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Abstract—The continuous growth of deep neural network
model size and complexity hinders the adoption of large models in
resource-constrained platforms. Tensor decomposition has been
shown effective in reducing the model size by large compression
ratios, but the resulting tensorized neural networks (TNNs)
require complex and versatile tensor shaping for tensor contrac-
tion, causing a low processing efficiency for existing hardware
architectures. This work presents TetriX, a co-design of flexible
architecture and optimal workload mapping for efficient and
flexible TNN processing. TetriX adopts a unified processing
architecture to support both inner and outer product. A hybrid
mapping scheme is proposed to eliminate complex tensor shaping
by alternating between inner and outer product in a sequence
of tensor contractions. Finally, a mapping-aware contraction
sequence search (MCSS) is proposed to identify the contraction
sequence and workload mapping for achieving the optimal
latency on TetriX. Remarkably, combining TetriX with MCSS
outperforms the single-mode inner-product and outer-product
baselines by up to 46.8× in performance across the collected
TNN workloads. TetriX is the first work to support all existing
tensor decomposition methods. Compared to a TNN accelerator
designed for the hierarchical Tucker method, TetriX achieves
improvements of 6.5× and 1.1× in inference throughput and
efficiency, respectively.

Index Terms—Tensor decomposition, tensorized neural net-
work (TNN), neural network accelerator, tensor contraction
sequence search.

I. INTRODUCTION

THE recent advancement in artificial intelligence and
machine learning is to a large degree attributed to the

development of deep neural network (DNN), and its convo-
lutional neural network (CNN) and recurrent neural network
(RNN) variants. To keep improving the accuracy, DNN mod-
els grow larger every year, at a rate of 1.5 to 2× increase
in model size and model complexity every year [1], [2]. The
increasing model size and complexity create large storage and
compute requirements for the underlying compute hardware
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Fig. 1. Illustration of model weight and tensor decomposition for TNNs.

that is becoming out of reach. State-of-the-art models can still
be deployed on server-scale or desktop platforms using high-
end GPUs and CPUs, but they are practically infeasible for
resource-constrained platforms i.e., mobile, edge, and smart
sensors, due to area, power, and cost budgets.

To meet these demanding requirements, many researches
have been done to reduce the model size and complexity with-
out degrading the accuracy. The popular compression meth-
ods through network pruning [3], e.g., unstructured pruning,
offers good compression of a network model but the sparse
data formats, e.g., compressed sparse row (CSR), often re-
sult in irregular computation and memory access, leading to
lower hardware utilization. Alternatively, low-rank approxima-
tion methods, e.g., singular-value decomposition (SVD) [4] and
matrix factorization [5], approximate the model’s weight matrix
using low-rank representations. These methods produce regular
data structures, but they often struggle to reach a good balance
between compression and accuracy.

Recently, tensor decomposition [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], a high-order generalization of the low-rank
methods, has gained much progress in network model com-
pression by demonstrating a larger compression than the 2D
methods [4], [5] while maintaining the accuracy [26]. Fig. 1
illustrates the tensor decomposition of different DNN layer’s
weights. For example, a hierarchical Tucker (HT)-based long
short term memory (LSTM) can achieve a 6,700× compression
in parameter size while improving the accuracy by 17.8% in
video action classification [19]; and tensor train (TT) was used
to compress the fully connected (FC) layers in VGG-16 by
37,732× (7.4× overall network compression), losing only 1.1%
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TABLE I
DECOMPOSITION OF NETWORK LAYERS

Layer Type Decomposition Method References
FC/MLP Tucker/TT/TR/HT/BT [6], [7], [8], [9], [10], [11], [12]
CONV TT/HT/BT [8], [9], [11]

GRU/LSTM TT/TR/HT/BT
[9], [11], [13], [14], [15], [16],

[17], [18], [19], [20]
Attention TT/BT [21], [22]

Embedding TT [23], [24]

in accuracy in image classification [6]. New tensor decompo-
sition methods continue to emerge to improve the compression
while minimizing any accuracy loss [25]. Note that the model
compression ratio and the accuracy are solely attributed to
the tensor decomposition method, the parameter selection, and
the training or retraining approaches. They are unrelated to the
compute hardware that performs the inference, except for the
numerical quantization adopted by the hardware.

A network compressed by tensor decomposition is named a
tensorized neural network (TNN). It is often the case that tensor
decomposition is applied to certain layers of a model. As a
result, a network can consist of a combination of uncompressed
layers and “TNN layers” (or “tensorized layers”). Table I sum-
marizes the layer types and the decomposition methods that
have been used in existing TNN works.

The combination of high compression ratios and the ability
to retain structured data formats have made TNNs particu-
larly attractive for the mobile and edge inference applications.
However, performing inference over TNNs requires high-order
tensor contraction operations. Compared to a traditional vector
or matrix multiplication, a tensor contraction requires additional
tensor shaping steps, such as arbitrary tensor reshape,
permute, and transpose, in order to map a tensor into
a 2D representation in memory for matrix multiplica-
tion. These tensor shaping steps require additional memory
operations, such as read-permute-write, read-transpose-write,
which can reduce the computational efficiency on general-
purpose processors. For custom accelerators, optimizing ten-
sor shaping is possible by designing memory access patterns
that align with the datapath and enable efficient processing
through coalescing memory access and computation. However,
existing DNN/CNN accelerators [27], [28] are optimized for
fixed tensor orders (2 for DNN, 4 for CNN) and lack support
for flexible TNN workloads with arbitrary tensor orders. On
the other hand, existing TNN accelerators [29], [30], [31] are
designed for specific tensor decomposition methods using fixed
tensor shaping patterns, e.g., TT for TIE [29] and HT for
FDHT [30]. This limitation restricts their ability to support a
wider range of TNN workloads, including the newly proposed
decomposition methods.

In this work, we present TetriX, a co-design that combines
a flexible accelerator architecture with optimal workload map-
ping to enhance the efficiency of TNN inference. The TetriX
architecture employs a configurable dataflow that supports both
inner and outer product computations, along with index trans-
lation and output gathering mechanisms for efficient tensor
shaping in arbitrary contraction sequences. TetriX’s flexibility

enables a hybrid mapping scheme that seamlessly switches
between inner and outer product mappings, simplifying TNN
processing by completely eliminating complex tensor shaping.
To identify the optimal contraction sequence with minimum
latency and memory usage on TetriX, we introduce mapping-
aware contraction sequence search (MCSS), based on the hy-
brid mapping scheme. Unlike existing works that are limited to
a single tensor decomposition method, TetriX is the first design
to support all decomposition methods. In our evaluation, we
observed that TetriX with MCSS consistently outperforms base-
line accelerator designs that rely on fixed mapping and contrac-
tion schemes across diverse workloads for all decomposition
methods. Compared to TIE and FDHT, TetriX demonstrates
performance improvements of up to 5.2× for TT-TNNs and up
to 31.5× for HT-TNNs, respectively.

