
594 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 7, NO. 4, DECEMBER 2017

Designing Practical Polar Codes Using
Simulation-Based Bit Selection

Shuanghong Sun , Student Member, IEEE, and Zhengya Zhang, Member, IEEE

Abstract— The frozen set selection of polar codes, known as
bit selection, determines the error-correcting performance of
polar codes. The original bit selection was derived for successive
cancellation decoding in a binary erasure channel. Density
evolution has been used to evaluate the bit error probability in
binary memoryless channel, but the computational complexity is
still high and the simplified versions rely on different degrees
of approximations. We propose an alternative simulation-based
in-order bit selection method that evaluates the error rate of
each bit using Monte Carlo decoding simulations and selects the
frozen set based on the bit reliability ranking. The simulation-
based method does not rely on channel models and it can be
applied to any practical channels in the field. The simulation
can be accelerated on an FPGA platform to significantly shorten
the time required to one day for a 1024-b code design. We use
three examples to demonstrate the in-order bit selection method,
a (256, 128) code, a (512, 256) code, and a (1024, 512) code.
Compared with the codes designed using density evolution for
an AWGN channel, our (256, 128) code shows a competitive BER;
our (512, 256) code outperforms at low SNR; and our (1024, 512)
code outperforms across a wide range of SNR by 0.3 to 0.6 dB.
The algorithm and methodology are applicable to any code rate
and longer code lengths.

Index Terms— Polar code, bit selection, belief propagation
decoding, decoder architecture, FPGA emulation.

I. INTRODUCTION

NEWLY invented polar codes [1] have attracted much
interest in 5G applications because of their promising

capacity-achieving potential and efficient encoder and decoder
implementation [2], [3]. Compared to the state-of-the-art turbo
codes and LDPC codes, the factor graph of any length N = 2n

polar code is predefined and the successive cancellation (SC)
decoding is deterministic. However, the SC algorithm decodes
bit by bit in a serial manner, so the latency of SC decoding is
O(N) [4], [5]. Iterative belief propagation (BP) decoding has
been proposed as an alternative to SC decoding [6], [7]. BP
decoding uses a flooding schedule to allow N messages to be
passed in parallel, thereby reducing the decoding latency to
O(log N). However, the error-correcting performance of BP
decoding is worse than SC decoding [8].

Manuscript received February 06, 2017; revised May 24, 2017 and
August 15, 2017; accepted September 7, 2017. Date of publication October 4,
2017; date of current version December 14, 2017. This work was supported in
part by Intel Corporation and in part by NSF under Grant CCF-1054270. This
paper was recommended by Guest Editor F. Sheikh. (Corresponding author:
Shuanghong Sun.)

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109-2122 USA
(e-mail: shuangsh@umich.edu; zhengya@eecs.umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2017.2759253

Much efforts have been made to improve the error-
correcting performance of polar codes, such as list SC decod-
ing [9] that preserves a list of candidate decoding decisions,
applying BP calculation in SC scheduling [10], and concatena-
tion with outer codes [11]–[13]. Implementations based on the
above algorithms [14], [15] have shown performance improve-
ment of polar codes, at the cost of hardware requirements
and/or design complexity.

When the block length of a polar code is sufficiently long,
the capacity of the effective channel that each bit passes
through polarizes to either almost 1 or almost 0 [1]. High-
capacity reliable bits are to be used to carry information, and
low-capacity unreliable bits are frozen to 0 to guarantee a
good error rate. The bits that carry information are called
information bits or non-frozen bits. The selection of the set
of frozen bits is crucial to the error-correcting performance of
polar codes. The code rate is adjusted by the size of the frozen
set, without changing the codes’ factor graph.

The selection of the frozen set is determined by the error
probability or erasure probability of each bit. In SC decoding,
the erasure probability of each bit can be derived and upper
bounded for a binary erasure channel (BEC) [1]. Fig. 1
shows the capacities of the channel each bit passes through
for a N = 1024 polar code, with erasure rate � = 0.5
in Fig. 1(a) and � = 0.2 in Fig. 1(b). Note that the
channel contains an encoder, and the derivation assumes SC
decoding [1]. The frozen set is chosen to be the set of bits
with low-capacity channels. The choice of the frozen set
depends on the communication channel. For a fixed code
rate Rc, the frozen sets are different for channels of different
statistics, as evidenced by the difference between Fig. 1(a)
and Fig. 1(b). Moreover, the frozen set also depends on the
decoding algorithm.

Arikan [1] used the Bhattacharyya parameter as an upper
bound of the error probability of each bit in SC decoding. In a
binary erasure channel (BEC), the Bhattacharyya parameter
equals the erasure probability, and it can be efficiently evalu-
ated with linear complexity. However, for an arbitrary binary
memoryless channel, the complexity of the method becomes
exponential in code length. Mori and Tanaka [16], [17] pro-
posed density evolution to evaluate the bit error probability,
as SC decoding of each bit can be modeled as BP decoding in
a tree structure. However, Mori and Tanaka’s method is also
bottlenecked by high computational complexity due to high
memory usage that grows exponentially with code length.

