
THIRD QUARTER 2023 1531-636X/23©2023IEEE IEEE CIRCUITS AND SYSTEMS MAGAZINE 35

Feature

Digital Object Identifier 10.1109/MCAS.2023.3302390

Date of current version: 11 October 2023

Machine Learning
Hardware Design for
Efficiency, Flexibility,
and Scalability
Jie-Fang Zhang, Member, IEEE, and Zhengya Zhang, Senior Member, IEEE

IMAGE LICENSED BY INGRAM PUBLISHING

Abstract
The widespread use of deep neural networks (DNNs) and DNN-
based machine learning (ML) methods justifies DNN computation
as a workload class itself. Beginning with a brief review of DNN
workloads and computation, we provide an overview of single in-
struction multiple data (SIMD) and systolic array architectures.
These two basic architectures support the kernel operations for
DNN computation, and they form the core of many flexible DNN

accelerators. To enable a higher performance and efficiency,
sparse DNN hardware can be designed to gain from data spar-
sity. We present common approaches from compressed storage
to processing sparse data to reduce memory and bandwidth
usage and improve energy efficiency and performance. To ac-
commodate the fast evolution of new models of larger size and
higher complexity, modular chiplet integration can be a promis-
ing path to meet the growing needs. We show recent work on
homogeneous tiling and heterogeneous integration to scale up
and scale out hardware to support larger models of more com-
plex functions.

Index Terms—ML hardware, DNN accelerator, sparse DNN
architecture, DNN chiplet, heterogeneous integration.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

36 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

I. Introduction
eep neural network (DNN)-based machine learn-
ing (ML) methods have become the dominant
way to solve problems in the fields of computer

vision (CV), natural language processing (NLP), autono-
mous driving, and robotics [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11]. The effectiveness of the DNN-based
methods leads to the proliferation of DNN models, from
AlexNet [12] in 2012 for object detection and image
classification to GPT-3 [7] in 2020 for natural language
processing. In the quest towards higher accuracy and
expanded capabilities, newer models often grow in size
and require more memory and computation complexity.

Fig. 1 presents the accuracy of modern network models
along with their model size and complexity in terms of
number of parameters and operation counts. The evolu-
tion of these models are shown in Fig. 2.

The widespread use of DNNs has made DNN compu-
tation a workload class of itself. General-purpose graph-
ics processing units (GPUs) and central processing units
(CPUs) equipped with large compute parallelism and
memory bandwidth are popular hardware platforms for
accelerating DNN workloads in servers and clouds, but
GPUs and CPUs are not the most suitable for edge use
cases due to their high cost and energy consumption.
To fill the void, designing domain-specific accelerators

D

Jie-Fang Zhang was with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA. He is now
with Nividia Corporation, Santa Clara, CA 95051 USA (e-mail: jfzhang@umich.edu).
Zhengya Zhang is with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
zhengya@umich.edu).

Figure 1. Top-1 accuracy, size, and complexity of modern DNN models. Adapted from [9] ©2018 IEEE.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2023 IEEE CIRCUITS AND SYSTEMS MAGAZINE 37

for DNN workloads is of importance to answer new ap-
plication needs. A prime example of a domain-specific
accelerator for DNN is Google’s TPU [13].

Designing DNN-based ML accelerators has been a
rapid-growing field. In general, we identify three major
challenges that need to be addressed in designing these
ML accelerators.

■■ Flexibility: The design needs to be flexible to sup-
port a variety of computation types and models in
the DNN workload class, not only for the current
generation of DNN models, but also for future gen-
erations as the models are evolving more quickly
than hardware upgrades.

■■ Efficiency: The design needs to optimize both the
processing and the memory access to provide a
competitive advantage over GPUs and CPUs and
answer new application needs.

■■ Scalability: The design needs to provide a way to
support larger models with higher memory and
computation requirements, and new variations of
the current models to remain relevant.

In this review article, we discuss three important di-
rections to address the computation challenges in sup-
porting modern ML models and workloads. First, we
describe the common processing architectures and the
data reuse opportunities for ML computation. Then, we
present the benefit of exploiting data-level sparsity to
improve computation efficiency. Lastly, we provide an
overview of scaling-up and scaling-out approaches to
answer the scalability challenge.

This article is organized as follows. In Section II, we
present the primary types of computation used in ML
and DNN workloads. We then describe two common
processing architectures for DNN computation and
common stationary dataflows to exploit data reuse in
Section III. To gain better performance and efficiency, an
effective approach is by exploiting data sparsity, which
is explained in Section IV along with examples of sparse
compression formats and sparse architectures. To scale
up designs and scale out its functionalities, a chiplet-
based approach can be effectively employed. We review
examples of homogeneous tiling and heterogeneous in-
tegration of chiplets in Section V to demonstrate prom-
ising recent results. Finally, we conclude this article in
Section VI.

II. Background
In general, we can broadly categorize DNN models into
four types based on its network structure and com-
putation: 1) multi-layer perceptron (MLP), 2) convolu-
tional neural network (CNN), 3) recurrent neural net-
work (RNN), and 4) transformer. Here, we present the

high-level structures of each model and explain its core
computation.

A. Multi-Layer Perceptron (MLP)
An MLP consists of multiple feedforward fully-connect-
ed (FC) layers cascaded one after another. The compu-
tation of an FC layer can be formulated into a vector-
matrix multiplication (VMM) between the input vector
x C
∈ and the weight matrix W ∈

×K C to obtain the
output vector y∈K , as described in Fig. 3(a).

B. Convolutional Neural Networks (CNNs)
CNNs are mostly specialized for 2D image processing
in vision applications, e.g., image classification, object
detection, and semantic segmentation [2], [3], [4], [12],
[14], [15], [16], [17], [18]. A CNN uses convolution (CONV)
layers for spatial feature extraction and FC layers for
feature classification. The input and output are often
referred as input activation (IA) and output activation
(OA). A CONV layer has a weight (W) of size R S C K× × × ,
which can be understood as K 3D kernels of R S C× × .
A CONV layer processing takes an IA of size H W C× ×
and performs 2D convolutions between the IA and the K
3D kernels to obtain an OA of size H W K× × , as shown
in Fig. 3(b). The model hyperparameters C and K are
the input and output channel sizes, respectively. The

Figure 2. Evolution of model size in the fields of (a) CV and
(b) NLP. Adapted from [11].

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

38 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

output channel size is also known as the (weight) kernel
number.

The 2D convolutions can be viewed as drawing an
R S C× × cube inside the IA’s H W C× × volume, and slid-
ing it across the IA’s volume to obtain cubes of IA values.
For each cube, the dot-product between the cube with
each of the K R S C× × kernels is performed to obtain
K OA values. Therefore, each 2D convolution can be for-
mulated as VMM with the R S C× × IA cube reshaped
to a vector, and the K R S C× × kernels reshaped as a
matrix of K vectors.

C. Recurrent Neural Networks (RNNs)
An RNN and its more popular variants, gated recurrent
unit (GRU) and long short term memory (LSTM), are
used for sequence processing in speech recognition,
keyword detection, and natural language processing. An
RNN uses recurrent connections to process the input
sequence of the current timestep t and the output se-
quence from the previous timestep t −1. An LSTM uses
input, output, forget gates, and a cell, i.e., i f o c, , , , to

keep track of features that are relevant in long term and
improves accuracy over traditional recurrent units. The
computation of an LSTM can also be formulated into a
VMM (Fig. 3(a)), where the input vectors are the input
sequence xt and the hidden sequence ht−1, the matrix
is the concatenation of i f o c, , , matrices with respect to
the input or hidden sequences, and the output vector is
the hidden sequence ht .

