
DNC-Aided SCL-Flip Decoding of Polar Codes
Yaoyu Tao and Zhengya Zhang

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109 USA

Emails: {taoyaoyu, zhengya}@umich.edu

Abstract—Successive-cancellation list (SCL) decoding of polar
codes has been adopted for 5G wireless communications. How-
ever, the performance of moderate code length is not satisfactory.
Heuristic or deep-learning-aided (DL-aided) flip algorithms have
been developed to improve the performance by locating error bit
positions after SCL decoding. In this work, we propose a new
flip algorithm with the help of differentiable neural computer
(DNC). New state and action encoding are developed to improve
DNC training and inference efficiency. The proposed two-phase
method is done by a flip DNC (F-DNC) to rank the most likely
flip positions for multi-bit flipping, and if decoding still fails,
a flip-validate DNC (FV-DNC) is applied to re-select error bit
positions in successive flip decoding trials. Supervised training
methods are designed for the two DNCs. Simulation results show
that the proposed DNC-aided SCL-Flip (DNC-SCLF) decoding
demonstrates up to 0.34 dB coding gain or 54.2% reduction in
the average number of decoding attempts over prior work.

Index Terms—Polar code, deep learning, successive cancella-
tion list decoder, flip algorithms, differentiable neural computer

I. INTRODUCTION

Capacity-achieving polar codes [1] have been adopted in

the 5th generation (5G) wireless standard. They can be de-

coded sequentially on a trellis using a successive cancellation

list (SCL) [2] decoder. Upon receiving log-likelihood ratios

(LLRs), SCL calculates path metrics (PMs) following a bit-

by-bit order. A list of L most likely paths are kept during

decoding and bits are decoded based on the most likely path

that also passes a cyclic redundancy check (CRC) in the end.

However, the decoding performance is not satisfactory for

moderate code length N . Once a wrong bit decision is made,

the entire sequential decoding fails.

To solve this problem, flip algorithms are used when CRC

fails. Error bit positions are searched and flipped in subse-

quent decoding attempts. Clearly, the key to a successful flip

decoding is to accurately locate error bit positions. As shown

in Fig. 1, heuristic methods [3]–[16] use explicit metrics to

estimate the likelihood of each bit being an error bit. The

likelihoods are sorted to obtain the flip position set. However,

the optimal flipping strategy is still an open problem.

Recent work on flip algorithms has leveraged deep learning

(DL). DL-aided methods require state encoding to pre-process

the inputs to the neural network (NN) and action encoding to

generate flip position set from the NN outputs, as shown in

Fig. 1. [7], [17]–[19] propose to use long short-term memory

(LSTMs) to help locate flip positions for short polar codes

of length 64 or 128. However, LSTMs lack the scalability to

Input
LLRs

SCL

CRC

Pass

Heurist ic
metric

Flip
order

Sort

Fail

Bit fl ipping

1) Heurist ic methods

State
Encode LSTM

2) LSTM-aided methods

State
Encode

F-
DNC

3) Proposed two-phase DNC-aided method

FV-
DNC

Flip
posit ions

Action
Encode

Two-phase
decoding

flow

Action
Encode

Fig. 1. Overview of 1) heuristic bit flipping, 2) LSTM-aided bit flipping and
3) proposed DNC-aided two-phase bit flipping.

handle long-distance dependencies embedded in the sequen-

tial SCL decoding when code length increases, presenting a

limitation for practical adoptions.

The recently developed differentiable neural computer

(DNC) [20] addresses the scaling problem of LSTM. DNC can

be considered an LSTM augmented with an external memory

through attention-based soft read/write mechanisms. In this

paper, we propose to use DNC for bit flipping of practical-

length polar codes to enhance the accuracy of locating error bit

positions. The main contributions are summarized as follows:

1) A new two-phase decoding assisted by two DNCs, flip

DNC (F-DNC) and flip-validate DNC (FV-DNC), as

shown in Fig. 1. F-DNC ranks the most likely flip

positions for multi-bit flipping. If decoding still fails,

FV-DNC is used to re-select flip positions in successive

flip decoding trials.

2) A new action encoding with soft multi-hot scheme and a

new state encoding considering both PMs and received

LLRs for a higher DNC training and inference efficiency.

Training methods are designed for the two DNCs, where

the training data set is generated by supervised flip

decoding attempts.

