
Post-Processing Methods for Improving Coding
Gain in Belief Propagation Decoding of Polar Codes

Shuanghong Sun, Sung-Gun Cho and Zhengya Zhang
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI, 48109-2122

Abstract—Belief propagation (BP) is a high-throughput, low-
latency decoding algorithm for polar codes, but the error-
correcting performance is known to be inferior than successive
cancellation (SC) decoding. To improve the error-correcting
performance of BP decoding, we design post-processing methods
targeting false converged errors, oscillation errors, and uncon-
verged errors that determine the performance of BP decoding.
False convergence can be resolved by perturbing, or gradually
freezing the information bits, followed by error cleanup using
BP. Oscillations can be resolved by enhancing the stable bits and
perturbing the unstable bits, followed by error cleanup using BP.
Unconverged errors can be resolved by enhancing the reliably
stable bits and weakening the unstable bits. Results show that
the error rates of BP decoding can be improved by an order of
magnitude or more, allowing it to overtake SC in error rate and
coding gain. Post-processing can be implemented very efficiently,
costing less than 4.3% overhead in silicon area, and it does not
affect the throughput or latency of BP decoding.

I. INTRODUCTION

Being the first provably capacity-achieving code for any
binary-input discrete memoryless channels (B-DMC) [1], po-
lar code holds great potential in its error-correcting capability.
The two main decoding algorithms of a polar code are
successive cancellation (SC) [1] and belief propagation (BP)
[2]. SC decoding provides a lower error rate than BP decoding
[3], but BP decoding offers a higher decoding throughput
and a shorter latency. SC list [4] decoding offers the best
error rate, but it suffers from an even lower throughput and a
longer latency than SC decoding. For applications that require
a multiple Gb/s data rate and latency well below 1 µs, BP
decoding is possibly the best candidate available. However,
the error-correcting performance of BP decoding of polar
codes has been underwhelming and often does not even match
BP decoding of LDPC codes of similar block lengths [5].

BP is an iterative message passing algorithm operating
on a factor graph. BP gained its popularity in decoding
LDPC codes. Despite its impressive performance in decoding
LDPC codes, BP decoding of LDPC codes suffers from the
error floor phenomenon [6], which sets the lower bound on
achievable error rate. The majority of the errors in the error
floor region is detectable by parity checks and can be corrected
by post-processing methods [7]. Although polar codes do
not use parity checks, decoding errors can be detected by
a concatenated cyclic redundancy check (CRC) [8].

In this work, we formulate post-processing methods to
improve the error-correcting capability of BP decoding. We
demonstrate that the error rates of BP decoding can be

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

u

û

x

y

or or

Fig. 1. Factor graph of N=8 polar code used by BP decoding.

lowered by at least an order of magnitude at a moderate to
high SNR level, making BP decoding of polar codes more
competitive than SC decoding. We show by chip synthesis
that post-processing adds minimal overhead to BP decoding.
A BP decoder with post-processor can be implemented in
a substantially more cost-efficient manner, measured in Gb/s
throughput per mm2 silicon area.

II. BACKGROUND

The generator matrix GN of a polar code with block length
N = 2n is the n-th Kronecker power of F =

[
1 0
1 1

]
, i.e.,

GN = F⊗n [1]. Fig. 1 is the factor graph of an N = 8 polar
code describing G8, where +⃝ is XOR, and = is pass-through.
To obtain the codeword x = uG, the binary message u is
passed from left to right of the factor graph, and the codeword
is obtained on the right hand side. When the block length is
sufficiently long, polarization [1] takes effect, referring to the
phenomenon that bits become either highly reliable or highly
unreliable under SC decoding. Highly reliable bits are used to
carry information, and the highly unreliable ones are frozen,
i.e., set to fixed values. The set of information bits is called
the information set denoted by A, and its complement Ac is
the frozen set [1].

In SC decoding, the message bits û0 to ûN−1 are decoded
one after another based on the channel output y and the
previously decoded bits, and the decoding latency is O(N).
If i ∈ Ac, ûi = 0; otherwise ûi is decoded by the maximum
likelihood decision rule:

ûi =

{
0 if P (y,ûi−1

0 |ui=0)

P (y,ûi−1
0 |ui=1)

> 1

1 otherwise

In BP decoding, all the bits are decoded in parallel by
passing soft LLR messages iteratively over the factor graph,

978-1-5090-5019-2/17/$31.00 ©2017 IEEE

3 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 6.6 7 7.43 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 6.6 7 7.43
Eb/N0 (dB)

4 5 6

100%

80%

60%

40%

20%

0%

unconverged false
converged oscillation

3 4 5 6
Eb/N0 (dB)(a) (b)

Fig. 2. BP error distribution of (a) a (256, 136) polar code and (b) a (1024,
522) polar code using a 6-bit quantized decoder.

from left to right and then right to left. The decoding latency
is O(logN). Information of the frozen set Ac is passed from
left to right, and the channel LLRs y is propagated from right
to left. Decision on the bits û is obtained at the end of each
iteration, and running more iterations generally improves the
error-correcting performance.

