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Abstract— Polar codes are capacity-achieving channel codes
and they have recently been adopted for fifth-generation (5G)
enhanced mobile broadband (eMBB) control channels. Using
successive cancellation list (SCL) decoding, the error-correction
performance of polar codes can surpass state-of-the-art codes
of a comparable length. However, the sequential SC decoding
incurs a long latency, and list decoding requires complex tracking
of candidates. We present a split-tree SCL decoder that works
by dividing a polar code’s decoding tree to sub-trees following
a split-tree decoding algorithm. The sub-trees are decoded in
parallel by smaller sub-decoders that reconcile their decisions
in every decoding stage. The split-tree list decoder architecture
improves the throughput and latency proportionally to the split
factor. By exploiting under-utilized hardware resources, we apply
frame interleaving to further increase throughput and employ
dynamic clock gating to reduce energy. The results are demon-
strated in a 0.64-mm2 40-nm test chip that implements a split-
4, list-2, eight-frame-interleaved decoding architecture. The chip
supports configurable code lengths up to 1024 bit and variable
code rates. At 0.9 V and room temperature, the chip achieves
3.25 Gb/s with 42.8-mW power, or 13.2 pJ/b, and demonstrates
competitive error-correction performance.

Index Terms— Dynamic clock gating (CG), frame interleav-
ing, polar codes, split-tree architecture, successive-cancellation
list (SCL) decoder.

I. INTRODUCTION

POLAR codes, discovered by Arikan [1], have recently
been adopted by fifth-generation (5G) wireless technol-

ogy standards. They are the first family of codes with an
explicit construction that can provably achieve Shannon’s
channel capacity. Using successive-cancellation (SC) decoding
[1], polar codes achieve the capacity when code length N
approaches infinity. However, for moderate-length polar codes
of practical interest, SC decoding falls short in terms of
error-correction performance compared with other advanced
channel codes, such as low-density parity-check (LDPC)
codes.

SC list (SCL) decoding was proposed in [2] to improve the
error-correction performance of polar codes. SCL decoding
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follows a similar schedule as SC decoding; bits are decoded
sequentially as the decision of one bit depends on the pre-
viously decoded bits. However, unlike in SC decoding where
only one decision per bit is kept, SCL keeps a list of L (L > 1)
possible bit combinations in the sequential decoding. With
each newly decoded bit, the list of L candidates is updated.

A larger list size L leads to better accuracy, but the complex-
ity grows exponentially with L and the error-correction per-
formance tends to saturate after L = 4. A better accuracy can
also be obtained by adding a cyclic redundancy check (CRC)
to aid the selection of the most likely final decoding decision
from the list of L candidates [3], [4]. With L ≥ 2 and CRC,
the error-correction performance of polar codes with SCL
decoding can outperform LDPC codes of a comparable code
length.

Despite the promise of polar codes with SCL decoding,
the sequential nature of SCL decoding and the costly tracking
of a list and sorting of candidates lead to low-throughput,
high-latency, and high-energy SCL decoding. State-of-the-art
polar SCL decoders can hardly meet the requirements for
5G; 5G requires multi-Gb/s in throughput and sub-1 µs in
latency, and the decoder chip needs to be kept compact and low
power.

There are a handful of pre-silicon SCL decoder designs
published in the literature recently. For simplicity and a fair
comparison, we will cite the performance using a common
configuration of 1024-bit code length, 1/2 code rate, a list
size of L = 2, and 65-nm CMOS for area. The direct
mapping of a log-likelihood ratio (LLR)-based CRC-aided
SCL decoder design [5] was estimated to achieve a 334-Mb/s
decoding throughput at an 847-MHz clock frequency. A 4-bit
grouping approach was proposed in [6] to decode neighboring
bits together for higher throughput, and the decoder design
was estimated to achieve 395 Mb/s at 500 MHz. Other
speedup techniques, such as partial look-ahead decoder [7] and
multi-mode decoder designs [8], were shown in simulation to
achieve 537 Mb/s and 1.21 Gb/s, respectively.

Area-saving techniques have been developed in [9] and [10].
Hashemi et al. [9] introduced an area-saving strategy based
on interpolation-based code construction and layered decoding
scheme, showing up to 50.7% area saving over a conven-
tional SCL decoder. Mousavi et al. [10] presented another
area-saving approach using a partial-sum network that effi-
ciently computes the list candidates, resulting in up to 70%
area reduction based on synthesis.
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Performance-enhanced SCL decoders proposed recently
include symbol-decision SCL decoder [11] and sphere SCL
decoder designs [12] that were shown in simulation to achieve
398 Mb/s at 500 MHz and 1.23 Gb/s at 1GHz, respectively.
These designs, however, incur a high area overhead.

Complexity reduction techniques have also been developed,
including simplified SCL (SSCL) and fast-SSCL-SPC [13],
where the SCL tree is pruned and a single parity check (SPC)
is introduced to maintain the error-correction performance.
A fast-SSCL-SPC decoder design was estimated to achieve
1.86 Gb/s at 885 MHz in a 1.048-mm2 area. A follow-
up rate-flexible fast-SSCL decoder design [14] improved
the results to an estimated 1.22 Gb/s at 955 MHz in a
1.45-mm2 area. An early stopping criterion was introduced
[15] to improve the fast-SSCL decoder further to a projected
throughput of 2.05 Gb/s at 650 MHz. However, these com-
plexity reduction techniques tend to hurt the error-correction
performance.