Tal and Vardy [18] extended the density evolution method
by quantization to reduce the memory requirement. The

2156-3357 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1158-4331

SUN AND ZHANG: DESIGNING PRACTICAL POLAR CODES USING SIMULATION-BASED BIT SELECTION 595

Fig. 1. Channel capacity of the 1024-bit polar code in BEC channel with
erasure rate of (a) 0.5 and (b) 0.2.

method obtains a lower bound and an upper bound on the bit
error probability given a specified maximum number of quan-
tization levels. The number of quantization levels needs to be
high to achieve a good accuracy. Alternatively, Trifonov [19]
used Gaussian approximation in density evolution to reduce its
computational complexity. These simplified density evolution
methods offer substantial speedup and simplification of the bit
error evaluation, but they also require approximations. Another
drawback of these methods is that they require the channel
model to be known in advance.

In this work, we propose a simulation approach to evaluate
the error probability of each bit as an alternative method to
density evolution. Inspired by Mori and Tanaka’s formulation
that views every step of SC decoding as BP decoding in a tree
structure, we use Monte Carlo simulations of BP decoding to
evaluate the error probability of each bit. Each simulation is
exact and does not rely on any approximation. The simulation
accounts for the finite code length, loops, numerical quanti-
zation, etc. The simulation method will be particularly useful
in handling practical channels that sometimes have no closed-
form mathematical representation. The bit error probabilities
obtained from simulations account for practical non-idealities,
including decoder implementation and its numerical precision.

For an N-bit polar code, the simulation-based bit selection
method is done in N steps, where each step involves Monte
Carlo simulations to measure the BER of one bit. At the end of
N steps, a ranked BER list is produced. The simulation-based
bit selection method works for all code rates by selecting the
required number of bits to freeze from the list. Our method
can also be extended to different code lengths. To facilitate
the design of decoders for different code lengths, we have
created a library and script approach, which requires minimal

Fig. 2. Factor graph for encoding the 8-bit polar code.

effort to construct a decoder. We use FPGA to achieve sig-
nificant accelerations. The bit selection process requires mini-
mal supervision, and it can be done entirely autonomously.
Compared to other published FPGA-based polar decoder
emulators [20], [21], our platform is used specifically for bit
selection. In addition to accelerating polar decoding, a soft-
ware loop around the FPGA accelerator was added to set up
the frozen patterns and collect the appropriate BERs. We have
designed new approaches to speed up Monte Carlo simulations
to make practical bit selections feasible. Although we use
FPGA in this work, the simulation-based bit selection method
can be programmed on a GPU or CPU cluster to achieve
acceleration.

As a proof-of-concept, we demonstrate the simulation-based
bit selection for three polar codes of block lengths of 256 bits,
512 bits, and 1024 bits. The results show up to 0.6 dB
improvement in SNR (Eb/N0) in BP decoding over the well-
known bit selection obtained by density evolution [18].

II. BACKGROUND

A polar code has a length of N = 2n , and the code rate
Rc = K/N can be anywhere between 0 and 1. The generator
matrix G is the n-th Kronecker power of matrix F = [

1 0
1 1

]
,

i.e., GN = F⊗n with size N × N .
The factor graph corresponding to the G matrix is shown

in Fig. 2. The basic node consists of a plus sign and an equal
sign, where the plus sign represents modulo-2 addition and
the equal sign represents pass through. The node essentially
implements multiplication of a 2-bit input vector by matrix F .
There are log N stages of nodes and each stage consists
of N/2 nodes. To perform polar encoding, an N-bit input
message u is passed from the left hand side of the factor
graph, and an N-bit codeword x is obtained from the right
hand side.

Among the N message bits, there are K information bits
and N − K frozen bits. The information set A is defined as
the index set of the information bits, and the frozen set Ac is
defined as the index set of the frozen bits. Bit ui is a frozen
bit if i ∈ Ac.

Used in a typical communication system, the codeword x
is modulated and sent over a communication channel. The
channel injects noise to the codeword, and produces noisy

596 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 7, NO. 4, DECEMBER 2017

Fig. 3. Permuted factor graph of the 8-bit polar code.

codeword y as the output. A polar decoder will attempt to
recover u from y. The decoding can be visualized using the
same factor graph shown in Fig. 2, except that the input y is
provided from the right hand side, and the decoded codeword
û is obtained from the left hand side. In the following,
we briefly review BP decoding of polar codes, as it is central
to our discussions.

The BP algorithm decodes bits u0 to uN−1 in
parallel. BP decoding works by passing the frozen set
information from left to right (in R propagation or simply
R-prop) and passing the channel output y from
right to left (in L propagation or simply L-prop)
following the factor graph. One R-prop and one
L-prop constitute a decoding iteration. Convergence can
usually be reached in a few iterations. It is customary to
permute the original factor graph in Fig. 2 to the form
shown in Fig. 3 in a bit-reversal manner [6], so that the
wiring between stages are kept the same to simplify a
time-multiplexed implementation.

Note that although SC and BP decoding work on the same
factor graph, the major difference between the two is that
BP does not impose a sequential order of decoding, and the
messages are “flooded” across the factor graph.

The basic node used in BP decoding is shown in Fig. 4 [6],
where i is the bit index and j is the stage index. The
left-bound messages (L messages) and right-bound mes-
sages (R messages) are calculated by

L j,i = f (L j+1,2i+1 + R j,i+N/2, L j+1,2i)

L j,i+N/2 = f (L j+1,2i , R j,i) + L j+1,2i+1

R j+1,2i = f (L j+1,2i+1 + R j,i+N/2, R j,i)

R j+1,2i+1 = f (L j+1,2i , R j,i) + R j,i+N/2

where the f function is identical to the f function used in SC
decoding. f (a, b) ≈ sign(a)sign(b) min (|a|, |b|).

