4032

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 10, OCTOBER 2019

Efficient Post-Processors for Improving

Error-Correcting Performance
of LDPC Codes

Yaoyu Tao™, Student Member, IEEE, Shuanghong Sun™, Member, IEEE,
and Zhengya Zhang"', Senior Member, IEEE

Abstract—The error floor phenomenon, associated with iter-
ative decoders, is one of the most significant limitations to the
applications of low-density parity-check (LDPC) codes. A variety
of techniques from code design to decoder implementation
have been proposed to address the error floor problem, among
which post-processors have shown to be both effective and
implementation-friendly. In this paper, we take the inspiration
from simulated annealing to generalize the post-processor design
using three methods: quenching, extended heating, and focused
heating, each of which targets a different error structure. The
resulting post-processor is demonstrated to lower the error floors
by two orders of magnitude for two structured code examples,
a (2209, 1978) array LDPC code and a (1944, 1620) LDPC code
used by the IEEE 802.11n standard. The post-processor can
be integrated with a belief-propagation decoder with minimal
overhead. The post-processor design is equally applicable to other
structured LDPC codes.

Index Terms—LDPC codes, iterative decoding, error floor,
simulated annealing, post-processing.

I. INTRODUCTION

OW-DENSITY parity-check (LDPC) codes [1], [2] have

been widely used in state-of-the-art commercial appli-
cations to improve coding gain, measured in the reduction
of signal-to-noise ratio (SNR) to meet a required bit error
rate (BER) or frame error rate (FER). The coding gain of an
LDPC code is captured by a waterfall curve featuring a steep
reduction in BER (and FER) with increasing SNR. Popular
LDPC codes of block length up to 2 Kb or 4 Kb for wire-
less [3]-[5] and wireline applications [6] have demonstrated
excellent waterfall performance down to a BER level of 107
to 10710, below which the curve flattens in a phenomenon
called error floor [7]. The presence of an error floor degrades
the achievable BER performance. With future communication
and storage systems demanding data rates at multiple Gb/s
or higher, error floors will worsen the quality of service.

Manuscript received January 13, 2019; revised April 3, 2019; accepted
April 22, 2019. Date of publication May 29, 2019; date of current ver-
sion September 27, 2019. This work was supported by NSF under Grant
CCF-1054270. This paper was recommended by Associate Editor X. Zhang.
(Corresponding author: Yaoyu Tao.)

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109-2122 USA (e-
mail: taoyaoyu@umich.edu; shuangsh@umich.edu; zhengya@umich.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI1.2019.2915574

To prevent BER degradation due to error floors, SNR needs
to be raised excessively, moving away from the capacity that
defines the optimal performance.

Over the last decade, solving the error floor problem
has been one research focus in coding theory and decoder
design communities. Past experiments have shown that error
floors can be caused by practical decoder implementation [8].
Improved algorithm implementation and better numerical
quantization can suppress these effects [8]. However, error
floors are fundamentally attributed to noncodeword trapping
sets (TS), especially elementary trapping sets (ETS), associ-
ated with LDPC codes [7], [9], [10]. A TS refers to a set of
bits in a codeword, when received incorrectly, cause the belief
propagation (BP) decoding algorithm to be trapped in a local
minimum [7].

Much work has been done on lowering the error floor by
improving code construction using methods such as selective
cycle avoidance [11], improved progressive edge growth [12],
code doping [13], and cyclic lifting [14]. These methods
are effective, reporting up to 2 orders of magnitudes lower
error floor, but they may produce unstructured codes that
are not amenable to efficient decoder implementation. The
irregular parity check matrices of these techniques complicate
the encoder/decoder design, introducing significant overheads
in latency, throughput and hardware area. Since theoretical
approaches require complete redesign of codes, they are not
applicable to the current deployed LDPC systems.

Code concatenation is another approach to lower error
floors. With appropriately designed outer codes, such as
Bose-Chaudhuri-Hocquenghem (BCH) codes [15], [16] or
Reed-Solomon codes [17], error floors of the concatenated
codes can be lowered by up to 2 orders of magnitude.
However, the addition of an outer code increases the system
complexity, power, cost, and decoding latency.

Alternatively, improvements can be made to decoding using
methods such as scaling [18], averaging [10], and reordering
steps [19] in BP decoding, but the effectiveness of these meth-
ods is often limited, usually 1 to 2 orders of magnitude, and
some require extra steps that are incompatible with BP decod-
ing, leading to a higher decoder complexity and longer latency.
A backtracking approach was proposed in [20] to use a trial
and error strategy to flip bits that are likely to be incorrect, and
rerun decoding to check if the trial is successful. The approach

1549-8328 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7500-5250
https://orcid.org/0000-0003-1158-4331
https://orcid.org/0000-0001-5963-9018

TAO et al.: EFFICIENT POST-PROCESSORS FOR IMPROVING ERROR-CORRECTING PERFORMANCE 4033
TABLE I
COMPARISON OF TECHNIQUES FOR LOWERING LDPC ERROR FLOORS
Techniaues Cycle avoidance [11], PEG [12], LDPC+ LDPC+ Scaled Reordered Bi-mode Postprocessing
d cyclic lift [14], code doping [13] BCH [15] RS [17] BP [18] BP [19] [22] (this work)
LDPC code irregular (504,252) (1944,972) (2640,1320) | (2016,1512) | (1984,1240) (2209,1978)
regular regular regular regular regular regular
Outer code . (756,696,6) (155,75)
BCH code RS code
Error floor ~10x ~100x — 10~100 ~10x 100~1000x | 100~1000x
lower by
Latency hlg_h (due t(_) high (due to | ‘high (due to negligible moderate moderate negligible
code irregularity) outer code) outer code)
Code rate loss no loss 0.75—0.69 0.62—0.30 no loss no loss negligible no loss
Hardware cost hlg,h (due ts) high (extra high (extra negligible negligible low negligible
code irregularity) BCH block) RS block) (Table VIII)
Throughput loss hlg.h (due t(? negligible negligible negligible negligible negligible negligible
code irregularity)
Back compatibility no no no yes yes yes yes

does not rely on any prior knowledge of trapping sets, but its
implementation can be costly in terms of memory and latency.
Schedule diversity [21] was proposed to make multiple decod-
ing attempts using different decoding schedules to reduce the
probability of falling into a trapping set. The approach is
another form of trial and error, and can be costly in latency.

In theory, a more effective approach is to add a post-
processing step if a decoding error is detected, and the
post-processing is done in a targeted manner without having
to rely on trial and error. An example of post-processing is
the bi-mode syndrome-erasure decoding algorithm [22], [23].
One drawback of the post-processing approach is that it is
usually limited to specific codes and it is not known whether
it is generally applicable. A redecoding approach based on
attenuating a predetermined set of bits [24] was proposed for
quasi-cyclic (QC) LDPC codes. The approach involves an
offline search and it may only be applied to QC-LDPC codes.

In this work, we extend the post-processing method that
was first presented in [23] using ideas from simulated anneal-
ing (SA). The SA algorithm combines random walk (or heating
in annealing terminology) and gradient descent (or cooling)
to escape local minima [25]—-[27]. In post-processing, we use
message reweighting or soft bit flipping to perturb, or heat
up, local minima, and use BP to cool down for convergence
towards a codeword. Compared to well-known approaches
above, the cost of implementing post-processing is low: no
code change is needed, and the post-processing is entirely
based on BP. As post-processing is conditionally invoked,
i.e., when a decoder fails to converge at a low BER, the impact
on decoding throughput and power is negligible.