When a high-speed decoder is implemented in silicon,
we can expect that the measured performance to be worse,
the area to be larger, and the power to be higher than the
estimates, because it is difficult to fully account for all the
overhead of wiring, clocking, and memory by simulation
and synthesis. It is, therefore, more reliable to check silicon
measurements to make comparisons. For a simple and fair
comparison of silicon decoders, we will report the measured
results without applying any process or voltage normalization
because popular scaling formulas are no longer reflective of the
reality of scaling in advanced processes. The latest SC decoder
[16] was designed in 180-nm CMOS, occupying 3.17-mm2

silicon area. The decoder delivered 655 Mb/s at 382 MHz for
1024-bit codewords. The first SCL decoder [17] was designed
in a 28-nm FD-SOI technology, occupying 0.44 mm2. The
decoder achieved 614 Mb/s in throughput, 3.34 µs in latency,
and 209 pJ/b in energy at 1.3 V for a 1024-bit code length
and L = 4. The latest SCL decoder [18] was designed in
16-nm FinFET, occupying 2.27 mm2. The chip demonstrated
a 3.24-Gb/s throughput for 1024-bit codes, but no power
measurements were reported. Clearly, it is still challenging
to meet a multi-Gb/s throughput, sub-µs latency, sub-10-pJ/b
energy, and compact silicon area all at the same time.

In this work, we present a 0.64-mm2 configurable SCL
decoder chip using a split-tree architecture in 40-nm CMOS.
The decoding tree is split into four subtrees to be decoded
by four sub-decoders in parallel with decision reconciliation
in every stage. The new split-tree architecture improves the
throughput and cuts the latency by nearly 4×. To maximize
utilization, eight frames are interleaved and decoded simulta-
neously to increase throughput by another 8× to 3.25 Gb/s for
code length up to 1024 bit and variable code rates. Dynamic
clock gating (CG) reduces the peak power dissipation to
42.8 mW at 0.9 V or 13.2 pJ/b. The throughput, energy
efficiency, and area efficiency are 5.3×, 15.9×, and 4.0×
better, respectively, than the SCL decoder chip in a 28-nm
FD-SOI process [17]. Compared with the latest SCL decoder
chip [18] in a more advanced 16-nm process, our test chip
achieves a similar throughput and 3× better area efficiency.
These results make this chip suitable for 5G applications.

II. BACKGROUND

Polar codes exhibit a polarization effect [1] when trans-
mitted over certain types of channels and decoded using the
SC algorithm. The polarization effect refers to that certain
bits become highly reliable and the other bits become highly
unreliable. To use polar codes, information is conveyed over
the reliable bits and the unreliable ones are frozen to prede-
termined values.

An (N , K ) polar code has a code length N and code rate
K/N , where N = 2n , n ∈ Z

+. Let uN−1
0 = (u0, u1, . . . , uN−1)

denotes the vector of input bits to the encoder. The N − K
least reliable bits in uN−1

0 , called frozen bits, are typically set
to 0, whereas the remaining K bits, called free bits, are used
to carry information aK

0 .
An encoder encodes uN−1

0 to the codeword x N−1
0 =

(x0, x1, . . . , xN−1). The systematic encoder is mathematically
described by the following equation:

x N−1
0 = uN−1

0 G N = uN−1
0 BN F⊗n for n ≥ 1 (1)

where G N = BN F⊗n is the N×N generator matrix, BN is
called the bit-reversal permutation matrix, and ⊗n denotes the
nth Kronecker power

F⊗n = F ⊗ F⊗(n−1), F =
[

1 0
1 1

]
and F⊗0 = 1. (2)

A polar codeword is produced by first setting the frozen bit
locations to 0. For example, a vector of 4 input bits (N = 4
and n = 2) is set to u3

0 = [0 a0 0 a1], where bits 0 and 2 are the
frozen bits and are set to 0, and bits 1 and 3 are used to carry
information bits a0 and a1. For simplicity of understanding,
assume that B4 is identity, and then, the encoder performs the
following mathematical operation:

x3
0 = u3

0 F⊗2 = [
0 a0 0 a1

]
⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦

= [
a0 ⊕ a1 a0 ⊕ a1 a1 a1

]
(3)

where modulo-2 operations are used and ⊕ represents
modulo-2 addition, or XOR. The encoder produces a
(4, 2) code with a block length of 4 and 2 information bits.

The mathematical operation can be illustrated in the encod-
ing graph shown in Fig. 1. Note the regular placement of XORs
between every pair of bits in the first stage and every 2-bit
blocks in the second stage. Encoding is done by propagating
the bit vector through the graph from left to right.

A. SC Decoding

The bits of the codeword x3
0 are modulated and transmitted

through a physical channel, where noise is injected. On the
receiver side, each “bit” in the codeword is received as
a multibit “soft” value, known as LLRs. A polar decoder
operates on the LLRs to produce bit estimates. SC is the first
and most widely used decoding algorithm for polar codes.

