
Point-X: A Spatial-Locality-Aware Architecture for
Energy-Efficient Graph-Based Point-Cloud Deep Learning

Jie-Fang Zhang
jfzhang@umich.edu

University of Michigan, Ann Arbor
Ann Arbor, Michigan, USA

Zhengya Zhang
zhengya@umich.edu

University of Michigan, Ann Arbor
Ann Arbor, Michigan, USA

ABSTRACT
Deep learning on point clouds has attracted increasing attention
in the fields of 3D computer vision and robotics. In particular,
graph-based point-cloud deep neural networks (DNNs) have demon-
strated promising performance in 3D object classification and scene
segmentation tasks. However, the scattered and irregular graph-
structured data in a graph-based point-cloud DNN cannot be com-
puted efficiently by existing SIMD architectures and accelerators.
We present Point-X, an energy-efficient accelerator architecture
that extracts and exploits the spatial locality in point cloud data for
efficient processing. Point-X uses a clustering method to extract
fine-grained and coarse-grained spatial locality from the input point
cloud. The clustering maps the point cloud into distributed compute
tiles to maximize intra-tile computational parallelism and minimize
inter-tile data movement. Point-X employs a chain network-on-
chip (NoC) to further reduce the NoC traffic and achieve up to
3.2× speedup over a traditional mesh NoC. Point-X’s multi-mode
dataflow can support all common operations in a graph-based point-
cloud DNN, i.e., edge convolution, shared multi-layer perceptron,
and fully-connected layers. Point-X is synthesized in a 28nm tech-
nology and it demonstrates a throughput of 1307.1 inference/s and
an energy efficiency of 604.5 inference/J on the DGCNN workload.
Compared to the Nvidia GTX-1080Ti GPU, Point-X shows 4.5× and
342.9× improvement in throughput and efficiency, respectively.

CCS CONCEPTS
• Computer systems organization → Neural networks; Data
flow architectures; • Hardware→ Hardware accelerators.

KEYWORDS
Point cloud, neural network, edge convolution, graph convolution,
spatial locality, graph traversal

ACM Reference Format:
Jie-Fang Zhang and Zhengya Zhang. 2021. Point-X: A Spatial-Locality-
Aware Architecture for Energy-Efficient Graph-Based Point-Cloud Deep
Learning. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’21), October 18–22, 2021, Virtual Event, Greece.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3466752.3480081

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480081

1 INTRODUCTION
3D deep learning has attracted increasing attention in recent years
due to its wide applications in the 3D space, including indoor naviga-
tion, object classification, scene segmentation, shape synthesis and
modeling. Among all 3D representations, point cloud has gained
popularity since it shows an accurate representation of the real
world and can be acquired directly as the raw output from most 3D
data acquisition devices like LiDARs and IR sensors [12, 59, 1, 52].
The raw point clouds undergo common preprocessing steps, includ-
ing background filtering, noise removal, and region of interest (ROI)
identification, and the preprocessed ROI frames are then ready for
the point-cloud processing.

After the wide success of deep neural network (DNN) and con-
volutional neural network (CNN) on 2D image applications [19, 40,
15, 43], researchers have worked on converting the insights from
CNNs to the point clouds in the 3D space. The first attempts pro-
cessed point clouds indirectly using an intermediate representation,
i.e., multi-view [42, 57, 34] or volumetric [27, 36, 45]. These meth-
ods either project point clouds into several 2D images of different
angles or convert them into voxels in a 3D grid, before applying
well-established 2D or 3D CNNs to accomplish indirect point-cloud
processing. However, these approaches were unable to capture the
fine details and textures due to the data truncation during represen-
tation conversion. PointNet [33] proposed a point-based network to
process point clouds directly without any projection or voxelization.
However, PointNet only considers the global shape structure and
not the relations between the points, thus it is unable to capture
finer details, limiting its performance [35, 48].

To overcome the limitations, recent works propose to extract lo-
cal neighborhood information by graph-based methods [39, 37, 48],
and integrate them into the global shape structure to improve the
performance over the PointNet model. In particular, DGCNN [48]
uses a graph-based operator called edge convolution (EdgeCONV)
to integrate both local and global features. Figure 1 shows the
point cloud recognition pipeline using the DGCNN architecture
and illustrates the principles of EdgeCONV. An EdgeCONV first un-
covers the spatial relationship of points by constructing a K-nearest
neighbor (KNN) graph of the input point cloud. Following the KNN
graph edges, a graph convolution (GraphCONV) aggregates the
local neighborhood features and the global feature of every vertex
point to produce the output feature. The promising DGCNN results
make EdgeCONV a widely adopted operator [60, 6, 56, 47].

Variants of EdgeCONV have emerged and are employed widely
in recent graph-based point-cloud DNNs [14, 22, 5]. These variants
share EdgeCONV’s computation pattern which consists of 1) graph
construction to uncover the spatial relationship between indepen-
dent data points, followed by 2) convolution on the constructed

1078

https://orcid.org/0000-0002-6609-4383
https://orcid.org/
https://doi.org/10.1145/3466752.3480081
https://doi.org/10.1145/3466752.3480081

MICRO’21, October 18–22, 2021, Virtual Event, Greece J.-F. Zhang et al.

Figure 1: Illustration of (a) point cloud recognition pipeline,
(b) EdgeCONV layer divided into KNN graph construction
and GraphCONV on vertex point i, and (c) DGCNN architec-
ture for 3D object classification [48].

graph to extract features for recognition. As such, the exploration
and findings on EdgeCONV are applicable to these variants.

EdgeCONV computation cannot be supported efficiently by exist-
ing computing solutions. In computing EdgeCONV, a vertex’s neigh-
bors may be randomly dispersed in the system memory. Conven-
tional SIMD architectures, i.e., CPUs and GPUs, have to fetch scat-
tered graph vertices for vector computation, resulting in low com-
pute utilization and efficiency. DNN/CNN accelerators [16, 8, 28, 38]
are incapable of performing such computation because they are
purposely designed for sequential memory access and regular-
structured data, i.e., 2D image or 1D sequence. Graph processing
accelerators [13, 31] are optimized for irregular data accesses and
cannot fully exploit the data reuse or provide the computational
parallelism needed in graph-based networks. Graph convolutional
neural network (GNN/GCN) accelerators [54, 18, 11, 7, 10, 41, 24],
handle both regular and irregular computation in GCNs. Different
from the common GNNs where the graph structures are static and
known in advance, EdgeCONV operates on dynamic graphs that are
constructed in runtime. Most previous GNNworks [54, 18, 11, 7, 10]
focused on static graphs, and did not fully support EdgeCONV
due to the lack of runtime graph construction. Recently, [41, 24]
extended the support to dynamic graphs. However, they did not
consider the community structures of point clouds, and are unable
to provide the best efficiency.

To design a practical architecture for graph-based point-cloud
processing, three objectives need to be addressed: fetch efficiency:
to deliver a maximal number of neighbor points to compute under
a limited transfer bandwidth; computation efficiency: to provide
high compute parallelism and utilization for irregular point cloud
workloads; and flexibility: to support diverse computation types in
graph-based point-cloud networks.

We present Point-X, a spatial-locality-aware accelerator archi-
tecture for efficient graph-based point-cloud processing. Point-X
extracts and leverages the spatial locality in the input point cloud
to increase computational parallelism and reduce communication

overhead, enabling higher fetch and computation efficiency. The
main contributions are:

• A speculative breadth-first search (SBFS) graph traversal
method is proposed to extract the spatial locality in the input
point cloud. It achieves up to 9.2× faster execution over a
conventional BFS graph traversal. A spatial-locality-aware
clustering based on SBFS traversal is used to distribute input
points into compute tiles for efficient processing.

• A lightweight chain NoC architecture is designed to leverage
the spatial locality to effectively reduce the inter-tile traffic
and its latency. The chain NoC design demonstrates a 3.2×
shorter latency than amesh NoCwhile incurringmuch lower
area and energy overheads.

• A flexible compute tile and a multi-mode dataflow are de-
signed to support all the common operations in graph-based
point-cloud networks, including EdgeCONV, shared multi-
layer perceptrons (MLPs), and fully-connected (FC) layers.