II. BACKGROUND

In general, the DNN computation, i.e., FC, LSTM, gated-
recurrent unit (GRU), and self-attention layers, can be formu-
lated as a vector-matrix multiplication between an input vector
x ∈ R

N and a weight matrix W ∈ R
M×N to obtain an out-

put vector y ∈ R
M using y[j] =

∑N
i=1 W [j,i] · x[i]. Here, we

adopt a notation convention that represents vectors, matrices,
and tensors (order ≥ 3) using boldface lowercase letters (v),
boldface capital letters (M ), and boldface script letters (T ),
respectively [32].

In a TNN, a large weight matrix is decomposed into a se-
ries of small and high-order tensors using tensor decomposi-
tion methods. For tensor decomposition, the 2D weight matrix
W is first tensorized into either W ∈ R

(m1×n1)×···×(md×nd)

or W ∈ R
m1×···×md×n1×···×nd (where M =

∏d
k=1 mk, N =

∏d
k=1 nk) depending on the tensor decomposition method.

Similarly, input vector x and output vector y must be ten-
sorized into input tensorX ∈ R

n1×···×nd and output tensorY ∈
R

m1×···×md , respectively, and d is the order of input and output
tensors. The computation of a TNN layer can be represented by
a tensor contraction as in Eq. (1).

Y [j1,...,jd] =

n1∑

i1=1

· · ·
nd∑

id=1

W [j1,i1,...,jd,id] ·X [i1,...,id] (1)

A. Tensor Decomposition Methods

Research works have demonstrated the effectiveness of sev-
eral tensor decomposition methods in compressing DNNs,
CNNs, and RNNs for diverse applications such as video classi-
fication, natural language understanding, image classification,
and large-scale recommendation model [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26]. These tensor decomposition methods
vary in terms of their type, number, order, and topology of the
decomposed tensors, resulting in different compression ratios
and model accuracies. Here, we provide a brief overview of
the commonly used tensor decomposition methods. To ensure
simplicity and consistency, we modify the naming and notation
conventions from existing literature.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 22,2024 at 01:44:41 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: TETRIX: FLEXIBLE ARCHITECTURE AND OPTIMAL MAPPING FOR TNN PROCESSING 1221

TABLE II
COMPARISON OF TENSOR DECOMPOSITION METHODS

Method Network Topology Number of Nodes Number of Parameters
Matrix - 1 MN

TT Chain d O(dmnr2)

HT Binary Tree 2d − 1 O(dr(mn + r2))

TR Ring d O(dr2(n + m))

BT Tree S(d + 1) O(S(dmnr + rd))

Tensor Train (TT): The TT decomposition method de-
composes a weight tensor W into d4th-order tensors G(k) ∈
R

rk−1×mk×nk×rk , where k ∈ [1, d], forming a chain structure
[33]. Here, G(k) and rk represent the k-th core tensor and its
rank, respectively, and r0 = rd = 1 by definition.

Hierarchical Tucker (HT): The HT decomposition method
hierarchically decomposes a weight tensor W into d 3rd-order
tensors G(k) ∈ R

rk×mk×nk , for k ∈ [1, d], and d− 1 3rd-order
transfer tensors U (s) ∈ R

rs×rs1×rs2 . This decomposition re-
sults in a binary tree structure [34]. Here, G(k) and U (s) repre-
sent the leaf and non-leaf nodes of the binary tree, respectively.

Tensor Ring (TR): The TR decomposition method is a varia-
tion of the TT decomposition method. It creates a ring structure
by connecting the first and last tensors using r0 = rd =R,
where R≥ 1, to enhance its expressiveness [35]. In the TR de-
composition, a d-th-order weight tensor W is decomposed into
dn 3rd-order tensors G(kn) ∈ R

rkn−1×nk×rkn , for kn ∈ [1, dn],
as well as dm 3rd-order tensors G(km) ∈ R

rkm−1×mk×rkm , for
km ∈ [dn + 1, d]. Here, d= dn + dm.

Block Term (BT): The BT decomposition method combines
the key features of the canonical polyadic (CP) decomposition
and the Tucker decomposition [32], [36]. In a BT-TNN with
a CP-rank S, the d-th-order weight tensor W is decomposed
into S Tucker-formats. Each Tucker-format contains a trans-
fer tensor U (s) ∈ R

r1×···×rd and d 3rd-order tensors G(s,k) ∈
R

rk×mk×nk , where s ∈ [1, S], k ∈ [1, d].
In general, TT is considered the simplest decomposition

method because of its simple and regular structure, and it can be
supported by most of the existing TNN accelerators [29], [31].
HT, TR, and BT are more complex decomposition methods
that rely on complex structures to achieve a higher compres-
sion ratio or a better accuracy. Besides the methods mentioned
above, novel and improved decomposition methods, e.g., KCP
[25], have been proposed. Generally speaking, the decomposed
weight tensors have relatively small parameter sizes compared
to the original weight matrix. Table II summarizes the key prop-
erties of TT, HT, TR, and BT decomposition methods, and the
number of parameters they require, where r =max(rk),m=
max(mk), and n=max(nk). The rank hyperparameters used
in decomposition methods, namely r, S, are key factors
that determine the compression ratio and model accuracy
after decomposition.

B. Tensor Network Graph

A tensor network graph can be used to describe a TNN
inference. The input tensor is represented by an input node and
the decomposed weight tensors are represented by weight nodes

(a) (b)

(c) (d)

Fig. 2. Tensor network graph representation of TNN inference. The four
methods depicted are: (a) TT, (b) HT, (c) TR, and (d) BT. In each
representation, the input tensor ∈ R

n1×n2×n3×n4 and the output tensor
∈ R

m1×m2×m3×m4 . ri and S are the rank hyperparameters.

connected following the topology defined by the decomposition
method. In a tensor network graph, every tensor dimension
(greater than 1) is represented by an edge that is connected
to a node. Two nodes are connected by an edge if they have
one or more shared dimensions that can be contracted via a
tensor contraction. A loose edge from a node that is not attached
to other nodes represents a free dimension which cannot be
contracted with any other node. Fig. 2 illustrates tensor network
graphs for TT, HT, TR, and BT methods.

A TNN inference is done via a sequence of tensor con-
tractions. When contracting two tensors, the two nodes are
merged into a single node that inherits all edges from both
sides except the edge connecting them. After all contractions are
done, the final node represents the output tensor and the loose
edges represent the output dimensions. Fig. 3 walks through an
example of inference of a TT layer with 3 weight nodes. First,
the input node (0) is contracted with the weight node (3) to form
an intermediate node (03) that inherits all loose and connected
edges. Then, (03) is contracted with weight node (2) to form
(023). Lastly, (023) is contracted with weight node (1) to form
the output node with the output dimensions m1, m2, and m3.

