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Abstract
The widespread use of deep neural networks (DNNs) and DNN-
based machine learning (ML) methods justifies DNN computation 
as a workload class itself. Beginning with a brief review of DNN 
workloads and computation, we provide an overview of single in-
struction multiple data (SIMD) and systolic array architectures. 
These two basic architectures support the kernel operations for 
DNN computation, and they form the core of many flexible DNN 

accelerators. To enable a higher performance and efficiency, 
sparse DNN hardware can be designed to gain from data spar-
sity. We present common approaches from compressed storage 
to processing sparse data to reduce memory and bandwidth 
usage and improve energy efficiency and performance. To ac-
commodate the fast evolution of new models of larger size and 
higher complexity, modular chiplet integration can be a promis-
ing path to meet the growing needs. We show recent work on 
homogeneous tiling and heterogeneous integration to scale up 
and scale out hardware to support larger models of more com-
plex functions.

Index Terms—ML hardware, DNN accelerator, sparse DNN 
architecture, DNN chiplet, heterogeneous integration.
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I. Introduction
eep neural network (DNN)-based machine learn-
ing (ML) methods have become the dominant 
way to solve problems in the fields of computer 

vision (CV), natural language processing (NLP), autono-
mous driving, and robotics [1], [2], [3], [4], [5], [6], [7], 
[8], [9], [10], [11]. The effectiveness of the DNN-based 
methods leads to the proliferation of DNN models, from 
AlexNet [12] in 2012 for object detection and image 
classification to GPT-3 [7] in 2020 for natural language 
processing. In the quest towards higher accuracy and 
expanded capabilities, newer models often grow in size 
and require more memory and computation complexity. 

Fig. 1 presents the accuracy of modern network models 
along with their model size and complexity in terms of 
number of parameters and operation counts. The evolu-
tion of these models are shown in Fig. 2.

The widespread use of DNNs has made DNN compu-
tation a workload class of itself. General-purpose graph-
ics processing units (GPUs) and central processing units 
(CPUs) equipped with large compute parallelism and 
memory bandwidth are popular hardware platforms for 
accelerating DNN workloads in servers and clouds, but 
GPUs and CPUs are not the most suitable for edge use 
cases due to their high cost and energy consumption. 
To fill the void, designing domain-specific accelerators 
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Figure 1. Top-1 accuracy, size, and complexity of modern DNN models. Adapted from [9] ©2018 IEEE.
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for DNN workloads is of importance to answer new ap-
plication needs. A prime example of a domain-specific 
accelerator for DNN is Google’s TPU [13].

Designing DNN-based ML accelerators has been a 
rapid-growing field. In general, we identify three major 
challenges that need to be addressed in designing these 
ML accelerators.

■■ Flexibility: The design needs to be flexible to sup-
port a variety of computation types and models in 
the DNN workload class, not only for the current 
generation of DNN models, but also for future gen-
erations as the models are evolving more quickly 
than hardware upgrades.

■■ Efficiency: The design needs to optimize both the 
processing and the memory access to provide a 
competitive advantage over GPUs and CPUs and 
answer new application needs.

■■ Scalability: The design needs to provide a way to 
support larger models with higher memory and 
computation requirements, and new variations of 
the current models to remain relevant.

In this review article, we discuss three important di-
rections to address the computation challenges in sup-
porting modern ML models and workloads. First, we 
describe the common processing architectures and the 
data reuse opportunities for ML computation. Then, we 
present the benefit of exploiting data-level sparsity to 
improve computation efficiency. Lastly, we provide an 
overview of scaling-up and scaling-out approaches to 
answer the scalability challenge.

This article is organized as follows. In Section II, we 
present the primary types of computation used in ML 
and DNN workloads. We then describe two common 
processing architectures for DNN computation and 
common stationary dataflows to exploit data reuse in 
Section III. To gain better performance and efficiency, an 
effective approach is by exploiting data sparsity, which 
is explained in Section IV along with examples of sparse 
compression formats and sparse architectures. To scale 
up designs and scale out its functionalities, a chiplet-
based approach can be effectively employed. We review 
examples of homogeneous tiling and heterogeneous in-
tegration of chiplets in Section V to demonstrate prom-
ising recent results. Finally, we conclude this article in 
Section VI.

II. Background
In general, we can broadly categorize DNN models into 
four types based on its network structure and com-
putation: 1) multi-layer perceptron (MLP), 2) convolu-
tional neural network (CNN), 3) recurrent neural net-
work (RNN), and 4) transformer. Here, we present the 

high-level structures of each model and explain its core 
computation.

A. Multi-Layer Perceptron (MLP)
An MLP consists of multiple feedforward fully-connect-
ed (FC) layers cascaded one after another. The compu-
tation of an FC layer can be formulated into a vector-
matrix multiplication (VMM) between the input vector 
x C
∈  and the weight matrix W ∈

×K C  to obtain the 
output vector y∈K ,  as described in Fig. 3(a).

B. Convolutional Neural Networks (CNNs)
CNNs are mostly specialized for 2D image processing 
in vision applications, e.g., image classification, object 
detection, and semantic segmentation [2], [3], [4], [12], 
[14], [15], [16], [17], [18]. A CNN uses convolution (CONV) 
layers for spatial feature extraction and FC layers for 
feature classification. The input and output are often 
referred as input activation (IA) and output activation 
(OA). A CONV layer has a weight (W) of size R S C K× × × ,  
which can be understood as K  3D kernels of R S C× × .  
A CONV layer processing takes an IA of size H W C× ×  
and performs 2D convolutions between the IA and the K 
3D kernels to obtain an OA of size H W K× × ,  as shown 
in Fig. 3(b). The model hyperparameters C  and K  are 
the input and output channel sizes, respectively. The 

Figure 2. Evolution of model size in the fields of (a) CV and 
(b) NLP. Adapted from [11].
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output channel size is also known as the (weight) kernel 
number.