A decoding iteration starts with R-prop from stage 1 to
stage log N − 1 to propagate frozen set information, followed
by L-prop from stage log N to stage 1 to propagate channel
outputs. Although Fig. 4 indicates that a node computes
four output messages at a time – two L messages and two
R messages, the calculation can be made uni-directional at
any given time. That is, in an R-prop, a node computes only

Fig. 4. Basic node of a BP decoder.

two R messages; and in an L-prop, a node computes only two
L messages. In addition, the calculations in R-prop and L-prop
are identical, enabling the same hardware node to be used in
both R-prop and L-prop.

At the end of each iteration, the L0,i messages produced
by stage 1 in the L-prop are taken as the soft decisions. The
signs of the soft decisions are the hard decisions. The FER
and BER improve with more iterations. The decoding latency
is nit (2 log N − 1), assuming each stage being processed in
parallel and nit iterations are performed.

III. DECODER ARCHITECTURE AND FAST

DESIGN METHODOLOGY

Our bit selection methods rely on Monte Carlo decoding
simulations, which can be highly time consuming. In order
to make the bit selection methods practical, it is necessary to
use an accelerator, e.g., an FPGA, to speed up the simulations,
and automate the mapping of the decoder on the accelerator to
reduce the design effort. Before we introduce the bit selection
methods, we will briefly discuss our FPGA accelerator design
and the mapping procedure to facilitate the bit selection
experiments.

A. Decoder Architecture

The factor graph of a polar code can be mapped to a fully
parallel architecture with each node mapped to a processing
element (PE) and edges mapped to wires. For an N-bit
polar code, a fully parallel architecture requires N

2 log N PEs
and N Q log N wires for connecting the PEs (assuming the
message bit width is Q). The fully parallel architecture offers
the highest throughput, but the large number of PEs coupled
with numerous wires complicate the design, making it less
scalable.

The natural way to partition the fully parallel architecture
is along the stage boundaries. Such a partition results in a
stage-parallel architecture that utilizes only one column of N

2
PEs for a N-bit polar code. The column of PEs will be time-
multiplexed between log N stages, sacrificing throughput by
a factor of log N but reducing the implementation complexity
by approximately the same factor. The reduction in complexity
is an important consideration as it ensures that a decoder for
a sufficiently long code can be mapped to widely available
FPGA platforms, and a lower complexity translates to faster
hardware synthesis, placement and routing. The reduction
in throughput can be recouped by using parallel hardware
modules.

SUN AND ZHANG: DESIGNING PRACTICAL POLAR CODES USING SIMULATION-BASED BIT SELECTION 597

Fig. 5. FPGA block diagram.

In the stage-parallel architecture, a PE consists of two
f functions (compare-select and XORs) and two adders to
implement message processing. With bit-reversal shuffling,
the wiring pattern between stages can be made the same,
but switches are still needed to enable the use of the same
PEs for both R-prop and L-prop in message-passing decoding.
Specifically, three sets of switches are required as shown in
Fig. 5: output switches, forwarding switches, and memory
switches. The switches are implemented in N Q 2-to-1 MUXs
to choose between R-prop and L-prop. The PE input selections
are used to choose the appropriate inputs to the PEs for
different stages. The forwarding selections are implemented
in N Q 3-to-1 MUXs to select among forwarding, loading
test vectors at the start of L-prop, and loading frozen set
information at the start of decoding. The memory selections
are implemented in N Q 2-to-1 MUXs to select between
memory read and loading frozen set information at the start
of decoding.

Two memories, Lmem and Rmem are used to store L
messages and R messages. The column of N

2 PEs read/write
N Q bits from/to the memory in parallel. Each memory word is
N Q-bit wide, and each memory stores log N −1 words. In an
R-prop, L messages are read from Lmem, and new R messages
are stored in Rmem. Similarly in an L-prop, R messages are
read from Rmem, and new L messages are stored in Lmem.
The switching between the two memories is implemented by
N Q 2-to-1 MUXs and DEMUXs.

To perform real-time emulation, an AWGN channel emu-
lator and a built-in tester are integrated with the decoder
to provide test vectors and to collect decoding errors. Our
AWGN channel emulator was based on AWGN noise genera-
tors implemented using Box-Muller Transform. These AWGN
noise generators can be conveniently instantiated through
Xilinx LogiCORE. The AWGN noise is scaled according to
the given channel SNR and added to BPSK-modulated bits in
forming the input vectors for the decoder.

The decoder takes the frozen set information as R
inputs (Rin) and the channel outputs as L inputs (Lin). Rin

is set to 0 if a bit is an information bit, and Rin is set
to the maximum allowed value if a bit is a frozen bit.

Fig. 6. FPGA scheduling.