3) The effectiveness of DNC-aided SCL-Flip (DNC-SCLF)

decoder is demonstrated to outperform the state-of-the-

art techniques by up to 0.34 dB in error correction

performance or 54.2% reduction in the average number

of decoding attempts.

978-1-7281-8104-2/21/$31.00 ©2021 IEEE

GL
O

BE
CO

M
 2

02
1

- 2
02

1
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

72
81

-8
10

4-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
46

51
0.

20
21

.9
68

52
77

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:54:46 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

A. SCL Decoding of Polar Codes

An (N , K) polar code has a code length N and code

rate K/N . Let uN−1
0 = (u0, u1, ..., uN−1) denote the vector

of input bits to the encoder. The K most reliable bits in

uN−1
0 , called free bits, are used to carry information; while

the remaining N −K bits, called frozen bits, are set to pre-

determined values.

Successive cancellation (SC) [1] is the basic decoding

scheme of polar codes. Assume rN−1
0 is the received LLRs.

The decoding follows a bit-by-bit sequential order and it

calculates bit LLR Lûi for i-th bit on the SC trellis, where

i = {0, ..., N−1} and ûi = ±1. The decoding of a bit depends

on the previously decoded bits. In SC decoding, the most likely

path to each bit level is kept. SCL decoding [2] improves the

error-correction performance by keeping a list of L mostly

likely paths based on the PM P(�)i to each bit level, where

� and i denote the path index and the bit index, respectively.

For each path � and each bit i, the PMs are defined in (1):

P(�)i �
i∑

j=0

ln(1 + e−(1−2ûj(�))L
ûj (�)), (1)

where ûj(�) and Lûj (�) denote the j-th bit at �-th path and the

bit LLR for ûj given the received LLRs rN−1
0 and decoding

trajectories ûj−1
0 (�), respectively. SC can be viewed as a

special case when the list size L = 1. Concatenating polar

code with a CRC [21], [22] can aid the final path selection.

B. State-of-the-art Flip Algorithms

Flip algorithms are proposed to identify error bit positions

upon failed CRC. The flip positions can be determined by

either a heuristic metric or an NN. Heuristic methods like

[3]–[6], [9] use received LLRs or their absolute values as the

metric to derive flip positions. In particular, [6] introduces a

critical set to reduce the search space of flip positions for a

lower complexity. [9] subdivides a codeword into partitions,

on which SC-Flip (SCF) is run for a shorter latency. However,

these methods can only flip one bit at a time. [10], [11], [13],

[14] propose a dynamic SC-Flip (DSCF) that allows flipping

of multiple bits at a time to improve the latency of SCF.

Multi-bit flipping requires locating multiple error bit positions

concurrently. DSCF introduces a new metric considering not

only received LLRs but also the trajectories in the sequential

SCL decoding. [13], [14] introduce variations of DSCF to

improve the accuracy of locating error bit positions. [8],

[16] extend the bit-flipping from SC to SCL for a SCL-Flip

decoding (SCLF).

The recently developed DL-aided SCF/SCLF [7], [17]–[19]

utilize a trained LSTM to locate error bit positions. They have

shown slightly better performance than heuristic methods for

short polar codes of length 64 or 128. However, the accuracy

of locating error bit positions is limited by the scalability

of LSTMs when the code length increases. Furthermore, the

LSTM methods use simple state and action encoding that

LSTM

Input vector
Read vector

Output vector
Interface vector

Write head

Read head 1

Read head R

Mem controller Mem

Fig. 2. Top-level architecture of DNC.

do not support multi-bit flipping efficiently, resulting in more

decoding attempts compared to heuristic methods.

C. Differentiable Neural Computer (DNC)

DNC addresses LSTM’s scalability problem with the help

of an external memory. Since its invention, DNC has found

many applications like question answering [23], [24]. DNC can

be considered an LSTM augmented with an external memory

through soft read and write heads, as shown in Fig. 2. In this

work, we use DNCs to enhance the accuracy of locating error

bit positions.

The top level architecture of DNC is demonstrated in Fig. 2.