A preliminary form of post-processing was first shown
in [23]. We call this form of post-processing “quenching”,
referring to one iteration of heating followed by immediate
cooling. Quenching was demonstrated to lower the error floor
of a (2048, 1723) RS-LDPC code from a BER level of 10710
to 104 by removing the vast majority of the errors until only
the minimum distance errors remain [28], but the quenching
method is not as effective in other structured LDPC codes.

In this paper, we present two new methods inspired by
SA: extended heating and focused heating, aiming at elim-
inating the vast majority of ETS errors of various struc-
tures. We use a rate-0.89 (2209, 1978) array LDPC code
[29] that is known for its collection of ETS errors [8] to
derive these methods. Finally, we combine extended heat-
ing and focused heating into a generalized method that is
applicable to LDPC codes with unknown ETS structures.
We use a rate-0.83 (1944, 1620) LDPC code for the IEEE
802.11n standard [4] to test the effectiveness of the general-
ized method. Experimental results show that post-processing
is one of the most practical and efficient solutions in designing
low-error-floor LDPC decoders. Table I summarizes the qual-
itative features of the proposed approach compared to prior
techniques.

II. BACKGROUND

An LDPC code is defined by a sparse m x n parity-check
matrix H where n represents the number of bits in the code
block and m represents the number of parity checks [1], [2].
The H matrix of an LDPC code can be illustrated graphically
using a bipartite graph, where each bit is represented by a
variable node (VN) and each parity check is represented by a
check node (CN). VN is also called bit, and CN is also called
check or parity check. An edge exists between VN i and CN
j if and only if H(j,i)=1.

An LDPC code is decoded using the BP algorithm that
operates on factor graphs [2]. Soft messages representing
reliabilities are exchanged between VNs and CNs to com-
pute the likelihood of whether a bit is 1 or 0. The BP
algorithm has two popular implementations, the sum-product
algorithm and the min-sum algorithm [30], [31]. The min-
sum algorithm is simpler to implement and provides excellent
decoding performance with suitable corrections [32]. It has
been widely used in hardware decoders. In this work, we will
base our discussions on the min-sum algorithm due to its
practical relevance.

4034

A. Min-Sum Decoding

Assume a binary phase-shift keying (BPSK) modulation and
an additive white Gaussian noise (AWGN) channel. The binary
values 0 and 1 are mapped to 1 and -1, respectively. The min-
sum decoding can be explained using the factor graph. In the
first step of decoding, each VN ux; is initialized with the prior
log-likelihood ratio (LLR) defined in (1) based on the channel
output y;:

Pr(xi=01]y) 2

= i (1)

L7 (x;) =1
) =l g e =1y T o

where o2 represents the channel noise variance.

After initialization, VNs send the prior LLRs to the CNs
along the edges defined by the factor graph. The LLRs are
recomputed based on parity checks, as in equation (2), and
returned to the VNs. Each VN then updates its decision based
on the posterior LLR that is computed as the sum of the prior
LLR from the channel and the LLRs received from the CNs,
as in equation (3). One round of message exchange between
VNs and CNs completes one iteration of decoding. To start
the next iteration, each VN computes the marginalized LLRs,
as in equation (4), and passes them to the CN.

L) :i’elgﬂj]\i“l(qi/j)|./ RH. sen(L@)) @
i’eRow[j\i
LP(xi) = D L(rij)+ L (x) 3)
j'eColli]
L(gij) = L”*(x;) — L(rij) (4)

The LLRs passed between VNs and CNs are known as the
variable-to-check message (VC message, L(g;;)) and check-
to-variable message (CV message, L(r;;)), where i is the
VN index and j is the CN index. In representing the con-
nectivity of the factor graph, Col[i] refers to the set of all the
CNs connected to the ith VN and Rowlj] refers to the set of
all the VNs connected to the jth CN.

The magnitude of L(r;;) computed using (2) is overes-
timated and correction terms are introduced to reduce the
approximation error. The correction is in the form of either
an offset or a normalization factor [32].

A hard decision is made in each iteration based on the
posterior LLR, as in (5). The iterative decoding is allowed
to run until the hard decisions satisfy all the parity checks or
when an upper limit on the iteration number is reached.

. _ [o it LP(x;) > 0)

1 if LPS(x;) <O
In a practical decoder implementation, the VC messages and
CV messages are quantized to fixed point. We use the notation

0Op.q to indicate a two’s-complement fixed-point quantization
with p bits for integer and ¢ bits for fraction.

B. Error Floor and Trapping Set

It is known that TS is the fundamental cause of error floor
in BP decoding of LDPC codes [7]. We repeat the definition

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 10, OCTOBER 2019

N: neighborhood set

T: elementary trapping set

N\
Vi V2 V3 V4 Vs Ve V7 Vg Vo Vio Vi1 vy

F: falsely satisfied checks U: unsatisfied checks

S: satisfied checks

Q Correct bit Q Incorrect bit D Satisfied check D Unsatisfied check

Fig. 1. Tlustration of a (3,3) ETS.

of TS [10] and a special type of TS called elementary TS,
or ETS, that is the most dominant in error floors.

Definition 1: Trapping set (TS) and elementary trapping
set (ETS)

An (a,b) TS is a configuration of a number of VNs, for
which the induced subgraph in G contains b > 0 odd-degree
CNs with respect to the TS. An (a, b) ETS is a TS for which
all CNs in the induced subgraph have either degree 1 or 2
with respect to the TS, and there are exactly b CNs of
degree 1 with respect to the TS. The CNs of degree 1 are
called degree-1 CNs, and the CNs of degree 2 are called
degree-2 CNs.

We will focus the following discussions on ETS as it is the
most common type of TS and the most damaging in causing
error floors. A factor graph of a small LDPC code is shown
in Fig. 1, which contains a (3,3) ETS 7. Each VN in 7 is
connected to 1 degree-1 CN and 2 degree-2 CNss.

To see how an ETS can cause a decoding error, we use an
example of transmitting an all-zero vector of length 12, which
is a codeword for the code defined in Fig. 1. Suppose the
received word contains errors in the first three bits. That is,
the VNs in 7 are initialized to 1 and the remaining VNs
are initialized to 0. The received word does not constitute
a valid codeword, as the degree-1 CNs labeled ¢/ are not
satisfied. Note that among the satisfied CNs labeled S, the
degree-2 CNs labeled F are falsely satisfied, i.e., the ones
that are connected to an even number of bits in 7. In BP
decoding, the CV messages from the degree-1 CNs in U will
attempt to correct the wrong bits, but the CV messages from
the degree-2 CNs in F will reinforce the wrong bits. If there
is stronger reinforcement than correction of the wrong bits,
the decoder is trapped in the non-codeword ETS.

Many LDPC codes contain ETS of lower weight than the
minimum distance of the code. As a result, the decoders can
be more easily trapped in an ETS at a moderate to high SNR
level than converging to a minimum-distance codeword. The
presence of ETS results in error floors. Reducing the likelihood
of trapping in the local minimum due to ETS is the key to
lowering the error floors of LDPC codes.