TABLE I

HARDWARE UTILIZATION OF STAGE-PARALLEL BP DECODERS

ON A XILINX VIRTEX-6 SX475T FPGA

Lmem and Rmem entries are all initialized to 0. The stage-
parallel decoder follows a read-process-write 3-stage pipeline
and the schedule is shown in Fig. 6. One decoding iteration
consists of 2 log N cycles including log N −1 cycles of R-prop
followed by log N cycles of L-prop and one pipeline stall in
between. Note that cycle 1 and cycle 2n + 1 represent the
same cycle in Fig. 6, but they are separated in the figure for
illustration.

B. Design Methodology

The decoder is built using a semi-automated method con-
sisting of a module library and an assembly script to facilitate
its reuse. The module library is made up of parameterized
common blocks required for a decoder. A script is used to
assemble blocks and set parameters. The library and script
method allows one to easily construct different decoders in
minutes, minimizing the hardware design effort.

In order to support different experiments without having to
redesign the hardware, the decoder also incorporates run-time
tunable parameters, including decoding iterations, algorithmic
knobs, and the channel SNRs. These parameters are inputs of
the FPGA at run time.

The FPGA resource utilization is listed in TABLE I for
N-bit stage-parallel decoders (N = 256, 512, 1024). Even the
largest design listed in the table consumes only a small fraction
of the available resources on a Xilinx Virtex-6 SX475T FPGA.
There is ample room to support decoders for even longer codes
for practical applications, where the block lengths are usually
limited to a few Kb.

The decoder is mapped to FPGA to accelerate the bit
selection of polar codes. The frozen set is fed to FPGA
as an N-bit input pattern, indicating whether each bit is
frozen or not, and the decoder hardware design is independent
of the frozen set. In this work, we are interested in how each

598 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 7, NO. 4, DECEMBER 2017

Fig. 7. Test setup block diagram.

frozen set affects the error-correcting performance of the code,
the results of which guides the fine-tuning of the bit selection.
Fig. 7 shows the test setup for bit selection: the inner loop
of the bit selection is done on FPGA that runs Monte Carlo
decoding simulations, and the outer loop is done in software
that sets up the Monte Carlo simulations by sampling results
from the decoder and setting run-time parameters and control
signals.

IV. SIMPLE BIT SELECTION METHODS

We first develop two simple bit selection methods and
discuss their weaknesses. The simple methods are developed
for BP decoding using 256-bit polar codes. The results are
applicable to codes of longer block lengths.

A. One-Time Rank-and-Freeze

The bit selection should be based on the error probability of
each bit – the most reliable bits are used as information bits,
and the least reliable ones are frozen. To measure the error
probability of each bit of an N-bit polar code, we start with
the rate-1 code using the method below.

1) Set all bits as information bits.
2) Run Monte Carlo BP decoding simulations and measure

the error rate of each bit.
3) Rank the bits based on error rate and freeze the N − K

least reliable bits to obtain the bit selection for an (N, K)
polar code.

We call this bit selection method one-time rank-and-freeze.
Step 2 of this algorithm dominates the overall compute time,
and we use FPGA to accelerate the Monte Carlo decoding
simulations. The complexity of this bit selection method is
O(NMC), where NMC is the number of Monte Carlo decoding
simulations.

Using a 6-bit fixed-point BP decoding in an AWGN chan-
nel (at an SNR of 7 dB), the measured BER of each bit
of the (256, 256) polar code is shown in Fig. 8(a). The
BER spreads over one order of magnitude. Based on the BER
ranking, we select a rate-0.5 (256, 128) code with 128 bits of
the worst BER frozen. The BER of each information bit of the
rate-0.5 (256, 128) code spreads over two orders of magnitude,
and improves by more than three orders of magnitude over the
rate-1 code, as shown in Fig. 8(b). The difference between
Fig. 8(a) and Fig. 8(b) shows the effect of freezing low-
capacity bits: by freezing high-error bits, the performance of
the remaining bits can be significantly improved.

Fig. 8. BER of each bit of (a) a (256,256) polar code and (b) a (256,128)
polar code.

However, at a relatively high SNR of 7 dB, a BER of nearly
10-4 is far from being satisfactory for a rate-0.5 code. Experi-
ments at higher or lower SNR show no obvious improvement.
The simple one-time rank-and-freeze method does not work
well because it violates the precondition of channel polariza-
tion. The derivation of channel polarization is based on the
precondition that when decoding bit i , all the former bits from
0 to i − 1 are already known [1]. The one-time rank-and-
freeze method evaluates the BER of bit i , while allowing all
the remaining bits to be non-frozen. The flooding of messages
back-and-forth over the factor graph allows low-capacity bits
to affect the decoding of high-capacity bits. As a result,
a high BER measured using this method does not necessarily
indicate a low-capacity bit; and similarly, a low BER does
not necessarily indicate a high-capacity bit either. Due to the
unreliable BER measurement, this simple bit selection method
is unsatisfactory.

B. Iterative Rank-and-Freeze

To account for the inter-bit dependence, the one-time rank-
and-freeze method is refined to an iterative rank-and-freeze
method. The idea is that instead of ranking all bits and freezing
N − K bits at one time, a part of N − K bits are frozen at
a time. After a part is frozen, the remaining non-frozen bits
are evaluated and ranked again, based on which the next part
of the frozen bits are chosen, until the desired code rate is
obtained. The method is described below, where Nit is the
number of iterations to be used.

1) Set all bits as information bits.
2) For i = 1 to Nit

a) Run Monte Carlo BP decoding simulations and
measure the error rate of each non-frozen bit.