D. Transformers
Recently, transformer architectures that use self-
attention and multi-head attention mechanisms are
getting increasingly better performance compared to
traditional LSTM in sequence and language applica-
tions [5], [6], [7] and CNN in vision applications [4].
The multi-head attention computation is described in
Fig. 3(c). First, feed-forward operation, or matrix mul-
tiplication, is applied on the input sequence to obtain
the key K(), query Q(), and value V() matrices with
its weights, W WK Q, , and WV , respectively. The K Q V, ,
matrices are split into smaller matrices for multi-head
attention. Each attention block of the multi-head atten-
tion performs the self-attention on its K Q V, , matrices.
The outputs from each attention block are concatenat-
ed, then another feed-forward operation is applied to
obtain the final output sequence. The whole computa-
tion can also be mapped into a series of matrix-matrix
multiplication (MMM).

III. Classic DNN Processing Architectures
and Dataflows

Single instruction multiple data (SIMD) and systolic ar-
ray are the basic architectures for computing VMM and
MMM. These two architectures and their variants form
the core of most of the DNN accelerators. In the follow-
ing, we review the two basic architectures and the com-
mon dataflows for performing the computation.

A. SIMD Architecture
In general, a single instruction multiple data (SIMD) ar-
chitecture consists of an array of parallel processing
elements (PEs) or functional units (FUs) and performs
vector operations across an array of data. Only one in-
struction is decoded and issued to trigger the computa-
tion on multiple data across the array of PEs. Fig. 4(a)
illustrates the SIMD architecture for vector processing.
A SIMD array can be used to compute the dot-product
between two data vectors. Each PE receives a pair of
data from the memory or register file for multiplication,
then the result from each PE is written back to the mem-
ory for the next summation instruction. Alternatively,
the results may be directly summed using an adder tree.

Figure 3. Core computations of DNNs: (a) vector-matrix mul-
tiplication in MLP and RNN, (b) 2D convolution in CNN, and
(c) multi-head attention in transformers.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2023 IEEE CIRCUITS AND SYSTEMS MAGAZINE 39

The SIMD architecture is flexible and can be pro-
grammed to support diverse computation. In particular,
we illustrate how the VMM, MMM, and CONV operations
can be mapped onto a SIMD array for DNN processing.

VMM and MMM Operations: Fig. 4(b) shows the
MMM operation between an input matrix and a weight
matrix on a SIMD array. For an MMM operation, the vec-
tors of the input and weight matrices are loaded into the
SIMD array’s memory to prepare for processing. During
processing, corresponding input data and weight data
pairs are accessed from the memory and dispatched to
the PEs for processing. The input and weight vectors in
the memory can be cached to exploit temporal locality
throughout the entire computation. Similarly, for the
VMM operation, the input vector is loaded and cached,
and is paired across all weight vectors for processing.

CONV Operation: Fig. 4(c) shows the CONV opera-
tion between an H W C× × input activation (IA) and an

R S C× × convolution weight (W) on a SIMD array. Due
to the sliding window nature of the CONV operation, the
IA and W are first converted into 2D matrices: 1) IA is
converted to a X Y C R S×()× × ×() matrix, where each
row matches the size of a R S C× × weight kernel; and
the IA values are partially replicated from one row to
the next row to correspond to the sliding window from
one step to the next step; and 2) W is converted to a
C R S K× ×()× matrix, where each column corresponds

to a weight kernel. Note the process of converting IAs
and Ws in CONV into input and weight in MMMs, respec-
tively, is often referred as Im2Col operation. An MMM
operation can then be performed between the input and
the weight matrix to produce the output matrix of size
X Y K×()× .

The advantage of a SIMD architecture is its flexibil-
ity and programmability to support diverse workloads.
In general, for computation with straightforward data

Figure 4. Illustration of the (a) SIMD array architecture, (b) matrix-matrix multiplication (MMM) operation, and (c) convolution
(CONV) layer operations on SIMD array.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

40 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

parallelism, e.g., VMM and MMM, a high compute uti-
lization can be achieved. The SIMD architecture also
provides opportunities to reuse weights or inputs by
keeping them stationary at the PE’s registers to reduce
memory access. However, the memory size and band-
width have to scale with the number of PEs in order to
support the full vector processing.

In general, a 1D SIMD array can be tiled into a 2D SIMD
array, where input and weight loading from the external
memory can be shared between 1D tiles to reduce the
bandwidth requirement while scaling up the total num-
ber of PEs for processing.

The SIMD architecture is used extensively in CPUs
and GPUs [19], [20]. Fig. 5 shows a sub-partition of the
streaming multiprocessor (SM) in Nvidia’s A100 GPU
[19]. The SM contains functional units (or CUDA cores)
for arithmetic computation. In each cycle, an instruction
is issued to a set of CUDA cores for parallel execution.

B. Systolic Array Architecture
A systolic array consists of a regular 2D array of PEs
where each PE is connected to its immediate neighbors.
Fig. 6(a) presents the architecture of the systolic array.
The inputs are sent to the PEs through a PE array bor-
der, e.g., leftmost column, and the intermediate results
are propagated across the PEs, e.g., horizontally to the
right and vertically to the bottom. Finally, the output are

sent out through another end of the PE array, e.g., bot-
tom row.

A systolic array’s PE microarchitecture and dataflow
are illustrated in Fig. 6(b). A PE is commonly designed
with a multiplier to compute the product of an incom-
ing input and a cached weight value, and an adder to
sum the computed product and an incoming partial sum
(psum). The updated psum is sent vertically to the next
PE down and the input is propagated horizontally to the
next PE on the right.

To prepare for an MMM operation on a systolic array,
the weights are first loaded to the array. The weight data
are split into column vectors as shown in Fig. 7(a). Each
vector is streamed to and stored in the corresponding
column of the PE array column, as shown in Fig. 7(b).

The steps of an MMM operation are illustrated in
Fig. 7(c)–(e). The input matrix is split into row vectors
that are streamed sequentially to the PE array, as shown
in Fig. 7(c). The inputs propagate from left to right,
passing through one PE in a clock cycle. When an in-
put enters a PE, the PE computes the product between
the input and the cached weight, and sums the product
with the psum that enters from top. Following the com-
putation, the PE passes the input to the next PE on the
right and the updated psum to the next PE down. Note
that the inputs to the rows of PE must be arranged with
a one cycle delay from one row to the next to ensure
that the correct psum accumulation. Data move through
the systolic array in waves. The wavefront propagates
diagonally across the systolic array. The outputs are col-
lected from the bottom row of PEs as shown in Fig. 7(e).
The computation latency of a H W× systolic array is
H W+ −1 cycles.

A systolic array allows efficient weight reuse. In a
systolic array, the transfer of psums and inputs are re-
stricted to efficient movements between neighboring
PEs. Due to weight reuse and efficient data movements

Figure 5. Illustration of an example of SIMD architecture in
Nvidia A100 GPU. Adapted from [19].

Figure 6. Illustration of the (a) systolic array architecture and
(b) PE architecture in the systolic array.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2023 IEEE CIRCUITS AND SYSTEMS MAGAZINE 41

within the array, a systolic array requires a lower data
bandwidth. Systolic array is a data-driven architecture
and has a low control overhead. These factors contrib-
ute to its high compute density.

