19.12

Configuration B For Layer Size: 256×256×64
Core & Control - 3.53 - 3.66
Weight Buffer 2.25 5.34 2.25 5.34

Integral State Buffer 32 147.84 1.76 8.13
Line Buffer - - 2 9.24

Training State Buffer 4.9 22.64 4.9 22.64
Total 39.15 179.35 10.91 49.01

Fig. 16. Inference and training power consumption of baseline and eNODE.

chip memory is required by the baseline to remove the DRAM

access for training states.

eNODE demonstrates favorable area scalability. Table I lists

the memory and area breakdown of ASIC baselines and eN-

ODE prototypes targeting two layer sizes. In Configuration A

for the layer size of 64×64×64, the eNODE prototype saves

1.06 MB in on-chip SRAM and 20% in total area over the

ASIC baseline; and in Configuration B for the layer size of

256× 256× 64 the eNODE prototype saves 28.24 MB in on-

chip SRAM and 72.7% in total area over the ASIC baseline.

Fig. 15(c) summarizes the area scalability for different layer

sizes. The eNODE design scales nearly linearly while the

ASIC baseline scales quadratically.

B. Power Consumption

eNODE reduces power consumption by reducing and even

eliminating DRAM accesses through depth-first processing. In

inference, depth-first integration keeps intermediate activations

in the dataflow pipeline and on-chip buffers throughout the

integration steps. In comparison, the ASIC baseline transfers

intermediate activations of every NN layer between the cores

and the DRAM. Fig. 16(a) summaries the inference power for

all benchmarks using Configuration A in Table I. On average,

eNODE reduces the DRAM power from 5.65 W to 0.48 W

and reduces the total power from 9.32 W to 4.43 W, a 2.1×
reduction over the baseline.
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Fig. 17. Speedup by eNODE over baseline in inference and training.

Fig. 18. Energy efficiency of eNODE and baseline inference and training.
ResNet-200 is used in (b).

In training, the backward pass requires training states to

be stored to DRAM for later computation, which costs more

power. In eNODE, depth-first training eliminates most of the

DRAM access for training states, thus reducing the average

DRAM power from 11.03 W to 0.85 W for Configuration A,

as shown in Fig. 16(b). The average training power is reduced

by 3.05× over the baseline, from 14.72 W to 4.82 W.

C. Speedup

With the expedited stepsize adjustments, eNODE achieves

speedup in both inference and training. Fig. 17(a) and (b)

summarize the speedup in inference and training for the

Three-Body and the Lotka-Volterra benchmarks over the ASIC

baseline for Configuration A in Table I. In the experiments, ε
is set to 10−6, sacc and srej are both set to 3 for the slope-

adaptive stepsize search, and Ĥ is set to 10 for the priority

processing and early stop. The parameter settings ensure less

than 2% drop in accuracy across all benchmarks. In inference,

eNODE achieves 1.87× and 2.38× speedup over the baseline

on Three-Body and Lotka-Volterra, respectively. In training,

eNODE achieves 1.6× and 2.09× speedup over the baseline

on Three-Body and Lotka-Volterra, respectively.

D. Energy Efficiency

We evaluate the energy efficiency of eNODE in terms of

energy per inference (J/inference) and energy per training

iteration (J/training iteration) using Configuration A in Table I.

Fig. 18(a) summarizes the energy of the two dynamic system

benchmarks: Three-Body and Lotka-Volterra. Both the depth-

first integration and the expedited algorithms (labeled “EA”

in Fig. 18) play a role in improving eNODE’s energy: the

depth-first integration reduces the DRAM power; and the expe-

dited stepsize adjustments reduce the computation complexity,

shorten the latency and improve the throughput.

Without the expedited algorithms, eNODE’s depth-first ar-

chitecture alone provides 3.12× and 3.16× lower energy in

training over the baseline on Three-Body and Lotka-Volterra,

respectively; and 2.1× lower energy in inference on the

two benchmarks. Putting together expedited algorithms and

depth-first integration, eNODE provides 5× and 6.59× lower

energy in training over the baseline on Three-Body and Lotka-

Volterra, respectively; and 3.94× and 5× lower energy in

inference on the two benchmarks, respectively.

eNODE compares favorably to conventional NNs in terms

of energy in performing same tasks of comparable accuracy.

For example, ResNet-200 was proven to achieve a comparable

accuracy with NODE in certain tasks [24], but eNODE outper-

forms ResNet-200 (mapped on the ASIC baseline) in energy,

e.g., in running the MNIST image classification benchmark [6]

as shown in Fig. 18(b). Even without the expedited algorithms,

eNODE still outperforms ResNet-200 in training.

Compared to an Nvidia A100 deep learning GPU on AWS,

eNODE reduces the CIFAR-10 training energy by 55×. Note

that unlike eNODE, A100 does not target edge compute.

IX. CONCLUSIONS

NODE is an emerging paradigm for modeling dynamic

systems. NODE’s complexity and memory usage significantly

exceed those of conventional NNs. It is impractical to deploy

an NN accelerator designed for real-time NN operations to

perform NODE operations in real time.

We present eNODE, an architecture-algorithm co-designed

NODE accelerator. To reduce memory and memory-associated

power consumption, eNODE makes use of depth-first integra-

tion at each elementary step of NODE processing. The high-

order integrator’s compute graph is factored and the steps

are ordered such that whenever an input becomes available,

all dependent processing is triggered in parallel, allowing the

input to be quickly consumed and retired from the buffer

to save memory. Based on depth-first integration, eNODE

employs depth-first training to further reduce the memory of

intermediate training states in the backward pass.

To improve efficiency, eNODE implements function reuse

on the same hardware. The eNODE architecture is based on

a ring of NN cores with cached weights. A loop around

the ring implements a function evaluation. The function and

weights are reused by looping multiple times. The processing

is packetized to allow multiple concurrent loops to support

depth-first integration. The NN core also supports both forward

pass and backward pass using the same hardware.

To improve latency, eNODE adopts two algorithmic ap-

proaches to alleviate the bottleneck in the iterative stepsize

search trials: a slope-adaptive stepsize search to find the

optimal stepsize based on recent slope history, and priority

processing and early stop to process high-priority windows

and terminate a search trial early to save latency.

An eNODE prototype is implemented in RTL and syn-

thesized in a 28nm technology. The prototype uses 60%

less memory in inference and costly DRAM access can be

eliminated with proper local buffer size choice. The eNODE

prototype demonstrates up to 6.59× lower energy and 2.38×
higher speed over a SIMD ASIC baseline.
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