The 2D convolutions can be viewed as drawing an 
R S C× ×  cube inside the IA’s H W C× ×  volume, and slid-
ing it across the IA’s volume to obtain cubes of IA values. 
For each cube, the dot-product between the cube with 
each of the K R S C× ×  kernels is performed to obtain 
K OA values. Therefore, each 2D convolution can be for-
mulated as VMM with the R S C× ×  IA cube reshaped 
to a vector, and the K R S C× ×  kernels reshaped as a 
matrix of K  vectors.

C. Recurrent Neural Networks (RNNs)
An RNN and its more popular variants, gated recurrent 
unit (GRU) and long short term memory (LSTM), are 
used for sequence processing in speech recognition, 
keyword detection, and natural language processing. An 
RNN uses recurrent connections to process the input 
sequence of the current timestep t  and the output se-
quence from the previous timestep t −1.  An LSTM uses 
input, output, forget gates, and a cell, i.e., i f o c, , , ,  to 

keep track of features that are relevant in long term and 
improves accuracy over traditional recurrent units. The 
computation of an LSTM can also be formulated into a 
VMM (Fig. 3(a)), where the input vectors are the input 
sequence xt  and the hidden sequence ht−1,  the matrix 
is the concatenation of i f o c, , ,  matrices with respect to 
the input or hidden sequences, and the output vector is 
the hidden sequence ht .

D. Transformers
Recently, transformer architectures that use self-
attention and multi-head attention mechanisms are 
getting increasingly better performance compared to 
traditional LSTM in sequence and language applica-
tions [5], [6], [7] and CNN in vision applications [4]. 
The multi-head attention computation is described in 
Fig.  3(c). First, feed-forward operation, or matrix mul-
tiplication, is applied on the input sequence to obtain 
the key K( ),  query Q( ), and value V( )  matrices with 
its weights, W WK Q, , and WV ,  respectively. The K Q V, ,  
matrices are split into smaller matrices for multi-head 
attention. Each attention block of the multi-head atten-
tion performs the self-attention on its K Q V, ,  matrices. 
The outputs from each attention block are concatenat-
ed, then another feed-forward operation is applied to 
obtain the final output sequence. The whole computa-
tion can also be mapped into a series of matrix-matrix 
multiplication (MMM).

III. Classic DNN Processing Architectures 
and Dataflows

Single instruction multiple data (SIMD) and systolic ar-
ray are the basic architectures for computing VMM and 
MMM. These two architectures and their variants form 
the core of most of the DNN accelerators. In the follow-
ing, we review the two basic architectures and the com-
mon dataflows for performing the computation.

A. SIMD Architecture
In general, a single instruction multiple data (SIMD) ar-
chitecture consists of an array of parallel processing 
elements (PEs) or functional units (FUs) and performs 
vector operations across an array of data. Only one in-
struction is decoded and issued to trigger the computa-
tion on multiple data across the array of PEs. Fig. 4(a) 
illustrates the SIMD architecture for vector processing. 
A SIMD array can be used to compute the dot-product 
between two data vectors. Each PE receives a pair of 
data from the memory or register file for multiplication, 
then the result from each PE is written back to the mem-
ory for the next summation instruction. Alternatively, 
the results may be directly summed using an adder tree.

Figure 3. Core computations of DNNs: (a) vector-matrix mul-
tiplication in MLP and RNN, (b) 2D convolution in CNN, and 
(c) multi-head attention in transformers.
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The SIMD architecture is flexible and can be pro-
grammed to support diverse computation. In particular, 
we illustrate how the VMM, MMM, and CONV operations 
can be mapped onto a SIMD array for DNN processing.

VMM and MMM Operations: Fig.  4(b) shows the 
MMM operation between an input matrix and a weight 
matrix on a SIMD array. For an MMM operation, the vec-
tors of the input and weight matrices are loaded into the 
SIMD array’s memory to prepare for processing. During 
processing, corresponding input data and weight data 
pairs are accessed from the memory and dispatched to 
the PEs for processing. The input and weight vectors in 
the memory can be cached to exploit temporal locality 
throughout the entire computation. Similarly, for the 
VMM operation, the input vector is loaded and cached, 
and is paired across all weight vectors for processing.

CONV Operation: Fig.  4(c) shows the CONV opera-
tion between an H W C× ×  input activation (IA) and an 

R S C× ×  convolution weight (W) on a SIMD array. Due 
to the sliding window nature of the CONV operation, the 
IA and W  are first converted into 2D matrices: 1) IA is 
converted to a X Y C R S×( )× × ×( )  matrix, where each 
row matches the size of a R S C× ×  weight kernel; and 
the IA values are partially replicated from one row to 
the next row to correspond to the sliding window from 
one step to the next step; and 2) W  is converted to a 
C R S K× ×( )×  matrix, where each column corresponds 

to a weight kernel. Note the process of converting IAs 
and Ws in CONV into input and weight in MMMs, respec-
tively, is often referred as Im2Col operation. An MMM 
operation can then be performed between the input and 
the weight matrix to produce the output matrix of size 
X Y K×( )× .

The advantage of a SIMD architecture is its flexibil-
ity and programmability to support diverse workloads. 
In general, for computation with straightforward data 

Figure 4. Illustration of the (a) SIMD array architecture, (b) matrix-matrix multiplication (MMM) operation, and (c) convolution 
(CONV) layer operations on SIMD array.
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parallelism, e.g., VMM and MMM, a high compute uti-
lization can be achieved. The SIMD architecture also 
provides opportunities to reuse weights or inputs by 
keeping them stationary at the PE’s registers to reduce 
memory access. However, the memory size and band-
width have to scale with the number of PEs in order to 
support the full vector processing.

In general, a 1D SIMD array can be tiled into a 2D SIMD 
array, where input and weight loading from the external 
memory can be shared between 1D tiles to reduce the 
bandwidth requirement while scaling up the total num-
ber of PEs for processing.

The SIMD architecture is used extensively in CPUs 
and GPUs [19], [20]. Fig. 5 shows a sub-partition of the 
streaming multiprocessor (SM) in Nvidia’s A100 GPU 
[19]. The SM contains functional units (or CUDA cores) 
for arithmetic computation. In each cycle, an instruction 
is issued to a set of CUDA cores for parallel execution.