SUN AND ZHANG: DESIGNING PRACTICAL POLAR CODES USING SIMULATION-BASED BIT SELECTION 599

b) Rank the non-frozen bits based on error rate and
freeze the Mi least reliable bits.

Note that the number of bits to freeze in iteration i , namely Mi ,
is chosen such that

∑Nit
i=1 Mi = N − K . If smaller Mi values

are chosen, more iterations are needed. The complexity of
the iterative rank-and-freeze algorithm is O(Nit NMC). We use
FPGA to accelerate the inner loop (Monte Carlo simulation),
and the outer loop (iteration) is done using a script that
interacts with the FPGA accelerator.

For ease of illustration, the BER of each non-frozen bit of
a 256-bit polar code is sorted and displayed in a distribution
shown in Fig. 9. Fig. 9(a) and Fig. 9(b) are two examples
of the outcomes of running four iterations of iterative rank-
and-freeze algorithm following slightly different procedures.
In the first example shown in Fig. 9(a), the numbers of bits
frozen in each iteration are {65, 98, 114, 122}, resulting in a
(256, 191) code, a (256, 158) code, a (256, 142) code, and
a (256, 134) code after the first, second, third and final itera-
tion. In the second example shown in Fig. 9(b), the numbers
of bits frozen in each iteration are {36, 67, 92, 112}, resulting
in a (256, 220) code, a (256, 189) code, a (256, 164) code,
and a (256, 144) code. It is evident from both examples
that the impact of frozen set on BER is significant: after
a few unreliable bits are frozen, the BER of the remaining
bits are enhanced. As expected, the refined method produces
better bit selections. However, the choices of the number of
iterations and the number of bits to freeze in each iteration
play important roles.

A closer look at the results unveils more insights. First,
the bit selection is different depending on how the iterative
procedure is carried out and how many bits are frozen in every
iteration. For example, the BER of the (256, 142) code in the
first example is higher than the BER of the (256, 144) code
in the second example, although the former is a lower rate
code. Second, the BER of the bit selection does not improve
in a monotonic fashion with more iterations. For example,
in Fig. 9(a), the BER of the (256, 158) code produced in
the second iteration is not uniformly better than the BER of
the (256, 191) code produced in the first iteration, although
the former is derived from the latter by freezing some of the
latter’s non-frozen bits.

The iterative rank-and-freeze method improves upon the
one-time rank-and-freeze method by freezing a portion of the
bits at a time when evaluating BERs. In each iteration, the bits
of the worst BER are frozen. In the next iteration, these bits
will no longer affect decoding. How well the iterative rank-
and-freeze method works depends on how many of the bits
of the worst BER are frozen in each iteration. Fig. 9(a)
and Fig. 9(b) illustrate two different outcomes depending
on the number of bits frozen in each iteration. We note
that the iterative rank-and-freeze method still violates the
precondition of channel polarization. Therefore, the iterative
rank-and-freeze method is still unsatisfactory.

V. IN-ORDER BIT SELECTION ALGORITHM

In deriving channel polarization, SC decoding was used
to decode polar codes in order, i.e., from u0 to uN−1 [1].

Fig. 9. Distribution of BER of each bit of two 256-bit polar codes using
iterative rank-and-freeze algorithm.

u0 is decoded first given channel outputs; next, given u0 and
channel outputs, u1 is decoded; next, given u1

0 (represents bits
u0 to u1) and channel outputs, u2 is decoded, and so on. The
SC decoding of ui depends only on the previously decoded
bits ui−1

0 and channel outputs. If ui−1
0 are frozen, decoding of

ûi−1
0 is guaranteed to be correct and therefore ûi depends only

on channel outputs, and the capacity of ui can be accurately
measured by the error probability.

Similarly in BP decoding, as an approximation of SC, if bits
ui−1

0 are frozen and bits uN−1
i+1 are non-frozen, the error proba-

bility of ui can be accurately measured. The data dependency
under such condition in BP is the same as SC. The error
probability measurement allows us to properly rank the bits
and perform bit selection. This in-order bit selection method
is elaborated below.

1) For i = 0 to N − 1

a) If i = 0, then set all bits as information bits.
If i ≥ 1, then freeze bits ui−1

0 and set bits uN−1
i

non-frozen.
b) Run Monte Carlo BP decoding simulations and

measure the error rate of ui .

2) Rank the bits based on error rate and freeze the N − K
least reliable bits to obtain the bit selection for an (N, K)
polar code.

600 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 7, NO. 4, DECEMBER 2017

Unlike the previous two methods, the in-order bit selection
method follows the derivation of channel polarization. When
evaluating the error probability of bit i , all the former bits
from 0 to i − 1 are already frozen. In this way, the measured
error probability of each bit will be reliable, as they cannot
be affected by the former frozen low-capacity bits. Therefore,
the bit selection using the in-order method is also reliable.
The complexity of the in-order bit selection algorithm is
O(N NMC).