C. Tensor Contraction and Tensor Shaping

In practice, a tensor contraction is converted into a matrix-
matrix multiplication (MMM) for processing on hardware [32].
For example, given A ∈ R

n1×n2×n3 and B ∈ R
m1×m2×m3 and

n2 =m3, the tensor contraction between A and B is performed
in three steps: 1) tensor shaping is first applied toA andB to ob-
tain matrix A ∈ R

(n1×n3)×n2 and matrix B ∈ R
m3×(m1×m2),

respectively; 2) the MMM between A and B is performed to
produce matrix C ∈ R

(n1×n3)×(m1×m2); and 3) another tensor
shaping is applied toC to put the output tensor in the designated
format, e.g., C ∈ R

n1×m1×m2×n3 .
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(a) (b)

Fig. 3. (a) Illustration of a contraction sequence for a TT workload, and
(b) the step-by-step example of tensor contractions.

Tensor shaping includes tensor reshape, permute, and
transpose operations. Reshape merges multiple contiguous di-
mensions into one dimension or splits one dimension into mul-
tiple contiguous dimensions, e.g., tensor A from above can
be reshaped by merging the n1 and n2 dimensions into one
dimension to make A′ ∈ R

(n1n2)×n3 . Permute changes the
locations of dimensions except for the last dimension, e.g., A
can be permuted by swapping n1 and n2 locations to make
A′ ∈ R

n2×n1×n3 . Transpose swaps the location of the last
dimension with another dimension, e.g., A can be transposed
by swapping n1 and n3 locations to make A′ ∈ R

n3×n2×n1 .
As a convention, the last (the inner-most) dimension is stored
as one word in memory. Since reshape and permute do not touch
the last dimension, they can operate on memory words, whereas
transpose touches the last dimension, and thus requires operat-
ing on the individual elements in a memory word. The word-
level reshape and permute can be coalesced with computation to
hide the latency. The sub-word-level transpose costs additional
hardware and latency and is more expensive than reshape and
permute. Tensor shaping that involves transpose is referred to
as complex tensor shaping and should be avoided.

The tensor shaping operations needed for a contraction
depends on the location of the contracted dimensions in
the input tensors (e.g., n2,m3 in the above example) and
the required dimension ordering of the output tensor (e.g.,
n1 ×m1 ×m2 × n3 in the above example). Since the number
of dimensions of the input tensors, the locations of contracted
dimensions, and the required dimension ordering of the out-
put tensor can all vary, numerous combinations of reshape,
permute, and transpose are needed to support versatile TNN
inference, making it a challenging hardware design.

D. TNN Inference Accelerator Design Goals

A TNN inference is computed via a sequence of tensor
contractions which are broken down into tensor shaping and
MMM operations. General-purpose SIMD processors can per-
form MMMs efficiently. However, when it comes to tensor
shaping, additional memory operations are required. Specif-
ically, read-shaping-write operations are needed to organize
data from different levels of memory hierarchy in memory
buffers, ensuring the data is structured into specific layouts
before MMMs can be executed. The memory operations ren-
der a SIMD architecture less efficient than a domain-specific
accelerator that can coalesce tensor shaping and computation
by optimizing the memory access with the datapath design.

Recent TNN inference accelerators [29], [30], [31] were
designed for one specific tensor decomposition method and
uses one specific tensor contraction sequence, e.g., backward

Fig. 4. TetriX system architecture.

processing of TT-TNN by TIE [29] and customized flow for HT-
TNN by FDHT [30]. It is either impractical or highly inefficient
to apply them to other tensor decomposition methods that they
are not designed for. To make a true a domain-specific TNN
inference accelerator, two major requirements need to be met:
1) support of all tensor decomposition methods, and 2) support
of optimal contraction sequences.

In this work, we design a domain-specific TNN inference
accelerator called TetriX that provides flexible tensor shaping
to enable efficient support of all tensor decomposition methods
using any contraction sequence. We also present a methodology
that selects the optimal contraction sequence to minimize the la-
tency of processing a given TNN inference by taking advantage
of TetriX’s unique hybrid mapping scheme.

III. TETRIX ARCHITECTURE AND DATAFLOW

A tensor is stored in a 2D format in memory where memory
words are accessed for MMMs. The MMM can be performed
via an inner product (IP) or outer product (OP) based on the
tensor layout in the memory. Existing accelerators are designed
for either IP or OP and use a specific tensor layout in mem-
ory. However, due to the diverse TNN workloads and versatile
tensor shaping, the resulting tensors may be stored in different
memory layouts, causing challenges and overheads to existing
designs. To address this, TetriX adopts a unified architecture
that supports both IP and OP.

A. Unified IP and OP Architecture

The TetriX system architecture is presented in Fig. 4. TetriX
consists of a control module, a compute module, an index
module, and a backend module. In the control module, a system
controller receives instructions and configurations from the host
processor, and coordinates the other modules. The compute
module is configurable to perform MMMs using both IP and
OP with weight stationary (WS) and output stationary (OS)
dataflows, respectively. A PE array is used for the core computa-
tion. Pre-processing and post-processing units, i.e., input/output
align, index processing, data collect, are used to support input
streaming and output collection.

A weight memory stores all the decomposed weight tensors
for a TNN layer and two tensor memories are used alternately
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(a)

(b)

(c)

(e)

(d)

(f)

Fig. 5. (a) Illustration of IP, (b) illustration of OP, (c) input streaming in the
WS data flow, (d) output collection in the WS dataflow, and (e) row collection
in the OS dataflow, (f) column collection in the OS dataflow.

to store the input and output tensor. The memories are multi-
banked to provide the flexibility to hold various input and output
tensor shapes. The index module performs index translation to
convert high dimensional input and weight tensor indices into
2D output memory addresses. The backend module accumu-
lates the partial sums (psums), performs output gathering to
form output data words, and coordinates the writeback of data
words into the output memory bank.

B. TetriX Mapping and Dataflow

Fig. 5(a) and 5(b) illustrate the IP and OP for MMM between
an input and weight tensor. The two mappings mainly differ
in the data layout in memory and the accumulation pattern.
TetriX is designed to support both IP and OP using WS and
OS dataflows, respectively, on its unified PE array. The steps
of IP and OP in TetriX are illustrated in Fig. 5(c)–5(f).

IP Mapping: this mapping follows the data layout in mem-
ory shown in Fig. 5(a) to allow vectors across the C dimension
(the dimension to be contracted) to be fetched for computation.
The IP between a pair of input and weight vectors results in an
output element.

TetriX adopts the WS dataflow for IP where the compute
module acts as a systolic array [37]. The weight vectors are first
sent to the PE array columns and cached locally in each PE for
reuse (Fig. 5(c)). The input vectors are then streamed in to the
PE rows from left to right, and propagate in a systolic fashion.
The outputs are collected from the bottom PE array row and
aligned to form output vectors (Fig. 5(d)).

OP Mapping: this mapping follows the data layout in
memory shown in Fig. 5(b) to allow vectors across the non-
contractable dimensions, N and M , to be fetched for process-
ing. The OP between a pair of input and weight vectors results
in N ×M output psums.