DNC periodically receives xt as the input vector and produces

yt as the output vector at time t. The output vector yt is usually

converted to a probability distribution using softmax. At time

t, the DNC 1) reads an input xt; 2) writes the new information

into the external memory using the interface vector vtc through

a memory controller; 3) reads the updated memory M t; and

4) produces an output yt. Assume the external memory is a

matrix of Mh slots and each slot is a length-Mw vector. To

interface with this external memory, DNC computes read and

write keys to locate slots. The memory slot is found using the

similarity between a key and the slot content. This mechanism

is known as content-based addressing. In addition, DNC uses

dynamic memory allocation and temporal memory linkage

mechanisms to compute write and read weights. We omit the

mathematical descriptions of DNC here and readers can refer

to [20] for more details.

III. DNC-AIDED FLIP DECODING

Bit flipping can be modeled as a game and DNC is the

player to locate flip positions towards successful decoding.

Upon CRC failure, the DNC player needs to take an action

based on the current state, either reverting falsely flipped

positions or adding more positions to flip. The proposed DNC-

aided method includes new state and action encoding and a

DNC-aided two-phase decoding flow.

A. State and Action Encoding

One key to an efficient DNC inference is a suitable input

(state) and output (action) vector for training and inference.

We discuss the encoding of existing LSTM-based approaches

[7], [17]–[19] and present a new encoding scheme.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:54:46 UTC from IEEE Xplore. Restrictions apply.

1) State Encoding: A straightforward way to encode states

is to use the received LLR sequence rN−1
0 . [7], [17] use

the amplitudes of received LLRs as the LSTM input. [19]

uses the amplitudes of received LLRs, combined with the

syndromes generated by CRC for state encoding. However,

the PM information in sequential decoding is not considered

in these methods, resulting in a potential loss. [18] proposes

a state encoding by taking the ratio of the PM of discarded

paths to the PM of survival paths. However, this representation

requires extra computation and does not include received LLR

information.

In this work, we introduce a new state encoding scheme

using the gradients of L survival paths concatenated with

received LLRs. The PM gradients �P(�)i for i-th bit is given

by (2):

�P(�)i = ln(1 + e−(1−2ûi(�))L
ûi (�)). (2)

Note that �P(�)i can be directly taken from the PM

calculation in standard SCL decoding. The state encoding S
is therefore a vector shown in (3) and is used as DNC input

in this work.

S = {�P(�)N−1
0 , rN−1

0 }. (3)

2) Action Encoding: the one-hot scheme used in state-of-

the-art LSTM-based flip algorithms is efficient in locating the

first error bit, but not multiple bits at a time. As a result, more

decoding attempts are needed. To improve the bit flipping

efficiency, we propose a soft multi-hot (i.e., ω-hot) flip vector

vf to encode both the first error bit and the subsequent error

bits, aiming to correctly flip multiple bits in one attempt. vf
is a length-N vector that has ω non-zero entries. An action is

encoded by vf . Each possible flip position in vf is a non-zero

soft value indicating the flip likelihood of the bit.

For training purposes, we introduce a scaled logarithmic

series distribution (LSD) to assign flip likelihoods to the ω
flip positions, where p ∈ (0, 1) is a shape parameter of

LSD. The intention is to create a distribution with descending

probabilities from the first error bit position to the subsequent

ones, and to provide enough likelihood differences between

them. Suppose the k-th bit in polar code has an index IF (k)
in the flip position set F . Non-zero entries of vf can be derived

in (4):

vf (k) = K −1

ln(1− p)

pIF (k)

IF (k) for k ∈ F

where scaling factor K = 1/

∫
F
vf

(4)

Reference vf generation for training will be discussed in

Section IV. The impacts of parameters ω and p on the accuracy

of locating error bit positions are discussed in Section V-A.

Decode

Received LLRs

Fail

Multi-bit
Flip

CRC
PMs/LLRs

Flip DNC

7

State Encoding

Action
Rank

Flip
Indexes

Fail

CRC

Decode

Successive
Flip

PMs/LLRs

Flip-validate DNC

7

9

State Encoding

2

Re-select

9 2

9

7

Continue

9

7

Decode

Single-bit flip

Fail

CRC1 2

7 Flip locations for next decode

7 Confirmed flip locations

7 29

7 Discarded flip locations

Phase I:
Multi-bit Flip

Phase II:
Successive

Flip Decoding
Trials

7 9

Likelihood Threshold
0.4 0.3 0.1 =0.2

Fig. 3. DNC-aided two-phase flip decoding (ω = 3 case).