B. Systolic Array Architecture
A systolic array consists of a regular 2D array of PEs 
where each PE is connected to its immediate neighbors. 
Fig. 6(a) presents the architecture of the systolic array. 
The inputs are sent to the PEs through a PE array bor-
der, e.g., leftmost column, and the intermediate results 
are propagated across the PEs, e.g., horizontally to the 
right and vertically to the bottom. Finally, the output are 

sent out through another end of the PE array, e.g., bot-
tom row.

A systolic array’s PE microarchitecture and dataflow 
are illustrated in Fig. 6(b). A PE is commonly designed 
with a multiplier to compute the product of an incom-
ing input and a cached weight value, and an adder to 
sum the computed product and an incoming partial sum 
(psum). The updated psum is sent vertically to the next 
PE down and the input is propagated horizontally to the 
next PE on the right.

To prepare for an MMM operation on a systolic array, 
the weights are first loaded to the array. The weight data 
are split into column vectors as shown in Fig. 7(a). Each 
vector is streamed to and stored in the corresponding 
column of the PE array column, as shown in Fig. 7(b).

The steps of an MMM operation are illustrated in 
Fig. 7(c)–(e). The input matrix is split into row vectors 
that are streamed sequentially to the PE array, as shown 
in Fig.  7(c). The inputs propagate from left to right, 
passing through one PE in a clock cycle. When an in-
put enters a PE, the PE computes the product between 
the input and the cached weight, and sums the product 
with the psum that enters from top. Following the com-
putation, the PE passes the input to the next PE on the 
right and the updated psum to the next PE down. Note 
that the inputs to the rows of PE must be arranged with 
a one cycle delay from one row to the next to ensure 
that the correct psum accumulation. Data move through 
the systolic array in waves. The wavefront propagates 
diagonally across the systolic array. The outputs are col-
lected from the bottom row of PEs as shown in Fig. 7(e). 
The computation latency of a H W×  systolic array is 
H W+ −1 cycles.

A systolic array allows efficient weight reuse. In a 
systolic array, the transfer of psums and inputs are re-
stricted to efficient movements between neighboring 
PEs. Due to weight reuse and efficient data movements 

Figure 5. Illustration of an example of SIMD architecture in 
Nvidia A100 GPU. Adapted from [19].

Figure 6. Illustration of the (a) systolic array architecture and 
(b) PE architecture in the systolic array.
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within the array, a systolic array requires a lower data 
bandwidth. Systolic array is a data-driven architecture 
and has a low control overhead. These factors contrib-
ute to its high compute density.

Compared to a SIMD array, a systolic array is pre-
wired for a defined dataflow and it is thus less flexible. 
A large-size systolic array provides a higher computa-
tion capacity, but it may also suffer from a low utilization 
when the operations do not utilize the entire array. The 
long latency is another drawback of a large-size systolic 
array.

TPU [13] is an example of systolic array. TPU is de-
signed with a matrix multiply unit (MMU) that consists 
of a systolic array of 256 × 256 PEs. Fig. 8(a) and (b) show 
TPU’s system architecture and dataflow in the MMU, re-
spectively. The weight data are loaded from the weight 
FIFO into the MMU, and a systolic data setup module 

organizes the input data to ensure proper accumulation 
of the psums in the MMU. The MMU operates similarly 
to the description above where inputs are streamed in 
from the left to the right, and the psum accumulation 
happens vertically across columns.

Table 1 compares the SIMD architecture to the sys-
tolic array architecture. A SIMD array can be in the form 
of a 1D PE array to support VMM operations, and it can 
also be scaled up to a 2D PE array to support MMM 
operations. A systolic array is commonly designed as 
a 2D PE array to support MMM operations. In terms of 
data movement, a SIMD array needs to access memory 
to feed all its PEs, whereas a systolic array can rely on 
neighboring PE connections to reduce the bandwidth 
requirement and the number of memory accesses. A 
systolic array has a lower control overhead and can be 
easily scaled up. As such, a systolic array provides a 

Figure 7. Illustration of the operations on systolic array: (a) input and weight matrices, (b) weight data configuration, (c) input 
streaming (early-stage), (d) input streaming (general), and (e) output collection.
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higher compute density than a SIMD array. On the other 
hand, a systolic array is often designed for a fixed com-
putation, whereas a SIMD array is more flexible to sup-
port a wide range of operations. The higher flexibility 
of a SIMD array over a systolic array leads to a higher 
hardware utilization, e.g., in flexibly handling inputs of 
various shapes.

C. Stationary Dataflows
DNN computation can be mapped onto the processing 
architectures in two common ways: weight stationary 
(WS) and output stationary (OS). These mapping meth-
ods provide data reuse opportunities and dictate the 
computation dataflows.

Weight Stationary (WS) Dataflow: In the WS data-
flow, a PE stores a weight locally and reuses it for MAC 

computation with as many inputs as possible. The WS 
dataflow can effectively reduce the number of memory 
accesses required to fetch weights from memory, lead-
ing to a lower memory bandwidth and a lower power 
consumption. An example WS dataflow on a systolic ar-
ray architecture is illustrated in Fig. 9(a). In the example, 
the weights W W W W0 1 2 3, , , and( )  are cached locally in 
the PEs. Inputs are accessed from memory and sent to 
the corresponding PEs for computation. The computed 
psums are passed along the PE array for accumulation. 
Lastly, the output data is written back to memory. The 

Figure 8. Illustration of the TPU (a) system architecture and (b) matrix-multiply engine architecture. Adapted from [13] ©2017 ACM.

Figure 9. Illustration of (a) weight-stationary dataflow and 
(b) output-stationary dataflow. Adapted from [21] ©2017 IEEE.

Table 1.
Processing architecture summary.

SIMD Array Systolic Array

Architecture 1D/2D PE array 
with shared 
instructions

2D PE array with 
neighboring 
connectivity

Operations VMM, MMM MMM

Data 
movement

More memory 
access

Mostly local 
data movement

Compute 
density

Lower Higher

Flexibility Higher Lower

Hardware 
Utilization

Higher Lower

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore.  Restrictions apply. 