A Point-X design is synthesized in a 28nm technology. The design
is estimated to occupy an area of 6.8 mm2 and operate at a 1.0 GHz
clock frequency. Point-X demonstrates an average speedup of 7.7×
for GraphCONV over a baseline accelerator, and up to 12.1× higher
energy efficiency in EdgeCONV over existing accelerators. Point-X
achieves an end-to-end throughput of 1307.1 inference/s (Inf./s) and
an energy efficiency of 604.5 inference/J (Inf./J) in running DGCNN
for 3D object classification [48]. Compared to a general-purpose
GPU and CPU, Point-X demonstrates a throughput improvement
of 4.5×, 129.7×, respectively, and an energy efficiency improvement
of 342.9× and 3160.9×, respectively.

2 BACKGROUND
An EdgeCONV layer in a point-cloud DNN projects the N points
from an input C-dimensional space into an output F -dimensional
space. The input point cloud can be described asX = {x0, ...,xN−1},
where xi ∈ RC is the feature of i-th point, and C is the dimension-
ality of the feature space. For instance, the first EdgeCONV layer
receives an input of C = 3 which represent the (x ,y, z) coordinates
in a 3D space. As illustrated in Figure 1(b), an EdgeCONV opera-
tion is divided into two steps: 1) KNN graph construction and 2)
GraphCONV on the KNN graph.

2.1 Edge Convolution Computation
KNN Graph Construction. Given an input point cloud X , a di-
rected graph is constructed:G(X ,K) = (V ,E) with self-loops, where
V = {0, . . . ,N −1}, E = {(i, ji1), . . . , (i, jiK), . . . } for i, jik ∈ V , and
jik represents the k-th nearest neighbor to the vertex point i . The
k-th nearest point to vertex point i is found based on the Euclidean
distance as described in Eq. (1).

jik = argmin
j ∈V

k D(i, j) = argmin
j ∈V

k

xi − x j

2 . (1)

Graph Convolution. In GraphCONV, the vertex point i is con-
volved with its K neighbors ji1, . . . , jiK . In DGCNN [48], Graph-
CONV is defined as the combination of the global shape struc-
ture captured by the vertex point’s feature xi and local neigh-
borhood structures captured by the differences between the ver-
tex point and its neighbors (x jik − xi). With learnable weights

1079

Point-X: A Spatial-Locality-Aware Architecture for Graph-Based Point-Cloud Deep Learning MICRO’21, October 18–22, 2021, Virtual Event, Greece

Figure 2: EdgeCONV computation models: (a) query-based
model, and (b) exchange-based model.

ϕ0, . . . ,ϕF−1,θ0, . . . ,θF−1 ∈ RC , the f -th output feature of Graph-
CONV for the point i is defined by

x ′
i f = max

1≤k≤K
ReLU

(
ϕf · xi + θf ·

(
x jik − xi

))
, (2)

where ϕ weights are applied to the vertex point to compute the
global feature partial sum (fpsum), and θ weights are applied to the
difference to a neighbor point to compute a local fpsum. A ReLU
operation is applied to the sum of the global fpsum and the local
fpsum to generate an output fpsum.K output fpsums are aggregated
by a max operation to produce an output feature.

2.2 Computation Models and Bottlenecks
KNN graph construction is embarrassingly parallel and can be
supported easily by SIMD and conventional spatial architectures.
However, GraphCONV cannot be parallelized easily for two rea-
sons: 1) there is no knowledge of a vertex point’s neighbors prior
to the KNN graph construction, limiting scheduling opportunity;
and 2) the neighbors are randomly scattered in memory without
a fixed pattern, limiting prefetch opportunity. These two factors
result in highly inefficient computation when operating with the
practical limitations of memory bandwidth, prefetch and schedul-
ing capability. These limitations prohibit the parallel computation
on multiple neighbors.

A spatial architecture utilizes multiple compute tiles (CTiles) for
parallel computation. To parallelize KNN graph construction and
GraphCONV, one possibility is to assign vertex points to indepen-
dent CTiles. Under this setup, we present two EdgeCONV compu-
tation models, a query-based model and an exchange-based model,
which differ in the fetch mechanisms and computation dataflow for
GraphCONV computation. Figure 2 presents the two computation
models for EdgeCONV operation. In both models, a multi-banked
system memory is used to hold the point features and to support
access by multiple CTiles.

Query-Based Model. The query-based model follows a direct
parallelization of Eq. (2). In this model, each CTile operates inde-
pendently and sees the memory as a single shared memory. A CTile
is assigned a set of vertex points. To access neighbor points that
are not available locally, a CTile sends requests to the centralized
memory controller. The controller arbitrates the requests from all
CTiles. Although the query-based model is straightforward, the
all-to-all switch and arbiter design can be complex with poor scala-
bility. Furthermore, frequent memory access conflicts occur when

Table 1: GraphCONV Computation Comparison (F kernels,
N points, and K neighbors per point)

Computation Original Form, Eq. (2) Reuse Form, Eq. (3)
Dot-Product (·) F × N + F × N × K 2 × F × N
Max-Pool (max) F × N × K F × N × K
Summation (+) F × N × K F × N

ReLU F × N × K F × N

multiple CTiles request access to the same memory bank, resulting
in a low fetch efficiency.

Fpsum Reuse. Different CTiles in the query-based model may be
requesting and performing dot-product (DP) on overlapping neigh-
bor points, causing duplicated computation during GraphCONV
operation. We reformulate Eq. (2) to reduce computation redun-
dancy and increase fpsum reuse. Starting from the original form in
Eq. (2), we separate the DP of the vertex point from the neighbor
points; and reorder the max and ReLU operations as shown below.

x ′
i f = ReLU

(
max

1≤k≤K

(
θf · x jik

)
+
(
ϕf − θf

)
· xi

)
. (3)

Following Eq. (3), the vertex fpsums (DP of the point with
(ϕ − θ) weights) and the neighbor fpsums (DP of the point with
θ weights) can be computed once, cached and reused to prevent
redundant DPs. Table 1 shows the comparison of computation of
the two forms of GraphCONV defined by Eq. (2) and Eq. (3). Using
the optimized form, the number of DP (·), summation (+), and ReLU
operations are reduced by a factor of (K + 1)/2 or K .

Exchange-Based Model. Following Eq. (3), the exchange-based
model allows CTiles to exchange neighbor fpsums through a NoC.
In this model, each CTile is associated to a memory bank for access-
ing points locally to compute vertex fpsums and neighbor fpsums.
To access a neighbor fpsum not available locally, a CTile requests
from the CTile that holds the neighbor fpsum over the NoC. The
exchange-based model cuts all redundant neighbor fpsum compu-
tation. However, a CTile may experience a longer transfer latency.
Furthermore, the feature exchange may overwhelm the NoC band-
width, resulting in an even lower fetch efficiency.

3 SPATIAL-LOCALITY-AWARE CLUSTERING
Prior works [29, 30, 4, 58, 49, 55, 7, 46] exploited the community
structure of real-world graphs to improve locality for graph appli-
cations. Similarly, KNN graphs of real-world point clouds exhibit
community structure where groups of points close in space form
densely connected subgraphs.

Based on an exchange-based model, we review two types of
beneficial spatial locality: fine-grained and coarse-grained. The
fine-grained spatial locality refers to the case that the neighbor
points are accessed from the same CTile (cluster) in computing
GraphCONV of a vertex point. The coarse-grained spatial locality
refers to the case that the neighbor points are accessed from nearby
CTiles (clusters). The fine-grained spatial locality maximizes com-
putational parallelism of a CTile by having most neighbor points
in its local memory bank. The coarse-grained spatial locality helps
reduce the data movement between CTiles by having the foreign

1080

MICRO’21, October 18–22, 2021, Virtual Event, Greece J.-F. Zhang et al.

Figure 3: (a) KNN graph of input point cloud and its adja-
cency matrix representation; (b) the KNN graph is traversed
and the points clustered following traversal order; the clus-
tered KNN graph and its adjacency matrix are shown.

neighbor points needed by a CTile located in nearby CTiles. We
present a clustering technique to extract both the fine-grained and
coarse-grained spatial locality given a point cloud’s KNN graph.