B. DNC-Aided Two-Phase Decoding Flow

We design a two-phase flip decoding flow aiming to reduce

the number of SCL attempts while achieving a good error

correction performance. The two phases in this flow are: 1)

multi-bit flipping and 2) successive flip decoding trials. In the

first phase, the received symbols are decoded by a standard

decoder. If it fails CRC, a flip DNC (F-DNC) takes as input

the state encoding S to score the actions, i.e., estimate the

probability of each bit being error bits and output a flip vector

vf . Fig. 3 shows an example of ω = 3 where F = {7, 9, 2} is

the flip position set with descending likelihoods {0.4, 0.3, 0.1}.

To avoid wrong flips of subsequent positions with insignificant

flip likelihoods, an α-thresholding is applied to keep only

positions with vf (i) > α, i = {0, ..., N − 1}. A subsequent

decode attempt is then carried out with multi-bit flipping of

bit positions {7, 9} in the example.

Phase-I decoding can fail for several reasons: 1) the first

error bit position is incorrect; or 2) the first error bit position is

correct but some of the subsequent flip positions are incorrect.

If CRC still fails after multi-bit flipping in Phase I, we enter

Phase II to flip each possible error bit position one at a time

and use a flip-validate DNC (FV-DNC) to confirm if this is

a correct flip before moving to the next error bit position.

The first attempt in Phase II flips the highest ranked error bit

position in F , i.e., bit 7 in the example shown in Fig. 3.

If FV-DNC invalidates the single-bit flip (e.g., bit 7 in this

example), we discard bit 7 and re-select the next bit, bit 9
in F , as the flip position. Alternatively, if FV-DNC confirms

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:54:46 UTC from IEEE Xplore. Restrictions apply.

29

7
Re-select Continue

7 2

9

2

7 9

F-DNC output

ContinueRe-select

7 9 7

2 7

9

29

ContinueRe-select

Single-bit flip

7

9

2

2

9 2

9

7 9

7 9 2

2

7 2

7

Fig. 4. Possible flip attempts in Phase II (ω = 3).

the flip of bit 7, we continue by adding bit 9 into the flip

queue Qf and flip Qf = {7, 9} in next attempt. The process

runs successively until CRC passes or the end of F is reached.

Fig. 4 shows all possible flip combinations given different FV-

DNC output combinations in the ω = 3 case. The number of

decoding attempts of Phase II is bounded by ω. The two-phase

DNC-SCLF is described in Algorithm 1.

Algorithm 1: DNC-Aided SCL-Flip Decoding

1 ûN−1
0 , S ← SCL(rN−1

0)

2 if CRC(ûN−1
0) = pass return ûN−1

0

3 Phase-I: Multi-bit Flipping

4 F , ω, vf ← F-DNC(S)

5 ûN−1
0 ← SCL(rN−1

0 ,Fvf≥α)

6 if CRC(ûN−1
0) = pass return ûN−1

0

7 Phase-II: Successive Flip Decoding Trials

8 Qf = {F [0]}
9 for i = 0, 1, ..., ω − 1 do

10 ûN−1
0 , S ← SCL(rN−1

0 ,Qf)

11 if CRC(ûN−1
0) = pass or i = ω − 1 return ûN−1

0

12 R ← FV-DNC(S)
13 if R = continue then
14 Qf = {Qf ,F [i+ 1]}
15 else
16 Qf [end] = F [i+ 1]
17 end
18 end

IV. TRAINING METHODOLOGY

In this section, we discuss training for the DNCs used in

proposed DNC-SCLF. The training is conducted offline and

does not increase the run-time decoding complexity. We adopt

the cross-entropy function which has been widely used in

classification tasks [25].

A. F-DNC Training

In the first training stage, we run extensive SCL decoder

simulations and collect error frames upon CRC failure. The

F-DNC training data set consists of state encoding S from

(3) as DNC input and the corresponding vf from (4) as the

reference output. S can be straightforwardly derived based on

TABLE I
F-DNC/FV-DNC HYPER-PARAMETERS SET

Parameter Description

LSTM controller 1 layer of size 128

Size of access heads 1 write head, 4 read heads

Size of external memory Mh = 256,Mw = 128

Size of training set 106 for F-DNC, 3× 107 for FV-DNC

Size of validation set 5× 104

Mini-batch size 100

Dropout probability 0.05

Optimizer Adam

Environment Tensorflow 1.14.0 on Nvidia GTX 1080Ti

received LLRs and PMs of the collected error frames. vf is

determined by parameter ω and p, whose values affect the

training and inference efficiency. We label the error bit posi-

tions with respect to the transmitted sequence for each sample

as candidate flip positions. Intuitively, small ω and p values

increase the likelihood of locating the first error bit position,

but decrease the likelihoods of locating subsequent error bit

positions. Hence a trade-off exists between the accuracy of

locating the first error bit position and the subsequent error bit

positions. In this work, we carried out reference vf generations

with ω = {2, 5, 10} and p = {0.2, 0.8}. The experimental

results using these parameters will be discussed in Section V.