THIRD QUARTER 2023   IEEE CIRCUITS AND SYSTEMS MAGAZINE 43

systolic array adopts the WS dataflow to reuse cached 
weights across all inputs. Jouppi et al. [13] is an example 
of ML accelerator that adopts the WS dataflow.

Output Stationary (OS) Dataflow: In the OS dataflow, 
a PE stores and accumulates a psum data locally. The OS 
dataflow can effectively reduce the amount of reading 
and writing of psums from and to the memory. An ex-
ample OS dataflow mapped on a PE array is illustrated in 
Fig. 9(b). In this example, each PE accumulates a psum, 
P P P0 1 2, , ,  or P3,  locally. In each cycle, new weights are 
fetched and sent to the PEs, and one input is broadcast 
across all PEs. Each PE computes a MAC and updates its 
local psum. Upon completion, the output data are writ-
ten back from the PEs to memory. Du et al. [22] and Deng 
et al. [23] are examples of ML accelerators that adopt 
the OS dataflow.

IV. Sparse Architecture
The continued growth of model size and complexity has 
motivated research efforts in leveraging data sparsity to 
reduce the compute and storage requirements. In this 
section, we present an overview of network sparsity and 
how to exploit it to make more efficient processing.

A. Sparsity in Neural Networks
The sparsity in a network comes from both the model’s 
weights (Ws) and input activations (IAs). For the mod-
el weights, network pruning and other sparsification 
techniques can be used to zero out a large number of 
weights in a model with only a small inference accuracy 
drop [24], [25], [26], [27], [28], [29]. For the input acti-
vations, some commonly-used operators like rectifier 
linear unit (ReLU) can clamp all negative activations to 
zeros, resulting in sparsity in output activations (OA), 
which become input activations (IA) of the next layer.

A CONV computation with IA and W sparsity is il-
lustrated in Fig.  10. With network pruning [24], the 
typical W density (nonzero data over all data) 
ranges from 40% to 50% and the IA density 
ranges between 30% and 55% for well-known 
models, e.g., AlexNet, VGG-16, and ResNet-50 
[30]. An up to 38% and 4% density for IA and W, 
respectively, is achieved by [24] on the FC lay-
ers of VGG-16. The CONV layers can be pruned 
down to 19% and 22% density for IA and W, 
respectively. Zhang et al. [26] reported a 95% 
W sparsity on AlexNet using ADMM. For an IA 
and a W with 50% density each, because the 
nonzero W and IA are nearly randomly distrib-
uted, the amount of effectual computation, 
i.e., computation that does not involve a zero, 
is only about 25%.

There are multiple benefits by exploiting sparsity in 
designing DNN compute. First, data sparsity can be ex-
ploited to save power. Accelerators e.g., Eyeriss [32] gate 
the computation, e.g., by turning off the clock, whenever 
a zero in the IA is detected during processing. This tech-
nique can effectively reduce the power consumption 
during DNN processing and can be conveniently incor-
porated into existing dense DNN accelerators. However, 
the throughput remains the same since PEs become idle 
during ineffective computation.

Second, data sparsity can be used to reduce off-chip 
memory storage and bandwidth usage. The sparse W 
and IA can be stored in a compressed format with only 
nonzero elements. They are loaded and decompressed 
for computation. The compressed storage reduces the 
storage size and memory bandwidth. However, the de-
compression can be difficult to parallelize and costly in 
power and area, leading to a bottleneck and additional 
overhead for DNN processing.

Lastly, data sparsity can be used to reduce latency 
by skipping the ineffectual computation. During pro-
cessing, IA-W pairs are identified by searching through 
the sparse IA and W data and sent to the compute. The 
search step avoids wasting time on unnecessary com-
putation, resulting in significant latency savings. State-
of-the-art sparse DNN accelerators [31], [33], [34], [35], 
[36] process data directly in the compressed form, offer-
ing both low memory bandwidth and high degree of ac-
celeration. However, supporting sparse processing can 
cost a high design complexity.

B. Sparse Compression Format
Sparse compression formats are used to store sparse 
data in compact ways to save storage space. A com-
pressed format contains only nonzero data values and 
metadata to hold the information for locating the posi-
tions of nonzero values in the uncompressed vectors and 
matrices. During processing, the metadata is decoded to 

Figure 10. Convolution computation between unstructured sparse IA 
and W in a sparse DNN. The colored cells indicate nonzero entries, 
and the white cells indicate zero entries. Adopted from [31] ©2021 
IEEE.
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obtain the input address for fetching the nonzero data 
in the compressed format and to calculate the output 
address for writing back the computed result. Differ-
ent sparse compression formats have different require-
ments in terms of total storage size (including nonzero 
data and metadata) and decoding complexity. Here, we 
present and discuss some common sparse compression 
formats used for sparse neural network processing.

Coordinate List (COO): In the COO format, nonzero 
data are stored along with their absolute indices in the 
original uncompressed vector or matrix. Fig. 11(a) shows 
an example of a matrix with zero and nonzero data. The 
COO format of the matrix stores all nonzero data in a 
1D value array and records the (row, column) indices of 
each nonzero data, as shown in Fig. 11(b). The advan-
tage of COO is its low decoding complexity, since the 
row and column indices can be directly used to locate 
the positions of the nonzero data in the uncompressed 
vector or matrix. However, the row and column indices 
may require significant amount of storage overhead 
which makes COO less efficient for data of medium or 
low sparsity.

Compressed Sparse Row (CSR): In the CSR format, 
nonzero data are stored first by row, then by column in 
a 1D value array. Different from COO, the metadata con-
sists of a pointer (Ptr) array and a column index array. 
The Ptr array stores the row-by-row count of the total 
number of nonzero data. The first entry Ptr[0] is always 
0; the second entry Ptr[1] stores the count of nonzero 
data in the first row; and Ptr[2] stores the count of non-
zero data in the first two rows, etc. The column index 
array stores the column index of each nonzero data. 