3.1 Graph Traversal for Spatial Locality
An example of a point cloud’s KNN graph is shown in Figure 3(a).
The nodes are numbered during point cloud acquisition and prepro-
cessing, and the graph is represented by an adjacency matrix. In the
KNN graph, a directed edge from node j to node i indicates that the
vertex point i is connected to its neighbor point j , and is represented
by the entry (i, j) in the adjacency matrix. Note that, each point
is also neighbor to itself. In Figure 3(a), the points of consecutive
point indices are grouped into three clusters as illustrated on the
adjacency matrix. An edge in the adjacency matrix is a local edge if
both the vertex and the neighbor point belong to the same cluster
or a foreign edge otherwise. In an SLA architecture, each cluster
of points is assigned to a CTile. A local edge indicates local data
access, and a foreign edge indicates access from a foreign cluster.
The number of foreign edges suggests the amount of inter-tile data
movement and the clustering efficiency.

Figure 4: Clustering performance of KNN graphs: (a) graph
edge ratio, and (b) graph edge length, using different graph
traversal methods on 1k to 10k point clouds.

Our SLA clustering aims to maximize both fine-grained and
coarse-grained spatial locality by taking advantage of the spatial
relationship of points using graph traversals. The steps and result
of SLA clustering are presented in Figure 3(b). Following the graph
traversal order, the SLA clustering assigns every point into a cluster
by mapping its point index to a pair of {cluster index, local point
index}. Each cluster comprises a densely connected subgraph with
improved fine-grained spatial locality, which can be visualized by
the more local edges and fewer foreign edges in each cluster. As the
scattered foreign edges are brought closer to the matrix diagonal,
the coarse-grained spatial locality is also improved.

Graph traversal methods help uncover the spatial relationship of
nodes in a graph [4, 58, 29]. To evaluate the capability of different
graph traversal methods, we define two metrics: graph edge ratio to
measure the fine-grained spatial locality, and graph edge length to
measure the coarse-grained spatial locality. For every vertex point
in a cluster, the graph edge ratio is defined as the proportion of
local edges over all edges. The graph edge length measures the
average distance (i.e., number of clusters away) between a vertex
point and its foreign neighbor point. For instance, in Figure 3(a),
the foreign edge from point 10 in cluster 2 to point 4 in cluster 0
has a distance of 2.

The graph edge ratio and the graph edge length are plotted
in Figure 4 for common graph traversal methods, breadth-first
search (BFS), depth-first search (DFS), bounded DFS (BDFS) [29]
with a depth limit, evaluated using point clouds ranging from 1k
to 10k points and compared to the input KNN graph baseline. As
shown in Figure 4(a), for 1k points, all traversal methods result in a
significant graph edge ratio improvement of 4.8 to 5.8× compared
to the baseline. In particular, BDFS provides the highest graph
edge ratio of 56%. With increased point sizes, the baseline shows
a decrease in graph edge ratio, i.e., only 5.5% at 10k points, while
the traversal methods maintain much higher graph edge ratios.

1081

Point-X: A Spatial-Locality-Aware Architecture for Graph-Based Point-Cloud Deep Learning MICRO’21, October 18–22, 2021, Virtual Event, Greece

Figure 5: Illustration of SBFS with 2 traversal lanes.

The improvement over the baseline reaches 7.9 to 10.5× at 10k
points. All traversal methods also outperformed the baseline in
graph edge length as shown in Figure 4(b). Compared to the baseline
at 1k points, BFS, DFS, and BDFS reduce the graph edge length by
4.7×, 1.4×, and 2×, respectively. For larger point sizes, the baseline
and depth-first methods incur significant increases in graph edge
lengths, whereas BFS shows only limited increase. BFS reduces the
graph edge length by 14× over the baseline at 10k points. Combining
both fine-grained and coarse-grained spatial locality, BFS stands out
as the most promising method, especially notable for its scalable
graph edge length.

3.2 SBFS Traversal
To ensure correctness, BFS only allows traversing neighbors of one
vertex point at a time. This requirement hinders the paralleliza-
tion of BFS traversal execution [23]. We propose the speculative
BFS (SBFS) algorithm to approximate BFS traversal and parallelize
execution by speculating the traversal order. The speculation is
possible thanks to the community structure of a KNN graph. If two
points are connected, they are also likely to share neighbors. For
instance, in Figure 3(a), point 0 and point 11 are connected and
share common neighbors of points 0, 11, and 6. Traversing these
two points in parallel does not affect the traversal order.

Figure 5 illustrates the first four iterations of traversing the graph
in Figure 3(a) using an SBFS-2 algorithm, where 2 indicates two
active lanes for vertex traversal. Untraversed vertices are read from
the vertex queue and its neighbor points are loaded to a traversal
lane for traversal. Here is a step-by-step rundown of the process:

(1) The root point 0 is read from the vertex queue and its neigh-
bors 0, 11, 6, 12 are loaded into traversal lane 0.

(2) From traversal lane 0, neighbor point 11 is traversed. Since
point 11 is not visited yet, it is pushed into the vertex queue.

(3) From traversal lane 0, neighbor point 6 is traversed and
pushed into the vertex queue. In the meantime, vertex point
11 is read from the vertex queue and its neighbors 11, 0, 6, 9
are loaded into traversal lane 1.

(4) From traversal lane 0, point 12 is traversed and pushed into
the vertex queue, and traversal lane 0 is cleared. From tra-
versal lane 1, neighbor point 0 is traversed. Since point 0 is
already visited, it is skipped.

Figure 6: Architecture of SLA clustering module.

Figure 7: Speedup of the SLA clustering module using SBFS
with N traversal lanes over the BFS baseline.

By traversing the neighbors of multiple neighboring vertices at
a time, the execution time can be largely reduced with only minor
changes to the graph traversal order. The clustering metrics of
SBFS-16 are plotted in Figure 4. SBFS-16 produces a similar graph
edge ratio and graph edge length as BFS. The speculation produces
a close approximation to BFS in terms of clustering quality.

3.3 SLA Clustering Module Implementation
As Figure 6 shows, the SLA clustering module is realized by an
SBFS traversal module and a cluster graph compiler module for
converting a global graph into local subgraphs for each cluster and
setting up the inter-cluster connections.

The KNN index buffer stores the constructed KNN graph in the
adjacency list format. The SBFS module reads an untraversed vertex
point from the vertex queue, and the neighbor indices are requested
from the KNN buffer for loading to the traversal lanes. The SBFS
module consists of N traversal lanes operating in parallel. Con-
secutively traversed neighbor points are recorded in the cluster
maptable. The cluster maptable stores the mapping between the
point index and the corresponding pair of {cluster index, local point
index}. If a point index is not already recorded in the maptable, a
new {cluster index, local point index} pair is assigned in ascending
order and written to the maptable. Based on the outputs of the SBFS
module and the maptable, the cluster graph compiler module gen-
erates subgraphs and inter-cluster connections in the form of local
maps (L-maps) and foreign maps (F-maps) (see usage in Section 5).
For inter-CTile data exchange, the cluster graph compiler generates
the connectivity list and message tags (see usage in Section 4).

1082

MICRO’21, October 18–22, 2021, Virtual Event, Greece J.-F. Zhang et al.

Figure 8: Architecture of (a) a chain NoC, and (b) a router for
chain NoC.

The SBFS-based SLA clustering module speeds up clustering as
show in Figure 7. For example, SBFS-16 reduces the traversal latency
by 9.2×. With more traversal lanes, nearly linear speedup can be
obtained, but the speedup slowly diminishes due to arbitration and
bandwidth limitation of the vertex queue.

4 LOCALITY-AWARE NOC
The inter-CTile data exchange is supported by a NoC. A general-
purpose mesh NoC forwards data in four directions at each router
node to allow flexible routing. In comparison, we propose a locality-
aware chain NoC that takes advantage of the extracted spatial
locality to achieve a lower complexity and a higher efficiency. The
chain NoC is designed with a message reuse strategy to further
improve performance and reduce area and power.

4.1 Chain NoC Architecture
A chainNoC connects routers using two independent uni-directional
networks: an up network transfers messages upward, whereas a
down network transfers messages downward as shown in Figure 8.
A message comprises a data field and a tag: the data is the neigh-
bor fpsum computed by the source CTile and the tag consists of
the point index and the directive for routing the message to its
destination.