Compared to a SIMD array, a systolic array is pre-
wired for a defined dataflow and it is thus less flexible.
A large-size systolic array provides a higher computa-
tion capacity, but it may also suffer from a low utilization
when the operations do not utilize the entire array. The
long latency is another drawback of a large-size systolic
array.

TPU [13] is an example of systolic array. TPU is de-
signed with a matrix multiply unit (MMU) that consists
of a systolic array of 256 × 256 PEs. Fig. 8(a) and (b) show
TPU’s system architecture and dataflow in the MMU, re-
spectively. The weight data are loaded from the weight
FIFO into the MMU, and a systolic data setup module

organizes the input data to ensure proper accumulation
of the psums in the MMU. The MMU operates similarly
to the description above where inputs are streamed in
from the left to the right, and the psum accumulation
happens vertically across columns.

Table 1 compares the SIMD architecture to the sys-
tolic array architecture. A SIMD array can be in the form
of a 1D PE array to support VMM operations, and it can
also be scaled up to a 2D PE array to support MMM
operations. A systolic array is commonly designed as
a 2D PE array to support MMM operations. In terms of
data movement, a SIMD array needs to access memory
to feed all its PEs, whereas a systolic array can rely on
neighboring PE connections to reduce the bandwidth
requirement and the number of memory accesses. A
systolic array has a lower control overhead and can be
easily scaled up. As such, a systolic array provides a

Figure 7. Illustration of the operations on systolic array: (a) input and weight matrices, (b) weight data configuration, (c) input
streaming (early-stage), (d) input streaming (general), and (e) output collection.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

42 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

higher compute density than a SIMD array. On the other
hand, a systolic array is often designed for a fixed com-
putation, whereas a SIMD array is more flexible to sup-
port a wide range of operations. The higher flexibility
of a SIMD array over a systolic array leads to a higher
hardware utilization, e.g., in flexibly handling inputs of
various shapes.

C. Stationary Dataflows
DNN computation can be mapped onto the processing
architectures in two common ways: weight stationary
(WS) and output stationary (OS). These mapping meth-
ods provide data reuse opportunities and dictate the
computation dataflows.

Weight Stationary (WS) Dataflow: In the WS data-
flow, a PE stores a weight locally and reuses it for MAC

computation with as many inputs as possible. The WS
dataflow can effectively reduce the number of memory
accesses required to fetch weights from memory, lead-
ing to a lower memory bandwidth and a lower power
consumption. An example WS dataflow on a systolic ar-
ray architecture is illustrated in Fig. 9(a). In the example,
the weights W W W W0 1 2 3, , , and() are cached locally in
the PEs. Inputs are accessed from memory and sent to
the corresponding PEs for computation. The computed
psums are passed along the PE array for accumulation.
Lastly, the output data is written back to memory. The

Figure 8. Illustration of the TPU (a) system architecture and (b) matrix-multiply engine architecture. Adapted from [13] ©2017 ACM.

Figure 9. Illustration of (a) weight-stationary dataflow and
(b) output-stationary dataflow. Adapted from [21] ©2017 IEEE.

Table 1.
Processing architecture summary.

SIMD Array Systolic Array

Architecture 1D/2D PE array
with shared
instructions

2D PE array with
neighboring
connectivity

Operations VMM, MMM MMM

Data
movement

More memory
access

Mostly local
data movement

Compute
density

Lower Higher

Flexibility Higher Lower

Hardware
Utilization

Higher Lower

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2023 IEEE CIRCUITS AND SYSTEMS MAGAZINE 43

systolic array adopts the WS dataflow to reuse cached
weights across all inputs. Jouppi et al. [13] is an example
of ML accelerator that adopts the WS dataflow.

Output Stationary (OS) Dataflow: In the OS dataflow,
a PE stores and accumulates a psum data locally. The OS
dataflow can effectively reduce the amount of reading
and writing of psums from and to the memory. An ex-
ample OS dataflow mapped on a PE array is illustrated in
Fig. 9(b). In this example, each PE accumulates a psum,
P P P0 1 2, , , or P3, locally. In each cycle, new weights are
fetched and sent to the PEs, and one input is broadcast
across all PEs. Each PE computes a MAC and updates its
local psum. Upon completion, the output data are writ-
ten back from the PEs to memory. Du et al. [22] and Deng
et al. [23] are examples of ML accelerators that adopt
the OS dataflow.

IV. Sparse Architecture
The continued growth of model size and complexity has
motivated research efforts in leveraging data sparsity to
reduce the compute and storage requirements. In this
section, we present an overview of network sparsity and
how to exploit it to make more efficient processing.

A. Sparsity in Neural Networks
The sparsity in a network comes from both the model’s
weights (Ws) and input activations (IAs). For the mod-
el weights, network pruning and other sparsification
techniques can be used to zero out a large number of
weights in a model with only a small inference accuracy
drop [24], [25], [26], [27], [28], [29]. For the input acti-
vations, some commonly-used operators like rectifier
linear unit (ReLU) can clamp all negative activations to
zeros, resulting in sparsity in output activations (OA),
which become input activations (IA) of the next layer.

A CONV computation with IA and W sparsity is il-
lustrated in Fig. 10. With network pruning [24], the
typical W density (nonzero data over all data)
ranges from 40% to 50% and the IA density
ranges between 30% and 55% for well-known
models, e.g., AlexNet, VGG-16, and ResNet-50
[30]. An up to 38% and 4% density for IA and W,
respectively, is achieved by [24] on the FC lay-
ers of VGG-16. The CONV layers can be pruned
down to 19% and 22% density for IA and W,
respectively. Zhang et al. [26] reported a 95%
W sparsity on AlexNet using ADMM. For an IA
and a W with 50% density each, because the
nonzero W and IA are nearly randomly distrib-
uted, the amount of effectual computation,
i.e., computation that does not involve a zero,
is only about 25%.

There are multiple benefits by exploiting sparsity in
designing DNN compute. First, data sparsity can be ex-
ploited to save power. Accelerators e.g., Eyeriss [32] gate
the computation, e.g., by turning off the clock, whenever
a zero in the IA is detected during processing. This tech-
nique can effectively reduce the power consumption
during DNN processing and can be conveniently incor-
porated into existing dense DNN accelerators. However,
the throughput remains the same since PEs become idle
during ineffective computation.

Second, data sparsity can be used to reduce off-chip
memory storage and bandwidth usage. The sparse W
and IA can be stored in a compressed format with only
nonzero elements. They are loaded and decompressed
for computation. The compressed storage reduces the
storage size and memory bandwidth. However, the de-
compression can be difficult to parallelize and costly in
power and area, leading to a bottleneck and additional
overhead for DNN processing.

Lastly, data sparsity can be used to reduce latency
by skipping the ineffectual computation. During pro-
cessing, IA-W pairs are identified by searching through
the sparse IA and W data and sent to the compute. The
search step avoids wasting time on unnecessary com-
putation, resulting in significant latency savings. State-
of-the-art sparse DNN accelerators [31], [33], [34], [35],
[36] process data directly in the compressed form, offer-
ing both low memory bandwidth and high degree of ac-
celeration. However, supporting sparse processing can
cost a high design complexity.