III. PRELIMINARIES

In our previous work [8], we classified BP decoding errors
based on the patterns of hard decisions. Due to the lack
of parity checks, it is not straightforward to detect errors.
Therefore, we concatenate polar codes with CRC, making
most of the BP decoding errors detectable. CRC also enables
termination of BP decoding early [9] and in the right iteration.
We briefly review the preliminaries in this section.

A. Types of Error

Fig. 2 shows the statistical breakdown of BP decoding
errors for a (256, 136) and a (1024, 522) polar code. Although
only two examples are shown, the breakdowns are represen-
tative. Error breakdown varies depending on the block length,
the code rate, and the quantization [10], discussed in [8].

1) Unconverged Error: If hard decisions fail to agree
within a set iteration limit, and there is no systematic pattern
in the hard decisions, we classify it as an unconverged error.
Unconverged errors dominate at low SNR.

2) False Converged Error: As SNR increases, it is more
likely for BP decoding to reach convergence, however, BP
decoding can converge to an incorrect codeword. We call it a
false converged error.

3) Oscillation Error: At high SNR, BP decoding can
result in oscillations, referring to the bit decisions bouncing
back and forth following a systematic pattern over iterations.
Oscillations are due to the loops in the factor graph that allow
erroneous bits to propagate wrong messages that circle around
in loops. The oscillation effect is often exacerbated by a finite
numerical range that causes LLR messages to be clipped.

B. Concatenating with CRC

By monitoring hard decisions in consecutive iterations,
unconverged errors and oscillation errors are detectable, but
false converged errors are not. We reallocate parity bits by
concatenating polar code with CRC to detect converged errors.

A CRC enables the detection of more than 99% of the
errors in BP decoding. Reallocating a few frozen bits of polar

3
Eb/N0 (dB)

4 5 6

10-1

10-3

10-5

10
-7

10
-9

3 4 5 6
Eb/N0 (dB)

(a) (b)
w/o CRC FER

w/o CRC BER

w/ CRC FER

w/ CRC BER

-10

-09

-08

-07

-06

-05

-04

-03

-02

-01

3 4 5 6

-10

-09

1E-08

-07

1E-06

-05

-04

-03

-02

-01

B
E

R
/F

E
R

Fig. 3. Error rates of BP decoding with and without CRC concatenation: (a)
a (256, 128) polar code and a (256, 136) polar code concatenated with 8-
CRC, (b) a (1024, 512) polar code and a (1024, 522) polar code concatenated
with 10-CRC.

3 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 6.6 7 7.4

100%

80%

60%

40%

20%

0%
3

Eb/N0 (dB)
4 5 6

unconverged false
converged oscillation

3 4 5 6
Eb/N0 (dB)

(a) (b)undetected

Fig. 4. BP error distribution with CRC concatenation and termination: (a)
a (256, 128) CRC-concatenated polar code and (b) a (1024, 512) CRC-
concatenated polar code that are decoded by a 6-bit quantized decoder.

code to parity bits of CRC increases the code rate of polar
code, leading to a slight rise in error rate at the same SNR
as shown in Fig. 3. The loss of coding gain is less noticeable
for a longer code since the number of reallocated parity bits
becomes negligible relative to the block length.

With CRC performing error detection, BP decoding can be
terminated if CRC passes. Compared to the error breakdown
in Fig. 2 using a fixed number of iterations, termination based
on CRC is more reliable. CRC-based termination allows a
decoder to lock in the correct codeword before the decoder
diverges due to loopy message passing, helping to resolve
some unconverged errors and oscillation errors as shown in
Fig. 4. Although CRC-based termination reduces errors, the
increment in code rate means a loss in effective SNR, which is
the reason behind the rise in error rate. Also notice that CRC
can miss errors, causing undetected errors, but the proportion
of undetected error is negligible at moderate to high SNR.