Fig. 11(c) shows the CSR format of our matrix example. 
The CSR format requires a two-step decoding process. 
For instance, to access data in Row 1, the two steps are: 
1) obtain the positions of the nonzero data of Row 1 
stored in the value array: Ptr[1] Ptr ,, [ ]1 1+  and so on and 
2) obtain the column indices of the nonzero data in Row 
1: Index[Ptr[1]], Index[Ptr[1]+1], and so on.

Compressed Sparse Column (CSC): The CSC for-
mat is similar to the CSR format, but nonzero data are 
first stored by column, then by row in a 1D value array. 
Fig. 11(d) shows the CSC format for our matrix example, 
where the Ptr array stores the column-by-column count 
of the total number of nonzero data and the row index 
array stores the row index of each nonzero data. The 
CSC format shares the same advantages and disadvan-
tages as the CSR format.

Run-Length Coding (RLC): In the RLC format, non-
zero data are stored in a 1D value array in either row 
major or column major, and a run array keeps track of 
the number of zeros before each nonzero data (known 
as the “run length”). Fig. 11(e) shows the RLC format of 
our matrix example using 2-bit run lengths. In this ex-
ample, nonzero values a, b, c, and d are stored in the 1D 
value array, and they have 1, 3, 0, and 3 preceding zeros 
or run lengths, respectively, that are recorded in the 
run array. Note that the nonzero data e has four preced-
ing zeros, which exceeds the two bits allocated to a run 
length. Therefore, an additional padding zero is inserted 
before e with a run length of 3. The RLC format can be 
decoded in one step. The position of i-th nonzero data 
in the value array can be calculated by accumulating all 
preceding run lengths in the run array.

C. Sparse Computation Pipeline
The high-level computation pipe-
line of sparse DNN processing in 
the compressed format is illustrat-
ed in Fig. 12. Following the compu-
tation pipeline, nonzero data and 
metadata arrays of Ws and IAs are 
first fetched on-chip for processing. 
The compressed W and IA pairs 
are then searched, paired and dis-
patched to a multiplier array for 
computation in the so-called fron-
tend part of the pipeline. Finally, 
the computed psums are accumu-
lated and written back to their re-
spective OAs in output buffers in 
the so-called backend part of the 
pipeline.

The challenges of processing 
sparse data are two folds: 1) at the 

Figure 11. Examples of sparse compression formats: (a) sparse uncompressed ten-
sor, (b) COO format, (c) CSR format, (d) CSC format, and (e) RLC format with a run 
of 2-bit.
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front end, a sufficient number of 
IA-W pairs must be discovered 
and sent to the compute stage in 
order to maintain a high compute 
utilization and 2) at the backend: 
the irregular psum traffic out 
of the compute stage must be 
reduced and written back to the 
output buffer without costing ex-
cessive bandwidth.

We provide a high-level over-
view of the hardware design 
techniques and explain how they 
leverage sparsity in the following 
three subsections.

D. Single-Operand Sparsity
Some of the earliest sparse ar-
chitectures leveraged sparsity 
from either IA, e.g., Cnvlutin [37], 
or W, e.g., Cambricon-X [38], but 
not both. By limiting the support 
to single-operand sparsity, these 
designs could adopt an existing 
dense DNN accelerator architec-
ture and dataflow [39], and add 
a frontend to discover IA-W pairs 
for computation. Fig. 13 shows the 
frontend designs for Cnvlutin [37] 
and Cambricon-X [38]. Both used 
indirect access to fetch dense data 
(W in Cnvlutin, IA in Cambricon-X) 
using the indices of nonzero data 
(IA in Cnvlutin, W in Cambricon-X) decoded from the 
compressed format.

Cnvlutin supports IA sparsity, where the IA data 
are compressed in the COO format, as illustrated in 
Fig. 13(a). For each nonzero IA data, an IA offset is stored 
to represent the original location of the IA data in the 
uncompressed format. To discover IA-W pairs, the IA 

offset is used as the index to fetch W data from the W 
data array.

Cambricon-X supports W sparsity, where the W 
data are compressed in the RLC format. For each W 
data, a W step index stores the number of zeros pre-
ceding it, i.e., the run length, as shown in Fig. 13(b). To 
discover IA-W pairs, the run lengths are accumulated 

Figure 12. Processing pipeline of a sparse DNN processor. Adopted from [31] ©2021 IEEE.

Figure 13. Sparse architectures for single operand sparsity: (a) Cnvlutin adapted from 
[37] and (b) Cambricon-X adapted from [38].
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to recover the indices of the W  data in the uncom-
pressed format. The recovered indices are used to se-
lect the corresponding IA data to form IA-W pairs for 
computation.

E. Full Sparsity—Channel-Last Processing
There are generally two ways to handle full sparsity, 
i.e., sparsity in both W and IA: channel-last processing 
or channel-first processing. In this subsection, we will 

cover channel-last processing, an 
example of which is SCNN [34].

The channel-last dataflow is 
illustrated in Fig.  14. In the chan-
nel-last processing, the nonzero 
W and IA data are ordered in the 
R S H W, / ,( ) ( ) dimension first and 

C dimension last for compressed 
storage and processing. Subse-
quently, as compressed W and IA 
data are fetched for processing, 
their channel indices are easily 
aligned. As long as a nonzero W’s 
and a nonzero IA’s channel indices 
are matched, they can be paired 
for multiplication.

Shown in Fig. 14(a) and (b), the 
compressed W and IA data of the 
same channel index can be cross 
paired and multiplied together 
using a 2D multiplier array. The 
advantage of the channel-last pro-
cessing is the simple frontend, but 
the drawback is the complicated 
writeback because the OA ad-
dresses of the psums depend on 
the R S H W, / ,( ) ( )  indices of the 
IA/W data, which are irregular for 
sparse data. There is little oppor-
tunity to reduce the psums before 
writeback, resulting in writeback 
traffic jam. It requires complex 
hardware or wiring, e.g., a cross-
bar switch, to resolve the conten-
tion, and it may cause pipeline 
stalls.