The SC decoding algorithm was proposed in [1]. It can be
visualized by a decoding trellis, as shown in Fig. 1. The LLRs
are provided on the left-hand side and the bit decisions are
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Fig. 1. Encoding graph (top) and SC decoding trellis (bottom) of a (4, 2) polar
code.

made on the right-hand side. The trellis consists of n = log2 N
stages of minimum (F) and summation (G) operations. The F
function receives two LLRs L1 and L2 and finds the minimum
as follows:

F(L1, L2) = sign(L1) · sign(L2) · min(|L1|, |L2|). (4)

The G function receives the partial modulo-2 sum of all
previously decoded bits, ûs (not annotated in Fig. 1) in addition
to the two LLRs, and computes the conditional sum as follows:

G(L1, L2, ûs) = L1 · (−1)ûs + L2. (5)

The decoding follows a bit-by-bit sequential order.
An example of SC decoding is shown in Fig. 1, where in
each decoding step, the highlighted paths and nodes are active.
One can easily see that only a subset of F and G functions
at certain stages are active at a time to decode 1 bit, leaving
the other functions in the trellis idle. Assume that it takes
1 unit time per function (F or G) and the trellis is directly
mapped in hardware. The latency to decode a bit is variable
ranging from 1 to log2 N . It can be shown that the latency to
decode an N-bit codeword is 2N − 2. For example, decoding
a 1024-bit polar code requires 2046 time units. If the trellis
is directly mapped to hardware, the hardware complexity is
approximately O(N log2 N).

The SC decoding can also be represented by the depth
traversal of an N-level binary tree, as shown in Fig. 2. For an
N = 4 polar code, the binary tree consists of four levels, where
the branching at each level represents the decoding of a bit to

either 0 or 1. The sequential decoding starts from the top and
descends. At each level i , a branch is taken, corresponding to
calculating the likelihood L(ûi ), based on which ûi is decoded.

For the depth traversal, we can compute the probability of
the path, or the path metric (PM) PM(ûi−1), for the traversal
to reach a node representing the decision of ûi−1. For the next
step, the path can branch to one of the child nodes, ûi = 0 or
ûi = 1. The PM can be updated as follows:

PM(ûi) = PM(ûi−1) + log(1 + e(−1)ûi L(ûi )). (6)

The goal of SC decoding is to find the most likely path or
the path of the highest PM. To achieve this goal, SC decoding
takes one branch at a level and keeps the path of the highest
PM. The highlighted path on the left in Fig. 2 represents the
survival path in SC decoding. The value associated with each
node is the PM for the decoding path from the root node to that
node. Note that after selecting the survival branch at a level,
the other branch and its child nodes will never be considered.
In the example, the SC decoder chooses the path [0 0 1 1]
with a PM of 0.11.

B. SC List (SCL) Decoding

SC decoding makes one hard decision per step and never
visits other possible paths. Though SC decoding is simple to
implement, it is not guaranteed to find the best global path
because the local optimal path may not be part of the global
optimal path. In the example shown in Fig. 2, the global
optimal path is [1 0 0 1] with a PM of 0.17, but SC decoding
misses this path because it takes the optimal local decision in
step 1.

The SCL decoding algorithm [2] overcomes this drawback
by keeping a list of L candidate paths at each level in
traversing the binary tree. SC decoding can be viewed as a
special case of SCL decoding with L = 1. Fig. 2 shows SCL
decoding for L = 2. At each level, the two most likely paths
are kept. Moving to the next level, the two most likely paths
branch to four child nodes, leading to four candidate paths.
The SCL decoder selects the top two paths among the four to
keep. In the end, the best path is selected.

In general, an SCL decoder calculates the PMs of all 2L
child nodes (ûi = 0 or ûi = 1) that are connected to the
L survival paths from the previous step based on (7). The
decoder selects L paths among the 2L candidates with the
highest PMs to keep. SCL decoding enhances the decoding
accuracy with larger L

PM j(ûi ) = PM j (ûi−1) + log(1 + e(−1)ûi L(ûi ))

0 ≤ j ≤ L − 1, ûi ∈ {0, 1}. (7)

The decoding accuracy can be further improved by concate-
nating polar code with CRC [3], [4]. In addition to ranking
PMs, codewords corresponding to valid paths also need to pass
CRC check.

An N-bit SCL decoder can be designed with an N-bit SC
decoder core and additional processing logic and memory to
sort and track L candidate paths. Assume that it takes 1 unit
time to sort and track candidate paths after decoding each
bit, the SCL decoding latency is (2N − 2) + N . However,
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Fig. 2. SC and SCL (L = 2) decoding represented in a binary tree for a (4, 4) polar code.

Fig. 3. ST-SCL decoding tree for (8, 8) polar code with list size L = 2 and split factor M = 2.

the sorting overhead is only incurred if a bit is a free bit. Take
the 1024-bit, rate-1/2 polar code selected by the 5G enhanced
mobile broadband (eMBB) standard as an example. The code
has 512 free bits, so the decoding latency is (2N −2)+ N/2 =
2558 time units or 25% longer than SC decoding.

C. Split-Tree SCL (ST-SCL) Decoding

To reduce the latency and improve the throughput of SCL
decoding, an ST-SCL decoding algorithm [19] was proposed.
Conceptually, the N-level decoding tree is split into M sub-
trees of N/M levels, equivalent to splitting the N-bit code
to M N/M-bit subcodes linked by a constraint matrix. An
ST-SCL decoder consists of M N/M-bit SC sub-decoders
that operate on the subcodes in parallel. Each SC sub-decoder
works on an M× shorter subcode. The hardware complex-
ity of all M sub-decoders is O(M · N/M log2(N/M)) =
N log2(N/M). The theoretical decoding latency is reduced by
a factor of M compared to SC or SCL decoding to O(N/M),
and the throughput is increased by the same factor. ST-SCL
decoding requires an extra reconciliation stage to combine sub-
decoders’ local decisions.