TAO et al.: EFFICIENT POST-PROCESSORS FOR IMPROVING ERROR-CORRECTING PERFORMANCE

III. SIMULATED ANNEALING AND POST-PROCESSING
IN BP DECODING

The local minimum problem has been studied extensively
in the field of optimization. Notably, the SA algorithm com-
bines gradient descent and random walk to escape local
minima [25]-[27]. Annealing is a process in metallurgy, where
metal is heated to a high temperature and then undergoes
controlled cooling to form a low-energy crystalline structure.
If metal contains no defects, its energy is at the minimum;
otherwise, it will be at a higher energy level. An analogy
can be made for decoding: the highest energy occurs in the
beginning of decoding when most errors or defects are present.
As decoding proceeds, errors are corrected and the energy goes
down, just as the cooling process in annealing that removes
defects. When the decoding converges to a correct codeword,
the energy goes down to the minimum, like metal reaching its
defect-free, lowest-energy crystalline state.

The decoder can be trapped in an ETS. The weight of the
ETS that induce error floors is often lower than the minimum
distance. If an ETS is within the minimum distance away from
the correct codeword, a local search algorithm can be applied.
SA is such an algorithm that targets local minimum problems.

A. Neighborhood Identification for Trapping Sets

SA uses heating to perturb the local minimum, making it
unstable before breaking away from it. The most efficient way
is to heat only the defective points in order to keep the amount
of perturbation low and reduce the risk of moving much further
away from the closest global minimum. Similarly in LDPC
decoding, heating needs to be directed to the error bits in an
ETS. The ETS is not known, but the degree-1 CNs are known
because they are not satisfied. We can trace the neighboring
VNs of the degree-1 CNs, called the neighborhood set N,
as labeled in Fig. 1.

The neighborhood set contains one or more VNs in the
ETS, and also VNs outside of the ETS. There is no choice but
to apply heating to the entire neighborhood set. As a result,
heating will perturb not only the error bits but also the correct
bits. In practice, the neighborhood set can be as large as tens
or a few hundred bits, therefore heating needs to be carefully
adjusted to be effective to resolve the local minimum, but not
too much to be pushed to a different codeword.

B. Heating

Heating is used to perturb the local minimum. In BP
decoding, perturbation can be done by reweighting the VC and
CV messages [23] or soft bit flipping. In Fig. 1, the bits
in the ETS 7 are incorrect. Each VN in 7 receives CV
messages from 2 degree-2 CNs to reinforce the error and a CV
message from 1 degree-1 CN that attempts to correct the error.
To perturb this local minimum and possibly escape the local
minimum, the CV messages from the satisfied CNs (including
degree-2 CNs) are weakened, and the CV message from the
degree-1 CN is strengthened. This procedure is called message
reweighting. As the magnitude of the messages are changed,
noise is injected to the system to achieve a perturbation effect.

4035

Message reweighting applied to the VNs in an ETS helps
correct errors, but message reweighting applied to the VNs
outside the ETS can possibly introduce more errors. For
example, in Fig. 1, v4 ¢ 7, and v4 is connected to ¢
and c4 that are both satisfied and c¢7 that is degree-1 and
unsatisfied. By the reweighting procedure outlined above,
the CV messages from c¢; and c4 to 04 are weakened, and
the CV message from c7 to v4 is strengthened, which is likely
to cause v4 to flip to the incorrect value. Therefore, heating
needs to be carefully adjusted to avoid perturbing too many
correct bits and eventually converge to an undesired global
minimum.

C. Post-Processing Procedure

BP decoding with post-processing follows a two-phase
procedure. In the first phase, conventional BP decoding is
performed. If BP decoding fails to converge after a set number
of iterations, denoted as M, at a moderate to high SNR,
the decoding is most likely trapped in a local minimum and
it enters the second phase.

In the second phase, post-processing is invoked. Neigh-
borhood set needs to be properly identified for effective
heating. The identification can be conveniently done in VN by
inspecting the sign of incoming CV messages: if the sign
indicates that the parity check is unsatisfied, the VN tags the
bit as part of the neighborhood set A. Heating is performed
by reweighting the reliability of CV messages, i.e., increasing
the reliability of CV messages from the unsatisfied checks
to NV, or decreasing the reliability of CV messages from the
satisfied checks to AV, or both. Equation (6) describes a way to
implement message reweighting that decreases the reliability
of the CV messages from the satisfied CNs S to the VNs in
the neighborhood set N to a low value Ag. The value of Ag
determines the amount of heating, or perturbation injected to
the local minimum. Heating can also be done using soft bit
flipping to be described in Section I'V-C.

i’eRow[jI\i
A ifo,eN,cjeS
mini/eRow[j]\,- |L(qi/j)| otherwise.

L(rij) = sgn (L(gi;)) -

(6)

After P iterations of heating, N iterations of BP decoding
is applied to cool down. The post-processing procedure is
summarized in Algorithm 1.

Algorithm 1: Post-Processing Procedure

1) BP decoding: run for M iterations. If there are unsatis-

fied CNs, continue post-processing.

2) Post-processing:

a) Heating: run P iterations of reweighted message
passing.
b) Cooling: run N iterations of BP decoding.

In Algorithm 1, M is set to ensure that the decoder has been
trapped in an ETS, and N is set to ensure that the decoder
has enough time to cool down to the global minimum after
heating. In this paper, we set M = N = 20.

4036

D. Implementing Post-Processing in Hardware

The primary design goal of post-processing is to lower the
error floor with minimal cost of area, power, latency and
throughput. An ideal post-processor works likes a “plug-in”
feature that can be easily integrated to any standard LDPC
decoder.

In a standard min-sum LDPC decoder, a CN is implemented
as a comparison tree to find the first and the second minimum.
A CN often contains little memory and does not retain states.
On the other hand, a VN keeps state and stores prior and
posterior information. If post-processing is implemented by
reweighting CV messages, a CN needs to be augmented
to keep track of all the VNs in the neighborhood set N,
which could be costly. Therefore, instead of reweighting CV
messages, we devise an alternative by reweighting VC mes-
sages. In this alternative approach, a VN is augmented by
1 bit to track whether it belongs to the neighborhood set
N. Because the magnitude of VC messages tends to saturate
to the maximum value allowed by quantization in a few
iterations, the reweighting is implemented in VN by decreas-
ing the magnitude of the VC message from a VN in the
neighborhood set to a satisfied CN to a low value Ag. The
reweighted (magnitude-reduced) VC message propagates to
the satisfied CN, and through the CN’s minimum operation
becomes reweighted CV message. Equation (7) describes
post-processing by reweighting VC messages.

Ao - sgn(LP*(x;) — L(rij)) ifvieN,cj eS8

L) =1 ppegeny - L(rij)

otherwise.
@)

The choice of Ap depends on the quantization. Assume
VC messages are quantized to Qp.q, the possible Ag val-
ues are {0,279,274+1 . 2P=1 _2-49} The lower the Ao,
the more noise is injected to the local minimum. As a result,
lower Ag is more effective in resolving an ETS error, but also
highly likely to cause more perturbation to the bits outside
the ETS, which may push the decoder to an undesired global
minimum. Detailed message reweighting strategies are depen-
dent on the structures of the ETS, which will be elaborated in
Section IV.

Post-processing does not require changing the code structure
or decoder architecture. Muxes and label bit registers are added
for VC message reweighting and neighborhood identification,
respectively. A controller monitors the decoding and enables
post-processing upon detecting failed CNs after M iterations;
therefore post-processing is activated at a rate of approxi-
mately the decoding FER and has a negligible impact on the
decoding throughput and the average latency.