For OP, TetriX adopts the OS dataflow [38] where the com-
pute module acts as a spatial array [29]. The input and weight
vectors are broadcast across the PE array horizontally and ver-
tically, respectively, and the psums are accumulated temporally
in the PEs. Once the accumulation completes, the outputs are
stored in an output data FIFO for output collection.

We propose two output collection modes: 1) row collection
and 2) column (col) collection. In row collection, a row collector
arbitrates between rows of PEs that are ready for collection, and
reads the output data and memory addresses from the granted
row (Fig. 5(e)). Col collection works in similar way but on
columns (Fig. 5(f)). The two output collection modes provide
more flexibility and tensor shaping options.

The unified IP and OP architecture allows TetriX to perform
MMMs for different tensor layouts in memory. The WS and
OS dataflows employ different schemes for data propagation
and psum accumulation, leading to variations in PE utiliza-
tion, memory traffic, and control overhead. For instance, for
an MMM of (256× 64)× (64× 50) (input matrix × weight
matrix), the IP mapping achieves 100% PE utilization, while
OP mapping reaches only 78%. Conversely, for an MMM of
(256× 50)× (50× 64), the PE utilization is 78% for IP map-
ping and 100% for OP mapping. By utilizing pre-determined
tensor layouts in a TNN inference, TetriX can support the map-
ping scheme that delivers the best performance and efficiency.

IV. HYBRID INNER-OUTER MAPPING

A TNN inference is performed through a series of tensor
contraction steps referred to as a contraction sequence. After
a contraction step, tensor shaping needs to be done to convert
the memory layout of the output tensor of one step to make
it compatible with IP or OP for the next contraction step. In
conventional hardware that offers only IP or OP, the required
tensor shaping can be expensive. We take advantage of TetriX’s
flexibility using a hybrid mapping scheme that alternates be-
tween IP and OP as needed to completely eliminate the need
for transpose, the most expensive tensor shaping operation.

A. Tensor Layout Notations

We introduce tensor layout notations to capture how tensor
dimensions are ordered and how tensors are stored in memory
for IP and OP mapping. The notation [X]× [Y ] represents
the tensor layout in memory with X spanning the memory’s
rows, and Y spanning the columns. The dimensions in Y are
flattened to be stored in one memory word; and the dimensions
in X are flattened to be stored across memory rows. We follow
the convention that if X , Y contain multiple dimensions, the
rightmost dimension is considered the inner-most dimension
for storage. For example, if Y = {y1, y2, y3}, y3 is considered
the inner-most dimension. The storage ordering is Y = {0, 0, 0}
first, followed by Y = {0, 0, 1}, and so on.

I-Layout for IP Mapping: For IP mapping (described
in Section III.B), the input and weight need to be in the
I-Layout where the contractable dimension, C, spans the
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memory columns. An example of input and weight tensor layout
for IP is listed below.

Input : [i1, i2, i3, i4]× [C],

Weight : [w1, w2, w3,w4]× [C],

Output : {Φ(i1, i2, i3, i4, w1, w2, w3),w4} , (2)

where i1, . . . , i4 and C are the input tensor dimensions;
w1, . . . , w4 and C are the weight tensor dimensions.

Based on the IP mapping described by Fig. 5(c) and 5(d), the
C dimension is contracted after the IP, leaving the remaining
inner-most dimension of the weight tensor, or w4 in the above
example, to be the inner-most dimension of the output tensor.
Other than this inner-most dimension, the rest of the dimensions
in the output tensor can be reshaped and permuted, as indicated
by the notation Φ(·). The notation {.} signifies that the output
tensor can be placed in any 2D memory layout [X]× [Y ] as
long as the dimension ordering is kept.

O-Layout for OP Mapping: For OP mapping (described in
Section III.B), the input and weight need to be in the O-Layout
where the contractable dimension, C, spans the memory rows.
An example of the tensor layout for OP is listed below.

Input : [i1, i2, C]× [i3, i4]

Weight : [w1, w2, C]× [w3,w4]

Output-Row : {Φ(i1, i2, i3, i4, w1, w2, w3),w4}
Output-Col : {Φ(i1, i2, i3, w1, w2, w3, w4), i4} (3)

Based on the OP mapping described by Fig. 5(e) and 5(f), the
C dimension is contracted after the OP, leaving the inner-most
dimension of in the input tensor or the weight tenor, i.e., i4
or w4 in the above example, to be the inner-most dimension
of the output tensor (depending on whether the col or the
row collection mode is used). Again, other than the inner-most
dimension, the remaining dimensions in the output tensor can
be reshaped and permuted, and the output tensor can be placed
in any 2D memory layout [X]× [Y ] as long as the dimension
ordering is kept.

B. Hybrid Inner-Outer Product Mapping

In a sequence of contraction steps, the output from one step
becomes the input to the next step. The tensor layout needs to
be transitioned from one step to the next as required by the
next step’s processing mode (IP or OP). To plan the optimal
mapping of a contraction sequence, we need to look at a tensor’s
contractable dimensions in the current step as well as look ahead
at the contractable dimensions in future steps.

To formalize the procedure, we categorize a tensor’s di-
mensions into four sets: C, D, E (represent the set of
contractable dimension(s) in the current, the next, and the
one after next contraction step, respectively) and F (repre-
sents the set of remaining dimensions). Note that we con-
sider the current step and two future steps because the
two-step lookahead provides nearly optimal results in the
contraction sequence search while keeping a manageable
complexity. Using this notation, iC and wC represent an
input tensor’s and a weight tensor’s contractable dimensions

(a) (b)

Fig. 6. (a) Illustration of the possible input and weight layouts, and (b) the
mapping transitions of all possible parings and their resulting output layouts.

(a) (b)

Fig. 7. (a) Illustration of a contraction sequence example with the con-
tractable dimensions in each step highlighted in red, and (b) comparison of
hybrid and single-mode mapping.

in the current step; iD and wD represent an input ten-
sor’s and a weight tensor’s contractable dimension in the
next step and so on. After each contraction step, the sets
are updated.

Using the dimension categorization, we list the input and
weight tensor layouts in Fig. 6. The table captures common
and meaningful tensor layouts and the list is not meant to be
exhaustive. We also list possible pairings of input and weight
tensor layouts for contraction and derive the output layouts as
shown in Fig. 6(b).

TetriX allows IP and OP to be used as needed to avoid com-
plex tensor shaping. Fig. 7(a) shows an example of a contraction
sequence with three contraction steps. The input tensor and
the weight tensor at each step are categorized into possible
input tensor layouts and weight tensor layouts. The output
tensor layouts are then derived based on the transition table to
complete the mapping for the step. Fig. 7(b) shows the results
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of IP-only, OP-only, and IP/OP hybrid mapping. In a single-
mode mapping, if an input tensor is not in I-layout for IP or
O-Layout for OP, a costly tensor transpose must be performed
to change the memory layout. In contrast, the hybrid mapping
alternates between IP and OP to completely eliminate expensive
transpose operations, and coalesce the remaining tensor shaping
operations with the computation.