This backend challenge is illus-
trated in Fig. 14(c). The psums need 
to be distributed by a switch to the 
corresponding buffer bank. The 
red lines indicate the psum write-
backs that lead to buffer conten-
tions. To avoid contentions, con-
flicting psums need to be held. In 
the example, one output requires 
the accumulation of three psums, 
resulting in a three-cycle write-
back and stalling the multiplier ar-
ray for two cycles.

Figure 14. Illustration of channel-last dataflow for sparse DNN processing. (a) IA and 
W data in dense format, (b) front-end dataflow, and (c) back-end dataflow of channel-
last processing. Adopted from [31] ©2021 IEEE.

Figure 15. Architecture of SCNN, adopted from [34] ©2017 ACM.
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Fig.  15 shows the architecture of SCNN that adopts 
channel-last processing for sparse DNN processing.

F. Full Sparsity—Channel-First Processing
In the channel-first processing, the nonzero W  and 
IA data are ordered in the C  dimension first and 
R S H W, / ,( ) ( )  dimension last. As compressed W and IA 

data are fetched, their channel indices are first matched 
to produce pairs of W  and IA data to be multiplied to-
gether. Strings of resulting psums will share the same 
OA address, so they can be reduced 
before writeback. Compared to the 
channel-last processing, the chan-
nel-first processing incurs an over-
head in the frontend due to the chan-
nel index matching, but it produces 
immediately-reducible psums to cut 
the writeback traffic, leading to more 
gain from simplifying the backend 
and a potential net improvement in 
the overall power and performance.

The channel-first dataflow is il-
lustrated in Fig.  16. The W channel 
index is matched with the IA chan-
nel index to generate valid W-IA 
pairs. Valid W-IA pairs are fetched 
and multiplied to produce psums. 
The psums are to be accumulated to 
the OA address following the IA indi-
ces h w,( ) and the W indices r s k, ,( ).  
Due to the channel-first input order-
ing, the h w,( ) and r s,( )  addresses 
will increment less frequently than 
the input channel index over the 
course of processing, allowing the 
OA address to stay constant for the 
majority of the time and the psums 
can be immediately accumulated be-
fore writeback.

An example of channel-first pro-
cessing is SNAP [31]. SNAP utilizes 
associative index matching (AIM) 
units in the frontend to extract 
IA-W pairs for multiplication, as 
shown in Fig. 17. The AIM consists 
of a comparator array and each row 
is connected to a priority encoder. 
During operation, an AIM receives 
the W  and IA channel index ar-
rays and compares each W  chan-
nel index to every IA channel index 
as shown in Fig.  17. A  priority en-
coder encodes the match result in 

each row into a valid bit to indicate a match and the 
matched position in the IA channel index array. Upon 
completion, an AIM returns a list of valid-position 
pairs for processing.

G. Structured Sparsity
Making use of full available sparsity can cost substantial 
hardware overhead. As a compromise, we can use a lim-
ited form of sparsity, such as coarse-grained or struc-
tured sparsity, that can provide a good enough gain in 

Figure 16. Illustration of channel-first dataflow for sparse DNN processing. Adapted 
from [31] ©2021 IEEE.

Figure 17. The associative index matching (AIM) unit in SNAP. Adopted from [31] 
©2021 IEEE.
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performance and efficiency without excessive hardware 
overhead [27], [40].

Different forms of sparsity are compared in Fig. 18. If 
pruning [24] is done without any constraints, it results in 
unstructured sparsity shown in Fig. 18(a). Pruning with-
out any constraints generally produces a higher sparsi-
ty, but processing unstructured sparsity requires more 
fine-grained control and can cost excessive hardware 
overhead. Pruning can be done by block with a density 
upper bound. The approach produces density-bounded 
block sparsity [19], [41]. For example, Fig. 18(b) shows 
the result of a density-bounded block pruning with each 
1 3×  block containing at most one nonzero value. Prun-
ing can be done by block [42], [43], e.g., by 2 2×  blocks as 
shown in Fig. 18(c). Pruning can even be done by input 
and output channel [40], [44], [45] as shown in Fig. 18(d). 
More coarse-grained pruning produces more hardware-
friendly structured sparsity, but it may sacrifice the 
model accuracy to some degree.

One well-known example that leverages the density-
bounded block sparsity is Nvidia A100 GPU [19]. As il-
lustrated in Fig. 19, fined-grained structured pruning is 
applied to the trained model weights to create the so-
called 2:4 sparsity, i.e., a 50% density bound for each 
block of 1 4×  data. The sparse weights are compressed 
with COO indices that are used to access the dense in-
puts in processing, similar to the illustration in Fig. 13(b).

H. Bit-Level Sparsity
Besides sparsity at data level, bit-level sparsity can also 
be leveraged by bit-serial multipliers. One example that 
adopts this approach is bit-pragmatic [46], where the 
zero bits in one of the operands can be skipped in bit-
serial multiplication. The bit-pragmatic processing is 
illustrated in Fig. 20 [46]. The IA is processed in a bit-
serial fashion, and each nonzero bit is encoded by its 
position in the bit sequence similar to the COO format. 
In computation, the nonzero bit position of each IA data 
is used to set the configurable left shifter to shift the 
W data value, effectively acting as a bit-wise multiplier. 
Exploiting sparsity in bit-level reduces the number of 
computation cycles, and can increase both efficiency 
and throughput.

I. Sparse Architectures for RNNs and Transformers
Compared to the sparse architectures for CNNs, the 
sparse architectures for RNNs are focused on improving 
the performance for sparse matrix vector multiplication 
(SpMV) and the element-wise operations associated to 

Figure 19. Processing mechanism of Nvidia A100 GPU for fine-grained structured sparse model weights. Adopted from [19].

Figure 18. Common sparsity types: (a) fine-grained, (b) den-
sity structured, (c) block structured, and (d) filter structured.
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the type of RNNs. For instance, LSTM requires element-
wise multiplication, sigmoid, and tanh operations to 
compute the outputs. ESE is an example of a sparse ar-
chitecture for LSTM [47]. It proposes a load-balancing 
pruning technique to reduce the workload imbalance in 
the sparse inputs and weights during pruning. Similar 
to EIE [33], ESE adopts the CSC format to store and com-
pute the sparse data.