We demonstrate post-processing implementation based on
two commonly used LDPC decoder architectures, the fully-
parallel architecture [33] and the row-parallel architecture [34].
A fully-parallel architecture is efficient for short code length
and it yields the highest throughput. In a fully-parallel decoder,
all CNs, VNs and their interconnections are instantiated in
hardware exactly as those in the code’s factor graph. Assume
a decoder contains Q CNs and K VNs, and the VN degree is
d,. At each VN, a label register is added to indicate whether

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 10, OCTOBER 2019

e DR «Iﬁﬁﬁ‘ v2¢
label " abel NAND at ! CN
reg i ! c2v 1
I I
VNI | 1
I I
I I
I I
I I
I | b
I I .
I I
P c2v v2c
<
label |+ Ddate sat CN
reg label Post-
label bit | Processor > c2v Q
VNK [ve_pp
Fig. 2. Post-processing added to a fully-parallel decoder.
~ PEs
[
Label Mem [
Addr ? i
Lookup Post-Processing > w
table Controller . g
. o
¢ @ CN
f sat 55:, s
L v VN "e
Mem | |v2c pp
Ag L
c2v

Fig. 3. Post-processing added to a row-parallel decoder.

the VN belongs to the neighborhood set, and a post-processor
is added to perform neighborhood labeling and VC message
reweighting, as shown in Fig. 2. The post-processor takes the
signs of d, CV messages (without marginalization) as inputs
sat to identify whether CNs are satisfied. If post-processing
is enabled and at least one incoming CV message indicates
that the CN is unsatisfied, the post-processor turns the VN’s
neighborhood label on with a unary NAND gate. In performing
post-processing, the VN’s neighborhood label is AND’ed with
the sat of each CV message to determine whether reweighting
is enabled. If reweighting is enabled, a MUX is used to select
the reduced magnitude of Ag for the outgoing VC message
v2c_pp.

A row-parallel decoder architecture is the most popular
architecture for moderate to long QC LDPC codes, includ-
ing many that have been used in standards. A row-parallel
architecture often employs layered BP decoding. Each iteration
is divided into multiple layers of processing. An example
decoder architecture is shown in Fig. 3. Each layer processing
is done by multiple processing elements (PEs), each consisting
of a physical VN and memory. The read/write addresses
are stored in lookup tables. In the row-parallel architecture,
a physical VN is time-multiplexed and it assumes the roles of
multiple logical VNs (VNs in the factor graph), one in each
layer. A label memory is added to store the neighborhood
labels of the logical VNs. A post-processing controller is

TAO et al.: EFFICIENT POST-PROCESSORS FOR IMPROVING ERROR-CORRECTING PERFORMANCE

TABLE II

EVALUATION OF POST-PROCESSING IMPLEMENTATIONS OF
FULLY-PARALLEL AND ROW-PARALLEL DECODERS
(BASED ON XILINX VIRTEX-5 XC5VLX155T FPGA)

Design Fully-par. (648,540) dec. Row-par. (1944,1620) dec.
Baseline [Post-proc added | Baseline [Post-proc added
Slice 13,724 13,901 4,432 4,633
registers (14.24%) (14.43%) (4.60%) (4.81%)
Slice 39,007 40,822 10,066 10,901
LUTs (40.30%) (42.17%) (10.4%) (11.2%)
Occupied 10,852 11,208 4,782 4,844
slices (44.70%) (46.17%) (19.7%) (19.9%)
BRAMs 64 64 35 35
(29.9%) (29.9%) (16.4%) (16.4%)

added to the PE to perform the same labeling and reweighting
functions as what the post-processor does in the fully-parallel
architecture. The only difference is that the post-processing
controller performs the labeling and reweighting serially as
the CV messages are received one at a time.

Table II shows the overhead when post-processing is added
to a fully-parallel decoder and a row-parallel decoder for the
IEEE 802.11n (648,540) LDPC code and the IEEE 802.11n
(1944,1620) LDPC code, respectively. The percentage in the
brackets indicate the device utilization. The 100 MHz clock
frequency can be kept even after post-processing is added,
so the average throughput and latency can be kept constant.
Implementing post-processing on the row-parallel decoder
uses 4.5% and 8.3% more slice registers and slice LUTS,
respectively, compared to the baseline. The cost is even lower
when post-processing is added to the fully-parellel decoder.

IV. ERROR STRUCTURE AND
POST-PROCESSING METHODS

Studying the error floor phenomenon requires fast simu-
lations. FPGA accelerated emulations are particularly use-
ful because software-based simulations often take weeks or
months to reach low BER levels. In previous work [35],
a library and script based approach was developed to automate
the FPGA emulations for LDPC decoders. In this work,
we used it to collect errors in the error floor region.

After collecting enough errors in the error floor region,
we analyze the ETS structures associated with these errors.
The ETS structures are dependent on the code structure. The
post-processing method is formulated to be the most effective
towards the structures.

A. Type I ETS and Quenching

The (2048,1723) RS-LDPC code [36] for the IEEE 802.3an
standard [6] is a well-studied code for error floor investiga-
tion [8]. The H matrix of this regular code has a column
degree of 6, a row degree of 32, and 64 x 64 permutation
matrices as component submatrices [36]. The code has a girth
of at least 6. The code has an error floor below 10710, It has
been shown that the error floor is dominated by (8,8) ETS
errors [8].

4037

O Incorrect
bit

I:I Unsatisfied
check

Fig. 4. An (8,8) ETS of a (2048,1732) RS-LDPC code.

The (8,8) ETS is illustrated in Fig. 4 using a simpli-
fied representation that only includes VNs in the ETS and
degree-1 CNs. The (8,8) ETS consists of 8 VNs, each of which
is connected to one degree-1 CN. The degree-2 CNs are shown
implicitly in Fig. 4 as lines connecting pairs of VNs in the
ETS. The illustration makes it clear if the bits in the ETS
are initialized with incorrect binary values, these VNs will
reinforce each other through the degree-2 CNs. As each VN in
the ETS neighbors 5 degree-2 CNs and only 1 degree-1 CN,
a BP decoder can be easily trapped in this local minimum. The
(8,8) ETS is an example of a Type I ETS. A Type I ETS is one
in which each VN is connected to exactly 1 degree-1 CN.

To resolve a Type I ETS error, Algorithm 1 can be used
with P = 1, i.e., only one iteration of heating followed by
immediate cooling, as proposed by [23]. This post-processing
method is named “quenching”. Quenching is effective towards
Type 1 ETS errors, since the neighborhood set traced from
the unsatisfied degree-1 CNs contains the entire ETS. One
iteration of heating reaches all VNs in the ETS, and cooling
can be applied immediately after to help convergence.

Using the (8,8) ETS illustrated in Fig. 4 as an example, after
the heating step, each VN in the ETS receives 5 weakened
CV messages from degree-2 CNs and 1 CV message from a
degree-1 CN. The lower the reweighted value Ay is, the more
likely the CV message from the degree-1 CN can overcome
the sum of 5 weakened CV messages from the degree-2 CNs.

Previous work showed that over 97% of the ETS errors in
the error floor region of the (2048, 1723) RS-LDPC code are
corrected using quenching with proper choice of Ay, resulting
in nearly two orders of magnitude lower error floor as shown
in Fig. 5 [23]. Ag = 1 is used in this experiment.

