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Abstract—We present TAICHI, a general in-memory
computing deep neural network accelerator design based on
RRAM crossbar arrays heterogeneously integrated with local
arithmetic units and global co-processors to allow the system to
efficiently map different models while maintaining high energy
efficiency and throughput. A hierarchical mesh network-on-chip
is implemented to facilitate communication among clusters in
TAICHI to balance reconfigurability and efficiency. Detailed
deployment of the different circuit components is discussed,
and the system performance is estimated at several technology
nodes. The heterogeneous design also allows the system to
accommodate models larger than the on-chip storage capability.

Index Terms—DNN accelerator, in-memory computing,
heterogeneous architecture, tiled architecture, RRAM.

I. INTRODUCTION

MACHINE learning (ML), represented by deep neu-
ral networks (DNNs), has become a major branch of

artificial intelligence (AI). However, hardware implementa-
tions of DNN models have become a bottleneck, as conven-
tional computing architectures are not well optimized for this
application [1]. Different types of DNN hardware accelerators
have been recently proposed [2]. Among them, in-memory
computing (IMC) architectures utilizing emerging non-volatile
memories such as resistive random-access memory (RRAM)
have shown great promise, since they can minimize external
memory access and circumvent the von Neumann bottle-
neck. In-memory computing (IMC) DNN accelerators based
on a tiled architecture of RRAM crossbars [3]–[8] can the-
oretically offer high throughput and excellent energy effi-
ciency for practical DNN models. Challenges such as finite
tile size, device non-idealities and ADC quantization of the
partial sums (Psums) can be addressed through tiling opti-
mizations, column-wise quantization, and architecture-aware
training techniques.
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Fig. 1. Schematics of (a) an IMC module with ADC sharing among outputs
and (b) mapping of DNN layers in the tiled architecture.

However, several questions remain to be answered. First,
a single chip design needs to be able to map different models
and maintain high efficiency. Prior studies mostly focus on
the IMC module implementation while modern DNN mod-
els often contain irregular operations which are not optimal
for IMC. Second, system-level implementations such as flex-
ible and efficient data routing among the IMC blocks need
to be carefully considered for a broad range of DNN models.
Finally, as ML models are quickly evolving, the IMC DNN
accelerator designed in present day may not be compatible
with newer operators or may no longer be large enough to store
all weights on chip as the models get updated/deployed in the
future. Running out of space for the larger models in the fixed-
size RRAM array is a significant concern for practical IMC
accelerators. In this brief, we specifically address these issues
in a heterogeneous architecture design. Through techniques
such as optimally designed IMC modules, Hierarchical Mesh
Network-on-Chip (HM-NoC), local Arithmetic Units (AUs),
and an integrated Global Co-Processor (GCP), the proposed
TAICHI architecture allows efficient mapping of different
models and operators and alleviates memory capacity anxiety.

II. PROPOSED SYSTEM

Following [3], DNN layers can be mapped onto multiple
IMC modules, with each IMC module consisting of a RRAM
crossbar array and multiple ADCs, as shown in Fig. 1. We
assume the IMC module is based on 256×64 RRAM arrays.
The small array size helps mitigate parasitic effects [9],
although other array sizes can be readily adopted. For our
analysis, we use 8-bit models however the results apply to
other precisions. For ease of application, the 8-bit input acti-
vations are applied in a bit-serial manner using two voltage
pulses, where each pulse represents a 4-bit value (16 levels).
The RRAM array performs the MAC operations in the analog
domain [10]. The current outputs at the columns are quantized
through the 8-bit ADCs and shift-added from the two voltage
inputs to produce an 8-bit output, which represents a Psum
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Fig. 2. (a) With multiple copies of weight arrays, the OFM can be split into
several smaller sub-OFMs. (b) The data that should be stored in IA registers
are marked as red.

TABLE I
SPECS OF IMC MODULES DESIGNED AT 65 NM TECHNOLOGY

Fig. 3. (a) Hierarchical architecture of TAICHI. Two levels of clusters are
connected via the HM-NoC. From analysis in (b-c), we assign 4 L1 clusters
in 1 L2 cluster and 4 IMC modules in 1 L1 cluster to minimize router area.

for the output activations. An optimized ADC design at the
65 nm node operating at 40 MHz baseline frequency is used
in our study. To balance the latency of different layers and
minimize ADC area and power overhead, we consider 4 dif-
ferent IMC module designs (i.e., crossbar array + ADCs) in the
system, ranging from 1 ADC shared with 8 columns (via time-
multiplexing) to 1 ADC shared with all 256 columns of four
arrays at half the baseline frequency. We define one output
cycle as the time it takes for all columns shared by the ADC
to be processed. Table I shows area and power of the IMC
modules obtained from circuit simulations.