B. Sparse Compression Format
Sparse compression formats are used to store sparse
data in compact ways to save storage space. A com-
pressed format contains only nonzero data values and
metadata to hold the information for locating the posi-
tions of nonzero values in the uncompressed vectors and
matrices. During processing, the metadata is decoded to

Figure 10. Convolution computation between unstructured sparse IA
and W in a sparse DNN. The colored cells indicate nonzero entries,
and the white cells indicate zero entries. Adopted from [31] ©2021
IEEE.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

44 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

obtain the input address for fetching the nonzero data
in the compressed format and to calculate the output
address for writing back the computed result. Differ-
ent sparse compression formats have different require-
ments in terms of total storage size (including nonzero
data and metadata) and decoding complexity. Here, we
present and discuss some common sparse compression
formats used for sparse neural network processing.

Coordinate List (COO): In the COO format, nonzero
data are stored along with their absolute indices in the
original uncompressed vector or matrix. Fig. 11(a) shows
an example of a matrix with zero and nonzero data. The
COO format of the matrix stores all nonzero data in a
1D value array and records the (row, column) indices of
each nonzero data, as shown in Fig. 11(b). The advan-
tage of COO is its low decoding complexity, since the
row and column indices can be directly used to locate
the positions of the nonzero data in the uncompressed
vector or matrix. However, the row and column indices
may require significant amount of storage overhead
which makes COO less efficient for data of medium or
low sparsity.

Compressed Sparse Row (CSR): In the CSR format,
nonzero data are stored first by row, then by column in
a 1D value array. Different from COO, the metadata con-
sists of a pointer (Ptr) array and a column index array.
The Ptr array stores the row-by-row count of the total
number of nonzero data. The first entry Ptr[0] is always
0; the second entry Ptr[1] stores the count of nonzero
data in the first row; and Ptr[2] stores the count of non-
zero data in the first two rows, etc. The column index
array stores the column index of each nonzero data.

Fig. 11(c) shows the CSR format of our matrix example.
The CSR format requires a two-step decoding process.
For instance, to access data in Row 1, the two steps are:
1) obtain the positions of the nonzero data of Row 1
stored in the value array: Ptr[1] Ptr ,, []1 1+ and so on and
2) obtain the column indices of the nonzero data in Row
1: Index[Ptr[1]], Index[Ptr[1]+1], and so on.

Compressed Sparse Column (CSC): The CSC for-
mat is similar to the CSR format, but nonzero data are
first stored by column, then by row in a 1D value array.
Fig. 11(d) shows the CSC format for our matrix example,
where the Ptr array stores the column-by-column count
of the total number of nonzero data and the row index
array stores the row index of each nonzero data. The
CSC format shares the same advantages and disadvan-
tages as the CSR format.

Run-Length Coding (RLC): In the RLC format, non-
zero data are stored in a 1D value array in either row
major or column major, and a run array keeps track of
the number of zeros before each nonzero data (known
as the “run length”). Fig. 11(e) shows the RLC format of
our matrix example using 2-bit run lengths. In this ex-
ample, nonzero values a, b, c, and d are stored in the 1D
value array, and they have 1, 3, 0, and 3 preceding zeros
or run lengths, respectively, that are recorded in the
run array. Note that the nonzero data e has four preced-
ing zeros, which exceeds the two bits allocated to a run
length. Therefore, an additional padding zero is inserted
before e with a run length of 3. The RLC format can be
decoded in one step. The position of i-th nonzero data
in the value array can be calculated by accumulating all
preceding run lengths in the run array.

C. Sparse Computation Pipeline
The high-level computation pipe-
line of sparse DNN processing in
the compressed format is illustrat-
ed in Fig. 12. Following the compu-
tation pipeline, nonzero data and
metadata arrays of Ws and IAs are
first fetched on-chip for processing.
The compressed W and IA pairs
are then searched, paired and dis-
patched to a multiplier array for
computation in the so-called fron-
tend part of the pipeline. Finally,
the computed psums are accumu-
lated and written back to their re-
spective OAs in output buffers in
the so-called backend part of the
pipeline.

The challenges of processing
sparse data are two folds: 1) at the

Figure 11. Examples of sparse compression formats: (a) sparse uncompressed ten-
sor, (b) COO format, (c) CSR format, (d) CSC format, and (e) RLC format with a run
of 2-bit.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2023 IEEE CIRCUITS AND SYSTEMS MAGAZINE 45

front end, a sufficient number of
IA-W pairs must be discovered
and sent to the compute stage in
order to maintain a high compute
utilization and 2) at the backend:
the irregular psum traffic out
of the compute stage must be
reduced and written back to the
output buffer without costing ex-
cessive bandwidth.

We provide a high-level over-
view of the hardware design
techniques and explain how they
leverage sparsity in the following
three subsections.

D. Single-Operand Sparsity
Some of the earliest sparse ar-
chitectures leveraged sparsity
from either IA, e.g., Cnvlutin [37],
or W, e.g., Cambricon-X [38], but
not both. By limiting the support
to single-operand sparsity, these
designs could adopt an existing
dense DNN accelerator architec-
ture and dataflow [39], and add
a frontend to discover IA-W pairs
for computation. Fig. 13 shows the
frontend designs for Cnvlutin [37]
and Cambricon-X [38]. Both used
indirect access to fetch dense data
(W in Cnvlutin, IA in Cambricon-X)
using the indices of nonzero data
(IA in Cnvlutin, W in Cambricon-X) decoded from the
compressed format.

Cnvlutin supports IA sparsity, where the IA data
are compressed in the COO format, as illustrated in
Fig. 13(a). For each nonzero IA data, an IA offset is stored
to represent the original location of the IA data in the
uncompressed format. To discover IA-W pairs, the IA

offset is used as the index to fetch W data from the W
data array.

Cambricon-X supports W sparsity, where the W
data are compressed in the RLC format. For each W
data, a W step index stores the number of zeros pre-
ceding it, i.e., the run length, as shown in Fig. 13(b). To
discover IA-W pairs, the run lengths are accumulated

Figure 12. Processing pipeline of a sparse DNN processor. Adopted from [31] ©2021 IEEE.

Figure 13. Sparse architectures for single operand sparsity: (a) Cnvlutin adapted from
[37] and (b) Cambricon-X adapted from [38].

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

46 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

to recover the indices of the W data in the uncom-
pressed format. The recovered indices are used to se-
lect the corresponding IA data to form IA-W pairs for
computation.

E. Full Sparsity—Channel-Last Processing
There are generally two ways to handle full sparsity,
i.e., sparsity in both W and IA: channel-last processing
or channel-first processing. In this subsection, we will

cover channel-last processing, an
example of which is SCNN [34].

The channel-last dataflow is
illustrated in Fig. 14. In the chan-
nel-last processing, the nonzero
W and IA data are ordered in the
R S H W, / ,() () dimension first and

C dimension last for compressed
storage and processing. Subse-
quently, as compressed W and IA
data are fetched for processing,
their channel indices are easily
aligned. As long as a nonzero W’s
and a nonzero IA’s channel indices
are matched, they can be paired
for multiplication.

Shown in Fig. 14(a) and (b), the
compressed W and IA data of the
same channel index can be cross
paired and multiplied together
using a 2D multiplier array. The
advantage of the channel-last pro-
cessing is the simple frontend, but
the drawback is the complicated
writeback because the OA ad-
dresses of the psums depend on
the R S H W, / ,() () indices of the
IA/W data, which are irregular for
sparse data. There is little oppor-
tunity to reduce the psums before
writeback, resulting in writeback
traffic jam. It requires complex
hardware or wiring, e.g., a cross-
bar switch, to resolve the conten-
tion, and it may cause pipeline
stalls.