To illustrate ST-SCL decoding, suppose that an N = 8 polar
code is decoded with a list size of L = 2 and a split factor of
M = 2. The eight-level decoding tree is split to sub-tree 0 of
four levels and sub-tree 1 of four levels, as shown in Fig. 3,
sub-tree 0 for û3

0 and sub-tree 1 for û7
4. The decoding of each

subcode is based on a 4-bit code trellis, similar to Fig. 1.
Frozen bits on each sub-tree are determined by the original

eight-level decoding tree. ST-SCL decoding proceeds level by
level. At level i , the decoding consists of two stages.

1) Sub-Decoding: SC sub-decoder 0 and sub-decoder 1
operate on their code trellises and compute the likeli-
hood of bit ûi and û4+i , respectively.

2) Reconciliation: The PMs of the four candidate paths
per sub-decoder are computed following (7), and the
two survival paths per sub-decoder (called sub-paths)
are selected. The sub-paths are assembled, checked for
constraints, and the top two global paths are selected.
The top global paths are then disassembled and distrib-
uted to the two sub-decoders.

Stage 1 is the same as in SCL decoding, but stage 2,
the reconciliation, is new in ST-SCL decoding. If a bit is not a
frozen bit, the sub-decoder provides L sub-paths. In decoding
a level, if none of the M bits are frozen bits, there could
be up to L M possible global paths made by combinations of
sub-paths. The global PMs (GPMs) for the global paths are
calculated by summing the sub-path PMs.

The complexity of the reconciliation stage is proportional to
L M , limiting the maximum split factor and list size. However,
some of the L M global paths are invalid and can be removed
from evaluation. For example, in Fig. 3, if u5 is a frozen bit,
the paths with û5 = 1 are not valid because û5 can only be 0.
In the best case, if both ûi and û4+i are frozen bits at level i ,
reconciliation is bypassed. Only in the case when both ûi and
û4+i are free bits at level i , all L M GPMs need to be evaluated.
Valid global paths are sorted by GPM. The top L global paths
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Fig. 4. Top-level architecture for a 1024-bit list-2 split-4 configurable SCL
decoder.

are kept and are disassembled into sub-paths and distributed
to the sub-decoders.

III. ST-SCL DECODER ARCHITECTURE FOR HIGH

THROUGHPUT AND LOW LATENCY

In this section, we present an ST-SCL decoder architecture
to realize the near-theoretical latency and throughput improve-
ments of ST-SCL decoding by an efficient reconciliation stage
and a significantly higher utilization of the SC decoding
hardware. A prototype ST-SCL decoder is shown in Fig. 4 for
the list size L = 2 and the split factor M = 4. The prototype
design supports configurable code length up to N = 1024
and variable code rates. In decoding a 1024-bit polar code,
the input LLRs are equally split into four groups. A group
of 256 LLRs is sent to an SC sub-decoder. The four SC
sub-decoders operate on their decoding trellises to compute
the 4-bit likelihoods in parallel.

The reconciliation stage is divided to three steps.

1) PM Calculation: For each sub-decoder, the PMs of
2L = 4 candidate paths are calculated following (7) and
L = 2 sub-paths are selected.

2) Enumeration and Sorting: Based on frozen bit infor-
mation, valid combinations from the L M = 16 sub-
path combinations are enumerated, and the GPMs are
calculated. The GPMs are sorted to select the top L = 2
global paths.

3) Update: The top global paths are disassembled and
distributed to the four sub-decoders.

The three steps are carried out by PM calculator (PMC), global
sorter (GS), and data structure updater (DSU) blocks shown
in Fig. 4. We discuss the details of the sub-decoding stage and
the reconciliation stage in the following.

A. Sub-Decoder Design

Each SC sub-decoder decodes a polar code of length up
to N = 256 bits (n = 8) by recursively passing through
an eight-stage decoder trellis following the sequential order,
as shown in Fig. 1. We group an F and a G function in a

Fig. 5. PE design.

processing element (PE), as shown in Fig. 5. It consists of an
F function described in (4), a G function described in (5) and
XORs to compute partial modulo-2 sums of decoded bits. Back
routing is needed to feed decoded bits back to G functions. The
back routing is implemented by routers between the decoding
stages.

A direct mapping of the decoding trellis produces an
eight-stage sub-decoder architecture, and each stage con-
sists of 128 PEs. However, the hardware utilization of a
direct-mapped architecture is very low. A well-known pattern
in SC decoding is that stage i has at most 2n−1−i PEs active
at the same time. For example, in Fig. 1, for an N = 4 bit
polar code (n = 2), stage 0 has two PEs active and stage 1 has
one PE active in decoding û0. Therefore, instead of the direct
mapping, we design the sub-decoder by instantiating only
2n−1−i or 27−i PEs in decoding stage i (named Di ), as shown
in Fig. 6. In total, the eight stages contain

∑7
i=0 27−i =

255 PEs, instead of 128 × 8 = 1024 PEs for a direct-mapped
architecture.

To achieve a high clock rate, the sub-decoder is pipelined
to eight stages, aligned with decoding stages, D0–D7. The
pipeline boundaries are shown as dotted lines in Fig. 6. The
255 pipeline registers, L0–L255, store intermediate likelihoods
that are propagated forward, and 255 state registers, U0–U255,
store the partial modulo-2 sums of the decoded bits that are
routed back.