To maximize pipelined operation, the latencies of different
layers needs to be balanced. Since the latency of each layer
depends on the output feature map (OFM) size, layers with
the same OFM dimensions are preferably mapped to the same
type of IMC module. To speed up slower layers with larger
OFMs, weights can be duplicated so that the OFM can be
split to several smaller sub-OFMs to be processed in parallel,
as shown in Fig. 2 (a).

The OFMs are stored in local L1 registers. When sufficient
data in an OFM is produced, the next layer can start process-
ing. Taking advantage of pipelining can significantly reduce
the OFM storage size. Assuming the OFMs are computed row
by row, the required register size for input activation (IA) is:

SIA = Dsplit · (kh − 1) + kw (1)

where the Dsplit is the effective width of the OFM that is
processed by a single copy of the weight array, and kh and
kw are the convolutional (Conv) kernel height and width, as
shown in Fig. 2 (b). To process the OFMs properly, overlaps
between the sub-OFMs are also carefully considered.

Fig. 4. Mapping methods to reduce data transfer between clusters:
(a) channel-last vectorization of Conv kernels can avoid broadcasting outputs
of one L2 cluster to all L2 clusters in the next layer. (b) Positive-negative
array pairs should be mapped in the same L1 cluster, followed by arrays
corresponding to the same output channels but receiving different inputs.

To investigate the design requirements and end-to-end
performance of DNN models mapped on TAICHI, we chose
ResNet-50 [11] and MobileNet [12] as examples. ResNet-50 is
a popular large-scale network, while MobileNet is a smaller
highly optimized model.

A. Hierichical Mesh Netowrk-on-Chip

The DNN models are mapped following the approach dis-
cussed in [3]. With tiled mapping and pipelining between the
layers, the total NoC load for ResNet-50 and MobileNet are
67.6 GB/s and 27 GB/s, respectively. To efficiently handle
the data movement, we use a HM-NoC [13] as depicted in
Fig. 3 (a). Our HM-NoC uses two levels to partition the band-
width. The level 1 (L1) router distributes data received from
a level 2 (L2) router to the internal IMC modules, and sends
Psum outputs from the IMC modules and arithmetic results
from L1 AUs to the L2 router. Besides communicating with
internal L1 clusters, an L2 router communicates with a local
L2 AU and externally between adjacent L2 routers. The trade-
off between number of IMC modules per L1 cluster and router
complexity is shown in Fig. 3 (b-c). Based on this tradeoff,
we assign 4 IMC modules in one L1 cluster and 4 L1 clusters
in one L2 cluster to minimize the router area.

To minimize bandwidth requirements, within one L1 cluster
we avoid mapping weight arrays belonging to different layers,
different output channels, or different copies of a layer, so
that Psums within 1 L1 cluster can always be accumulated
internally. As a result, only 64 B data (instead of up to 256 B)
need to be transferred from one L1 cluster in every output
cycle. This reduces the maximum bandwidth for both L1 and
L2 clusters by 75% with minimal increase of the number of
required L2 clusters (7.5% increase for ResNet-50 and 1.7%
for MobileNet compared with maximum array utilization).

TAICHI uses multiple techniques to reduce HM-NoC band-
width which are summarized in Fig. 4. When mapping Conv
kernels, we use channel-last rather than channel-first vector-
ization to avoid broadcasting outputs to all L2 clusters in the
next layer. Additionally, operations whose outputs are accumu-
lated together are intentionally mapped in the same L1 cluster.
These include weight arrays representing positive and negative
weights when using dual array mapping [3], as well as arrays
receiving different inputs. These approaches serve to minimize
data movement between L2 and L1 routers.