This backend challenge is illus-
trated in Fig. 14(c). The psums need
to be distributed by a switch to the
corresponding buffer bank. The
red lines indicate the psum write-
backs that lead to buffer conten-
tions. To avoid contentions, con-
flicting psums need to be held. In
the example, one output requires
the accumulation of three psums,
resulting in a three-cycle write-
back and stalling the multiplier ar-
ray for two cycles.

Figure 14. Illustration of channel-last dataflow for sparse DNN processing. (a) IA and
W data in dense format, (b) front-end dataflow, and (c) back-end dataflow of channel-
last processing. Adopted from [31] ©2021 IEEE.

Figure 15. Architecture of SCNN, adopted from [34] ©2017 ACM.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2023 IEEE CIRCUITS AND SYSTEMS MAGAZINE 47

Fig. 15 shows the architecture of SCNN that adopts
channel-last processing for sparse DNN processing.

F. Full Sparsity—Channel-First Processing
In the channel-first processing, the nonzero W and
IA data are ordered in the C dimension first and
R S H W, / ,() () dimension last. As compressed W and IA

data are fetched, their channel indices are first matched
to produce pairs of W and IA data to be multiplied to-
gether. Strings of resulting psums will share the same
OA address, so they can be reduced
before writeback. Compared to the
channel-last processing, the chan-
nel-first processing incurs an over-
head in the frontend due to the chan-
nel index matching, but it produces
immediately-reducible psums to cut
the writeback traffic, leading to more
gain from simplifying the backend
and a potential net improvement in
the overall power and performance.

The channel-first dataflow is il-
lustrated in Fig. 16. The W channel
index is matched with the IA chan-
nel index to generate valid W-IA
pairs. Valid W-IA pairs are fetched
and multiplied to produce psums.
The psums are to be accumulated to
the OA address following the IA indi-
ces h w,() and the W indices r s k, ,().
Due to the channel-first input order-
ing, the h w,() and r s,() addresses
will increment less frequently than
the input channel index over the
course of processing, allowing the
OA address to stay constant for the
majority of the time and the psums
can be immediately accumulated be-
fore writeback.

An example of channel-first pro-
cessing is SNAP [31]. SNAP utilizes
associative index matching (AIM)
units in the frontend to extract
IA-W pairs for multiplication, as
shown in Fig. 17. The AIM consists
of a comparator array and each row
is connected to a priority encoder.
During operation, an AIM receives
the W and IA channel index ar-
rays and compares each W chan-
nel index to every IA channel index
as shown in Fig. 17. A priority en-
coder encodes the match result in

each row into a valid bit to indicate a match and the
matched position in the IA channel index array. Upon
completion, an AIM returns a list of valid-position
pairs for processing.

G. Structured Sparsity
Making use of full available sparsity can cost substantial
hardware overhead. As a compromise, we can use a lim-
ited form of sparsity, such as coarse-grained or struc-
tured sparsity, that can provide a good enough gain in

Figure 16. Illustration of channel-first dataflow for sparse DNN processing. Adapted
from [31] ©2021 IEEE.

Figure 17. The associative index matching (AIM) unit in SNAP. Adopted from [31]
©2021 IEEE.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

48 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

performance and efficiency without excessive hardware
overhead [27], [40].

Different forms of sparsity are compared in Fig. 18. If
pruning [24] is done without any constraints, it results in
unstructured sparsity shown in Fig. 18(a). Pruning with-
out any constraints generally produces a higher sparsi-
ty, but processing unstructured sparsity requires more
fine-grained control and can cost excessive hardware
overhead. Pruning can be done by block with a density
upper bound. The approach produces density-bounded
block sparsity [19], [41]. For example, Fig. 18(b) shows
the result of a density-bounded block pruning with each
1 3× block containing at most one nonzero value. Prun-
ing can be done by block [42], [43], e.g., by 2 2× blocks as
shown in Fig. 18(c). Pruning can even be done by input
and output channel [40], [44], [45] as shown in Fig. 18(d).
More coarse-grained pruning produces more hardware-
friendly structured sparsity, but it may sacrifice the
model accuracy to some degree.

One well-known example that leverages the density-
bounded block sparsity is Nvidia A100 GPU [19]. As il-
lustrated in Fig. 19, fined-grained structured pruning is
applied to the trained model weights to create the so-
called 2:4 sparsity, i.e., a 50% density bound for each
block of 1 4× data. The sparse weights are compressed
with COO indices that are used to access the dense in-
puts in processing, similar to the illustration in Fig. 13(b).

H. Bit-Level Sparsity
Besides sparsity at data level, bit-level sparsity can also
be leveraged by bit-serial multipliers. One example that
adopts this approach is bit-pragmatic [46], where the
zero bits in one of the operands can be skipped in bit-
serial multiplication. The bit-pragmatic processing is
illustrated in Fig. 20 [46]. The IA is processed in a bit-
serial fashion, and each nonzero bit is encoded by its
position in the bit sequence similar to the COO format.
In computation, the nonzero bit position of each IA data
is used to set the configurable left shifter to shift the
W data value, effectively acting as a bit-wise multiplier.
Exploiting sparsity in bit-level reduces the number of
computation cycles, and can increase both efficiency
and throughput.

I. Sparse Architectures for RNNs and Transformers
Compared to the sparse architectures for CNNs, the
sparse architectures for RNNs are focused on improving
the performance for sparse matrix vector multiplication
(SpMV) and the element-wise operations associated to

Figure 19. Processing mechanism of Nvidia A100 GPU for fine-grained structured sparse model weights. Adopted from [19].

Figure 18. Common sparsity types: (a) fine-grained, (b) den-
sity structured, (c) block structured, and (d) filter structured.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2023 IEEE CIRCUITS AND SYSTEMS MAGAZINE 49

the type of RNNs. For instance, LSTM requires element-
wise multiplication, sigmoid, and tanh operations to
compute the outputs. ESE is an example of a sparse ar-
chitecture for LSTM [47]. It proposes a load-balancing
pruning technique to reduce the workload imbalance in
the sparse inputs and weights during pruning. Similar
to EIE [33], ESE adopts the CSC format to store and com-
pute the sparse data.

Different from the pruning techniques that eliminate
the unimportant weights and inputs
in CNNs to RNNs, the sparse archi-
tectures for transformers proposed
to prune the unimportant connec-
tions (tokens or heads) in the self-
attention matrix [48], [49]. Fig. 21
presents an example of the attention
matrix. Several tokens have small
contributions to the final result, thus
can be pruned away without per-
formance degradation. Spatten [48]
proposed cascade head and token
pruning techniques to eliminate the
tokens and heads in the attention
matrix. It uses a shifting mechanism
to avoid irregular memory access
from the sparse computation and a
reconfigurable adder-tree to lever-
age the sparsity for speedup. DOTA
[49] trains a decoder side by side to
the Transformer to detect the weak
connections in the attention matrix.
To process the sparse attention ma-
trix, DOTA adopts an out-of-order
processing scheme to leverage the
temporal locality and avoid unneces-
sary memory accesses.

V. Scale Up and Scale Out
The DNN model complexity grows at
1.5 times annually [8], [9], [29], [50],
but it is unlikely to expect new cus-
tom chips to be built to respond to
the rapid evolution of DNN models at
the same rate. This lag is attributed
to the high cost and effort to design
new chips, especially ones that uti-
lize large silicon area and advanced
technology nodes needed to support
the processing of more complex DNN
models. Other important factors in-
clude the diverse use cases of DNN
that diminish the space for custom

chips, and the rapid evolution of DNN models that short-
ens the useful life of such custom chips.