B. FV-DNC Training

The error frames that cannot be decoded correctly in Phase I

are handled in Phase II, where single bit positions are flipped

and tested successively as shown in Fig. 4. The FV-DNC

is a classifier taking either “re-select” or “continue” action

given the received LLRs and PMs from the most recent

attempt. The key to FV-DNC training is to create a curated

data set that detects “trapping states” effectively. We carried

out supervised flip decoding attempts based on the collected

errors from Phase I. For each error, the first 5 error bit

positions in the reference vf are flipped bit after bit and their

corresponding state encoding S is recorded. These samples

result in a “continue” action. After flipping each of the first 5

error bit positions, we flip 5 random positions and record their

state encoding S. These samples indicate trapping states and

result in a “re-select” action. For each collected error frame,

we produce 5 samples for “continue” action and 25 samples

for “re-select” action.

V. EXPERIMENTS AND ANALYSIS

To show the effectiveness of DNC in tackling long-distance

dependencies in polar decoding trellis, we evaluate the per-

formance of polar codes of length N = 256 and 1024 using

SC and SCL (L = 4) decoding. The code rate is set to

1/2. A 16b CRC is employed. Error frames are collected at

an SNR of 2 dB. In this paper we do not focus on hyper-

parameter optimizations for DNC and simply demonstrate a

set of configurations, shown in Table I, that work well for our

experiments.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:54:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Rate of locating error bit positions for ω = {2, 5, 10} and p =
{0.2, 0.8} in SC decoding of a (256, 128) polar code.

Fig. 6. Number of additional decoding attempts using DNC-SCF and state-
of-the-art flipping algorithms for a (1024, 512) polar code.

A. Accuracy of Locating Error Bits

First, we study the impacts of parameters ω and p in action

encoding. For a fair comparison, we pick the same code length

of N = 256 and SC decoding used by the heuristic method

[11] and the LSTM-based method [17]. Fig. 5 presents the

accuracy of locating the first 5 error bit positions. For a given

ω, a lower p enhances the probability of locating the first error

bit, but reduces the probability of locating subsequent error

bits. We achieve a 0.573 success rate of locating the first error

bit with ω = 2, outperforming the 0.425 and 0.51 success

rate with the heuristic DSCF [11] and the LSTM-aided SCF

[17], respectively. Comparing ω = 2 and ω = 5 with the same

p value, a larger ω helps to locate more error bit positions,

but the success rate of locating the first few bit positions is

degraded.

We select p = 0.8 in our two-phase DNC-SCLF exper-

iments to increase the success rates of locating subsequent

error bit positions by sacrificing the success rate of locating

the first error bit position. Even if F-DNC may not locate the

first error bit position accurately in Phase I, FV-DNC can re-

select it in Phase II. We use an α = 0.03 for thresholding in

our experiments.

B. Complexity and Latency

Metric calculation and sorting in heuristic methods can be

implemented inside standard SC or SCL decoders. However,

DL-aided algorithms introduce a higher complexity and re-

quire an inference accelerator to interact with the decoder. We

used a GPU to obtain a speed of 1.7 ms/inference. For practical

adoptions, a dedicated accelerator can be implemented for a

faster inference.

Fig. 7. FER performance comparison between DNC-SCF and state-of-the-art
flipping algorithms for a (1024,512) polar code and a 16b CRC.

Since bit flipping is conditionally triggered when the stan-

dard decoder fails, the triggering rate is the frame error rate

(FER). For this reason, the DL-aided algorithms are more

suitable for the low-FER regime where the inference latency

can be effectively amortized. In this work we do not consider

the inference acceleration and buffering strategy, but instead

focus on the average number of flip decoding attempts to

determine the overall latency.