The in-order bit selection method requires reliable mea-
surement of error probability using Monte Carlo simulations.
The number of Monte Carlo simulations, NMC , depends on
error rate. The lower the error rate, the more the number of
Monte Carlo simulations is required to collect enough errors.
In short, the complexity of our method scales inversely with
BER. As the code length increases, N increases and BER
decreases, which in turn increases NMC . The exact complexity
scaling factor depends on how BER decreases with increasing
code length. If we hold code length constant and decrease code
rate, BER decreases, which in turn increases NMC . The exact
complexity scaling factor depends on how BER decreases with
decreasing code rate. To speed up in-order bit selection, we use
FPGA to accelerate the inner loop (Monte Carlo simulation),
and the outer loop is done using a script that interacts with
the FPGA accelerator.

The number of Monte Carlo runs NMC can be adjusted for
each bit. For a reliable bit, more Monte Carlo runs are required
to collect enough errors to obtain a statistically significant error
probability measurement, and to differentiate the reliabilities
of different bits for ranking and bit selection. On the other
hand, for an unreliable bit, the number of Monte Carlo runs
can be reduced to save time. Based on this idea, we designed
a three-pass scheme. In each pass, we run the in-order bit
selection algorithm with a higher NMC . The least reliable bits
are identified and excluded in the first pass, followed by the
medium reliable bits in the second pass, and the most reliable
and hard-to-distinguish bits in the third pass. Designing low
rate codes requires more passes as only a small set of the best
bits are chosen.

A. Optimal SNR for Bit Selection

We use an AWGN channel in the Monte Carlo simula-
tions. The best bit selection is expected to vary across SNR.
To confirm, we first obtain the bit selections using the in-order
method at different SNRs, and then test the performance of
the bit selections. The FER of the five (256, 128) codes with
bit selections done at SNR from 1 dB to 5 dB are shown
in Fig. 10. The performance of the five codes vary widely.
The codes designed at low SNRs perform worse, especially
at moderate to high SNR. The codes designed at high SNRs
exhibit much better performance throughout the SNR range.

To understand the implication of SNR on the bit selection,
we use TABLE II to show the minimum-distance error distrib-
ution for five (256, 128) polar codes with different frozen sets.
In this table, minimum-distance errors refer to errors where the
Hamming distance from the received codeword to the decoded
codeword is smaller than the Hamming distance from the

Fig. 10. FER performance of five (256, 128) polar codes designed at SNR
from 1 dB to 5 dB.

TABLE II

PERCENTAGE OF MINIMUM-DISTANCE ERRORS OF SIX (256, 128)
POLAR CODES DECODED BY BP

received codeword to the transmitted codeword. Each code’s
performance is displayed in one column: the bit selections
of the five codes are done using the in-order bit selection
method at SNR from 1 dB to 5 dB. Not surprisingly, at a
high (decoding) SNR, the majority of the errors are due to
minimum-distance errors. Therefore if the bit selection is done
at a high SNR, the resulting bit selection will specifically
reduce the minimum-distance errors and increase the minimum
distance of the code.

Comparing the results presented in TABLE II across the
columns in one row, the bit selections done at a high SNR
yield fewer minimum-distance errors when simulated in the
same channel condition, indicating a larger minimum distance
for these codes. Therefore it is expected that a bit selection
done at a high SNR has a larger minimum distance.

To run bit selection using the simulation-based in-order
selection method, we need the SNR to be sufficiently high,
such that the minimum-distance errors dominate the error
profile. However, our method is not sensitive to SNR. The
optimal design SNR is found to be around 4 dB for an
AWGN channel, and it is independent of rate or code length
of practical interest, i.e., from 256 to 4K.

B. Implementation and Acceleration of Bit Selection

In our design, part of the bit selection method is imple-
mented on FPGA and part is implemented in software script
that interacts with the FPGA. To support the in-order bit
selection, we need to measure a bit’s error probability. So a
N-to-1 MUX, done in a tree structure, is added to the decoder

SUN AND ZHANG: DESIGNING PRACTICAL POLAR CODES USING SIMULATION-BASED BIT SELECTION 601

Fig. 11. FER performance of two (1024, 512) polar codes, one designed
without early termination and one designed using early termination.

on FPGA to select one of N bit decisions. To run the bit
selection, the software script sets up the the frozen set for the
decoder, and selects the appropriate bit to monitor its BER.
Once the BER is properly measured, the software script moves
to the next bit.

BP decoding is iterative and more iterations tend to improve
the error-correcting performance. For the results presented so
far, we have used a maximum iteration L = 15 to limit the
simulation time. To further speed up the bit selection, one
effective approach is early termination [22], since the decoding
for the majority of the inputs converges after a small number
of iterations (much less than 15). However, unlike an LDPC
code, there is not a clear convergence indicator for polar codes.

We propose an approximate convergence detection by mon-
itoring the hard decisions for consecutive iterations. If each bit
obtains an identical hard decision for T consecutive iterations,
the decoder is allowed to terminate. The cost of implementing
consecutive decision matching is relatively low, requiring only
(T − 1) 2-input XNOR gates per bit, and one N(T − 1)-input
AND gate at the top level. To prevent mis-detection, a second
criterion is added to ensure that a minimum number of
iterations M is met. As Fig. 11 shows, the code designed with
early termination (M = 3, T = 3 and maximum 15 iterations)
has similar error-correcting performance as the code designed
without early termination (maximum 15 iterations), but early
termination can speed up bit selection by up to 5 times.