The chain NoC is designed with a message reuse strategy where
a message transfer passes through all its destination CTiles in the
same direction to save redundant transfers. In SLA clustering, the
cluster graph compiler (Figure 6) keeps track of the furthest des-
tination CTile that an fpsum needs to travel to in both upward
and downward directions. This approach simplifies the routing
directive of a message tag into a single distance value between the
source and the furthest destination. By adopting the message reuse
strategy, the chain NoC cuts the message traffic by 2.1×, which
contributes to a higher efficiency for inter-CTile data exchange.

Algorithm 1: Chain NoC Routing
Input/Output: msgin/msgout
if (msgin != None) then // Receive msgin

{p-idx, dist, data} = msgin
if (dist > 1) then // Keep forwarding msgin

Forward: msgout = {p-idx, dist-1, data}
else // msgin reaches destination, free to transfer

Read {p-idx’, dist’, data’} from Msg Buffer
Transfer: msgout = {p-idx’, dist’, data’}

if (p-idx match in connectivity list) then
Copy: send data to CTile

else // No msgin, free to transfer
Read {p-idx’, dist’, data’} from Msg Buffer
Transfer: msgout = {p-idx’, dist’, data’}

4.2 Routing Algorithm
The routing mechanism of the chain NoC is illustrated in Figure 8(a).
In preparation for exchanges, the router associated with a CTile
receives the connectivity list and the message tags from the SLA
clustering module, and the local neighbor fpsums from the CTile.
The message tags and local neighbor fpsums are stored in the mes-
sage buffer. The connectivity list contains the indices of neighbor
fpsums that need to be fetched from other CTiles.

An fpsum exchange undergoes three stages as shown in Fig-
ure 8(a): in the transfer mode, a local router reads a pair of tag and
data from themessage buffer and sends a message onto the network;
in the forward mode, routers forward the message along the way;
and when an incoming message tag matches the connectivity list of
a destination router, the message data is copied to the destination
CTile in the copy mode. The routing algorithm is detailed in Algo-
rithm 1. A message is propagated along the up or down direction.
The message distance is reduced by 1 when passing through a hop
in the forward mode until the message reaches its final destination.
By prioritizing the forward mode over the transfer mode, a message
is never stalled before reaching its final destination.

Compared to a flexible mesh NoC, the uni-directional design of
the chain NoC reduces the complexity and energy spent on com-
plex message switching and arbitration. Furthermore, the routing
algorithm ensures that a message is never stalled when traveling
in the network, thus eliminating extra input and output buffers
in the router design. As a result, the chain NoC has a low design
complexity and incurs minimal area and energy overheads. In terms
of performance, the chain NoC provides a better fetch efficiency
than the mesh NoC even though the chain NoC uses only half of the
mesh NoC’s physical bandwidth. By message reuse, the chain NoC
reduces the transfer latency by 2.1× over the mesh NoC. When SLA
clustering is applied to both types of NoCs, the chain NoC reduces
the transfer latency by 3.2× over the mesh NoC, demonstrating its
suitability for moving data with spatial locality.

5 CTILE ARCHITECTURE
A CTile supports the operations required for EdgeCONV, including
KNN graph construction and GraphCONV. KNN graph construction
is supported by DP for distance computation and K-min sorting; and
GraphCONV is supported by DP for fpsum computation and feature

1083

Point-X: A Spatial-Locality-Aware Architecture for Graph-Based Point-Cloud Deep Learning MICRO’21, October 18–22, 2021, Virtual Event, Greece

Figure 9: Microarchitecture of (a) a compute tile (CTile), (b) a compute engine, and (c) a sort engine.

aggregation. A CTile shown in Figure 9(a) comprises of a compute
engine, a sort engine, and a group engine for feature aggregation.
It also consists of buffers for storing fpsums and a controller for
interfaces and configurations. Finally, an output buffer stores the
results of CTile computation.

Fpsum Computation. The compute engine contains 2 sets of DP
units, F0 phi-DP units and F0 theta-DP units (F0 is a design param-
eter), and vector arithmetic units (V-ALUs) as shown in Figure 9(b).
A DP unit caches and reuses the respective ϕ and θ weights while
the inputs are streamed in to compute DP. A DP unit computes a
C0-way DP per cycle (C0 is another design parameter). Altogether,
F0 neighbor fpsums are computed per cycle by the theta-DP units,
and F0 vertex fpsums are computed per cycle by the subtraction
of the outputs of the theta-DP units from the phi-DP units. The
vertex and neighbor fpsums are stored in vertex and local neighbor
buffers for reuse.

K-Min Sorting forKNN. The sort engine contains F0 K-min sorter
units as illustrated in Figure 9(c). A sorter unit finds the KNN of one
given vertex point using insertion sort that is implemented in a 1D
systolic array of K sorting elements (SEs) [50]. A distance and point
index pair is broadcast to all SEs. Each SE compares the distance
value to its current value, inserts the new value or takes the shifted
value from the left SE. A K-min sorter unit always maintains the K
nearest points of a vertex point sorted by distance values.

Feature Aggregation. The group engine shown in Figure 10 per-
forms feature aggregation including max-pool (MP) of the neighbor
fpsums, summing the max neighbor fpsum to the vertex fpsum, and
applying ReLU as described by Eq. (3).

The MP process is of particular importance as it needs to access
neighbor fpsums that reside locally and on foreign CTiles. The local
controller uses L-maps provided by the SLA clustering module to
locate local neighbor fpsums. The L-map of a vertex point stores
the local connections to the vertex point in adjacency matrix form.
An L-map word is decoded into point indices for accessing the
neighbor fpsums stored in the local buffer. To speed up fetching,
the local neighbor buffer can be implemented using two 2-port
SRAM banks. Two even and two odd point indices are decoded
from an L-map every cycle to allow 4 neighbor fpsum words to be

Figure 10: Microarchitecture of a group engine.

fetched per cycle. Each fpsum word contains F0 values. The four
fpsum words are sent to the MP units.

The foreign controller uses F-maps provided by the SLA clus-
tering module to locate neighbor fpsums from foreign CTiles. An
F-map of a vertex point contains its foreign neighbor point indices.
An F-map word contains 4 point indices. The foreign controller
reads one word from an F-map per cycle, decodes the 4 point in-
dices, and looks up the indices in two content-addressable memories
(CAMs). Each CAM returns at most 2 neighbor fpsum words. If a
CAM has more than 2 matches, the foreign controller stalls for a
cycle before proceeding to the next word. Up to 4 neighbor fpsum
words are fetched per cycle and sent to the MP units.

Once all local and foreign neighbor fpsums are aggregated to
obtain the max neighbor fpsum, it is summed with the vertex fpsum,
followed by ReLU to produce the output feature.

6 POINT-X SYSTEM ARCHITECTURE
The Point-X system architecture is outlined in Figure 11. Point-X
consists of a clustering module, a CTile array (CTA) module, data
buffers, and controllers for system configuration, dataflow, and ex-
ternal communication. The system controller receives the compiled
instructions from the host processor, and configures the other mod-
ules according to the dataflow mode. The memory controller loads

1084

MICRO’21, October 18–22, 2021, Virtual Event, Greece J.-F. Zhang et al.

Figure 11: Point-X system architecture.

the input features, model weights, and KNN indices, and offloads
the output features to the external memory. The global memory
holds the data fetched from off-chip and distributes them to re-
spective data buffers following the dataflow mode. The KNN index
buffer stores the constructed KNN graph, and the cluster maptable
stores the mapping after SLA clustering.

The clustering module performs SLA clustering and compiles
the clustering configuration for the CTA module. In the prototype
design, the CTA module consists a 4×4 2D array of CTiles con-
nected by a chain NoC with upward and downward networks. A
data controller handles the input distribution to the CTiles using a
pipelined H-tree bus. Inside a CTile, a compute engine contains 16
8-way 16b×8b DP units (F0 = 8, C0 = 8), reconfigurable to 8 8-way
16b×16b DP units. A group engine has 8 4-to-1 MP units. A sort
engine has 8 K-min sorter units with 20 SEs (K = 20) each. Overall,
the Point-X prototype contains 16 CTiles, using 2,048 16b×8bMACs
(1,024 16b×16b MACs) in total.