V. MAPPING-AWARE CONTRACTION SEQUENCE SEARCH

A tensor network graph with K nodes can have O(K!)
possible contraction sequences, and each contraction sequence
has distinct computation, memory storage, and tensor shap-
ing requirements. We propose a mapping-aware contraction
sequence search (MCSS) that utilizes hybrid mapping and lay-
out transitions to determine the optimal contraction sequence.
MCSS maximizes TetriX’s compute utilization and minimizes
its latency.

A. Baseline Breadth-First Approach

Several approaches [39], [40] were proposed to search the
optimal contraction sequence with the minimum computation
cost. In this work, we adopt the breadth-first (BF) approach
[39] as the baseline. Fig. 8(a) illustrates a BF search on a
tensor network graph of 4 weight nodes and an input node.
The approach constructs a series of node-merging sets Setk,
from k = 0 to k = 4. Set0 contains only the input tensor node 0.
Next, the input node is contracted with each contractable weight
node in the graph to create merged nodes (01) and (02) to be
put in Set1. Next, the merged nodes in Set1 are contracted with
each contractable weight node to create merged nodes to put in
Set2, and so on.

For each merged node in Setk, we find all possible splits
into a predecessor node (pred) from Setk−1 and a contractable
weight node to obtain the merged node. For instance, the
merged node (012) in Set2 can have 2 splits: (01|2), and (02|1).
The minimum computation cost for the merged node is found
as the minimum among all possible splits following

cost(merged) = min
∀ splits

(cost(pred) + costC(pred,weight)) ,

where costC(A,B) represents the cost of computing the con-
traction between tensor node A and B. The lowest cost is
recorded for every merged node. Once the cost of SetK is
completed, backward tracing is done to find the sequence of
the lowest computation cost.

B. Mapping-Aware Breadth-First Approach

We extend the baseline BF approach to incorporate TetriX’s
hybrid mapping to find the sequence of the minimum com-
putation latency. While the computation cost in prior works
[39], [40] is primarily determined based on the MAC count,
our approach differs. We consider latency as the cost in
our optimization, which encompasses both the MAC count
and compute utilization for each contraction during the
forward exploration.

(a)

(b)

Fig. 8. Illustration of the optimal contraction sequence search on a tensor
network example using two approaches: (a) the baseline BF approach, and
(b) the mapping-aware BF approach. The mapping-aware BF approach takes
into account candidate paths and mapping layout transitions in the latency
calculation.

With the proposed mapping-aware BF approach, for each
merged node in a set, we look ahead to identify candidate paths
for the next two contraction steps in a sequence. Fig. 8(b) shows
the paths of the merged nodes in Set1 and Set2 of the previous
example. For instance, the path 〈3, 4〉 of the merged node (012)
indicates that the merged node (012) contracts with weight
node 3 and 4 in the next two contraction steps. With the path
information, we use the layout transition analysis in Fig 6 to
identify the IP and OP mapping for each contraction step to
estimate the compute utilization and then latency. Similar to
Eq. (4), the computation latency of a merged node associated
with a path and an input format is calculated from all possible
splits, paths, and layout transitions. Fig. 8(b) shows an example
of calculating the latency (L) of the merged node (012) on path
〈3, 4〉 and input form ©II . After the forward exploration of the
minimum latency, backward tracing is done to find the optimal
sequence of the shortest latency.

C. Contraction Sequence Analysis

MCSS identifies the optimal sequence considering the hard-
ware cost, including the total number of MAC operations, the
MMM PE utilization and latency, and the required memory size
to hold all intermediate tensors during inference.

We use an HT-TNN layer example from [18] to demonstrate
the advantage of MCSS. The tensor network graph of the op-
timal contraction sequence (Optimal) from MCSS is compared
to the two fixed contraction patterns (Pattern-1 and Pattern-
2) proposed by prior TNN works [9], [18] in Fig. 9(a). In
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(a) (c)

(b)

Fig. 9. Illustration of the contraction sequences for an HT-TNN layer
inference example: (a) the optimal contraction sequence (optimal) and fixed
contraction patterns used in previous works (pattern-1, pattern-2); (b) con-
traction sequence space is represented in terms of total latency and required
memory size; (c) comparison of contraction sequences in total MAC opera-
tions, required memory size, and total latency.

Fig. 9(b), we illustrate the quality of the optimal sequence
(using hybrid mapping) alongside Pattern-1, Pattern-2 (using
IP or OP mapping), and the entire search space in terms of
the end-to-end latency and the required memory size to hold
every intermediate tensor. The quality metrics of the Optimal,
Pattern-1, and Pattern-2 are detailed in Fig. 9(c). The optimal
sequence obtained from MCSS requires 2.7× to 3.3× fewer
MAC operations, 7× less memory, and 3.8× to 7.2× lower
latency compared to the fixed contraction sequences Pattern-1
and Pattern-2.

VI. FLEXIBLE TENSOR SHAPING SUPPORT

With the hybrid mapping, TetriX only needs to support re-
shape and permute operations in tensor shaping, which are
generally less expensive than transpose and can be coalesced
with the computation. We present two mechanisms in TetriX
to support flexible reshape and permute of tensor dimensions:
1) index translation to calculate the output address for every
output of the compute module, and 2) output gathering to group
contiguous output data into words for efficient writeback.

A. Index Translation

Fig. 10 illustrates TetriX’s index translation to convert tensor
indices into 2D output memory addresses. Two groups of index
counters keep track of the input and weight tensor indices
during processing. The output memory translation unit converts
the tensor indices of each output data into the corresponding
output memory address.

(b)

(a)

Fig. 10. Index translation mechanism for (a) WS dataflow and (b) OS
dataflow.

In the IP dataflow, the output translation unit receives the
upper input and weight tensor indices to calculate the output
addresses, as illustrated in Fig. 10(a). First, in loading a weight
vector to a PE array column, the upper weight indices are
multiplied by the corresponding strides to compute AddrW→O.
These are stored for future reuse. Then during processing, as
the inputs are streamed in, the upper indices of every input
vector are multiplied by the corresponding strides to com-
pute AddrI→O. Subsequently, these values are propagated and
summed with AddrW→O to finally obtain the output addresses
AddrO =AddrI→O +AddrW→O.

In the OP dataflow, the output addresses are computed in
two steps. First, the upper input and weight indices (excluding
the contractable dimension C) are sent to the output transla-
tion unit to calculate AddrOffset =AddrI→O +AddrW→O, as
illustrated in Fig. 10(b). Second, the lower input and weight
indices, along with AddrOffset are sent to the pre-processing
units in the PE array to calculate the partial output addresses,
namely AddrI→PE and AddrW→PE . These partial addresses
are broadcast across the array, allowing each PE to sum the
partial output addresses to obtain the final output addresses,
AddrO =AddrI→PE +AddrW→PE .