To support a shorter code length, decoding stages can be
bypassed. For example, to support a 512-bit code, the code
is split into four 128-bit subcodes to be decoded by the
four sub-decoders. In each sub-decoder, stage D0 is bypassed
by forwarding the 128 input LLRs to the stage D1 PEs.
Multiplexers are placed at the inputs to the stage D1 PEs
to select either the bypassed input LLRs or the intermediate
LLRs from the D0 and D1 router. Bypassing stage D0 shortens
the latency and increases the throughput by reducing the
pipeline depth from eight to seven stages. The clock inputs
to the bypassed D0 and D1 pipeline registers are gated to
save power. Similarly, to support a 256-bit code, in each sub-
decoder, stages D0 and D1 are bypassed by forwarding the
64 input LLRs to stage D2 PEs. Both D0 and D1 and D1 and
D2 pipeline registers are clock gated to save power.

B. Reconciliation Design

A three-stage reconciliation is done by PMC, GS, and DSU.
For each sub-decoder, the PMC takes the soft decision of a bit
(LLR of a bit decision being 0) from each sub-decoder output
and the L survival paths to compute the PMs of 2L candidate

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:02:42 UTC from IEEE Xplore.  Restrictions apply. 



TAO et al.: CONFIGURABLE SCL POLAR DECODER USING SPLIT-TREE ARCHITECTURE 617

Fig. 6. 256-bit SCL sub-decoder design.

Fig. 7. Split-tree reconciliation GS architecture for L = 2 and M = 4.

paths by (7). To reduce the complexity of exponentiation and
logarithm evaluations, the PMC employs a piecewise linear
approximation in the following equation:

log(1 + ex) ≈

⎧⎪⎨
⎪⎩

0, for x ≤ −1

0.5(x + 1), for − 1 < x < 1

x, for x ≥ 1.

(8)

The PMC consists of four sets of hardware, one set per sub-
decoder. A set consists of one negation block to compute the
LLR of a bit decision being 1, two log-approximation blocks,
and four adders to compute the PMs of four candidate paths.
From the four candidate paths, the top two candidate paths are
selected to be passed on to the GS.

The GS is shown in Fig. 7. It consists of a feasible path
calculator, a global path calculator, and a binary sorter. The
feasible path calculator uses frozen bit lookup tables (LUTs)
to generate control signals for selecting only the valid global
paths. The LUTs can be reconfigured to support different code
lengths and rates. To save area, the LUTs are implemented as
four copies of length-256 cyclic shift registers to store frozen
bit indicators for each subcode of up to 256 bits.

The global path calculator sums up all combinations of
sub-paths using L M four-input adders. For M = 4 and L = 2,
there are a total of L M = 16 possible global paths. The
complexity of wiring to route the local PMs and the number
of adders increase exponentially with the split factor M ,
limiting the practical M to 4. The 16 GPMs are filtered by
the feasible path calculator. The GPMs of the invalid paths

are set to the minimum value. The filtered GPMs undergo a
four-stage binary sorter to select the top and the second top
global paths. The sub-paths that are present in the top and
the second top global paths are recorded. Note that the second
top global path is approximated by the smaller GPM of
the final-stage comparator and this approximation introduces
negligible performance loss in mid-to-high SNR regime.

Finally, the DSU disassembles the top L global paths to
constitute sub-paths and distributes them to the sub-decoders.
The disassembling is done by marking the corresponding local
PMs as visited and updating the list state registers in controller.
The back-propagation XORs also updates the state registers Us
in sub-decoders. The worst case DSU delay happens when the
newly decoded bits back-propagate through all eight stages of
XOR network inside sub-decoders.

The three-step reconciliation, including PMC, GS, and
DSU, occupies only 0.02 mm2 in 40-nm CMOS when syn-
thesized at a 500-MHz clock frequency.

C. Pipeline and Hardware Utilization

In the ST-SCL decoder, the four sub-decoders operate
in parallel and feed to the three-step reconciliation. The
sub-decoder is pipelined to eight stages, from D0 to D7; and
the three-step reconciliation is pipelined to three stages, PMC,
GS, and DSU, abbreviated by P , S, and U , respectively. What
complicates the design is that the decoding of any given bit
follows a different set of pipeline stages. The irregularity is
due to two factors: 1) the variable path through the trellis for
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Fig. 8. ST-SCL decoding pipeline for a single frame (top) and eight-frame interleaving (bottom).

decoding a bit, as shown in Fig. 1, and 2) S and U stages can
be bypassed if all four bits at a given level are frozen bits.

An example is shown in Fig. 8. Decoding the 4 bits in
level 0 by the four sub-decoders requires going through all
eight stages of the trellis, corresponding to D0–D7 pipeline
stages; decoding the 4 bits in level 1 by the four sub-decoders
requires only the last two stages of the trellis, corresponding
to D6 and D7 pipeline stages; and so on. In decoding level 0,
all four bits are frozen bits, so S and U pipeline stages are
bypassed; similarly, in decoding levels 1–3, S and U stages
are also bypassed. The irregularity is handled by routers in the
sub-decoders and the bypass switches in reconciliation.