6.1 Multi-Mode Dataflow
Typical graph-based DNNs are composed of EdgeCONV (KNN
graph construction and GraphCONV), shared MLP, and FC lay-
ers with different computational requirements. Point-X provides a
multi-mode dataflow by coordinating the input loading and data
distribution to support these diverse requirements. The dataflow for
EdgeCONV, shared MLP and FC layers are illustrated in Figure 12.

KNN Graph Construction (Figure 12(a)). Vertex point features
are loaded to DP units of each CTile by unicast and the input
point features are streamed in to the CTiles by broadcast. A pair of
16b×8b DP units are combined to compute 16b-16b point feature
distances: one DP unit for the MSB part and the other for the LSB
part. A V-ALU performs shift and accumulation of the two psums.
The distance values and point indices are sent to the sort engine
(Figure 9(c)). At completion, the K indices in each sorter unit are
read out.

GraphCONV (Figure 12(c)). The SLA clusteringmodule loads point
indices from the KNN index buffer, performs SBFS traversal to pro-
duce the clustering mapping, and compiles cluster configurations,
including L-maps, F-maps, connectivity lists, and message tags.

Following the cluster maptable, the input features are stored
in the corresponding cluster bank. The weights are broadcast to
all CTiles, and the input features are unicast to the corresponding

Figure 12: Multi-mode dataflow for (a) KNN graph construc-
tion, (b) sharedMLP and FC, and (c) GraphCONVoperations.

CTiles. The vertex and neighbor fpsums are computed and stored in
the local buffers. NoC data exchange can be executed concurrently
with the local fpsum aggregation. The foreign neighbor fpsums
are received over the NoC, and the group engine performs the
foreign fpsum aggregation. Lastly, post-processing (MP, summing
and ReLU) is performed.

SharedMLP and FCLayers (Figure 12(b)). Theweights are broad-
cast to the CTiles, and the input features are streamed in and unicast
to their corresponding CTiles. In the FC mode, each CTile receives
2 weights via unicast and the input vector is broadcast to the CTiles
for computation.

6.2 Workload Partitioning
The Point-X prototype is designed for processing up to 1k points
from the input point cloud at a time. Point clouds of size of over 1k
points are partitioned into 1k blocks for Point-X to process.

For KNN graph construction, shared MLP, and FC operations,
an input point cloud is sequentially partitioned into 1k-blocks and
processed with corresponding inputs or weights. For GraphCONV,
the sequential partition is not the most efficient. As shown in Fig-
ure 13(a), the sequential partition divides the adjacency matrix in
sequentially-ordered blocks. Although being simple to execute, as
the point size scales up, the scheme results in quadratically increas-
ing number of blocks to fetch.

In Point-X, we adopt a diagonal partition by exploiting the SLA
clustering as illustrated in Figure 13(b). The SLA clustering is ap-
plied to the entire input point cloud. Only the diagonal blocks in the
adjacency matrix are sent to Point-X for processing. As discussed
in Section 3, the SLA clustering increases the spatial locality and
computation efficiency by increasing the number of local edges
and bringing the foreign edges closer to the matrix diagonal. Con-
sequently, the diagonal partition provides two major advantages.
First, the number of blocks scales linearly with the point size. Only
a small number of cross-block foreign edges need to be handled.

1085

Point-X: A Spatial-Locality-Aware Architecture for Graph-Based Point-Cloud Deep Learning MICRO’21, October 18–22, 2021, Virtual Event, Greece

Figure 13: Workload partition schemes: (a) sequential parti-
tion, (b) diagonal partition.

Second, the diagonal partition provides more spatial locality per
block, resulting in a higher computation efficiency.

In handling large point clouds, the SLA clustering module needs
to fetch KNN indices of vertex points scattered in off-chip memory,
which can cause a significant delay. To reduce the delay, the global
memory is used to prefetch the KNN indices to supplement the KNN
index buffer. Following the completion of clustering, Point-X fetches
points of diagonal blocks from the off-chip memory. To improve the
point fetch efficiency, the clustering results are organized so that
the points located in the same DRAM page are accessed together.
This approach helps to avoid unnecessary DRAM page changes
and provides a burst-like access bandwidth.

7 BENCHMARKING AND EVALUATION
A prototype of Point-X is designed in a 28nm CMOS technology
to evaluate its performance, area, and efficiency. The results are
compared to a CPU, a GPU, accelerator baselines, and state-of-
the-art accelerator works [41, 24] to show Point-X’s advantages
in throughput and energy efficiency in processing graph-based
point-cloud DNNs.

7.1 Evaluation Methodology
Following [33, 35, 48, 60, 6, 47, 56, 25, 53, 26, 3, 44, 5, 41, 24], we
used the sampled point cloud dataset from ModelNet40 [51] with a
point cloud size of 1,024. Quantization-aware training was applied
to reduce the precision of the input features and weights to 16b and
8b, respectively. The higher input feature precision is necessary for
a larger point cloud size. For instance, an 8b input precision allows
only 256 distinct positions in each dimension for the 1,024 points,
making points indistinguishable. The 16b-input, 8b-weight DGCNN
achieves 92.8% accuracy on ModelNet40, and shows no accuracy
drop compared to the DGCNN trained in FP32 [48]. To evaluate

Table 2: Storage and Area Breakdown of Point-X

Module Storage (KB) Area (mm2) Area Ratio (%)
CTile 18.39 0.288 4.25
Router 2.09 0.023 0.34

CTile Array (CTA) 327.75 4.935 72.90
SLA Clustering 26.88 0.566 8.36

System Ctrl & Mem 190.75 1.270 18.76
Point-X Total 545.4 6.8 100

Table 3: Layer Evaluation of Point-X on 1k-DGCNN [48]

Layer
(Kernel Size, F ×C)

Latency (µs)
(Overhead)

Energy (µJ)
(Overhead)

EdgeCONV-1
(64×3)

KNN 8.3 17.0
GraphCONV 10.2 (25.9%) 7.5 (6.5%)

EdgeCONV-2
(64×64)

KNN 74.6 158.5
GraphCONV 16.8 (15.7%) 18.3 (2.6%)

EdgeCONV-3
(128×64)

KNN 74.6 158.5
GraphCONV 31.0 (8.5%) 35.9 (1.3%)

EdgeCONV-4
(256×128)

KNN 148.0 316.7
GraphCONV 89.8 (2.9%) 136.1 (0.4%)

Shared MLP (1024×512) 307.2 799.1
FC-1 (512×1024) 3.2 5.2
FC-2 (256×512) 0.9 1.3
FC-3 (40×256) 0.2 0.2
DGCNN Total 765.0 (1.38%) 1654.3 (0.12%)

Point-X’s performance for scaled-up point cloud data, augmented
datasets with 2k, 4k, 6k, 8k, and 10k points are generated by re-
sampling the original CAD models in ModelNet40. The augmented
datasets represent point clouds of higher resolutions.

A cycle-accurate model was developed to simulate the behavior
and analyze the performance of Point-X’s architecture and dataflow.
For benchmarking, cycle-accurate models were also implemented
for a query-based baseline and an exchange-based baseline.

A prototype of Point-X was implemented in RTL and synthe-
sized in a 28nm CMOS technology with SRAMs generated from
SRAM compilers to provide more accurate silicon area, timing, and
power estimates. PrimeTime PX was used to estimate the energy
consumption of Point-X based on activity waveforms in running
complete network layers of our workloads.

For performance comparison, we evaluated the query-based and
exchange-based baselines using the same workloads. Both baselines
were designed using the same number of CTiles, memory banks,
and MACs in each DP unit as Point-X, but differ from Point-X in
the data fetch mechanism. The exchange-based baseline is designed
with a mesh NoC for data exchange between CTiles. Lastly, we
compare Point-X’s efficiency in EdgeCONV to existing accelerators
[41, 24] and Point-X’s end-to-end throughput and efficiency to an
Nvidia GTX-1080Ti GPU and an Intel i7-7700K CPU.