B. Output Gathering

After index translation, the output data can be written back
into the output memory. For an efficient writeback and memory
usage, output data of contiguous memory addresses are grouped
into memory words before being sent to the output memory
bank, which we refer to as output gathering. Due to the versatile
tensor dimensions across TNN workloads, the output gathering
needs to flexibly adapt to all possible cases.

We propose a hierarchical approach for output gathering
as illustrated in Fig. 11. The hierarchical approach performs
gathering over multiple stages. Take as an example a 2-stage
output gathering shown in Fig. 11(a), 8 data elements A to H
(with associated (row, col) indices) are gathered in two stages.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 22,2024 at 01:44:41 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: TETRIX: FLEXIBLE ARCHITECTURE AND OPTIMAL MAPPING FOR TNN PROCESSING 1227

(a) (b)

Fig. 11. Illustration of the hierarchical output gathering mechanism using
(a) two gathering stages followed by (b) a switching stage.

In the first stage, we gather data into groups of up to 2: A and B
are grouped together because they belong to the same row and
take consecutive col addresses, and similarly D and E, F and
G are grouped together. In the second stage, we gather data into
groups of up to 4: A, B, C are grouped together, and similarly
D, E, F , G. The gathered memory word and address pairs are
written back to memory as shown in Fig. 11(b).

The index translation followed by output gathering mecha-
nism provides the needed flexibility in TetriX. The mechanism
also allows TetriX to operate on wider memory words compared
to previous works [29], leading to more efficient memory ac-
cesses. The design is scalable and implementation friendly, with
negligible impact on area and power consumption.

VII. BENCHMARKING AND EVALUATION

To assess performance, area, and efficiency, a TetriX proto-
type is designed in a 28nm CMOS technology. The prototype
is employed to evaluate the hybrid mapping scheme against
baseline schemes across various TNN workloads. Furthermore,
TetriX is compared to state-of-the-art TNN accelerators [29],
[30] to demonstrate its advantages in reduced computation cost,
better performance, and flexibility.

A. Evaluation Methodology

To evaluate TetriX, we collected the specifications of vari-
ous TNN workloads from existing TNN literature, including
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [22], [23], [24]. This collection contains more
than 100 distinct TNN workloads from TT, HT, TR, BT, and
Tucker, with each workload consisting between 3 and 13 tensor
contractions. To reflect the diverse forms of model weights
obtained from hyperparameter search [41], [42], we augment
the collected workloads with synthetic ones. For each collected
workload, synthetic workloads are generated by reordering the
tensor dimensions of the input and output, and selecting random
ranks within a meaningful range. These combined workloads
provide a comprehensive setup for evaluating the performance
and effectiveness of TetriX and MCSS across different tensor
decomposition methods.

To accurately simulate and analyze the performance of
TetriX, cycle-accurate models have been developed. For a fair

TABLE III
AREA AND POWER BREAKDOWN OF TETRIX

Area (mm2) Area (%) Powera (mW) Powera (%)
Compute 0.26 19.6 116 64.4

Index 0.07 5.4 6.8 3.8
Backend 0.03 2.6 11 6.1
Memory 0.97 72.5 46.2 25.7

Total 1.34 100 180 100

aPower based on the OP mapping.

comparison with the hybrid mapping scheme, baseline designs
using single-mode mapping schemes, i.e., Base-I and Base-O,
are evaluated using MCSS on the same dataset. For benchmark-
ing, cycle-accurate models are implemented for TIE [29] and
FDHT [30], which are state-of-the-art inference accelerators for
TT and HT.

A TetriX prototype is implemented in RTL and synthesized in
a 28nm CMOS technology. The prototype occupies 1.34 mm2

and contains 256 MACs and 548 KB of on-chip memory. It op-
erates at a 1.0 GHz clock frequency. Similar to prior works [29],
[30], the TetriX prototype adopts a 16b fixed-point quantization
for both input and weight values. Each tensor index is tracked
by an 8b counter that can support dimension sizes from 2 to
255. If a dimension size exceeds 255, the index may be split
and counted using spare index counters. The prototype design
achieves a peak compute throughput of 512 GOPS (one 16b
MAC counts as 2 OPs) and consumes 197.7 mW and 180.0
mW in running the IP and OP dataflows, respectively.

Table III presents the area and power breakdown of TetriX.
The memory module occupies 72.5% of the total area and
consumes 25% of the power. The index and backend modules,
i.e., the overhead to support flexible tensor contraction, account
for less than 10% of the area and power.

B. MCSS Efficacy and Performance Analysis

The speedup of TetriX over single-mode mapping baselines,
Base-I and Base-O, on TT, TR, HT, and BT workloads is shown
in Fig. 12. The baseline designs use fixed-pattern contraction
sequences for TNN inference. Specifically, fixed contraction
sequences proposed by [29] and [30] are used for TT and HT,
respectively. For TR and BT, the contraction sequence begins
from the first to the last, following the examples shown in
Fig. 2(b) and 2(d), such as 1, 2, …, 8 for TR and 1, 2, …, 5
for BT. When compared to TetriX that uses MCSS with hybrid
mapping, the baseline approaches, Base-I and Base-O, suffer
from redundant MAC computation and complex tensor shaping
that involves non-coalesced read-shaping-write operations. As a
result, these baseline designs incur additional latency overhead.
Due to space limitation, we only list the top and the last 10
results in speedup, and the geometric mean for all collected and
synthetic workloads.

In Fig. 12(a), for TT workloads, TetriX shows a speedup
of 1.4× and 1.3× over Base-I and Base-O, respectively.
The improvement is relatively modest, mainly due to the
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(a)

(b)

(c)

(d)

Fig. 12. Speedup in performance achieved by TetriX with hybrid mapping
compared to the baselines with inner-only mapping (base-I) and outer-only
mapping (base-O) for various workloads: (a) TT, (b) TR, (c) HT and (d) BT.
The terms “Ave” and “Ave*” refer to the average speedup across collected
and synthetic workloads, respectively.

simplicity of TT decomposition, where the contraction se-
quence follows a regular pattern with minimal variation, and
transpose is infrequent.

Unlike the TT decomposition, TR, HT, and BT decompo-
sitions exhibit more complex structures, resulting in a larger
search space for MCSS. Therefore, TetriX achieves larger
speedups over the two baselines, as shown in Fig. 12(b), 12(c),
and 12(d). TetriX provides speedups of 1.5×, 6.1×, and 9.5×
over Base-I for TR, HT, and BT workloads, respectively; and
speedups of 1.6×, 5.7×, and 8.3× over Base-O for TR, HT,
and BT workloads, respectively. For these decomposition meth-
ods, MCSS is effective in identifying better contraction se-
quences that require fewer MAC operations and memory sizes
than fixed pattern contraction sequences. On average, MCSS
reduces the MAC operations by 1.6×, 7.9×, and 11.7× for
TR, HT, and BT, respectively, when compared to the fixed
contraction sequences.