The decoder used for bit selection can adopt a short word
length to reduce its footprint on an FPGA and to reduce
the minimum clock period. For example, comparing a 6-bit
decoder with an 8-bit decoder implemented in the identical
stage-parallel architecture on FPGA, the 8-bit decoder costs
10% more registers, 20% more LUTs, 30% more slices and
25% more RAMs, and the minimum clock period has to be
relaxed by 40%. Comparing the error-correcting performance
of three bit selections obtained using three different decoders,
we see in Fig. 12 that the performance of these different
bit selections are similar. In particular, bit selection A is
obtained using a Q6.0 (6-bit integer including a sign bit,
and 0-bit fraction) decoder; bit selection B is obtained using
a Q6.2 decoder; and bit selection C is obtained using a

Fig. 12. FER performance of three (1024, 512) polar codes that are designed
using different fixed-point quantization schemes.

TABLE III

TIME REQUIRED FOR BIT SELECTION IN SOFTWARE (C SIMULATION

ON A MICROPROCESSOR) AND FPGA

Q8.0 decoder. The three bit selections are simulated using a
Q6.0 decoder to obtain the FER/BER curves in Fig. 12. The
error-correcting performance of the three constructions being
nearly indistinguishable justifies a smaller decoder design to
be used to permit a higher degree of parallelism to speed up
bit selection.

VI. RESULTS

We used the in-order bit selection method to design three
polar codes, a (256, 128) code, a (512, 256) code, and a (1024,
512) code. The FPGA resource utilization is shown in Table I.
The FER and BER of the three codes using BP decoding
are compared with the bit selection by density evolution for
an AWGN channel at 4 dB [18] in Fig. 13. Compared
to the codes designed by density evolution for an AWGN
channel, our (256, 128) code’s BER performance is similar, but
our (512, 256) code outperforms at low SNR, and our (1024,
512) code achieves 0.3 to 0.6 dB coding gain over a wide
SNR range.

The in-order bit selection for a 256-bit polar code requires
on the order of 50k Monte Carlo simulations per bit at 1 dB
SNR, or 2M simulations per bit at 4 dB SNR, as more
simulations are necessary at a high SNR due to the lower
BER. As discussed previously, to obtain a good bit selection,
the bit selection needs to be done at a relatively high SNR
instead of a low SNR. For a longer code, the simulation time
increases further due to the lower BER and more bits in a

602 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 7, NO. 4, DECEMBER 2017

Fig. 13. Performance of (a) (256, 128) (b) (512, 256) (c) (1024, 512) polar
codes designed with in-order bit selection.

longer code. The number of simulations per bit for a 1024-bit
code is one order of magnitude higher than a 256-bit code.

In TABLE III, we compare the time required for the
bit selections using a compiled C code running on an Intel
Core i7-4790K processor (quad core, 8M cache, 4.40 GHz,
32GB memory) without multi-threading or SIMD extension
and using a Xilinx Virtex-6 SX475T FPGA (100MHz) to
provide acceleration. The decoder is implemented in a stage-
parallel architecture. The speedup by FPGA is significant: at
4 dB SNR, the 256-bit code selection requires 1.8 days on
a microprocessor but only 22 minutes with the FPGA – a
120 times speed up. The estimated C code simulation time
for the 1024-bit code is about 1 year, making it impractical.
However, with the FPGA, the bit selection can be done in
1 day – a 360 times speedup. The comparison demonstrates

the need for acceleration in simulation-based bit selections.
One can also use multiple cores and SIMD on CPUs or GPUs
to speed up bit selections.

VII. CONCLUSION

In this work, we present a simulation-based bit selection
method and an acceleration methodology to design polar codes
for BP decoding. Starting with two hypothetical bit selection
methods and the analysis of their weaknesses, we present
an in-order bit selection method that bases the frozen set
selection on a reliable evaluation of the bit error probability.
Nonidealities of the implementation are also accounted for,
such as finite block length and fixed-point quantization. The
method is applicable to different code rates, code lengths, and
channels, and even channels without explicit models. As a
result, the method can be deployed in the field to select bits
based on the physical channel. The results are demonstrated in
three code designs, a (256, 128) code, a (512, 256) code, and
a (1024, 512) code. Compared to the codes designed by density
evolution for an AWGN channel, our (512, 256) code improves
coding gain in BP decoding at low SNR, and our (1024, 512)
code improves coding gain in BP decoding by 0.3 to 0.6 dB
over a wide SNR range.

To speed up the simulation-based bit selection, we make use
of a stage-parallel BP decoder on FPGA. The inner loop of the
bit selection is done on FPGA to cut the simulation time by
orders of magnitude. To further speed up the bit selection,
we implement an early termination scheme to shorten the
decoding latency by up to 5 times. As a result, the bit selection
for a 256-bit polar code takes only 22 minutes and a 1024-bit
polar code takes 1 day, making it feasible for designing codes
of practical block lengths.

ACKNOWLEDGMENT

The authors would like to thank Y. Tao and
Dr. Y. S. Park for establishing the initial BP decoder
simulation, Prof. W. J. Gross for providing the density
evolution bit selection, and Dr. F. Sheikh and collaborators at
Intel Labs for supporting this research and providing advice.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] B. Zhang et al., “A 5G trial of polar code,” in Proc. IEEE Globecom
Workshops (GC Wkshps), Dec. 2016, pp. 1–6.