7.2 Area, Performance, Efficiency Analysis
The memory and silicon area breakdown of the Point-X prototype
are shown in Table 2. The Point-X prototype is 6.8 mm2 in size and

1086

MICRO’21, October 18–22, 2021, Virtual Event, Greece J.-F. Zhang et al.

Figure 14: (a) Normalized latency, (b) latency breakdown, and (c) energy breakdown of Point-X for GraphCONV in DGCNN;
(d) normalized latency comparison of Point-X to Q-Base and E-Base baselines for GraphCONV for different point cloud sizes.

contains 545.4 KB of on-chip memory. The SLA clustering module
costs an area overhead of only 8.36%. Inside the CTA module, a
CTile is 0.29 mm2, while a chain NoC router is only 0.023 mm2,
which is less than 1/10 the size of a CTile.

The layer-by-layer latency and energy results of the Point-X
prototype when running 1k-DGCNN are presented in Table 3. The
results for each EdgeCONV layer are shown separately for KNN
graph construction and GraphCONV. For every GraphCONV, the
overhead of SLA clustering is noted in parentheses. For a small
EdgeCONV layer like EdgeCONV-1, the SLA clustering costs an
overhead of 25.9% in latency and 6.5% in energy. The SLA clustering
overhead decreases in larger EdgeCONV layers, e.g., it takes only
2.9% and 0.4% of the latency and energy in EdgeCONV-4. For the
1k-DGCNN workload, the Point-X prototype demonstrates an end-
to-end latency of 0.77 ms at an average power consumption of 2.2W.
It achieves a throughput of 1307.1 Inf./s at 604.5 Inf./J.

7.3 Workload Scalability Analysis
Point-X is evaluated for larger workloads. Figure 14(a) and (b) show
the normalized latency and the latency breakdown of Point-X when
running GraphCONV in DGCNN for different point cloud sizes. The
latency breakdown looks at the five components of GraphCONV:
SLA clustering (CL), fpsum compute (DP), local fpsum aggregation
and NoC data exchange (LA&NoC), and foreign fpsum aggregation
and post-processing (FA&PP), and system control and memory
(MEM). The MEM component includes the latency of configuration
and data fetch that cannot be fully hidden by prefetching.

For a point size of under 4k, the global memory serves both the
clustering module and the CTA module effectively by prefetching
the inputs needed for GraphCONV. This can be observed by the
almost linear increase in the normalized latency and consistent
latency breakdown. For a point size larger than 4k, the input points
needed for processing a block in GraphCONVmay be located across
multiple DRAM pages, resulting in an increase in MEM latency as
shown in Figure 14(b). The energy breakdown of Point-X for the
GraphCONV workloads is shown in Figure 14(c).

7.4 Performance Comparison
In Figure 14(d), we show Point-X’s improvement over a query-
based design (Q-Base) and an exchange-based design (E-Base). The
differences between Point-X and the two base designs are mainly
attributed to the fetch mechanisms and the workload partition
schemes for GraphCONV. In Q-Base, CTiles request neighbor points

Table 4: EdgeCONV Comparison to Existing Works

Point-X Cambricon-G DeepBurning-GL
Type ASIC ASIC FPGA

Technology 28 nm 45 nm 16 nm
Frequency 1.0 GHz 1.0 GHz 200 MHz

Compute Unit 2048 MACs 2048 MACs 5893 DSPsc

Precision 16b & 16b/8b 16b 16b
On-Chip Mem. 545.4 KB 12.1 MB 3.2 MBc

Efficiency
(GOPS/W) 858.6a 360.9b 71.1b

aA MAC is counted as 2 OPs; comparisons in KNN are included for energy but not
counted in total OPs; Average from all EdgeCONV in [48].
bNumbers derived from [41, 24]; Only EdgeCONV (64×3) was reported.
cDerived from resource utilization reported in [24] for Alveo U50 FPGA.

from a centralized shared memory. It incurs a low fetch efficiency
due to memory access conflicts. In E-Base, CTiles communicate
with each other through a mesh NoC to obtain the needed neighbor
points. E-Base suffers from the overloading of message traffic across
the network and the long latency of message transfer, which worsen
its fetch efficiency. Overall, Point-X provides a speedup of 8.3×
and 1.4× over Q-Base and E-Base, respectively, for GraphCONV
workloads of 1k points.

The benefit of Point-X’s diagonal workload partition is illustrated
in Figure 14(d) showing normalized comparison for each point cloud
size. As the point size increases, the efficiency of Point-X’s point
fetching from DRAM decreases. As a result, the advantage of Point-
X over Q-Base shrinks slightly due to the reduced number of edges
per block (for a fixed K) and less frequent memory access conflicts
that favor Q-Base. Point-X achieves an average speedup of 7.7×
and 2.5× in GraphCONV computation across different point sizes
compared to Q-Base and E-Base, respectively.

Table 4 compares Point-X to state-of-the-art accelerators for
EdgeCONV computation [41, 24]. Cambricon-G [41] has the same
peak throughput as Point-X but it uses 22× on-chipmemory storage.
The large storage holds all intermediate results on-chip for reuse
and reduces the latency and energy overheads from external mem-
ory communication. DeepBurning-GL [24] is implemented on an
FPGA using a customized EdgeCONV template. Both Cambricon-G
and DeepBurning-GL process EdgeCONV following Eq. (2) and they
do not exploit the locality in point cloud, resulting in less-efficient
data fetching and redundant computation. Overall, Point-X achieves

1087

Point-X: A Spatial-Locality-Aware Architecture for Graph-Based Point-Cloud Deep Learning MICRO’21, October 18–22, 2021, Virtual Event, Greece

Figure 15: Comparison of (a) throughput and (b) energy effi-
ciency of Point-X to the CPU and GPU baselines.

a 2.4× and 12.1× higher efficiency in EdgeCONV computation over
Cambricon-G and DeepBurning-GL, respectively.

Point-X is also compared to a GPU (Nvidia GTX-1080Ti) and
a CPU (Intel i7-7700k). Both the GPU and the CPU are in more
advanced, faster, and more efficient silicon technologies than the
28nm used for Point-X prototyping. The GPU and the CPU run at
higher clock frequencies, have larger silicon footprints, and con-
tain larger on-chip memories for caching. In contrast, Point-X is
designed for graph-based DNNs. It has a much smaller silicon foot-
print and consumes less power. Point-X provides a total of 2,048
16b×8b MACs distributed to 16 CTiles, whereas the GPU has 3,584
cores and the CPU has 8 threads for floating point computation.
Figure 15 compares the throughput and energy efficiency of Point-X
to the GPU and CPU baselines for four workloads. When running
DGCNN, Point-X achieves a 4.5× and a 129.7× higher throughput
over the GPU and the CPU, respectively, at a 342.9× and a 3160.9×
better energy efficiency, respectively. We also compared to the GPU
with batch-10 inference. On average, the GPU throughput is im-
proved by almost 10× with only a 35% power increase. However,
batching is often infeasible for devices with limited memory or
real-time computing use cases.

8 RELATEDWORK
Graph-based point-cloud DNNs possess both regular computation
structures that require plenty of data reuse and parallelism, and
irregular computation structures that require flexible and efficient
data fetch mechanisms. DNN/CNN accelerators [16, 8, 38] are de-
signed for regular computation structures, and they tend to perform
poorly on graph-structured data featuring scattered memory access
and limited data reuse. On the other hand, graph processing acceler-
ators [13, 31] are designed for sparse and irregular data access and
computation, and they are unable to fully exploit the parallelism
and data reuse in DNN-like workloads.

GNN/GCN accelerators [54, 18, 11, 7, 41, 24] address both com-
putation structures. These accelerators work on arbitrary graphs
with power-law distribution, which presents severe workload im-
balance in processing. HyGCN [54] and GRIP [18] proposed win-
dow sliding/shrinking and parallel prefetching methods to improve
fetch efficiency, whereas AWB-GCN [11] proposed runtime work-
load rebalancing methods to improve compute utilization. These
works focus on static graphs and are unable to fully support Edge-
CONV due to the lack of runtime graph construction units. Recently,
Cambricon-G [41] and DeepBurning-GL [24] were proposed to sup-
port dynamic graphs, i.e., EdgeCONV, but they do not exploit the

data locality in point cloud data, making them unable to provide
the best efficiency. In comparison, Point-X leverages data reuse op-
portunities to eliminate redundant computation and exploits spatial
locality to achieve a higher computational efficiency.