Different from the pruning techniques that eliminate 
the unimportant weights and inputs 
in CNNs to RNNs, the sparse archi-
tectures for transformers proposed 
to prune the unimportant connec-
tions (tokens or heads) in the self-
attention matrix [48], [49]. Fig.  21 
presents an example of the attention 
matrix. Several tokens have small 
contributions to the final result, thus 
can be pruned away without per-
formance degradation. Spatten [48] 
proposed cascade head and token 
pruning techniques to eliminate the 
tokens and heads in the attention 
matrix. It uses a shifting mechanism 
to avoid irregular memory access 
from the sparse computation and a 
reconfigurable adder-tree to lever-
age the sparsity for speedup. DOTA 
[49] trains a decoder side by side to 
the Transformer to detect the weak 
connections in the attention matrix. 
To process the sparse attention ma-
trix, DOTA adopts an out-of-order 
processing scheme to leverage the 
temporal locality and avoid unneces-
sary memory accesses.

V. Scale Up and Scale Out
The DNN model complexity grows at 
1.5 times annually [8], [9], [29], [50], 
but it is unlikely to expect new cus-
tom chips to be built to respond to 
the rapid evolution of DNN models at 
the same rate. This lag is attributed 
to the high cost and effort to design 
new chips, especially ones that uti-
lize large silicon area and advanced 
technology nodes needed to support 
the processing of more complex DNN 
models. Other important factors in-
clude the diverse use cases of DNN 
that diminish the space for custom 

chips, and the rapid evolution of DNN models that short-
ens the useful life of such custom chips.

Domain-specific accelerators for DNN, such as 
NVDLA [51] and TPU [13], represents a path forward 
by providing some degree of flexibility to support not 
only current models but also future models. However, 
without growing the raw compute and memory capacity, 
the performance of such accelerator will not be able to 
meet the demands of newer and more complex models. 

Figure 20. Frontend mechanism and processing example of bit-pragmatic [46]: (a) 
IA and W data for processing and (b) bit-serial processing using IA's nonzero bit 
position to control the shifter.

Figure 21. Illustration of the attention matrix with unimportant tokens. Adopted 
from [48].
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Therefore, these domain-specific accelerators also need 
to be continuously upgraded, e.g., from the 28 nm TPUv1 
in 2016 [13] to the 7 nm TPUv4 in 2021. Similar challenges 
in high cost and limited lifespan still remain.

We identify a growing trend to emphasize on hard-
ware reuse and leverage advanced packaging to en-
hance the capability of hardware systems. Using this 
approach, a chip is designed to be a modular building 
block, called chiplet; and a system is constructed by 
reusing chiplets. To meet the requirements of different 
DNN models and use cases, systems can be constructed 
using the suitable number and types of chiplets. In other 
words, this approach takes advantage of chiplet reuse to 
construct systems in package (SiP). The premise of this 
approach is that designing, fabricating and assembling 
packages require lower cost and effort than designing 
and fabricating large monolithic chips.

For the SiP approach to succeed, we identify three basic 
requirements: 1) availability of reusable chiplets that are 
equipped with high-bandwidth and efficient I/O interfaces; 
2) accessible advanced packaging and assembly process; 
and 3) methodology to map workloads to chiplet-based 
systems. Among the three requirements, a high-band-
width and efficient I/O interface is necessary to ensure 
that the chiplets that constitute an SiP can be seamlessly 
integrated to match the performance of a monolithic chip; 
an accessible advanced packaging and assembly process 
ensure that high-density integration and high-bandwidth 
routing are feasible to construct an SiP at a reasonable 
cost; and a mapping methodology is needed to divide the 
workload and assign them appropriately to the chiplets to 
achieve high utilization and efficiency.

In the following, we use two recent designs as exam-
ples to outline the primary ways in constructing SiP for 
DNN compute acceleration. We categorize them into two 
classes, homogeneous integration and heterogeneous 
integration. In homogeneous integration, same chiplets 
are tiled to scale up the system to support models of 
larger size. In heterogeneous integration, different types 
of chiplets are put together to extend the functionality 
to cover new types of workloads.

A. Homogeneous Integration
The best example of homogeneous integration is Nvid-
ia’s DNN multi-chip package (MCP) shown in Fig.  22, 
where up to 36 DNN chiplets can be integrated in one 
MCP to scale up the system as needed [52]. The DNN 
chiplet measures 6 mm2 in a TSMC 16 nm technology. 
It integrates tiles of SIMD-based PEs to provide up to 
1,024 MACs/cycle (INT8) or 4 TOPS (INT8) [52].

Nvidia’s DNN MCP is built on a 12-layer organic sub-
strate. Organic substrate is generally of lower cost than 
substrates used for advanced packaging such as silicon 
interposers, but the routing density is generally lower 
too. Nvidia’s DNN MCP adopts a serial link approach 
to achieve a high inter-chiplet bandwidth using fewer 
wires at very high speed, suitable for organic substrate. 
In particular, the Nvidia design used a 200  mV low-
swing, short-reach serial link called ground-referenced 
signaling (GRS) to achieve up to 25 Gbps/lane at 
0.82–1.75 pJ/b for a short reach of 3–7 mm [53]. A chiplet 
is equipped with four transmit lanes and four receive 
lanes for up to 100 Gbps of input and 100 Gbps of output 
bandwidth [52].

The compute and I/O specifications 
above shed light on key design consid-
erations for a chiplet-based DNN ac-
celerator: 1) the compute capacity of 
the DNN chiplet (4 TOPS in INT8) sig-
nificantly exceeds the I/O bandwidth 
(100  Gbps, transmit or receive) and 
2) the compute energy efficiency of 
the DNN chiplet (0.11 pJ/OP in INT8) 
is substantially lower than the I/O en-
ergy efficiency (0.82 pJ/b). The DNN 
chiplet must reuse the input data (input 
activations and weights) and reduce 
the output data (output activations) 
to minimize the I/O usage, or I/O can 
easily overtake compute to become 
the performance and energy bottle-
neck, rendering the chiplet approach 
impractical.