To estimate latency and throughput, we use the 1024-bit,
rate-1/2 polar code selected by the 5G eMBB standard as
an example. The code has 512 frozen bits. We split the
code into M = 4 subcodes to be decoded by four 256-bit
sub-decoders in parallel. Since the latency of SC decoding is
2N −2 for an N-bit code, decoding a 256-bit subcode requires
510 clock cycles. The reconciliation latency depends on the
frozen bit pattern. Among 256 decoding levels, 101 levels
involve four bits that are all frozen bits and the S and U
stages are bypassed, and the remaining 155 levels involve
at least one free bit. Therefore, the reconciliation latency is
101 + 155×3 = 566 clock cycles. In total, ST-SCL decoding
requires 510 + 566 = 1076 cycles to decode a 1024-bit code
or 47% times faster than SC decoding.

The hardware utilization is low if one frame is processed
at a time. During sub-decoding, P , S, and U stages are idle,
and during reconciliation, D0–D7 stages are idle. Furthermore,
during sub-decoding, only one of D0–D7 stages is active at
a time. If we define utilization as the average fraction of
active hardware units at a given clock cycle, sub-decoders’
PE utilization is only 1.57%, PMC’s utilization is 23.8%, and
GS and DSU utilization are 14.4%. There is ample room to
increase the utilization for improving the efficiency and the
throughput of the hardware.

IV. FRAME INTERLEAVING TO ENHANCE

THROUGHPUT AND EFFICIENCY

To increase the sub-decoders’ PE utilization, a straightfor-
ward way is to fold the eight stages of 255 PEs in Fig. 6

to one stage of 128 PEs. Folding reduces the PE count to
approximately half, allowing the PE utilization to be doubled
to 3.14%, which is still low. Complex wiring, muxes, and
control logic have to be added to support PE reuse, costing an
estimated 24% extra area and 21% longer clock period based
on synthesis.

A better approach is to exploit the pipeline to accommodate
decoding of multiple frames at the same time. Through frame
interleaving, the same hardware is used to process more
workload, improving the hardware utilization and increas-
ing the throughput proportional to the number of frames.
However, resource contentions may occur. Suppose that eight
frames are launched over eight consecutive cycles (interleave
gap = 1), as shown in the eight-frame-interleaved pipeline
chart in Fig. 8. The highlighted parts show contentions for
a hardware unit. Resolving the contentions requires multiple
copies of hardware units, including PMCs, GSs, and DSUs.
For example, two copies of D6 and four copies of D7 are
required in each sub-decoder, and four copies of PMCs and
two copies of GSs and DSUs are required in reconciliation.

We studied the optimal number of frames for interleaving
by first checking the amount of hardware addition, as shown
in Fig. 9. With more frames, more hardware units are needed
for the worst case resource contention scenarios. However,
due to the general low utilization of the baseline architecture,
resource contentions due to frame interleaving are relatively
infrequent. As a result, only a small number of hardware units
need to be added to the baseline architecture, making frame
interleaving a relatively low-cost approach to increasing both
throughput and efficiency. For example, to support eight-frame
interleaving, only five additional PEs are needed on top of the
255 PEs in each sub-decoder, and four copies of PMCs and
two copies of GSs and DSUs are needed for reconciliation.
What is not shown in Fig. 9 is that N-frame interleaving also
requires N copies of state registers in each sub-decoder as
well as muxes to select frames.

Besides hardware duplication, frame interleaving also
requires extra control and dispatchers, which become more
expensive with more frames. Interleaving more frames pro-
duces a higher throughput, but the silicon area increases too.
We use chip synthesis in a 40-nm CMOS technology at room
temperature and the nominal voltage 0.9 V to evaluate the
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Fig. 9. Allocation of additional hardware units to support N -frame interleaving.

Fig. 10. Throughput and area of frame-interleaved designs. Silicon area is
obtained from chip synthesis in 40-nm CMOS at room temperature and the
nominal 0.9-V supply voltage.

Fig. 11. Improved hardware utilization with frame interleaving.

area with a different number of interleaved frames. As shown
in Fig. 10, the increased throughput initially outpaces the
increase in silicon area until it reaches eight frames. If we use
area efficiency, i.e., throughput/area, as the metric, eight-frame
interleaving is optimal, as it increases the throughput by 7.8×
and the area by only three times over the baseline architecture.

As shown in Fig. 11, with eight-frame interleaving, two
copies of D6 and four copies of D7 are used in each sub-
decoder, and the PE utilization increases by 7.8×, from 1.57%
to 12.4%. Four copies of PMCs, two copies of GSs and
DSUs are also needed, with a utilization of 47.3%, 57.3%,
and 57.3%, respectively, which are 2×, 4×, and 4× higher
than the baseline.

Frame interleaving proportionally increases the number of
state registers. To estimate the power consumption, the split-4,

Fig. 12. (a) Power breakdown of a split-4, list-2, eight-frame-interleaved
ST-SCL decoder. (b) Detailed breakdown of the sequential switching power
of the ST-SCL decoder. Power is obtained from chip synthesis in 40-nm
CMOS at room temperature and the nominal 0.9-V supply voltage.

Fig. 13. Chip design optimization summary based on chip synthesis in 40-nm
CMOS at room temperature and the nominal 0.9-V supply voltage.

list-2 eight-frame-interleaved ST-SCL decoder was synthe-
sized and placed and routed in a 40-nm CMOS process.
Fig. 12(a) shows the power breakdown of the decoder. The
switching power of the sequential circuits is the dominant
portion, claiming 88% of the total power. Further breakdown
of the switching power of sequential circuits in Fig. 12(b)
shows that the switching power of the sub-decoders, the PMCs,
and the sorters account for more than 90% of the sequential
switching power.