Since the peak data movement for DNN models typi-
cally happens among the first several layers, we visualized
these layers for MobileNet and ResNet-50 (Fig. 5) to check
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Fig. 5. (a, b) Mapping of the first 8 (6) layers of MobileNet (ResNet-50).
Each square represents an L2 cluster. The numbers represent bytes of data to
be ransfered per output cycle. (c) By splitting layer 2 and 5 in ResNet-50
into 2 L2 clusters each, the peak HM-NoC bandwidth can be reduced from
6.56 GB/s to 4.00 GB/s with minimal area utilization loss.

TABLE II
ENERGY COST OF 16 B DATA TRANSFER AND THE

AREA OF THE HM-NOC

actual bandwidth requirements for the HM-NoC. By split-
ting high data movement layers (e.g., splitting layers 2 and
5 in ResNet-50), the peak data transfer can be further reduced
from 6.56 GB/s to 4.00 GB/s, with a minimal 1.3% loss in
array utilization. The performance of the NoC is extrapolated
from [14], as shown in Table II.

B. Arithmetic Units

Several studies have proposed to also process activations
functions with memristor-based approach to maintain the
whole process within the analog domain. However, these
approaches are largely limited to simple datasets or spiking
neural networks, and their applicability to large DNN appli-
cations is not proven yet [15]. The CMOS-based local AUs
in L1 and L2 clusters are used to accumulate Psums, and
process activation functions such as ReLU, Softmax, Tanh,
etc. Additionally, we find it beneficial to also include aug-
mented AUs in the design to perform functions which are
not optimal for the IMC modules. Although IMC modules
can process Conv and fully connected (FC) layers with very
high efficiency, it has low efficiency for layers not based
on vector-matrix multiplication (VMM). One example is the
depthwise Conv (DW) layers in MobileNet. Since one kernel
in a DW layer only operates on a single input channel, in
an IMC system different kernels need to be mapped diago-
nally in crossbar to allow parallel processing. When mapped
onto the IMC, the DW layers result in low area utilization,
and thus ADC power. Fundamentally, this is because, with-
out batching, the DW layer uses independent vector-vector
multiplications (VVMs) instead of VMM.

For example, in [3], the DW layers in MobileNet consume
88.2% of the array area and 86.8% of the ADCs, while only
performing 3.06% of MACs and using 1.06% of parameters.
Denser mapping of the DW layer can be achieved by consider-
ing ADC sharing since the outputs are computed sequentially
already in the shared ADC case. However, the area utilization
is still low compared with other layers, with the DW layers of

TABLE III
AU DESIGNS FOR THE 4 IMC MODULES

Fig. 6. Layout views of (a) a normal and (b) an augmented AU with 1 VM
at 28 nm.

TABLE IV
COMPARISON AMONG DIFFERENT MAPPING OF DW LAYERS

MobileNet occupying 26.2% of the crossbar arrays and 42.9%
of the ADCs.

Since DW layers are not as compute-intensive as Conv and
FC layers, we instead propose to map them onto AUs aug-
mented with vector multiplication units (VMs) which are only
included in a small portion of L2 clusters. The augmented
AUs are only used by selected layers such as the DW layers
which represent a small fraction of the compute in DNNs. Our
synthesized designs thus include both the baseline AUs for all
L1 clusters and most L2 clusters, and augmented AUs with
VMs for some L2 clusters. The AU configurations are sum-
marized in Table III. Layout views of a normal AU and an
augmented AU with 1 VM are shown in Fig. 6. AUs with
different number of adders and VMs are designed to balance
the load of the four IMC modules used in TAICHI.

Comparison of the simple diagonal mapping, dense mapping,
and AU mapping for DW layers is shown in Table IV. The AU
mapping does not need IMC modules, and consumes 17.2% less
power than the dense mapping. Moreover, the model accuracy
is found to strongly depend on the precision of the Psums of
the DW layers. When the Psums are computed with the IMC
modules, 8 different dynamic ranges are required for the 8-bit
ADCs to prevent the accuracy of MobileNet from dropping
below 60% for ImageNet classification [3]. Additionally, the
lower utilization of the crossbar arrays means the output currents
associated with the DW layers will be much lower in value than
those of Conv and FC layers, requiring ADCs with lower input
ranges. Utilizing AUs to perform DW eliminates these outlier
ADC designs and improves accuracy with only 4 different ADC
dynamic ranges for the system. Using AUs to perform these
special operations can significantly improve both throughput
and accuracy of the system.