Rubik [7] and GNNAdvisor [46] proposed graph reordering tech-
niques using locality-sensitive hashing and Rabbit Order [2] to
increase locality during GNN processing. The input graph is first
preprocessed offline before being sent to the GPU or accelerator
for processing. For an EdgeCONV operation where the graph is
constructed in runtime, offline preprocessing is impractical due to
data transfer overheads between the host and the accelerator. In
contrast, Point-X avoids the data transfer by having an on-chip
clustering implementation which can provide a significant speedup
over software implementations in [7, 46].

Low-cost NoC router designs were explored in the past [17, 32].
The routing is limited to x- or y-directions in [17] to reduce the
design complexity. Both [17, 32] prioritized in-network traffic to
reduce the buffers needed in a router. Similarly, Point-X reduces
the 2D mesh to 1D chain to avoid the switching overheads and
prioritizes the forward mode to eliminate buffers in routers. Accel-
erators [9, 21, 20] also adopted NoCs for inter-PE or memory-to-PE
communication, allowing more flexibility to support diverse work-
loads and dataflows. In comparison, Point-X’s NoC is specialized
for efficient data exchange with coarse-grained spatial locality and
targets both compact area and stringent power budgets.

9 CONCLUSION
We present Point-X, an SLA accelerator architecture that extracts
and leverages spatial locality for efficient graph-based DNN pro-
cessing on point clouds. To extract spatial locality in point clouds,
an SBFS graph traversal algorithm is presented to map points into
clusters to increase intra-CTile computation parallelism and reduce
the inter-CTile communication overhead. Compared to conven-
tional graph traversal methods, SBFS can be parallelized to achieve
a 9.2× speedup. To leverage the spatial locality, a lightweight chain
NoC is presented to reduce the data exchange latency by 3.2× com-
pared to a mesh NoC. Combining these innovations, Point-X is
designed with a multi-mode dataflow to support all operations in
graph-based DNNs, i.e., EdgeCONV, shared MLP, and FC layers.
A 1.0 GHz Point-X prototype is designed in a 28nm technology,
occupying 6.8 mm2 of silicon area. Point-X achieves up to 12.1×
higher energy efficiency in EdgeCONV compared to state-of-the-art
accelerators. When evaluated on the DGCNN workload, Point-X
achieves a throughput of 1307.1 Inf./s and an energy efficiency
of 604.5 Inf./J. Compared to an Nvidia GTX-1080Ti GPU, Point-X
demonstrates a 4.5× and a 342.9× improvement in throughput and
energy efficiency, respectively, on DGCNN workload.

ACKNOWLEDGMENTS
The authors would like to thank Yi-Chung Wu, Reid Pinkham,
Shang-En Huang, Chester Liu, and Wei Tang for the valuable dis-
cussions and help.

REFERENCES
[1] Eman Ahmed, Alexandre Saint, Abd El Rahman Shabayek, Kseniya Cherenkova,

Rig Das, Gleb Gusev, Djamila Aouada, and Björn E. Ottersten. 2018. Deep Learning
Advances on Different 3D Data Representations: A Survey. arXiv:1808.01462

1088

https://arxiv.org/abs/1808.01462

MICRO’21, October 18–22, 2021, Virtual Event, Greece J.-F. Zhang et al.

[2] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu
Iwamura. 2016. Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph
Analysis. In Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS). 22–31.

[3] Matan Atzmon, Haggai Maron, and Yaron Lipman. 2018. Point Convolutional
Neural Networks by Extension Operators. ACM Transactions on Graphics 37, 4,
Article 71 (July 2018).

[4] Jay Banerjee, Won Kim, S.-J. Kim, and Jorge F. Garza. 1988. Clustering a DAG for
CAD Databases. IEEE Transactions on Software Engineering 14, 11 (Nov. 1988),
1684–1699.

[5] Can Chen, Luca Zanotti Fragonara, and Antonios Tsourdos. 2019. GAPNet:
Graph Attention based Point Neural Network for Exploiting Local Feature of
Point Cloud. arXiv:1905.08705

[6] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng Wang, and Liang
Lin. 2019. ClusterNet: Deep Hierarchical Cluster Network With Rigorously
Rotation-Invariant Representation for Point Cloud Analysis. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR). 4989–4997.

[7] Xiaobing Chen, Yuke Wang, Xinfeng Xie, Xing Hu, Abanti Basak, Ling Liang,
Mingyu Yan, Lei Deng, Yufei Ding, Zidong Du, Yunji Chen, and Yuan Xie. 2020.
Rubik: AHierarchical Architecture for Efficient Graph Learning. arXiv:2009.12495

[8] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1 (Jan. 2017), 127–138.

[9] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (June
2019), 292–308.

[10] Raveesh Garg, Eric Qin, Francisco Muñoz Martínez, Robert Guirado, Akshay Jain,
Sergi Abadal, José L Abellán, Manuel E. Acacio, Eduard Alarcón, Sivasankaran
Rajamanickam, and Tushar Krishna. 2021. A Taxonomy for Classification and
Comparison of Dataflows for GNN Accelerators. arXiv:2103.07977

[11] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya
Haghi, Antonino Tumeo, Shuai Che, Steve Reinhardt, and Martin C. Herbordt.
2020. AWB-GCN: A Graph Convolutional Network Accelerator with Runtime
Workload Rebalancing. In Proceedings of the International Symposium on Microar-
chitecture (MICRO). 922–936.

[12] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed
Bennamoun. 2020. Deep Learning for 3D Point Clouds: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence (Early Access) (2020).
https://doi.org/10.1109/TPAMI.2020.3005434

[13] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A High-Performance and Energy-Efficient
Accelerator for Graph Analytics. In Proceedings of the International Symposium
on Microarchitecture (MICRO). 1–13.

[14] Kaveh Hassani and Mike Haley. 2019. Unsupervised Multi-Task Feature Learning
on Point Clouds. In Proceedings of the International Conference on Computer Vision
(ICCV). 8159–8170.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR). 770–778.

[16] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the International Symposium on
Computer Architecture (ISCA). 1–12.

[17] John Kim. 2009. Low-Cost Router Microarchitecture for On-Chip Networks. In
Proceedings of the International Symposium on Microarchitecture (MICRO). 255–
266.

[18] Kevin Kiningham, Christopher Re, and Philip Levis. 2020. GRIP: A Graph Neural
Network Accelerator Architecture. arXiv:2007.13828

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classifi-
cationwith Deep Convolutional Neural Networks. In Proceedings of the Conference
on Neural Information Processing Systems (NIPS). 1097–1105.

[20] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2017. Rethinking NoCs
for Spatial Neural Network Accelerators. In International Symposium on Networks-
on-Chip (NOCS). 1–8.

[21] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Intercon-
nects. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operation Systems (ASPLOS). 461–475.

[22] Shiyi Lan, Ruichi Yu, Gang Yu, and Larry S. Davis. 2019. Modeling Local Geometric
Structure of 3D Point Clouds Using Geo-CNN. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR). 998–1008.

[23] Charles E. Leiserson and Tao B. Schardl. 2010. A Work-Efficient Parallel Breadth-
First Search Algorithm (or How to Cope with the Nondeterminism of Reducers).
In Proceedings of the Symposium on Parallelism in Algorithms and Architectures
(SPAA). 303–314.

[24] Shengwen Liang, Cheng Liu, Ying Wang, Huawei Li, and Xiaowei Li. 2020.
DeepBurning-GL: An Automated Framework for Generating Graph Neural Net-
work Accelerators. In Proceedings of the International Conference on Computer-
Aided Design (ICCAD). Article 72.

[25] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming Xiang, and Chunhong
Pan. 2019. DensePoint: Learning Densely Contextual Representation for Efficient
Point Cloud Processing. In Proceedings of the International Conference on Computer
Vision (ICCV). 5238–5247.

[26] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. 2019. Relation-
Shape Convolutional Neural Network for Point Cloud Analysis. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR). 8887–8896.