Overall, TetriX consistently achieves performance improve-
ments across all TNN types and tensor dimensions, demon-
strating the advantages of its unified IP/OP architecture and

TABLE IV
PERFORMANCE COMPARISON OF DECOMPOSITION METHODS ON TETRIX

In Dim×Out Dim Rank
Weight

(Compression) Acc.

Base [20] 57600×256 - 59.0 M 69.7%
TT [14] (8,20,20,18)×(4,4,4,4) 4a 3,232 (18,250×) 79.6%
HT [18] (8,10,10,9,8)×(4,4,2,4,2) 5 | 4b 1,245 (47,375×) 87.2%
TR [17] (4,2,5,8,6,5,3,2)×(4,4,2,4,2) 10 | 5c 1,725 (34,193×) 86.9%
BT [20] (8,20,20,18)×(4,4,4,4) 1 | 4d 3,387 (17,414×) 85.3%

ar0 = 1, r �=0 = 4. brleaf = 4, r �=leaf = 5. cr0 = 10, r �=0 = 5. dS = 1, r = 4.

MAC Count
(Reduction)

Util (%)
Max Mem
Size (KB)

Latencye

(Speedupf)
TT 1,912,832 (7.7×) 98.7 112.5 9,367 (6.1×)
HT 2,383,872 (6.2×) 30.7 160 33,168 (1.7×)
TR 2,547,900 (5.8×) 32.9 351.6g 30,263 (1.9×)
BT 2,387,968 (6.2×) 85.1 112.5 12,768 (4.5×)

eMeasured in processing cycles. fCompared to the latency for base
matrix with peak compute throughput. gExternal memory access needed.

MCSS with the hybrid mapping scheme. With MCSS, TetriX
outperforms Base-I and Base-O by up to 33× and 46× for HT
and BT workloads, respectively.

C. Decomposition Method Performance Analysis

Table IV presents an illustrative example of different decom-
position methods, TT, HT, TR, and BT [14], [17], [18], [20],
applied to the input-to-hidden layer of an LSTM model for
video task classification. All methods provide higher accuracy
compared to the baseline LSTM. In terms of model size, TT and
BT achieve compression ratios of approximately 18,000×, and
TR and HT achieve even higher compression ratios, exceeding
34,000×.

The decomposed models are evaluated on TetriX to compare
the performance of these different methods. Optimal contrac-
tion sequences for each method are obtained using MCSS.
The TT decomposed model achieves the best latency, closely
followed by the BT decomposed model. Both TT and BT
methods produce simple and uniform ranks of 4, which can be
easily mapped onto TetriX’s 16×16 compute array. On the other
hand, the HT and TR methods produce better compression, but
also result in non-uniform ranks and smaller input and output
dimensions. Consequently, the utilization of TetriX’s compute
array may be suboptimal. By leveraging the MAC reduction
provided by MCSS, all methods achieve a speedup of over 1.7×
compared to the base matrix.

D. Accelerator Performance Comparison

Fig. 13 provides a comparison between TetriX, TIE [29],
and FDHT [30], which are state-of-the-art TNN accelerators
for TT and HT workloads, respectively. TetriX uses MCSS
with hybrid mapping to find and map the optimal contraction
sequence. In contrast, both TIE and FDHT employ a fixed
customized contraction pattern [29], [30]. For the purpose of
this comparison, we evaluated the workloads from the dataset
that could be fully accommodated by TetriX.

TIE is specifically designed for TT workloads. TetriX can
achieve comparable performance to TIE in cases where the
optimal TT contraction sequence aligns with the TIE’s fixed
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(a) (b)

(c) (d)

Fig. 13. (a) Comparison of speedup achieved by TetriX over TIE across
TT workloads, (b) comparison of resource utilization by TetriX over TIE,
(c) comparison of speedup achieved by TetriX over FDHT across HT
workloads; and (d) comparison of resource utilization by TetriX over FDHT.
The terms “Ave” and “Ave*” refer to the average speedup across collected
(Col) and synthetic (Syn) workloads, respectively.

contraction pattern. The comparison in Fig. 13(a) shows that
when the optimal TT contraction sequence deviates from TIE’s
pattern, TetriX outperforms TIE with a speedup of up to 5.8×.
On average, across all collected (Col) and synthetic (Syn) TT
workloads, TetriX achieves speedups of 1.03× and 1.2× over
TIE, respectively. This shows that TetriX’s flexibility enables
better adaptation to varying tensor dimensions in synthetic
workloads compared to TIE. For TT workloads where TetriX
selects a different contraction sequence than TIE, TetriX pro-
vides an average speedup of 1.6× over TIE, while also reducing
MAC operations by 1.6×, decreasing memory requirements by
1.6×, and achieving 3% higher PE utilization.

FDHT is specifically designed for HT workloads. However,
TetriX goes a step further by taking advantage of the large
contraction sequence search space available in HT workloads.
This enables TetriX to achieve a significant speedup compared
to FDHT. When compared to FDHT, TetriX outperforms FDHT
by achieving a speedup of up to 31.5× across all HT workloads,
with an average speedup of 6.9× for collected workloads. The
performance improvement is shown in Fig. 13(c). Furthermore,
TetriX requires 5.5× fewer MAC operations, uses 9.8× less
memory, and achieves 1.3× higher PE utilization for collected
workloads, as shown in Fig. 13(d). These results highlight the
performance and efficiency advantages of TetriX in comparison
to FDHT.

TetriX is able to complete inferences more quickly than pre-
vious works due to reduced number of MAC operations and a
higher throughput. Additionally, TetriX’s reduced memory size
allows for full mapping of more end-to-end TNN workloads on
the chip. This means these workloads can be processed without
the need for external memory access.

Table V provides a comparison of TetriX with TIE, FDHT,
and DNPU – a conventional DNN accelerator [28]. TetriX, TIE,

TABLE V
COMPARISON TO EXISTING ACCELERATOR WORKS

TetriX TIE FDHT DNPU

TNN Supported TT/HT/TR/BT/etc. TT Only HT Only No
Contraction
Sequence Arbitrary

Fixed
Pattern

Fixed
Pattern

Fixed
Pattern

Technology (nm) 28 28 28 65

Frequency (MHz) 1000 1000 1000 200
Compute Unit

(MACs) 256 256 256 64

Precision (bit) 16 16 16 7
On-Chip

Mem. (KB) 548 784 1809.2 10

Area (mm2) 1.34 1.40a 2.96b 8c

Power (mW)
IP: 197.7
OP: 180 104.8a 160.4b 21

Comp Efficiencyd,e

(TOPS/W)
TT: 1.8 | 7.5
HT: 1.4 | 2.2

3.3 | 10.7
-

-
1.3 | 0.4 1.1

Inf. Throughpute

(K-Inf./s)
TT: 215.9 | 875.7
HT: 25.6 | 40.1

173.8 | 567.4
-

-
3.9 | 1.2

1.8c

3.1c

aSynthesis results reported in [29]. bLayout results reported in [30]. cProjected from
results reported in [28]. dA MAC is counted as 2 OPs. eEvaluated on collected and
synthetic workloads, nominal|effective numbers are reported.

and FDHT are all designed in 28 nm technology, clocked at the
same frequency, and have an equal number of MACs. On the
other hand, DNPU is fabricated in 65 nm technology and oper-
ates at 200 MHz. In terms of on-chip memory, TetriX requires
only 256 KB for each tensor memory, smaller than the 384 KB
and the 896 KB tensor memory in TIE and FDHT, respectively.
TetriX’s silicon area is comparable to TIE, while being 2.2×
smaller than FDHT. The smaller footprint is achieved even
with the inclusion of additional index and backend modules
in TetriX.