B. Type II ETS and Extended Heating

To extend from previously proposed quenching post-
processing [23], we choose a (5,47)-regular rate-0.89 (2209,
1978) array LDPC codes [29] for investigation of other types
of ETS structures. The H matrix of this code can be parti-
tioned into 5 row groups and 47 columns groups of 47 x 47
permutation matrices.

4038
0
10 T
©.,
10°°
2
©
14
5
w10
10 FER before post-proc
BER before post-proc
O FER after post-proc
—95— BER after post-proc
107 : ‘ ‘ :
2.5 3 3.5 4 4.5 5
E/N,
Fig. 5. Error rate of the (2048, 1723) RS-LDPC code before and after

post-processing using quenching [23].

TABLE III

ERROR PROFILE OF THE (2209, 1978) ARRAY LDPC CODE
AND EFFECTIVENESS OF QUENCHING

ETS Error Resolve('i by
count quenching
(6,8) 6 3 (50%)
(7,9 5 2 (40%)
(8,6) 124 105 (85%)
(8,8) 20 13 (65%)
9.5) 37 33 (89%)
(10,4) 12 8 (67%)
(10,6) 9 5 (56%)
(10,8) 7 7 (100%)
other ETS 23 12 (52%)

[non-ETS | 31 [11(58%) |

| Total | 274 [199 (73%) |

We collected 274 errors through FPGA emulation of a Q4.0
(2209, 1978) array LDPC decoder in the error floor region
(Ep/N9 = 5.6 dB, 5.8 dB, and 6.0 dB). 243 out of the
total 274 errors are ETS errors, among which there is only
1 Type I ETS error. We then applied quenching to post-process
these errors and the results are summarized in Table III.
A resolving rate of only 73% indicates that quenching alone
is not sufficient to lower the error floor of array code.

From Table III, one can observe that, unlike the RS-LDPC
code discussed above, the error floor of array LDPC code is
not dominated by only one kind of ETS error, but attributed to
several kinds of ETS errors, including (8,6), (9,5), (8,8), and
(10,4) ETS errors [8]. An (8,6) ETS is illustrated in Fig. 6. It is
an example of type II ETS. A Type II ETS is one in which
each VN is connected to no more than 1 degree-1 CN, and
at least 1 VN is not connected to any degree-1 CN. The VNs
that have no neighboring degree-1 CN are called inner bits,
and the VNs that have only 1 neighboring degree-1 CN
are called outer bits.

In the type II (8,6) ETS illustrated in Fig. 6, the inner bits, v7
and vg, are connected to all satisfied checks, through which
they reinforce the outer bits in the ETS. The inner bits are
more “deeply” trapped than the outer bits since they are not
connected to any unsatisfied checks. One iteration of heating
helps correct the outer bits, but it does not propagate to the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 10, OCTOBER 2019

O Outer bit
. Inner bit

Unsatisfied
check

Fig. 6. Tllustration of a type II (8,6) ETS.
TABLE IV

TYPE II ETS ERROR PROFILE OF THE (2209, 1978) ARRAY LDPC CODE
AND EFFECTIVENESS OF QUENCHING AND EXTENDED HEATING

ETS Inner | Error | Resolved by Resolved by
bits count quenching extended heating
(8,6) 2 124 105 (85%) 121 (98%)
9.,5) 4 37 33 (89%) 36 (97%)
(10,4) 6 12 8 (67%) 12 (100%)
(10,6) 4 5 3 (60%) 4 (80%)
Other - 6 6 (100%) 6 (100%)
[Total | - [184 [155(84%) [179 97%) |

inner bits. The immediate cooling after only one iteration
of heating hampers the full recovery. In annealing language,
the temperature of the outer bits rise after the heating step, but
the inner bits are still cold. Therefore, we propose a second
post-processing method called extended heating by setting
P > 1 in Algorithm 1.

Compared to quenching, extended heating prolongs heating
to P iterations, where P > 1, before cooling. The idea is to
heat all the bits in the ETS, including both outer and inner
bits, to raise the temperature evenly. The neighborhood set
is updated after each iteration of heating, allowing the set
to be enlarged to include inner bits so that heating can be
propagated to them. Prolonged heating allows the bits in a
ETS to accumulate enough energy to avoid falling back to the
same local minimum.

Among the 236 ETS errors from FPGA emulations, there
are only 1 type I ETS error and 184 type II ETS errors that are
listed in Table IV. Quenching with P = 1 and Ay = 1 resolves
the type I ETS error but only 84% of the type Il ETS errors.
In comparison, extended heating with P = 10 and Ag = 1
resolves 97% of the type II ETS errors, which demonstrates
its effectiveness. When the number of inner bits is large, e.g.,
in (10,4), (10,6), and (11,5) ETS errors, the success rate of
quenching is particularly low, but extended heating works well
consistently.

C. Type Il ETS and Focused Heating

Besides type I and type I ETS errors, there are 58 additional
ETS errors collected for the Q4.0 (2209, 1978) array LDPC
decoder. The (6,8) ETS shown in Fig. 7 is an example of
them. The (6,8) ETS is neither type I, nor type II, because two

TAO et al.: EFFICIENT POST-PROCESSORS FOR IMPROVING ERROR-CORRECTING PERFORMANCE

Singular
bit

<7
. Plural bit

Unsatisfied
check

Fig. 7. Tllustration of a type III (6,8) ETS.

TABLE V

TYPE III ETS ERROR PROFILE OF THE (2209, 1978) ARRAY LDPC CODE
AND EFFECTIVENESS OF EXTENDED HEATING AND FOCUSED HEATING

Plural E Resolved by

ura. ITor

ETS bits count | quenching exten.ded extended a.l"ld

heating focused heating

(6,8) 2 3 (60%) 4 (80%) 5 (100%)
(8,8) 2 11 7 (64%) 10 (91%) 11 (100%)
(8,8) 1 4 4 (100%) 4 (100%) 4 (100%)
(8,8) 4 4 1 (25%) 4 (100%) 4 (100%)
(10,8) 1 4 4 (100%) | 4 (100%) 4 (100%)
other - 30 13 (43%) 24 (80%) 28 (93%)

| Total | | 58 [32(55%) | 50(86%) | 56 (97%) |

of the bits, v; and v4 are each connected to two unsatisfied
checks. It is an example of type III ETS. A Type III ETS
is one in which 1 or more VNs are each connected to
more than 1 degree-1 CNs. The VNs that have only
1 neighboring degree-1 CN are called singular bits, and
the VNs that have more than 1 neighboring degree-1 CNs
are called plural bits.

A type III ETS typically has more unsatisfied checks than
the size of the ETS. Since the neighborhood set is traced from
the unsatisfied checks, the neighborhood set is relatively larger.
A large neighborhood set means more bits, mostly correct bits,
are perturbed in heating. Table V above lists the dominant
type III ETS errors that have been collected in the error floor
region. Quenching with P = 1 and Ag = 1 resolves only 55%
of the type III ETS errors. Extended heating with P = 10 and
Ap = 1 resolves 86%. Overheating is the problem in both
cases that cause the two methods to be not as effective.

In a type III ETS, a plural bit, e.g., v; or v4 in Fig. 7,
is connected to more than one unsatisfied checks. Therefore,
a plural bit candidate can be identified as one that is connected
to more than one unsatisfied checks. After the plural bit
candidates are identified, they can be corrected by bit flipping,
allowing the unsatisfied checks, e.g., c1, ¢, ¢5 and cg in Fig. 7,
to be turned to satisfied checks. After bit flipping, heating can
be applied to a smaller and focused neighborhood set to be
more effective.