III. GENERAL CHIP DESIGN AND MAPPING RULES

As a general DNN accelerator, the design needs to support
a wide range of models. Here, we analyze Inception-v4 [16]
and Transformer [17] as additional examples. Again, during
model mapping, we make copies of the weight arrays for the
slow layers and share ADC with more columns for the fast
layers to balance latency in the layers to ensure a smooth
pipeline. The 4 different IMC modules offered in the system
allow the mapping to achieve area and latency balance.
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Fig. 7. Number of the IMC modules and L2 clusters used by the four
example models when mapped on TAICHI.

Fig. 8. (a) Number of L2 clusters assigned with normal and augmented
L2 AUs in the proposed TAICHI chip design. (b) Area and power breakdown
of TAICHI at 65 nm, 28 nm, and 16 nm.

TABLE V
ESTIMATED PERFORMANCE OF TAICHI AT 65 NM, 28 NM AND 16 NM

Fig. 7 shows the number of IMC modules and L2 clusters
required by different models. We find that a general design
consisting of 64, 256, 128 and 32 L2 clusters for the four IMC
module types, respectively, work well for these models. The
estimated area, memory capacity, power, and throughput of the
chip, as well as the comparison between TAICHI and the state-
of-art designs [7], [8] are summarized in Fig. 8 and Table V.
Here, OFMs, Psums, ADC scales and L1 AU results are stored
in L1 registers, while L2 AU results, and DW weights if the
L2 AU contains VMs, are stored in the L2 registers.

At 65 nm, the power and area are dominated by the AUs and
registers, where the optimized IMC module designs with ADC
sharing to match the load reduces the power and area over-
head of ADCs. At 28 nm and 16 nm, power and area become
increasingly dominated by ADCs as the performance of the
digital components improves with technology scaling.

When mapping a DNN model on TAICHI, the com-
pute/weight ratio largely dictates the architecture efficiency.
For each layer in a DNN model, we have:

NMAC = NW · OFMsize (2)

where OFMsize is the size of the OFM, NMAC and NW denote
the number of MAC operations and weights in the layer,
respectively. The compute/weight ratio is NMAC/NW. In general,
layers with the same NMAC/NW, i.e., the same OFM size
from (2), are preferred to be mapped in the same type of IMC
module. Similarly, shallower layers, which usually have a higher
compute/weight ratio, will have higher OFM size and should
be mapped onto IMC modules with less ADC sharing (i.e.,
faster modules). If a particular module type runs out, additional
weight arrays are allocated based on availability and latency
requirements. For example, the FC layers in Transformer should
in principle all be mapped in the same module type to balance
pipelining. However, since none of the module types offers
enough storage to map all the FC layers, the layers need to be

Fig. 9. Power breakdown of four models on 65 nm TAICHI architecture.

TABLE VI
PERFORMANCE OF FOUR MODELS ON 65 NM TAICHI ARCHITECTURE

split across different module types. For example, if the split
is made to slower modules, lower area utilization is necessary
to balance the latency requirements.

By analyzing the compute/weight ratio of different layers
and following the mapping methods discussed in Section II
and [3], the 4 example models can be directly mapped on
TAICHI. The partition among different compute modules
affects the throughput and energy efficiency, but will not
affect the accuracy since all 4 types of compute modules have
the same crossbar array size, with the only difference being
how many cycles it takes to get the access to the ADC to
generate the Psum. The power breakdown and the estimated
performance metrics are shown in Fig. 9 and Table VI. At
65 nm, TAICHI can attain many thousands of frames per
second (FPS) across the tested networks, while maintaining
flexibility to fit and run diverse network models.

IV. GCP AND HYBRID MAPPING

Although TAICHI can support many popular DNN models,
it is possible that the size of future models can outgrow the
storage capacity of the on-chip memory after the initial hard-
ware deployment. To address this, we propose to process these
too-large-to-fit DNN models in a hybrid fashion using an inte-
grated GCP. To maintain high throughput, function partitioning
needs to be carefully analyzed.