[3] D. Zhang. (2016). Up in the Air With 5G. [Online]. Available:
http://www.huawei.com/en/publications/communicate/80/up-in-the-air-
with-5g

[4] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures
for successive cancellation decoding of polar codes,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., May 2011, pp. 1665–1668.

[5] C. Zhang and K. K. Parhi, “Low-latency sequential and overlapped
architectures for successive cancellation polar decoder,” IEEE Trans.
Signal Process., vol. 61, no. 10, pp. 2429–2441, May 2013.

[6] A. Pamuk, “An FPGA implementation architecture for decoding of
polar codes,” in Proc. Int. Symp. Wireless Commun. Syst., Nov. 2011,
pp. 437–441.

[7] Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68 Gb/s belief propagation
polar decoder with bit-splitting register file,” in Symp. VLSI Circuits Dig.
Tech. Papers, Jun. 2014, pp. 1–2.

SUN AND ZHANG: DESIGNING PRACTICAL POLAR CODES USING SIMULATION-BASED BIT SELECTION 603

[8] B. Yuan and K. K. Parhi, “Architecture optimizations for BP polar
decoders,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
May 2013, pp. 2654–2658.

[9] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[10] U. U. Fayyaz and J. R. Barry, “Low-complexity soft-output decoding of
polar codes,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 958–966,
May 2014.

[11] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE
Commun. Lett., vol. 16, no. 10, pp. 1668–1671, Oct. 2012.

[12] Y. Wang and K. R. Narayanan, “Concatenations of polar codes with
outer BCH codes and convolutional codes,” in Proc. 52nd Annu. Allerton
Conf. Commun., Control, Comput., Sep. 2014, pp. 813–819.

[13] J. Guo, M. Qin, A. G. I. Fabregas, and P. H. Siegel., “Enhanced belief
propagation decoding of polar codes through concatenation,” in Proc.
IEEE Int. Symp. Inform. Theory, Jun. 2014, pp. 2987–2991.

[14] C. Zhang, X. Yu, and J. Sha, “Hardware architecture for list succes-
sive cancellation polar decoder,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Jun. 2014, pp. 209–212.

[15] J. Lin, C. Xiong, and Z. Yan, “Reduced complexity belief propagation
decoders for polar codes,” in Proc. IEEE Workshop Signal Process. Syst.,
Oct. 2015, pp. 1–6.

[16] R. Mori and T. Tanaka, “Performance and construction of polar codes
on symmetric binary-input memoryless channels,” in Proc. IEEE Int.
Symp. Inf. Theory, Jun. 2009, pp. 1496–1500.

[17] R. Mori and T. Tanaka, “Performance of polar codes with the con-
struction using density evolution,” IEEE Commun. Lett., vol. 13, no. 7,
pp. 519–521, Jul. 2009.

[18] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf.
Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013.

[19] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans.
Commun., vol. 60, no. 11, pp. 3221–3227, Nov. 2012.

[20] C. Xiong, Y. Zhong, C. Zhang, and Z. Yan, “An FPGA emulation
platform for polar codes,” in Proc. IEEE Int. Workshop Signal Process.
Syst. (SiPS), Oct. 2016, pp. 148–153.

[21] J. Wuthrich, A. Balatsoukas-Stimming, and A. Burg, “An FPGA-based
accelerator for rapid simulation of SC decoding of polar codes,” in
Proc. IEEE Int. Conf. Electron., Circuits, Syst. (ICECS), Dec. 2015,
pp. 633–636.

[22] B. Yuan and K. K. Parhi, “Early stopping criteria for energy-efficient
low-latency belief-propagation polar code decoders,” IEEE Trans. Signal
Process., vol. 62, no. 24, pp. 6496–6506, Dec. 2014.

Shuanghong Sun (S’11) received the B.S. degree in
electrical and computer engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2012, and
the B.S. and M.S. degrees in electrical engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 2012 and 2014, respectively, where she
is currently pursuing the Ph.D. degree in electrical
engineering.

She was with Broadcom Ltd., Irvine, CA, and
Qualcomm Inc., San Diego, CA, in 2015. Her
research interests are channel coding, digital archi-

tectures, and high-performance VLSI systems.

Zhengya Zhang (S’02–M’09) received the B.A.Sc.
degree in computer engineering from the University
of Waterloo, Waterloo, ON, Canada, in 2003, and
the M.S. and Ph.D. degrees in electrical engineer-
ing from the University of California at Berkeley
(UC Berkeley), Berkeley, CA, USA, in 2005 and
2009, respectively. He has been with the faculty of
the University of Michigan, Ann Arbor, since 2009,
where he is currently an Associate Professor with the
Department of Electrical Engineering and Computer
Science. His current research interests include low-

power and high-performance VLSI circuits and systems for computing,
communications, and signal processing.

Dr. Zhang was a recipient of the National Science Foundation CAREER
Award in 2011, the Intel Early Career Faculty Award in 2013, the David
J. Sakrison Memorial Prize for Outstanding Doctoral Research in electrical
engineering and computer sciences at UC Berkeley, and the Best Student Paper
Award at the Symposium on VLSI Circuits. He was a past Associate Editor
of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—Part I: Regular
Papers from 2013 to 2015 and the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS—Part II: Express Briefs from 2014 to 2015. He has been serving
as an Associate Editor of the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS since 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