Domain-specific accelerators for DNN, such as
NVDLA [51] and TPU [13], represents a path forward
by providing some degree of flexibility to support not
only current models but also future models. However,
without growing the raw compute and memory capacity,
the performance of such accelerator will not be able to
meet the demands of newer and more complex models.

Figure 20. Frontend mechanism and processing example of bit-pragmatic [46]: (a)
IA and W data for processing and (b) bit-serial processing using IA's nonzero bit
position to control the shifter.

Figure 21. Illustration of the attention matrix with unimportant tokens. Adopted
from [48].

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

50 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

Therefore, these domain-specific accelerators also need
to be continuously upgraded, e.g., from the 28 nm TPUv1
in 2016 [13] to the 7 nm TPUv4 in 2021. Similar challenges
in high cost and limited lifespan still remain.

We identify a growing trend to emphasize on hard-
ware reuse and leverage advanced packaging to en-
hance the capability of hardware systems. Using this
approach, a chip is designed to be a modular building
block, called chiplet; and a system is constructed by
reusing chiplets. To meet the requirements of different
DNN models and use cases, systems can be constructed
using the suitable number and types of chiplets. In other
words, this approach takes advantage of chiplet reuse to
construct systems in package (SiP). The premise of this
approach is that designing, fabricating and assembling
packages require lower cost and effort than designing
and fabricating large monolithic chips.

For the SiP approach to succeed, we identify three basic
requirements: 1) availability of reusable chiplets that are
equipped with high-bandwidth and efficient I/O interfaces;
2) accessible advanced packaging and assembly process;
and 3) methodology to map workloads to chiplet-based
systems. Among the three requirements, a high-band-
width and efficient I/O interface is necessary to ensure
that the chiplets that constitute an SiP can be seamlessly
integrated to match the performance of a monolithic chip;
an accessible advanced packaging and assembly process
ensure that high-density integration and high-bandwidth
routing are feasible to construct an SiP at a reasonable
cost; and a mapping methodology is needed to divide the
workload and assign them appropriately to the chiplets to
achieve high utilization and efficiency.

In the following, we use two recent designs as exam-
ples to outline the primary ways in constructing SiP for
DNN compute acceleration. We categorize them into two
classes, homogeneous integration and heterogeneous
integration. In homogeneous integration, same chiplets
are tiled to scale up the system to support models of
larger size. In heterogeneous integration, different types
of chiplets are put together to extend the functionality
to cover new types of workloads.

A. Homogeneous Integration
The best example of homogeneous integration is Nvid-
ia’s DNN multi-chip package (MCP) shown in Fig. 22,
where up to 36 DNN chiplets can be integrated in one
MCP to scale up the system as needed [52]. The DNN
chiplet measures 6 mm2 in a TSMC 16 nm technology.
It integrates tiles of SIMD-based PEs to provide up to
1,024 MACs/cycle (INT8) or 4 TOPS (INT8) [52].

Nvidia’s DNN MCP is built on a 12-layer organic sub-
strate. Organic substrate is generally of lower cost than
substrates used for advanced packaging such as silicon
interposers, but the routing density is generally lower
too. Nvidia’s DNN MCP adopts a serial link approach
to achieve a high inter-chiplet bandwidth using fewer
wires at very high speed, suitable for organic substrate.
In particular, the Nvidia design used a 200 mV low-
swing, short-reach serial link called ground-referenced
signaling (GRS) to achieve up to 25 Gbps/lane at
0.82–1.75 pJ/b for a short reach of 3–7 mm [53]. A chiplet
is equipped with four transmit lanes and four receive
lanes for up to 100 Gbps of input and 100 Gbps of output
bandwidth [52].

The compute and I/O specifications
above shed light on key design consid-
erations for a chiplet-based DNN ac-
celerator: 1) the compute capacity of
the DNN chiplet (4 TOPS in INT8) sig-
nificantly exceeds the I/O bandwidth
(100 Gbps, transmit or receive) and
2) the compute energy efficiency of
the DNN chiplet (0.11 pJ/OP in INT8)
is substantially lower than the I/O en-
ergy efficiency (0.82 pJ/b). The DNN
chiplet must reuse the input data (input
activations and weights) and reduce
the output data (output activations)
to minimize the I/O usage, or I/O can
easily overtake compute to become
the performance and energy bottle-
neck, rendering the chiplet approach
impractical.

The contrast between compute
and I/O also has an implication on the

Figure 22. Nvidia DNN MCP approach. Figure reused from [52] ©2020 IEEE.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2023 IEEE CIRCUITS AND SYSTEMS MAGAZINE 51

chiplet size choice. If a chiplet’s x- and y-dimension are
each scaled up by a factor of S, the compute capacity
scales up by a factor of approximately S2, but the chiplet
I/O shoreline only scales up by a factor of S, allowing
the I/O bandwidth to scale up by approximately S. This
back-of-envelope calculation suggests that chiplet size
may have to be kept smaller or the disparity between
compute and I/O can become even larger.

A mapping strategy was developed for Nvidia’s MCP
to divide the weights into parts and allocate them to dif-
ferent chiplets [54]: 1) allocate output channels (differ-
ent kernels) across columns of chiplets and 2) divide the
input channels into parts and allocate them across rows
of chiplets. To carry out the computation, the channels
of the inputs are divided into parts and distributed to
appropriate rows of chiplets. This mapping strategy pro-
vides data reuse and reduction: 1) weights are cached
and reused within a chiplet; 2) input activations are
reused between multiple kernels within a chiplet; and
3) output psums are reduced in the channel dimension
before going out of the chiplet. Such a mapping strategy
is essential for reducing the I/O usage and removing the
I/O bottleneck in the DNN MCP.

B. Heterogeneous Integration
While homogeneous tiling of DNN chiplets solves the
problem of scaling up DNN hardware to support larger
DNN models, it does not address the problem of scaling
out DNNs, i.e., extending DNNs to novel uses, e.g., DNNs
used as a building block to support new applications.
Besides scaling out DNNs, new operators can be added
to DNNs in the future to enhance its capability, making it
difficult to design a truly future-proof DNN chiplet.

We argue the importance of factoring computation
into types, e.g., common operations and special opera-
tions, in considering chiplet-based system partition-
ing. As examples, CONV and FC layers are common and
compute-heavy operations; and batch normalization

and activation functions are special operations and
relatively lightweight compared to CONV and FC lay-
ers. The control loops and data organization outside
of NN processing to support different tasks are also
special operations. This factoring exercise naturally
leads to heterogeneous chiplets, e.g., an accelerator
chiplet that supports common and compute-heavy
operations, and a processor or FPGA chiplet that can
be programmed to support special operations. Using
this approach, accelerator chiplets can be made to tar-
get common kernels that are unlikely to change over
time, allowing us to extend the useful lifetime of these
chiplets. Processor and FPGA chiplets can be used to
complement the accelerator chiplets to complete sys-
tem implementations.

An example of heterogeneous integration is the MCP
consisting of an FPGA with the PETRA systolic array
chiplet [55] as illustrated in Fig. 23. The PETRA chiplet
measures 3 mm2 in an Intel 22 nm technology. It inte-
grates tiles of systolic arrays to provide up to 1,024
MACs/cycle (FP16) or 1.43 TFLOPS (FP16) [55].