V. SUMMARY OF DECODER DESIGN OPTIMIZATION STEPS

We summarize the decoder design optimization steps based
on 40-nm CMOS synthesis for the code length of 1024 bit and
a list size of 2 in Fig. 13 and Table I. The conventional SCL
decoder is set as the baseline. The baseline runs at the maxi-
mum clock rate of 720 MHz to achieve a 240-Mb/s throughput
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TABLE I

CHIP DESIGN OPTIMIZATION SUMMARY BASED ON CHIP SYNTHESIS IN 40-nm CMOS AT ROOM
TEMPERATURE AND THE NOMINAL 0.9-V SUPPLY VOLTAGE

Fig. 14. CG design for split-4, eight-frame-interleaved ST-SCL polar decoder.

and a 0.43-ms latency with a core area of 0.138 mm2. The PE
utilization is only 0.49%.

The split-4 ST-SCL decoder enhances the throughput and
latency by 2.3× to 547 Mb/s and 0.19 ms, respectively, while
incurring a 30% area penalty. Compared with the baseline,
the ST-SCL decoder increases the PE utilization to 1.57% and
the area efficiency to 3.11 Gb/s/mm2. Folding the ST-SCL
decoder produces 1.9× higher throughput and lower latency
compared with the baseline. Folding also increases the PE
utilization to 3.14%.

The split-4 ST-SCL decoder with eight-frame-interleaving
boosts the throughput by 17.8× to 4.27 Gb/s and shortens
the latency by 2.3× compared with the baseline. The area
efficiency is 4.57× better than the baseline. The PE utilization
is increased to 12.4%.

We apply a per-block CG strategy to reduce the active
power consumption of sequential circuits by exploiting the
idle cycles. The PE utilization of the sub-decoders is 12.4%,
and the utilization of the reconciliation stage is approximately
50%. By systematically gating the clocks to unused hardware
units, the active power is reduced proportionally.

Adding per-block CG increases the area by 2.6% for the
eight-frame-interleaved split-4 ST-SCL decoder. CG is imple-
mented with a CG controller sending clock enables to sub-
decoders, PMCs, and GSs, as shown in Fig. 14. Clock enable
patterns are determined by code configurations, including
code length, code rate, and frozen bit locations. For each
code, clock enable patterns are pre-computed based on stages
D0–D7 active/idle patterns, and they are stored in LUTs inside
the CG controller. The decoder top controller sends the code
configuration to the CG controller, and the CG controller

outputs clock enable signals by reading from the LUTs. In the
test chip design, we disable clock input to a sub-decoder stage
if the stage will be idle for at least three consecutive cycles to
avoid frequent off/on switching. For the shorter code lengths
of 512 and 256 bit, CG latch 0 and latch 1 inside sub-decoders
will switch off the clock inputs to the bypassed stages. The
CG controller also stores the number of required PMCs and
GSs for each cycle and disables the clock inputs to unused
PMCs and GSs to save power.

VI. DECODER CHIP IMPLEMENTATION AND

MEASUREMENT RESULTS

A test chip for the split-4, list-2, eight-frame-interleaved,
configurable polar ST-SCL decoder supporting code length
up to 1024 bit and variable code rates was implemented in
40-nm CMOS. The chip microphotograph is shown in Fig. 15.
The chip measures 0.91 mm × 0.91 mm, and the decoder
core measures 0.70 mm × 0.91 mm or 0.64 mm2. The
chip incorporates input buffers to provide input vectors and
output buffers to collect the decoded bits. An on-chip CPU
with UART interface enables testing of various code lengths,
code rates, number of interleaving frames, and CG. It also
supports optional post-processing. The chip is verified to be
fully functional for the code lengths of 512 and 1024 bit and
the code rates of 1/2, 2/3, 3/4, and 5/6.

A. Measurement Results

The bit error rate (BER) and frame error rate (FER) for
decoding a split-4, list-2, 1024-bit rate-1/2 code are plotted
in Fig. 16. The 6-bit quantized decoder uses an 8-bit CRC
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Fig. 15. Microphotograph of the decoder test chip fabricated in a 40-nm
CMOS technology.

Fig. 16. BER and FER performance of 1024-bit rate-1/2 ST-SCL decoder
with split factor 4 and list size 2 using 6-bit quantization and 8-bit CRC.

to assist with final path selection for a better error-correction
performance. The design achieves an FER of 10−5 at 3.55 dB,
demonstrating 0.15- and 0.65-dB coding gains over the
floating-point SCL (L = 2) decoder and the floating-point SC
decoder, respectively. Compared with the floating-point belief
propagation (BP) decoder, our design provides a 1.1-dB coding
gain.