Assume β1 is the rate of successful decoding with multi-bit

flipping in Phase I, the average number of decoding attempts

Tavg for a DNC-aided flip decoding can be calculated in (5):

Tavg = β1 + ω2,avg(1− β1) (5)

where ω2,avg is the average number of attempts in Phase II

and ω2,avg ≤ ω. Fig. 6 shows the Tavg for the proposed DNC-

SCF along with the state-of-the-art techniques. At a 2 dB SNR,

DNC-SCF with ω = 2 improves the average decoding attempts

by 45.7% and 54.2% compared to the state-of-the-art heuristic

[13] and LSTM-aided methods [19], respectively.

C. Error-Correction Performance

We compare the coding gain of DNC-SCF at an FER

of 10-4 with the state-of-the-art heuristic methods [11], [13]

and LSTM-based methods [19] for a (1024, 512) polar code

with a 16b CRC. DNC-SCF with ω = 2 achieves a 0.5 dB

coding gain over the SC decoder. Increasing to ω = 5
provides another 0.31 dB coding gain. DNC-SCF with ω = 5
outperforms DSCF [11] and Fast-DSCF [13] with T = 10 by

0.03 dB and 0.05 dB, respectively, while reducing the number

of decoding attempts by 45.7%. Further increasing to ω = 10
in DNC-SCF provides a 0.21 dB coding gain over DSCF with

T = 10 while reducing the number of decoding attempts by

18.9%.

The LSTM-based approach in [17] does not report FER,

but has shown up to 10% improvement in the accuracy of

locating the first error bit position over DSCF with T = 1 at

a 1 dB SNR for a (64, 32) polar code. Another LSTM-based

SCF [19] with T = 6 provides a 0.2 dB improvement over

DSCF with T = 6. The FER of [19] with T = 10 for a 1024b

code is shown in Fig. 7, which is still worse than DNC-SCF

with ω = 5. LSTM’s capability of locating error bit positions

weakens as the code length increases.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:54:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. FER performance comparison between DNC-SCLF (L = 4) and state-
of-the-art flipping algorithms for a (256,128) polar code and a 16b CRC.

We further compare the FER of DNC-SCLF (L = 4) for a

(256, 128) polar code with a 16b CRC to the state-of-the-art

heuristic methods [8], [16] and LSTM-based approaches [7],

[18] as shown in Fig. 8. At an FER of 10-4, DNC-SCLF with

ω = 2 achieves a 0.27 dB coding gain over the SCL decoder.

Increasing to ω = 5 results in a 0.59 dB coding gain over

the SCL decoder. DNC-SCLF with ω = 5 achieves 0.21 dB

and 0.01 dB better coding gain than the heuristic SCLF [16]

and LSTM-SCLF [18] with T = 10, respectively. Further

increasing to ω = 10 in DNC-SCLF improves the coding gain

to 0.34 dB and 0.16 dB over [16] and [18], respectively.

VI. CONCLUSIONS

We present DNC-aided SCF and SCLF decoding that em-

ploy two-phase decoding assisted by two DNCs, F-DNC to

locate error bit positions for multi-bit flipping, and FV-DNC

to re-select error bit positions for successive flip decoding

trials, respectively. The multi-bit flipping reduces the number

of flip decoding attempts while successive flip decoding trials

lower the probability of entering a trapping state. Methods are

proposed to efficiently train F-DNC and FV-DNC. Simulation

results show that the proposed DNC-SCF and DNC-SCLF

help to locate error bits more accurately, achieving better

error-correction performance and reducing the number of flip

decoding attempts than the the state-of-the-art flip algorithms.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, July
2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” in 2011 IEEE
International Symposium on Information Theory Proceedings, July 2011,
pp. 1–5.

[3] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity
improved successive cancellation decoder for polar codes,” in 2014 48th
Asilomar Conference on Signals, Systems and Computers, Nov 2014, pp.
2116–2120.

[4] C. Condo, F. Ercan, and W. Gross, “Improved successive cancellation
flip decoding of polar codes based on error distribution,” in Proc. IEEE
Wireless Commun. Netw. Conf. Workshops (WCNCW), Apr 2018, pp.
19–24.

[5] F. Ercan, C. Condo, and W. J. Gross, “Improved bit-flipping algorithm
for successive cancellation decoding of polar codes,” IEEE Transactions
on Communications, vol. 67, no. 1, pp. 61–72, Jan 2019.

[6] Z. Zhang, K. Qin, L. Zhang, H. Zhang, and G. T. Chen, “Progressive
bit-flipping decoding of polar codes over layered critical sets,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
Dec 2017, pp. 1–6.