TIE [29] and FDHT [30] were evaluated using a limited set of
workloads, specifically 4 and 2 workloads, respectively. These
evaluations used uniform ranks (leaf/non-leaf ranks for HT).
However, these workloads do not fully represent the diversity of
TNN workloads. In our work, we evaluated across a much larger
set of TT and HT workloads from our collected and synthetic
dataset. These workloads have an average compression ratio
of 5.3× for TT and 6.9× for HT. Across the TT workloads,
TetriX achieves a MAC reduction of 4.1×, while TIE achieves
a reduction of 3.3×. For the HT workloads, TetriX achieves
a MAC reduction of 1.6×, whereas FDHT only achieves a
reduction of 0.3×. In fact, the contraction pattern for FDHT
actually requires more MACs than the original MMM com-
putation. DNPU, on the other hand, is unable to support the
tensor shaping required for on-chip TT or HT decomposition.
Therefore, DNPU is evaluated on the original weight matrix.

For the TNN accelerators, we report both nominal and ef-
fective performance. Nominal performance reflects the actual
number of MACs performed. Effective performance takes into
consideration the number of MACs in the original DNN layer.
In terms of nominal performance, TetriX’s compute efficiency
is lower than TIE’s due to TetriX’s higher power consumption.
However, TetriX achieves 1.2× higher inference throughput
than TIE by employing optimal contraction sequences that re-
duce latency. Compared to FDHT, TetriX demonstrates 1.1×
higher compute efficiency and 6.5× higher inference through-
put. In terms of effective performance, TetriX benefits from a
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larger MAC reduction from MCSS, enabling it to surpass TIE in
inference throughput and outperform FDHT both in efficiency
and inference throughput. TetriX also outperforms DNPU in
both throughput and efficiency owing to its significant MAC
reduction for the TT and HT workloads.

In summary, TetriX uses configurable dataflows, index trans-
lation, and output gathering to provide the necessary flexibility
for supporting a wide range of TNN workloads. Additionally,
TetriX demonstrates superior performance and efficiency over
the existing state-of-the-art designs by employing MCSS.

VIII. RELATED WORK

Tensor decomposition is commonly applied to specific layers
in a network such as FC, LSTM, CONV, and attention layers,
resulting in a combination of normal layers and TNN layers.
TetriX is primarily designed for TNN layers but can also handle
normal layers by using the systolic array [37] and disabling the
index translation and output gathering. When it comes to CONV
layers, there is no standard decomposition method due to the
sliding window operation [8], [9], [11], [12]. However, TetriX
overcomes this by supporting a CONV-TNN layer, wherein
the sliding window operation is converted into a matrix form,
similar to SIMD architectures. Furthermore, TetriX supports
large embedding layers using tensor decomposition [23], [24]
by partitioning the workload and accessing each partition from
external memory.

In the past, the application of optimal contraction sequence
search has mainly focused on reducing computation and mem-
ory costs in fields such as quantum many-body systems,
quantum chemistry, and data analytics [39], [40]. However,
the aspect of workload mapping and compute utilization on
specialized hardware has not been considered until now.

Existing NN accelerators [27], [28] and general matrix multi-
ply architectures [37] are efficient for workloads with known or-
ders such as CONV, FC, and MMM, as they rely on constrained
computation sequence search spaces. Additionally, previous re-
search on flexible dataflow and mapping [43] has been primarily
focused on specific workload types where tensor orders and
contraction patterns are known in advance, albeit with varying
tensor dimensions. However, these designs are not well-suited
for TNNs due to the arbitrary tensor orders and dimensions
involved, resulting in a significant degree of freedom for con-
traction sequence search.

FPGA design compilation frameworks, e.g., PolySA [44],
AutoSA [45], can generate systolic array designs for a specific
workload. However, these frameworks require prior knowledge
of the workload to determine the best design, making them
unsuitable for TNN inference with high workload versatility.
Additionally, PolySA and AutoSA primarily focus on exploring
the dataflow and mapping spaces, without optimizing the con-
traction sequence. This limitation can lead to redundant MAC
operations and increased memory footprint.

ETTE [46], a subsequent work to TIE, introduces a TT
variant that further decomposes weight tensors into 3rd-order
(compared to 4th-order in TT), similar to the TR method. It uses
a look-ahead contraction sequence that processes tensor and

weight chunks and stores intermediate tensors in PE registers to
avoid unnecessary memory access. However, it is important to
note that the look-ahead mechanism and architecture of ETTE
are specifically designed for the proposed TT variant method,
limiting its ability to support other common decomposition
methods. Additionally, the fixed contraction ordering imposed
by the look-ahead processing may result in redundant MAC
operations during processing. In contrast, MCSS supports all
tensor decomposition methods, including the proposed TT vari-
ant, to identify the optimal contraction sequence with minimal
MAC operations.

IX. CONCLUSION

We present TetriX, a co-design that combines a flexible
domain-specific architecture with optimal workload mapping to
efficiently process TNNs. TetriX is capable of flexibly adapting
to the structure, order, and dimensions of a TNN layer, and
leverages optimal contract sequences to achieve the best per-
formance and energy efficiency for inference. The design of
TetriX includes a configurable dataflow to support both IP and
OP, as well as index translation and output gathering, enabling
flexible tensor shaping for versatile TNN workloads. To address
the complexity of tensor shaping in an arbitrary contraction se-
quence, we propose a hybrid mapping scheme that alternates be-
tween IP and OP mappings. Furthermore, we introduce MCSS,
an approach that identifies the optimal contraction sequence
on TetriX. The contraction sequences obtained using MCSS
require considerably less computation (3.3×), memory (7×),
and exhibit shorter latency (7.2×) compared to patterns used
in previous works. When compared to the baseline accelera-
tor design that uses fixed contraction sequences and mapping,
MCSS achieves substantial speedups of 1.4×, 1.6×, 6.1×, and
9.5× for TT, TR, HT, and BT workloads, respectively. Addi-
tionally, it significantly reduces MAC operations and memory
footprint. TetriX is the first design to support all tensor decom-
position methods in existing TNNs, accommodating different
orders, dimensions, and ranks. Taking HT workloads as an
example, compared to the state-of-the-art accelerator, TetriX
provides 6.5× higher inference throughput and 1.1× higher
compute efficiency.
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