[27] Daniel Maturana and Sebastian Scherer. 2015. VoxNet: A 3DConvolutional Neural
Network for Real-Time Object Recognition. In Proceedings of the International
Conference on Intelligent Robots and Systems (IROS). 922–928.

[28] Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst. 2017.
Envision: A 0.26-to-10TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-
Frequency-Scalable Convolutional Neural Network Processor in 28nm FDSOI. In
Proceedings of the International Solid-State Circuits Conference (ISSCC). 246–247.

[29] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sanchez. 2018. Exploiting Locality in Graph Analytics through Hardware-
Accelerated Traversal Scheduling. In Proceedings of the International Symposium
on Microarchitecture (MICRO). 1–14.

[30] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2017. Cache-Guided
Scheduling: Exploiting Caches to Maximize Locality in Graph Processing. In
Proceedings of the International Workshop on Architecture for Graph Processing.

[31] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,
Steven Burns, and Ozcan Ozturk. 2016. Energy Efficient Architecture for Graph
Analytics Accelerators. In Proceedings of the International Symposium on Computer
Architecture (ISCA). 166–177.

[32] Sunghyun Park, Tushar Krishna, Chia-Hsin Chen, Bhavya Daya, Anantha Chan-
drakasan, and Li-Shiuan Peh. 2012. Approaching the Theoretical Limits of a
Mesh NoC with a 16-Node Chip Prototype in 45nm SOI. In Proceedings of the
Design Automation Conference (DAC). 398–405.

[33] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR). 77–85.

[34] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and
Leonidas J Guibas. 2016. Volumetric and Multi-view CNNs for Object Clas-
sification on 3D Data. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR). 5648–5656.

[35] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of
the Conference on Neural Information Processing Systems (NIPS). 5105–5114.

[36] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. OctNet: Learning
Deep 3D Representations at High Resolutions. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR). 6620–6629.

[37] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. 2018. Mining Point Cloud
Local Structures by Kernel Correlation and Graph Pooling. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR). 4548–4557.

[38] Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, and Hoi-Jun Yoo. 2018.
DNPU: An Energy-Efficient Deep-Learning Processor with Heterogeneous Multi-
Core Architecture. IEEE Micro 38, 5 (Sep./Oct. 2018), 85–93.

[39] Martin Simonovsky and Nikos Komodakis. 2017. Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs. In Proceedings of the Con-
ference on Computer Vision and Pattern Recognition (CVPR). 29–38.

[40] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In Proceedings of the International
Conference on Learning Representations (ICLR).

[41] Xinkai Song, Tian Zhi, Zhe Fan, Zhenxing Zhang, Xi Zeng, Wei Li, Xing Hu,
Zidong Du, Qi Guo, and Yunji Chen. 2021. Cambricon-G: A Polyvalent Energy-
efficient Accelerator for Dynamic Graph Neural Networks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (Early Access) (2021).
https://doi.org/10.1109/TCAD.2021.3052138

[42] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015.
Multi-view Convolutional Neural Networks for 3D Shape Recognition. In Pro-
ceedings of the International Conference on Computer Vision (ICCV). 945–953.

1089

https://arxiv.org/abs/1905.08705
https://arxiv.org/abs/2009.12495
https://arxiv.org/abs/2103.07977
https://doi.org/10.1109/TPAMI.2020.3005434
https://arxiv.org/abs/2007.13828
https://doi.org/10.1109/TCAD.2021.3052138

Point-X: A Spatial-Locality-Aware Architecture for Graph-Based Point-Cloud Deep Learning MICRO’21, October 18–22, 2021, Virtual Event, Greece

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).
2818–2826.

[44] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui,
François Goulette, and Leonidas J. Guibas. 2019. KPConv: Flexible andDeformable
Convolution for Point Clouds. In Proceedings of the International Conference on
Computer Vision (ICCV). 6410–6419.

[45] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017.
O-CNN: Octree-Based Convolutional Neural Networks for 3D Shape Analysis.
ACM Transactions on Graphics 36, 4, Article 72 (July 2017).

[46] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient Runtime System
for GNN Acceleration on GPUs. In Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI). 515–531.

[47] Yue Wang and Justin M. Solomon. 2019. Deep Closest Point: Learning Represen-
tations for Point Cloud Registration. In Proceedings of the International Conference
on Computer Vision (ICCV). 3522–3531.

[48] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. 2019. Dynamic Graph CNN for Learning on Point Clouds.
ACM Transactions on Graphics 38, 5, Article 146 (Oct. 2019), 12 pages.

[49] HaoWei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup Graph Processing
by Graph Ordering. In Proceedings of the International Conference on Management
of Data (SIGMOD). 1813–1828.

[50] Yi-Chung Wu, Chia-Hua Chang, Jui-Hung Hung, and Chia-Hsiang Yang. 2017. A
135-mW Fully Integrated Data Processor for Next-Generation Sequencing. IEEE
Transactions on Biomedical Circuits and Systems 11, 6 (Dec. 2017), 1216–1225.

[51] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 2015. 3D ShapeNets: A Deep Representation for
Volumetric Shapes. In Proceedings of the Conference on Computer Vision and

Pattern Recognition (CVPR). 1912–1920.
[52] Yuxing Xie, Tian Jiaojiao, and Xiao Xiang Zhu. 2020. Linking Points With Labels

in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geoscience and
Remote Sensing Magazine 8, 4 (Dec 2020), 38–59.

[53] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang, and Ulrich Neumann.
2020. Grid-GCN for Fast and Scalable Point Cloud Learning. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR). 5660–5669.

[54] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin
Zhang, Dongrui Fan, and Yuan Xie. 2020. HyGCN: A GCN Accelerator with
Hybrid Architecture. In Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA). 15–29.

[55] Pengcheng Yao, Long Zheng, Zhen Zeng, Yu Huang, Chuangyi Gui, Xiaofei Liao,
Hai Jin, and Jingling Xue. 2020. A Locality-Aware Energy-Efficient Accelerator
for Graph Mining Applications. In Proceedings of the International Symposium on
Microarchitecture (MICRO). 895–907.

[56] Haoxuan You, Yifan Feng, Rongrong Ji, and Yue Gao. 2018. PVNet: A Joint
Convolutional Network of Point Cloud and Multi-View for 3D Shape Recognition.
In Proceedings of the International Conference on Multimedia (MM). 1310–1318.

[57] Tan Yu, Jingjing Meng, and Junsong Yuan. 2018. Multi-view Harmonized Bilinear
Network for 3D Object Recognition. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR). 186–194.

[58] Pingpeng Yuan, Changfeng Xie, Ling Liu, and Hai Jin. 2016. PathGraph: A Path
Centric Graph Processing System. IEEE Transactions on Parallel and Distributed
Systems 27, 10 (Oct. 2016), 2998–3012.

[59] Jiaying Zhang, Xiaoli Zhao, Zheng Chen, and Zhejun Lu. 2019. A Review of
Deep Learning-Based Semantic Segmentation for Point Cloud. IEEE Access 7
(Dec. 2019), 179118–179133.

[60] Kuangen Zhang, Ming Hao, Jing Wang, Clarence W. de Silva, and Chenglong
Fu. 2019. Linked Dynamic Graph CNN: Learning on Point Cloud via Linking
Hierarchical Features. arXiv:1904.10014

1090

https://arxiv.org/abs/1904.10014

	Abstract
	1 Introduction
	2 Background
	2.1 Edge Convolution Computation
	2.2 Computation Models and Bottlenecks

	3 Spatial-Locality-Aware Clustering
	3.1 Graph Traversal for Spatial Locality
	3.2 SBFS Traversal
	3.3 SLA Clustering Module Implementation

	4 Locality-Aware NoC
	4.1 Chain NoC Architecture
	4.2 Routing Algorithm

	5 CTile Architecture
	6 Point-X System Architecture
	6.1 Multi-Mode Dataflow
	6.2 Workload Partitioning

	7 Benchmarking and Evaluation
	7.1 Evaluation Methodology
	7.2 Area, Performance, Efficiency Analysis
	7.3 Workload Scalability Analysis
	7.4 Performance Comparison

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