To quantitatively decide which layers should be mapped
onto the GCP when hybrid mapping is necessary, we compare
power and area in the hybrid system with those in a hypothet-
ical large-enough IMC system. We estimate the upper limit
of power and area of each layer for the two approaches. The
upper limit of power for one L2 cluster is:

PIMC = PL2,i · NW · 2

cbsize · 16
· OFMsize

OFMsize,base,i
= Mp1,i · NMAC (3)

where PL2,i is the power of one L2 cluster for a given module
type (i), including all the components within it, cbsize is the
size of a crossbar array, OFMsize,base,i is the size of the OFM
that one module in type (i) can support. The parameters can be
lumped into an module-dependent parameter Mp1,i as shown
in (3). The power of a single GCP is denoted as PG, and the
number of MACs it can perform per cycle as NMCA,G. Since
the GCP needs external DRAM access, the power of DRAM
is denoted as PD, the bandwidth of the DDR3 controller as
BWD, and the latency of one layer as TL. Power to perform
one layer in the GCP is then obtained as following:

PGCP = PG · NMAC

NMAC,G
+ PD · NW

BWG · TL
= Mp2 · NMAC + Mp3 · NW (4)
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TABLE VII
AREA AND POWER OF THE GCP DESIGN WITH 32 VMS

Fig. 10. Performance comparison of VGG-16 and ResNet-152 on the hybrid
system consisting of a standard TAICHI and an integrated GCP, against
a hypothetical IMC system required for much larger memory capacity.

Thus, the power ratio of one layer in GCP and in IMC is:

Rpower = PGCP

PIMC
= Mp2

Mp1,i
+ Mp3

Mp1,i · OFMsize
(5)

Similarly, the area ratio is:

Rarea = AGCP

AIMC
= Ma2

Ma1,i
+ Ma3

Ma1,i · OFMsize
(6)

For the GCP, the power parameters Mp2, Mp3 and
area parameters Ma2, Ma3 remain mostly constant for all the
layers. For IMC, OFMsize,base,i decreases quadratically, while
PL2,i and AL2,i only decrease sub-linearly as we move to mod-
ules with higher ADC sharing. Thus, Mp1,i and Ma1,i increase
following (3) and (4), leading to a decrease in Rpower and Rarea
for layers implemented in slower IMC (more ADC sharing).

Since the slower IMC modules are normally used to map
layers with low compute/weight ratio (typically for deeper
layers in a model), these layers may be mapped onto the GCP
if hybrid mapping is necessary. In other words, the IMC system
is most efficient when accelerating compute bound DNN layers.
This conclusion is consistent with results in [18]. For memory-
bound layers the benefits of IMC need to be balanced with
the area demand of the high storage capacity requirement.
The large weight storage requirement and the relatively low
compute/weight ratio mean these layers may be delegated to
the GCP when the on-chip memory runs out of space for model
mapping.

Following this principle, we design a hybrid TAICHI system
with a GCP consisting of 32 VMs capable of 512 MAC opera-
tions per cycle at 500 MHz, shown in Table VII. To verify the
hybrid mapping concept, we test VGG-16 [19] and ResNet-
152 [11], both of which exceed the storage capacity of the
standard TAICHI design in Table V. For VGG-16, the three
FC layers contain only 0.8% of the total MAC operations
but would occupy 82.3% of the total area if fully mapped
on a hypothetical IMC system. It is thus more economical to
compute these FC layers with the GCP. For ResNet-152 the
standard TAICHI can accommodate the first 142 layers and
will run out of space for the last 10 layers. Thus, we map FC
layer of VGG-16 and the last 10 layers of ResNet-152 onto
the GCP and the other layers onto IMC modules in the hybrid
TAICHI. The performance of VGG-16 and ResNet-152 using
this hybrid system are summarized in Fig. 10. For compari-
son, the full models are also mapped onto a hypothetical large
enough IMC accelerator. For VGG-16, the hybrid system shows
both throughput increase and area saving. For ResNet-152, the
hybrid system shows a moderate drop in throughput and energy

efficiency, but offers reasonable area savings while eliminating
memory capacity concerns for the IMC-only system.

V. CONCLUSION

By taking advantage of the tradeoffs between com-
pute/weight ratio and throughput in typical neural networks,
our general DNN accelerator architecture, TAICHI, offers high
throughput and energy efficiency for a broad range of DNN
models using the same chip design. AUs with simple VMs
are added to process functions that are not optimal for par-
allel in-memory computing and to increase flexibility of the
architecture. TAICHI’s performance is verified using four pop-
ular models, showing the generality of the design. A hybrid
IMC+GCP system is further analyzed to allow models too
large to fit on an IMC chip to still be processed efficiently to
mitigate the “memory capacity anxiety” problem.
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