The PETRA MCP is built on Intel’s embedded multi-
die interconnect bridge (EMIB) [56], [57], a silicon bridge
that connects an FPGA chiplet and an external chiplet.
The silicon bridge provides a high routing density, en-
abling the use of parallel links of moderate speed. The
I/O design for moderate-speed links can be made much
simpler than high-speed serial I/Os, and it can even be
made entirely digital [58]. A digital link is more reliable
and can be ported to different technologies with ease. In
the MCP design, a digital advanced interface bus (AIB)
link [57], [58] was adopted with full swing, supporting a
short-reach of 3 mm at 2 Gbps/pin. Thanks to the short
reach and simple design, an AIB I/O consumes less than
1 pJ/b [58]. An AIB channel assembles 40 pins for an
aggregate bandwidth of 80 Gbps. Using a dense bump
pitch of 55 μm, an AIB channel occupies approximately
300 μm of die edge. The PETRA chiplet utilizes 8 AIB

Figure 23. Illustration of the concept of integrating an FPGA with the PETRA chiplet. Figure reused from [55] ©2021 IEEE.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

52 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2023

channels, or a total bandwidth of 640 Gbps, to communi-
cate with the FPGA chiplet [55].

With heterogeneous integration, the FPGA can serve
as the flexible platform that can be configured to serve
as the host and handle control and data management,
and the PETRA systolic array chiplet can perform the
VMM and MMM that form the core part of DNN compu-
tation [55]. Operations that are not supported by the PE-
TRA chiplet can always be covered by the FPGA chiplet.
The heterogeneous platform can be further extended,
e.g., by adding a front-end chiplet to make a complete
sensor platform, and by adding another function accel-
erator chiplet to expand the capability of the system.

VI. Conclusion
DNN hardware design is a fast-evolving field. In this ar-
ticle we provide a survey and a tutorial on the basics of
the DNN workloads, the essential processing architec-
tures, and the promising directions in sparse DNN pro-
cessing and multi-chip integration. First, we explain the
two basic architectures for DNN processing, SIMD and
systolic array, along with common WS and OS dataflows,
to show the tradeoffs between flexibility and energy ef-
ficiency, and utilization and compute density. Next, we
present designs that exploit data sparsity to improve
both performance and energy efficiency with com-
pressed storage and sparse processing. From partial
sparsity to full sparsity, architectures can be designed
with a range of overheads to gain from an array of ben-
efits including lower energy, smaller memory, lower
memory bandwidth and higher performance. Lastly, we
show a path in scaling up and scaling out DNN hardware
using multi-chiplet integration, either by tiling of modu-
lar DNN chiplets in constructing larger-scale systems or
by heterogeneously pairing of DNN chiplets with CPU or
FPGA to build a versatile platform.

Acknowledgment
This work was supported in part by ACE, one of the sev-
en centers in JUMP 2.0, a Semiconductor Research Cor-
poration (SRC) Program sponsored by DARPA.

Jie-Fang Zhang (Member, IEEE) re-
ceived the B.S. degree in electrical en-
gineering from National Taiwan Uni-
versity, Taipei, Taiwan, in 2015, and the
M.S. degree in computer science and
engineering and the Ph.D. degree in

electrical and computer engineering from the University
of Michigan, Ann Arbor, MI, USA, in 2018 and 2022, re-
spectively. He joined NVIDIA in 2022 as a Deep Learning

Architect focusing on GPU performance analysis, model-
ing, and optimization for deep learning models. His re-
search interests include energy-efficient hardware ar-
chitecture and accelerator design for machine learning,
computer vision, and robotics applications.

Zhengya Zhang (Senior Member,
IEEE) received the B.A.Sc. degree in
computer engineering from the Univer-
sity of Waterloo in 2003, and the M.S.
and Ph.D. degrees in electrical engi-
neering from the University of Califor-

nia at Berkeley (UC Berkeley), Berkeley, CA, USA, in 2005
and 2009, respectively. He has been a Faculty Member
with the University of Michigan, Ann Arbor, MI, USA,
since 2009, where he is currently a Professor with the
Department of Electrical Engineering and Computer Sci-
ence. His research interests include low-power and high-
performance VLSI circuits and systems for computing,
communications, and signal processing. He was a recipi-
ent of the University of Michigan College of Engineering
Neil Van Eenam Memorial Award in 2019, the Intel Early
Career Faculty Award in 2013, the National Science Foun-
dation CAREER Award in 2011, and the David J. Sakrison
Memorial Prize from UC Berkeley in 2009. He has been
an Associate Editor of the IEEE TransacTions on Very Large
scaLe inTegraTion (VLsi) sysTems since 2015, and serves on
the Technical Program Committee of the IEEE Custom
Integrated Circuits Conference (CICC) since 2018. He was
an Associate Editor of the ieee TransacTions on circuiTs
and sysTems—ParT i: reguLar PaPers from 2013 to 2015 and
the IEEE TransacTions on circuiTs and sysTems—ParT ii: ex-
Press Briefs from 2014 to 2015, and served on the Techni-
cal Program Committee of the ieee VLsi Symposium on
Technology and Circuits from 2018 to 2022. He is an IEEE
Solid-State Circuits Society Distinguished Lecturer.

References
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.
[2] K. He et al., “Deep residual learning for image recognition,” in Proc.
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 770–778.
[3] C. Szegedy et al., “Rethinking the inception architecture for com-
puter vision,” in Proc. the Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 2818–2826.
[4] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” 2020, arXiv:2010.11929.
[5] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2017, pp. 6000–6010.
[6] J. Devlin et al., “BERT: Pretraining of deep bidirectional transform-
ers for language understanding,” in Proc. Conf. North Amer. Chapter As-
soc. Comput. Linguistics, Human Language Technol., vol. 1, Jun. 2019, Art.
no. 41714186.
[7] T. Brown et al., “Language models are few-shot learners,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2020, pp. 1877–1901.
[8] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neu-
ral network models for practical applications,” 2017, arXiv:1605.07678.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2023 IEEE CIRCUITS AND SYSTEMS MAGAZINE 53