In this case, bit flipping acts as another form of perturba-
tion. To control the noise injection, we use soft bit flipping,
i.e., reduce the reliability of the soft decision to a low value

4039

10
10°
[}
2
14
5 .
Mo 0.
< - FER before post-proc
BER before post-proc
O FER after post-proc
_s| L2 BER after post-proc
10 -

3 35 4 45 5 55 6
E/N,

Fig. 8. Error rate of the (2209, 1978) array LDPC code before and after
post-processing using extended and focused heating.

By to weaken the plural bits without a significant impact on
the correct bits outside the ETS. We call this method focused
heating as described in Algorithm 2.

Algorithm 2: Focused Heating

1) BP decoding: run for M iterations. If there are unsatis-

fied checks, continue post-processing.

2) Post-processing:

a) Constraining: run L iterations of soft bit flipping.
b) Cooling: run N iterations of BP.

Focused heating uses L iterations of soft bit flipping to
selectively weaken the plural bits and shrink the neighborhood
set, so that extended heating can be applied to a focused
neighborhood set. In practice, extended heating and focused
heating need to be combined because a type III ETS error can
include inner bits that need to be resolved by extended heating.
Assume a gap of G iterations that separates extended and
focused heating. Extended and focused heating with P = 10
and Ap = 1 (for extended heating), L = 5 and By = 3 (for
focused heating), and G = 10 resolves 97% of the type III ETS
errors, as shown in Table V, more effective than quenching or
extended heating.

In total, extended and focused heating can be applied to
resolve 99% of the 236 ETS errors collected in the error floor
region of the Q4.0 (2209, 1978) array LDPC decoder. Note
that although the method is designed for ETS errors, extended
and focused heating can resolve 82% of the 38 non-ETS errors.
Table VI lists the summary of the results. The BER in the error
floor region is lowered by more than 2 orders of magnitude at
Ep/No = 6.0dB, as shown in Fig. 8. This experiment is done
with P = 10 and Ag = 1 (for extended heating), L = 5 and
By = 3 (for focused heating), and G = 10.

V. APPLICATION OF POST-PROCESSING METHODS—CASE
STUDY ON AN IEEE 802.11N LDPC CODE

The focused and extended heating methods are developed
based on the (2209, 1978) array LDPC code, but the methods
are generally applicable. We demonstrate these methods on an
arbitrarily selected rate-0.83 (1944, 1620) LDPC code for the
IEEE 802.11n standard [4]. The H matrix of the (1944, 1620)
LDPC code is made up of a 4 x 24 array of 81 x 81 identity
matrices, cyclic shifted identity matrices, or zero matrices. The
H matrix is described in Fig. 9 [4], where a “0” indicates an

4040

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 10, OCTOBER 2019

1314880 |66| 4 |74| 7 |30(76]|52|37(60| - (4973 (31|74]|73]|23] - 110 - -
69|63|74 (56|64 (77|57|65]| 6 |16(51| - 64| - [68] 9 | 48| 62| 54| 27| - 0|0 -
51|15| 0 (80 (24| 25|42 |54 (4471|171 9 |67|35| - |58 -([29] -]53|]0 - 0|0
16 |129(36|41 |44 |56 (5937|5024 - (65| 4]|65]|52| -| 4| -173[52|1 - -10
Fig. 9. Parity check matrix of the (1944, 1620) LDPC code for IEEE 802.11n standard [4].
TABLE VI TABLE VII

SUMMARY OF ETS AND NON-ETS ERRORS OF THE (2209,1978) ARRAY
LDPC DECODER IN THE ERROR FLOOR REGION AND THE EFFEC-
TIVENESS OF POST-PROCESSING BY COMBINED EXTENDED AND
FOCUSED HEATING

SUMMARY OF ETS AND NON-ETS ERRORS OF THE (1944,1620) IEEE
802.11N LDPC DECODER IN THE ERROR FLOOR REGION AND THE
EFFECTIVENESS OF POST-PROCESSING BY COMBINED EXTENDED
AND FOCUSED HEATING

Error Number | Resolved by extended
Ep/No .
type of errors and focused heating
Type I ETS 1 1 (100%)
1,
5.6 dB Type II ETS 74 73 (99%)
Type III ETS 20 19 (95%)
Non-ETS 27 21 (78%)
Type I ETS 0 -
5.8 dB Type II ETS 82 82 (100%)
’ Type 1II ETS 21 20 (95%)
Non-ETS 9 (100%)
Type I ETS 0 -
6.0 dB Type II ETS 33 33 (100%)
Type III ETS 5 5 (100%)
Non-ETS 2 1 (50%)
ETS errors 236 233 (99%)
Total
Non-ETS errors 38 31 (82%)
4.1) (5.1)
(5.2) (3,2)
Fig. 10. Dominant type II ETS structures in the (1944, 1620) LDPC code

for the IEEE 802.11n standard.

81 x 81 identity matrix, a number x, x > 0, indicates an 81 x 81
matrix obtained by right cyclic shifting of the identity matrix
by x, and a “-” indicates an 81 x 81 zero matrix.

Error Number | Resolved by extended
Ey/No .
type of errors and focused heating

type I ETS 34 31 (91%)

5.0 dB type II ETS 351 338 (96%)
type III ETS 91 86 (95%)

non-ETS 4 4 (100%)

type I ETS 26 23 (88%)

54 dB type I ETS 324 311 (96%)
’ type III ETS 100 94 (94%)
non-ETS 1 1 (100%)

type I ETS 38 37 (97%)

5.6 dB type I ETS 319 306 (96%)
’ type III ETS 102 96 (94%)
non-ETS 2 1 (50%)

type I ETS 35 32 (91%)

5.8 dB type I ETS 284 267 (94%)
' type III ETS 119 113 (95%)
non-ETS 0 0 (N/A)

type I ETS 133 123 (92%)

Total type II ETS 1278 1222 (96%)
type III ETS 412 389 (94%)
non-ETS 7 6 (86%)

The (1944, 1620) LDPC code is structured but not regular.
Note that the identity matrices are laid out in a staircase on
the right hand side to allow for an efficient encoder design.
This design however leads to a low minimum column degree
of 2. which dictates the majority of the error patterns.

We implemented a Q5.0 decoder for this LDPC code on
FPGA and collected 1830 errors in the error floor region
(Ep/No = 5.0 dB, 5.4 dB, 5.6 dB, and 5.8 dB). More than
99% of the errors are ETS errors, and the remaining are non-
ETS errors. Type I, type II and type III account for 7.3%, 70%
and 22.5% of the ETS errors, respectively. The dominant type
II ETS errors, (3,2), (4,1), (5,1), and (5,2), account for 76%
of the type II ETS errors, and their structures are illustrated
in Fig. 10. Since they all contain inner bits, extended heating
can be applied. The dominant type III ETS errors, (1,2),
(1,3), (2,3) and (2,4), account for 82% of the type III ETS
errors. Their structures are illustrated in Fig. 11. Extended
and focused heating are applicable to these errors.