[7] X. Liu, S. Wu, Y. Wang, N. Zhang, J. Jiao, and Q. Zhang, “Ex-
ploiting error-correction-crc for polar scl decoding: A deep learning
based approach,” IEEE Transactions on Cognitive Communications and
Networking, pp. 1–1, 2019.

[8] F. Cheng, A. Liu, Y. Zhang, and J. Ren, “Bit-flip algorithm for successive
cancellation list decoder of polar codes,” IEEE Access, vol. 7, pp.
58 346–58 352, 2019.

[9] F. Ercan, C. Condo, S. A. Hashemi, and W. J. Gross, “Partitioned
successive-cancellation flip decoding of polar codes,” in 2018 IEEE
International Conference on Communications (ICC), May 2018, pp. 1–
6.

[10] L. Chandesris, V. Savin, and D. Declercq, “An improved scflip decoder
for polar codes,” in 2016 IEEE Global Communications Conference
(GLOBECOM), Dec 2016, pp. 1–6.

[11] L. Chandesris, V. Savin, and D. Declercq, “Dynamic-scflip decoding of
polar codes,” IEEE Transactions on Communications, vol. 66, no. 6, pp.
2333–2345, June 2018.

[12] Y. Tao, S. G. Cho, and Z. Zhang, “A configurable successive-cancellation
list polar decoder using split-tree architecture,” IEEE Journal of Solid-
State Circuits, vol. 56, no. 2, pp. 612–623, 2021.

[13] F. Ercan, T. Tonnellier, N. Doan, and W. J. Gross, “Practical dynamic sc-
flip polar decoders: Algorithm and implementation,” IEEE Transactions
on Signal Processing, vol. 68, pp. 5441–5456, 2020.

[14] F. Ercan and W. J. Gross, “Fast thresholded sc-flip decoding of polar
codes,” in ICC 2020 - 2020 IEEE International Conference on Commu-
nications (ICC), 2020, pp. 1–7.

[15] C. Condo, V. Bioglio, and I. Land, “Sc-flip decoding of polar codes with
high order error correction based on error dependency,” in 2019 IEEE
Information Theory Workshop (ITW), 2019, pp. 1–5.

[16] Y. H. Pan, C. H. Wang, and Y. L. Ueng, “Generalized scl-flip decoding
of polar codes,” in GLOBECOM 2020 - 2020 IEEE Global Communi-
cations Conference, 2020, pp. 1–6.

[17] X. Wang, H. Zhang, R. Li, L. Huang, S. Dai, Y. Yourui, and J. Wang,
“Learning to flip successive cancellation decoding of polar codes with
lstm networks,” arXiv:1902.08394, Feb 2019.

[18] C.-H. Chen, C.-F. Teng, and A.-Y. Wu, “Low-complexity lstm-assisted
bit-flipping algorithm for successive cancellation list polar decoder,” in
45th IEEE International Conference on Acoustics, Speech, and Signal
Processing, May 2020.

[19] B. He, S. Wu, Y. Deng, H. Yin, J. Jiao, and Q. Zhang, “A machine
learning based multi-flips successive cancellation decoding scheme of
polar codes,” in 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring), 2020, pp. 1–5.

[20] A. Graves, G. Wayne, and M. Reynolds et al., “Hybrid computing using
a neural network with dynamic external memory,” Nature, vol. 538, pp.
471–476, Oct 2016.

[21] K. Niu and K. Chen, “Crc-aided decoding of polar codes,” IEEE
Communications Letters, vol. 16, no. 10, pp. 1668–1671, October 2012.

[22] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation
list decoder for polar codes with cyclic redundancy check,” IEEE
Communications Letters, vol. 16, no. 12, pp. 2044–2047, December
2012.

[23] S. Sukhbaatar, a. szlam, J. Weston, and R. Fergus, “End-to-end memory
networks,” in Advances in Neural Information Processing Systems 28,
2015, pp. 2440–2448.

[24] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic
memory networks for natural language processing,” in Proceedings of
The 33rd International Conference on Machine Learning, vol. 48, 20–22
Jun 2016, pp. 1378–1387.

[25] Y. Lecun, Y. Bengio, and G. Hinton et al., “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, Oct 2015.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:54:46 UTC from IEEE Xplore. Restrictions apply.

		2022-01-25T13:10:41-0500
	Certified PDF 2 Signature