The decoder test chip runs at a maximum clock frequency
of 430 MHz at a 0.9-V nominal supply voltage and room
temperature when decoding 1024-bit, rate-1/2 polar codes.
Fig. 17 summarizes the measured throughput and power
consumption of the test chip. In the baseline design without
frame interleaving and CG, the decoder delivers a 407-Mb/s
throughput. It consumes 25.39-mW power, which translates
to an energy efficiency of 61.92 pJ/b. To achieve a higher
throughput, eight-frame interleaving is enabled to provide
an 8× throughput to 3.25 Gb/s at a power consumption
of 64.29 mW. The energy efficiency is improved to 19.80 pJ/b,
due to the efficient sharing and reusing of under-utilized
hardware. The power increase from the baseline to the

Fig. 17. Measured throughput, power, and energy efficiency of various
configurations for the 40-nm ST-SCL decoder chip in decoding 1024-bit rate-
1/2 polar codes at room temperature.

Fig. 18. Measured power of the 40-nm test chip for decoding 512- and
1024-bit polar codes at room temperature and different supply voltages.

eight-frame-interleaved design is mainly attributed to three
factors: 1) the number of state registers (Ls and Us) in the
sub-decoders is increased by 8×; 2) PE, PMC, and GS/DSU
utilization are increased to 12.4%, 47.3%, and 57.3%, respec-
tively; and 3) decoder controller and router switching activities
are increased to support decoding eight frames in parallel.
Among the three factors, factor 1) contributes the most power
increase. The sub-decoders are estimated to consume 31% of
the total power, 90% of which is sequential power consumed
by state registers. Compared with a decoder that supports
only one frame at a time, the eight-frame-interleaved design
requires eight sets of state registers, and the total chip power
increases by about 2.2× (calculated from 31% × 90% ×8) due
to the sub-decoder’s state register increase. Combining factors
2) and 3), the power of the eight-frame interleaved decoder
increases by 2.5× over the single-frame decoder.

CG can be enabled to reduce the power consumption to
42.80 mW and improve the energy efficiency to 13.17 pJ/b.
Scaling the supply voltage from 0.9 to 0.6 V reduces the
maximum clock frequency from 430 to 100 MHz and further
improves the energy efficiency to 7.40 pJ/b.

Fig. 18 shows the power consumption for decoding
1024- and 512-bit codes of rate 1/2 and 3/4, and the effect
of frame interleaving and CG. The power was recorded at
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TABLE II

COMPARISON OF STATE-OF-THE-ART POLAR DECODERS

the lowest operating voltage at each frequency. From the
baseline without frame interleaving to eight-frame interleav-
ing, the power increases as expected, but the per-block CG
effectively lowers the power. For a given code length, decoding
a higher code rate (in this case 3/4) consumes slightly higher
power, due to more switching activities to process more free
bits. For a given code rate, decoding a shorter code length
costs less power, due to the sub-decoders’ bypassing of trellis
stages.

B. Comparisons

The ST-SCL decoder test chip is compared with the state-of-
the-art polar decoder designs in Table II, including both syn-
thesis results (where no test chip was fabricated and power was
not reported) and silicon measurements. Compared with the
most recent synthesis results of SCL decoders [20], [21], our
ST-SCL chip outperforms by more than 2.15× in throughput
and 1.88× in area efficiency than [20] before normalization.
After technology normalization to 40-nm and 0.9-V supply
voltage, the area efficiency of [20] and [21] surpass our design,
which is mainly due to three factors: 1) [20] and [21] do not
support variable code lengths and rates; 2) [20] and [21] use
SSCL or modified SCL decoding algorithms with performance
loss; and 3) [20] and [21] are synthesis results only without
silicon measurements. Only silicon results capture the layout
and wiring congestion overheads that can be significant in
high-throughput decoder designs.

Compared with the recent fabricated silicon SCL polar
decoders [17], [18] in more advanced 28- and 16-nm

technology nodes, our design exceeds the throughput reported
in [17] and [18]. After technology normalization, our design
achieves an order of magnitude better area efficiency (in
Gb/s/mm2) and an order of magnitude better energy efficiency
(in pJ/b) than [17] and [18] (note that [18] did not report
power, and the energy efficiency cannot be estimated).

Compared with the much simpler SC decoder designs [16],
[22], the ST-SCL decoder delivers a better error-correction
performance as shown in Fig. 16, and the energy efficiency
is more than an order of magnitude better after technology
normalization. Compared with the most recent BP decoder
synthesis [23], the ST-SCL decoder achieves more significant
coding gain as shown in Fig. 16, and the energy efficiency is
still 4.2× better.

VII. CONCLUSION

We present a fabricated test chip in a 40-nm CMOS tech-
nology that implements an ST-SCL decoder for polar codes.
In this design, a given polar code is split into four sub-codes
and decoded separately with smaller sub-decoders followed
by a reconciliation step in every decoding stage. Taking
advantage of the under-utilized PEs in the sub-decoders, eight
frames are interleaved and decoded in parallel to achieve a
high throughput and area efficiency. The decoder supports
variable code lengths up to 1024 bit and variable code rates by
programming the control LUTs. Per-block CG is implemented
to further reduce the power consumption and improve energy
efficiency. The 0.64-mm2 test chip is measured to achieve
a decoding throughput of 3.25 Gb/s at 430 MHz at the
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nominal supply voltage of 0.9 V, consuming 13.17 pJ/b, and
it demonstrates a competitive error-correction performance.
Voltage and frequency scaling of the chip to 0.6 V and
100 MHz further improves the energy efficiency to 7.4 pJ/b at
a reduced throughput of 760 Mb/s. The test chip outperforms
the state-of-the-art SCL polar decoder chips in throughput,
and its normalized energy efficiency and area efficiency are
an order of magnitude better than the latest published work.
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