Extended and focused heating is used to post-process the
errors collected in the 05.0 (1944, 1620) IEEE 802.11n LDPC
decoder. Table VII shows that the overall success rate is

TAO et al.: EFFICIENT POST-PROCESSORS FOR IMPROVING ERROR-CORRECTING PERFORMANCE

oy N

(2,3) 2.4

Fig. 11. Dominant type III ETS structures in the (1944, 1620) LDPC code
for IEEE 802.11n standard.
10° -
10°°
[}
©
4
5
w10
10 * - FER before post-proc 1
BER before post-proc
O FER after post-proc
—5— BER after post-proc
10—15 T m K
2 3 4 5 6
E/N,

Fig. 12. Error rate of the (1944, 1620) IEEE 802.11n LDPC code before
and after post-processing using extended and focused heating.

TABLE VIII

DEVICE UTILIZATION OF 4-ROW-PARALLEL IEEE 802.11N (1944, 1620)
DECODERS (BASED ON XILINX VIRTEX-5 XC5VLX155T FPGA)

Design Baseline | Quenching Extended + focused
heating
Slice 4,432 4,611 4,633
registers (4.60%) (4.79%) (4.81%)
Slice 10,066 10,732 10,901
LUTs (10.4%) (11.1%) (11.2%)
Occupied 4,782 4,834 4,844
slices (19.7%) (19.9%) (19.9%)
BRAMs 35 35 35
(16.4%) (16.4%) (16.4%)

95%. The error floor is reduced by one to two orders of
magnitude after post-processing, as shown in Fig. 12. The
results are obtained with P = 10 and Ag = 1 (for extended
heating), L = 5 and By = 1 (for focused heating), and
G = 10. In comparison, quenching alone [23] resolves 23%
of the errors and the bi-mode syndrome erasure decoding [22]
resolves 59% of the errors based on our simulations.

The device utilization of a row-parallel 802.11n LDPC
decoder is listed in Table VIII. The addition of extended
and focused heating introduces less than 10% overhead. The
results of this work are compared in Table IX with two
prior designs [20], [28] that included hardware design and
evaluation. This work demonstrates a lower datapath overhead
than [28] and requires significantly less memory than [20].
As a deterministic method, this work features a lower latency

4041

TABLE IX
COMPARISON OF LOW-FLOOR LDPC DECODER IMPLEMENTATIONS

This work | [20] [[28] |

Implementation FPGA Synthesis Silicon

Method Generahze.d Backtracking Quenching

post-processing
Code Any Ay (2048,1723)
RS-LDPC

Datapath 8.3% 7% 13.7%

overhead

Memory 45% 46% N/A

overhead

TABLE X

SUMMARY OF POST-PROCESSING PARAMETERS

| Code [Method [P]A[L][B]G]
(2048,1723) Quenching 1 1 - - -
RS-LDPC
(2209, 1978) Extended + 10 | 5 3 10
array LDPC focused heating
(1944, 1620) Extended + 10 1 s | 10
802.11n LDPC | focused heating

than [20] because it is integrated as part of BP decoding, while
[20] requires trial and error.

VI. CONCLUSION

Error floors of structured LDPC codes are caused by
local minima due to non-codeword ETS and ETS-like errors.
Inspired by simulated annealing, we design post-processing
methods to perturb the local minimum state, followed by
cooling to help decoding converge to the global minimum.

We use three well-known LDPC code examples, a (2048,
1723) RS-LDPC code, a (2209, 1978) array LDPC code, and
a (1944, 1620) 802.11n LDPC code for the IEEE 802.11n
standard to demonstrate three types of ETS structures: type
I with one-to-one correspondence between each unsatsified
check and ETS bit, type II with inner bits, i.e., ETS bits that
are not connected to any unsatisfied check, and type III with
plural bits, i.e., ETS bits that are connected to more than one
unsatisfied checks.

Three post-processing methods are proposed to resolve
ETS errors. The quenching algorithm uses one heating step
followed by immediate cooling to resolve type I ETS errors.
The extended heating algorithm prolongs heating to multiple
steps to allow the inner bits to accumulate enough energy
to resolve type II ETS errors. The focused heating algorithm
applies soft bit flipping to the plural bits in order to correct
them and narrow down the neighborhood set for more effective
heating. The post-processing parameters used in this work are
summarized in Table X.

The post-processing methods can be easily integrated as part
of BP decoding, adding minimal overhead to the hardware
implementation. As these methods are conditionally triggered
when the decoder fails to converge at a very low BER level,

4042

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 10, OCTOBER 2019

the impact on decoding throughput and energy consumption
is negligible.

The methods are demonstrated by post-processing the errors
collected in the error floor region of the three LDPC code
examples. The success rate is over 95% for ETS errors
and over 80% for non-ETS errors for the IEEE 802.11n
(1944,1620) LDPC code.

[1]
[2]

[3]

[4

=

[5

=

[6

=

[7

—

[8

[t}

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21-28, Jan. 1962.

D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” [EEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399431,
Mar. 1999.

IEEE Standard For Local And Metropolitan Area Networks—Part 16:
Air Interface For Fixed And Mobile Broadband Wireless Access Systems
Amendment 2: Physical and Medium Access Control Layers For Com-
bined Fixed And Mobile Operation In Licensed Bands And Corrigendum
1, IEEE Standard 802.16e-2005 IEEE Std 802.16-2004/Cor 1-2005,
2006, pp. 1-822.

IEEE Standard For Information Technology—Local And Metropoli-
tan Area Networks—Specific Requirements—Part 11: Wireless LAN
Medium Access Control (MAC)and Physical Layer (PHY) Specifications
Amendment 5: Enhancements For Higher Throughput, IEEE Standard
Std 802.11n-2009, pp. 1-565, Oct. 20009.

IEEE Standard For Information Technology—Telecommunications And
Information Exchange Between Systems—Local And Metropolitan Area
Networks—Specific Requirements—Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications Amend-
ment 3: Enhancements For Very High Throughput in the 60 GHZ Band,
IEEE Standard Std 802.11ad-2012, pp. 1-628, Dec. 2012.

IEEE Standard For Information Technology-Telecommunications And
Information Exchange Between Systems-Local And Metropolitan Area
Networks-Specific Requirements—Part 3: Carrier Sense Multiple Access
With Collision Detection (CSMA/CD) Access Method And Physical
Layer Specifications, IEEE Standard Std 802.3an-2006, pp. 1-167, 2006.
T. Richardson, “Error floors of LDPC codes,” in Proc. Annu. Allerton
Conf. Commun. Control Comput., vol. 41. 2003, pp. 1426-1435.

Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. J. Wainwright,
“Design of LDPC decoders for improved low error rate performance:
Quantization and algorithm choices,” IEEE Trans. Commun., vol. 57,
no. 11, pp. 3258-3268, Nov. 2009.

D. J. C. MacKay and M. S. Postol, “Weaknesses of Margulis and
Ramanujan-Margulis low-density parity-check codes,” Electron. Notes
Theor. Comput. Sci., vol. 74, no. 10, pp. 97-104, Oct. 2003.

S. Landner and O. Milenkovic, “Algorithmic and combinatorial analysis
of trapping sets in structured LDPC codes,” in Proc. Int. Conf. Wireless
Netw., Commun. Mobile Comput., vol. 1, 2005, pp. 630-635.

T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel, “Selective
avoidance of cycles in irregular LDPC code construction,” IEEE Trans.
Commun., vol. 52, no. 8, pp. 1242-1247, Aug. 2004.

H. Xiao and A. H. Banihashemi, “Improved progressive-edge-growth
(PEG) construction of irregular LDPC codes,” IEEE Commun. Lett.,
vol. 8, no. 12, pp. 715-717, Dec. 2004.