The contrast between compute 
and I/O also has an implication on the 

Figure 22. Nvidia DNN MCP approach. Figure reused from [52] ©2020 IEEE.
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chiplet size choice. If a chiplet’s x- and y-dimension are 
each scaled up by a factor of S, the compute capacity 
scales up by a factor of approximately S2, but the chiplet 
I/O shoreline only scales up by a factor of S, allowing 
the I/O bandwidth to scale up by approximately S. This 
back-of-envelope calculation suggests that chiplet size 
may have to be kept smaller or the disparity between 
compute and I/O can become even larger.

A mapping strategy was developed for Nvidia’s MCP 
to divide the weights into parts and allocate them to dif-
ferent chiplets [54]: 1) allocate output channels (differ-
ent kernels) across columns of chiplets and 2) divide the 
input channels into parts and allocate them across rows 
of chiplets. To carry out the computation, the channels 
of the inputs are divided into parts and distributed to 
appropriate rows of chiplets. This mapping strategy pro-
vides data reuse and reduction: 1) weights are cached 
and reused within a chiplet; 2) input activations are 
reused between multiple kernels within a chiplet; and 
3) output psums are reduced in the channel dimension 
before going out of the chiplet. Such a mapping strategy 
is essential for reducing the I/O usage and removing the 
I/O bottleneck in the DNN MCP.

B. Heterogeneous Integration
While homogeneous tiling of DNN chiplets solves the 
problem of scaling up DNN hardware to support larger 
DNN models, it does not address the problem of scaling 
out DNNs, i.e., extending DNNs to novel uses, e.g., DNNs 
used as a building block to support new applications. 
Besides scaling out DNNs, new operators can be added 
to DNNs in the future to enhance its capability, making it 
difficult to design a truly future-proof DNN chiplet.

We argue the importance of factoring computation 
into types, e.g., common operations and special opera-
tions, in considering chiplet-based system partition-
ing. As examples, CONV and FC layers are common and 
compute-heavy operations; and batch normalization 

and activation functions are special operations and 
relatively lightweight compared to CONV and FC lay-
ers. The control loops and data organization outside 
of NN processing to support different tasks are also 
special operations. This factoring exercise naturally 
leads to heterogeneous chiplets, e.g., an accelerator 
chiplet that supports common and compute-heavy 
operations, and a processor or FPGA chiplet that can 
be programmed to support special operations. Using 
this approach, accelerator chiplets can be made to tar-
get common kernels that are unlikely to change over 
time, allowing us to extend the useful lifetime of these 
chiplets. Processor and FPGA chiplets can be used to 
complement the accelerator chiplets to complete sys-
tem implementations.

An example of heterogeneous integration is the MCP 
consisting of an FPGA with the PETRA systolic array 
chiplet [55] as illustrated in Fig. 23. The PETRA chiplet 
measures 3 mm2 in an Intel 22 nm technology. It inte-
grates tiles of systolic arrays to provide up to 1,024 
MACs/cycle (FP16) or 1.43 TFLOPS (FP16) [55].

The PETRA MCP is built on Intel’s embedded multi-
die interconnect bridge (EMIB) [56], [57], a silicon bridge 
that connects an FPGA chiplet and an external chiplet. 
The silicon bridge provides a high routing density, en-
abling the use of parallel links of moderate speed. The 
I/O design for moderate-speed links can be made much 
simpler than high-speed serial I/Os, and it can even be 
made entirely digital [58]. A digital link is more reliable 
and can be ported to different technologies with ease. In 
the MCP design, a digital advanced interface bus (AIB) 
link [57], [58] was adopted with full swing, supporting a 
short-reach of 3 mm at 2 Gbps/pin. Thanks to the short 
reach and simple design, an AIB I/O consumes less than 
1 pJ/b [58]. An AIB channel assembles 40 pins for an 
aggregate bandwidth of 80 Gbps. Using a dense bump 
pitch of 55 μm, an AIB channel occupies approximately 
300 μm of die edge. The PETRA chiplet utilizes 8 AIB 

Figure 23. Illustration of the concept of integrating an FPGA with the PETRA chiplet. Figure reused from [55] ©2021 IEEE.
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channels, or a total bandwidth of 640 Gbps, to communi-
cate with the FPGA chiplet [55].

With heterogeneous integration, the FPGA can serve 
as the flexible platform that can be configured to serve 
as the host and handle control and data management, 
and the PETRA systolic array chiplet can perform the 
VMM and MMM that form the core part of DNN compu-
tation [55]. Operations that are not supported by the PE-
TRA chiplet can always be covered by the FPGA chiplet. 
The heterogeneous platform can be further extended, 
e.g., by adding a front-end chiplet to make a complete 
sensor platform, and by adding another function accel-
erator chiplet to expand the capability of the system.

VI. Conclusion
DNN hardware design is a fast-evolving field. In this ar-
ticle we provide a survey and a tutorial on the basics of 
the DNN workloads, the essential processing architec-
tures, and the promising directions in sparse DNN pro-
cessing and multi-chip integration. First, we explain the 
two basic architectures for DNN processing, SIMD and 
systolic array, along with common WS and OS dataflows, 
to show the tradeoffs between flexibility and energy ef-
ficiency, and utilization and compute density. Next, we 
present designs that exploit data sparsity to improve 
both performance and energy efficiency with com-
pressed storage and sparse processing. From partial 
sparsity to full sparsity, architectures can be designed 
with a range of overheads to gain from an array of ben-
efits including lower energy, smaller memory, lower 
memory bandwidth and higher performance. Lastly, we 
show a path in scaling up and scaling out DNN hardware 
using multi-chiplet integration, either by tiling of modu-
lar DNN chiplets in constructing larger-scale systems or 
by heterogeneously pairing of DNN chiplets with CPU or 
FPGA to build a versatile platform.
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