[9] S. Bianco et al., “Benchmark analysis of representative deep neural
network architectures,” IEEE Access, vol. 6, pp. 64270–64 277, 2018.
[10] Y. Guo et al., “Deep learning for 3D point clouds: A survey,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 12, pp. 4338–4364, Dec. 2021.
[11] G. Menghani, “Efficient deep learning: A survey on making deep
learning models smaller, faster, and better,” 2021, arXiv:2106.08962.
[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1097–1105.
[13] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. Int. Symp. Comput. Archit. (ISCA), 2017, pp. 1–12.
[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1–14.
[15] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.
[16] R. Girshick et al., “Rich feature hierarchies for accurate object de-
tection and semantic segmentation,” in Proc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2014, pp. 580–587.
[17] J. Redmon et al., “You only look once: Unified, real-time object de-
tection,” in Proc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 779–788.
[18] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2015, pp. 3431–3440.
[19] R. Krashinsky et al. Nvidia Ampere Architecture In-Depth. Accessed:
Dec. 10, 2022. [Online]. Available: https://developer.nvidia.com/blog/
nvidia-ampere-architecture-in-depth/
[20] Get Outstanding Computational Performance Without a Specialized
Accelerator. Accessed: Dec. 10, 2022. [Online]. Available: https://www.
intel.com/content/www/us/en/architecture-andtechnology/avx-512-so-
lution-brief.html
[21] V. Sze et al., “Efficient processing of deep neural networks: A tuto-
rial and survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, Dec. 2017.
[22] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. Int. Symp. Comput. Archit. (ISCA), Jun. 2015, pp. 92–104.
[23] C. Deng et al., “TIE: Energyefficient tensor train-based inference en-
gine for deep neural network,” in Proc. Int. Symp. Comput. Archit. (ISCA),
Jun. 2019, pp. 264–277.
[24] S. Han et al., “Learning both weights and connections for efficient
neural network,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2015,
pp. 1135–1143.
[25] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016, pp. 1–14.
[26] T. Zhang et al., “A systematic DNN weight pruning framework using
alternating direction method of multipliers,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 184–199.
[27] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep con-
volutional neural networks,” ACM J. Emerg. Technol. Comput. Syst., vol.
13, no. 3, pp. 1–18, 2017.
[28] S. Dave et al., “Hardware acceleration of sparse and irregular ten-
sor computations of ML models: A survey and insights,” Proc. IEEE, vol.
109, no. 10, pp. 1706–1752, Oct. 2021.
[29] L. Deng et al., “Model compression and hardware acceleration for
neural networks: A comprehensive survey,” Proc. IEEE, vol. 108, no. 4,
pp. 485–532, Apr. 2020.
[30] J.-F. Zhang et al., “SNAP: A 1.67—21.55 TOPS/W sparse neural ac-
celeration processor for unstructured sparse deep neural network in-
ference in 16 nm CMOS,” in Proc. Symp. VLSI Circuits (VLSI), Jun. 2019,
pp. 306–307.
[31] J.-F. Zhang et al., “SNAP: An efficient sparse neural acceleration
processor for unstructured sparse deep neural network inference,”
IEEE J. Solid-State Circuits, vol. 56, no. 2, pp. 636–647, Feb. 2021.
[32] Y.-H. Chen et al., “Eyeriss: An energyefficient reconfigurable ac-
celerator for deep convolutional neural networks,” IEEE J. Solid-State
Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017.
[33] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 243–254.
[34] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. Int. Symp. Comput. Archit.
(ISCA), Jun. 2017, pp. 27–40.

[35] Z. Yuan et al., “STICKER: An energy-efficient multi-sparsity com-
patible accelerator for convolutional neural networks in 65-nm CMOS,”
IEEE J. Solid-State Circuits, vol. 55, no. 2, pp. 465–477, Feb. 2020.
[36] Y.-H. Chen et al., "Eyeriss v2: A flexible accelerator for emerging
deep neural networks on mobile devices," IEEE J. Emerg. Sel. Topics Cir-
cuits Syst., vol. 9, no. 2, pp. 292–308, Jun. 2019.
[37] J. Albericio et al., “Cnvlutin: Ineffectual-neuron-free deep neural
network computing,” in Proc. Int. Symp. Comput. Archit. (ISCA), Jun.
2016, pp. 1–13.
[38] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. Int. Symp. Microarchitecture (MICRO), Oct. 2016,
pp. 1–12.
[39] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,”
in Proc. Int. Symp. Microarchitecture (MICRO), Dec. 2014, pp. 609–622.
[40] W. Wen et al., “Learning structured sparsity in deep neural net-
works,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2016, pp. 1–9.
[41] Z.-G. Liu, P. N. Whatmough, and M. Mattina, “Systolic tensor ar-
ray: An efficient structured-sparse GEMM accelerator for mobile CNN
inference,” IEEE Comput. Archit. Lett., vol. 19, no. 1, pp. 34–37, Jan./Jun.
2020.
[42] J. Yu et al., “Scalpel: Customizing DNN pruning to the underlying
hardware parallelism,” in Proc. Int. Symp. Comput. Archit. (ISCA), Jun.
2017, pp. 548–560.
[43] S. Narang, E. Undersander, and G. Diamos, “Block-sparse recurrent
neural networks,” 2017, arXiv:1711.02782.
[44] Z. Liu et al., “Learning efficient convolutional networks through
network slimming,” in Proc. Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2755–2763.
[45] H. Li et al., “Pruning filters for efficient ConvNets,” 2016, arX-
iv:1608.08710.
[46] J. Albericio et al., “Bit-pragmatic deep neural network computing,”
in Proc. Int. Symp. Microarchitecture (MICRO), Oct. 2017, pp. 382–394.
[47] S. Han et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proc. Int. Symp. Field Program. Gate Arrays (FPGA),
Feb. 2017, pp. 75–84.
[48] H. Wang, Z. Zhang, and S. Han, “SpAtten: Efficient sparse attention
architecture with cascade token and head pruning,” in Proc. Int. Symp.
High-Perform. Comput. Archit. (HPCA), Feb./Mar. 2021, pp. 97–110.
[49] Z. Qu et al., “DOTA: Detect and omit weak attentions for scalable
Transformer acceleration,” in Proc. Int. Conf. Architectural Support Pro-
gram. Lang. Operation Systems (ASPLOS), Feb. 2022, pp. 14–26.
[50] N. P. Jouppi et al., “Ten lessons from three generations shaped
Google's TPUv4i: Industrial product,” in Proc. Int. Symp. Comput. Archit.
(ISCA), Jun. 2021, pp. 1–14.
[51] Nvidia Deep Learning Accelerator (NVDLA). Accessed: Dec. 10, 2022.
[Online]. Available: http://nvdla.org/
[52] B. Zimmer et al., “A 0.32-128 TOPS, scalable multi-chip-module-
based deep neural network inference accelerator with ground-ref-
erenced signaling in 16 nm,” IEEE J. Solid-State Circuits, vol. 55, no. 4,
pp. 920–932, Apr. 2020.
[53] J. W. Poulton et al., “A 1.17-pJ/b, 25-Gb/s/pin ground-referenced
single-ended serial link for off-and on-package communication using
a process-and temperature-adaptive voltage regulator,” IEEE J. Solid-
State Circuits, vol. 54, no. 1, pp. 43–54, Jan. 2019.
[54] R. Venkatesan et al., “A 0.11 pJ/OP, 0.32-128 TOPS, scalable multi-
chip-module-based deep neural network accelerator designed with a
high-productivity VLSI methodology,” in Proc. IEEE Hot Chips Symp.
(HCS), Aug. 2019, pp. 1–24.
[55] S.-G. Cho et al., “PETRA: A 22 nm 6.97 TFLOPS/W AIB-enabled
configurable matrix and convolution accelerator integrated with an
Intel Stratix 10 FPGA,” in Proc. Symp. VLSI Circuits (VLSI), Jun. 2021,
pp. 1–2.
[56] R. Mahajan et al., “Embedded multi-die interconnect bridge
(EMIB)—A high density, high bandwidth packaging interconnect,” in
Proc. IEEE Electron. Compon. Technol. Conf. (ECTC), May/Jun. 2016,
pp. 557–565.
[57] D. Greenhill et al., “3.3 A 14 nm 1 GHz FPGA with 2.5D transceiver
integration,” in Proc. Int. Solid-State Circuits Conf. (ISSCC), Feb. 2017,
pp. 54–55.
[58] C. Liu, J. Botimer, and Z. Zhang, “A 256 Gb/s/mm-shoreline AIB-
compatible 16 nm FinFET CMOS chiplet for 2.5D integration with Stratix
10 FPGA on EMIB and tiling on silicon interposer,” in Proc. IEEE Custom
Integr. Circuits Conf. (CICC), Apr. 2021, pp. 1–2.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24,2023 at 14:36:10 UTC from IEEE Xplore. Restrictions apply.