G. Liva, W. E. Ryan, and M. Chiani, “Quasi-cyclic generalized LDPC
codes with low error floors,” IEEE Trans. Commun., vol. 56, no. 1,
pp. 49-57, Jan. 2008.

R. Asvadi, A. H. Banihashemi, and M. Ahmadian-Attari, “Lowering
the error floor of LDPC codes using cyclic liftings,” IEEE Trans. Inf.
Theory, vol. 57, no. 4, pp. 2213-2224, Apr. 2011.

G. Spourlis, I. Tsatsaragkos, N. Kanistras, and V. Paliouras, “Error floor
compensation for LDPC codes using concatenated schemes,” in Proc.
IEEE Workshop Signal Process. Syst. (SiPS), Oct. 2012, pp. 155-160.

S. Shieh, “Concatenated BCH and LDPC coding scheme with iterative
decoding algorithm for flash memory,” IEEE Commun. Lett., vol. 19,
no. 3, pp. 327-330, Mar. 2015.

K. T. Sarika and P. P. Deepthi, “A novel high speed communication
system based on the concatenation of RS and QC-LDPC codes,”
in Proc. Annu. Int. Conf. Microelectron., Commun. Renew. Energy
(AICERA/ICMiCR), Jun. 2013, pp. 1-5.

C. A. Cole, S. G. Wilson, E. K. Hall, and T. R. Giallorenzi, “Analysis and
design of moderate length regular LDPC codes with low error floors,”
in Proc. 40th Annu. Conf. Inf. Sci. Syst., Mar. 2006, pp. 823-828.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

A. 1. V. Casado, M. Griot, and R. D. Wesel, “LDPC decoders with
informed dynamic scheduling,” IEEE Trans. Commun., vol. 58, no. 12,
pp. 3470-3479, Dec. 2010.

X. Chen, J. Kang, S. Lin, and V. Akella, “Hardware implementation of
a backtracking-based reconfigurable decoder for lowering the error floor
of quasi-cyclic LDPC codes,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 58, no. 12, pp. 2931-2943, Dec. 2011.

H.-C. Lee and Y.-L. Ueng, “LDPC decoding scheduling for faster
convergence and lower error floor,” IEEE Trans. Commun., vol. 62, no. 9,
pp- 3104-3113, Sep. 2014.

Y. Han and W. E. Ryan, “Low-floor decoders for LDPC codes,” I[EEE
Trans. Commun., vol. 57, no. 6, pp. 1663—1673, Jun. 2009.

Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. J. Wainwright,
“Lowering LDPC error floors by postprocessing,” in Proc. IEEE Global
Telecommun. Conf., Nov./Dec. 2008, pp. 1-6.

H.-C. Lee, P--C. Chou, and Y.-L. Ueng, “An effective low-complexity
error-floor lowering technique for high-rate QC-LDPC codes,” IEEE
Commun. Lett., vol. 22, no. 10, pp. 1988-1991, Oct. 2018.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simmu-
lated annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983.
V. Cerny, “Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm,” J. Optim. Theory Appl., vol. 45,
no. 1, pp. 41-51, Jan. 1985.

C. R. Reeves, Modern Heuristic Techniques For Combinatorial Prob-
lems. Hoboken, NJ, USA: Wiley, 1993.

Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “An effi-
cient 10 GBASE-T Ethernet LDPC decoder design with low error
floors,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 843-855,
Apr. 2010.

J. L. Fan, “Array codes as LDPC codes,” in Proc. Int. Symp. Turbo
Codes Rel. Topics, vol. 546, Jan. 2011, pp. 195-203.

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary
block and convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2,
pp. 429-445, Mar. 1996.

M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low-density parity check codes based on belief
propagation,” [EEE Trans. Commun., vol. 47, no. 5, pp. 673-680,
May 1999.

J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288-1299, Aug. 2005.

C.-C. Cheng, J.-D. Yang, H.-C. Lee, C.-H. Yang, and Y.-L. Ueng,
“A fully parallel LDPC decoder architecture using probabilistic min-
sum algorithm for high-throughput applications,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 61, no. 9, pp. 2738-2746, Sep. 2014.

A.J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,” IEEE J. Solid-State Circuits,
vol. 37, no. 3, pp. 404-412, Mar. 2002.

Y. S. Park, H. Li, and Z. Zhang, “Reconfigurable architecture and
automated design flow for rapid FPGA-based LDPC code emulation,” in
Proc. ACM Int. Symp. Field-Program. Gate Arrays (FPGA), Feb. 2012,
pp. 167-170.

I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-
density parity-check codes constructed based on Reed-Solomon codes
with two information symbols,” IEEE Commun. Lett., vol. 7, no. 7,
pp. 317-319, Jul. 2003.

Yaoyu Tao (S’11) received the B.S. degree in
electrical and computer engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2011,
the B.S. and M.S. degrees in electrical engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 2013, and the M.S. degree in electrical
engineering from Stanford University, Stanford, CA,
USA, in 2015. He is currently pursuing the Ph.D.
degree with the University of Michigan. He is cur-
rently with Qualcomm, San Jose, CA, as a Senior
Wireless Design Engineer. His research interests

include high-speed energy efficient architecture design for wireless link,
especially for MIMO detection and channel coding, and high-performance
VLSI systems design for machine-learning applications.

TAO et al.: EFFICIENT POST-PROCESSORS FOR IMPROVING ERROR-CORRECTING PERFORMANCE

Shuanghong Sun (S’11-M’17) received the B.S.
degree in electrical and computer engineering from
Shanghai Jiao Tong University, Shanghai, China,
in 2012, and the B.S., M.S., and Ph.D. degrees from
the University of Michigan, Ann Arbor, MI, USA,
in 2012, 2014, and 2017, respectively, all in elec-
trical engineering. She was with Broadcom Corp.,
Irvine, CA, USA, and Qualcomm Inc., San Diego,
CA, in 2015. She is currently with Intel Corp., San
Jose, CA, USA, as a DSP Algorithm Engineer.

Her research interests include channel coding, dig-
ital architectures, and high-performance VLSI systems.

4043

Zhengya Zhang (S’02-M’09-SM’17) received the
B.A.Sc. degree in computer engineering from the
University of Waterloo, Waterloo, ON, Canada,
in 2003, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of Califor-
nia, Berkeley (UC Berkeley), Berkeley, CA, USA,
in 2005 and 2009, respectively.

He has been a Faculty Member with the Uni-
versity of Michigan, Ann Arbor, MI, USA, since
2009, where he is currently an Associate Professor
a with the Department of Electrical Engineering and
Computer Science. His current research interests include low-power and
high-performance VLSI circuits and systems for computing, communications,
and signal processing.

Dr. Zhang was a recipient of the David J. Sakrison Memorial Prize from
UC Berkeley in 2009, the National Science Foundation CAREER Award
in 2011, and the Intel Early Career Faculty Award in 2013. He serves on
the Technical Program Committees of Symposium on VLSI Circuits and the
IEEE Custom Integrated Circuits Conference (CICC). He was an Associate
Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I:
REGULAR PAPERS (2013-2015) and the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS PART II: EXPRESS BRIEFS (2014-2015). He has been an
Associate Editor of the IEEE TRANSACTIONS ON VERY LARGE SCALE
INTEGRATION SYSTEMS, since 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