IV. POST-PROCESSING METHODS

False converged errors and oscillation errors determine the
error-correcting performance of BP decoding at moderate to
high SNR level. A false converged error represents a steady
state that “traps” the decoder. To escape, the steady state
needs to be perturbed. Compared to a false converged error,
an oscillation error provides direct clues as to which bits
are stable and unstable. The insight can be exploited to stop
oscillations by enhancing the stable bits and perturbing the
unstable bits. Regular BP decoding can be used to clean up

the errors caused by perturbation. These intuitive ideas form
the basis of our post-processing methods.

In BP decoding, the frozen set information is propagated
from left to right of the factor graph. The frozen set infor-
mation is carried by the so-called R messages. If a bit ui is
frozen, we set the R message of ui to the maximum positive
value, which effectively biases ûi to 0. If ui is free, the
R message of ui is set to zero, so that ûi is unbiased and
entirely determined by the extrinsic messages. In summary,
if i ∈ Ac, Ri = Mmax; if i ∈ A, Ri = 0. In the rest of
the paper, we use the notation M<sub> to represent message
magnitude, with the actual meaning defined where it is used.

In post-processing, we tune the R messages of the in-
formation bits to introduce perturbation. This could also be
understood as biasing, or partially freezing the information
bits towards one direction or another: a positive R message
biases an information bit towards 0; and vice versa.

Since perturbation injects noise to the system, to quantify
the effect of perturbation in post-processing, we define a cost
function based on the decoded soft decisions.

C(x) ,
√∑

i∈A(Mmax − xi)2

|A|
,

where x is the vector of soft decisions of the decoded bits and
xi ∈ [−Mmax,Mmax], and A is the set of information bits.
Assume an all-zero codeword and a quantized BP decoder,
and Mmax is the maximum magnitude of a soft decision.
The cost function is essentially a measure of the normalized
average distance between the decoded soft decisions x and
the transmitted codeword.

A. Post-Processing False Converged Error

To fix false converged errors, we apply a small perturbation
to destabilize the converged state. A balancing act is needed
as perturbation increases the noise, and will likely cause errors
to be made. Therefore the perturbation needs to be kept low,
and perturbation should be applied discriminatingly. We use
the soft decision of a bit as an indication of the reliability of
the bit’s hard decision: if the magnitude of the soft decision
is high, the hard decision is most likely correct, and vice
versa. Therefore, we enhance the reliable bits and perturb the
unreliable bits at the same time. We use regular BP decoding
to clean up the errors introduced by perturbation. The post-
processing method is described in Algorithm 1.

The post-processing method starts by recognizing whether
a bit is reliable. If the soft decision xi reaches a set threshold
Mthreshold, indicating the decision being reliable, the bit is
enhanced by setting Ri with a small magnitude M0 in the
same direction as the hard decision, i.e., the sign of xi. Setting
Ri in the same direction as xi will amplify its influence on
neighboring bits in subsequent iterations. If a bit is unreliable
because xi is below Mthreshold, the bit is perturbed by
randomly setting Ri to either M0 or −M0 to bias the bit
towards 0 or 1, respectively. (The notation rand(±1) in the
algorithm refers to randomly picking 1 or -1.) The goal of the
post-processing is to push the state out of false convergence.

Algorithm 1: Post-processing false converged errors

1 for iter count = 1 to iter limit do
2 if CRC fails && hard decisions are consistent then
3 for i ∈ A do
4 if |xi| > Mthreshold then
5 if Ri == 0 then
6 Ri = sign(xi)×M0

7 else if |Ri| < Mlimit then
8 Ri = sign(xi)× |Ri| × c
9 else

10 Ri = −sign(Ri)×M0

11 else
12 if Ri == 0 then
13 Ri = rand(±1)×M0

14 else if |Ri| < Mlimit then
15 Ri = −sign(xi)× |Ri| × c
16 else
17 Ri = −sign(Ri)×M0

100%

80%

60%

40%

20%

0%
3 4 5 6 3 4 5 6

Eb/N0 (dB) unconverged false
converged oscillation Eb/N0 (dB)

(a) (b)undetected

Fig. 5. Error distribution after post-processing false converged errors in BP
decoding of (a) a (256, 128) CRC-concatenated polar code and (b) a (1024,
512) CRC-concatenated polar code.

After the perturbation, regular BP decoding is applied to clean
up the errors introduced by the perturbation in an attempt to
move towards convergence.

The post-processing is considered successful if either CRC
is satisfied, indicating correct convergence (except for few
numbers of undetected errors), or the hard decisions no
longer remain consistent, indicating the decoding has escaped
false convergence. If one attempt of post-processing is not
successful, a second attempt using stronger enhancement and
perturbation is applied (c > 1 in the algorithm). The attempts
continue until a limit Mlimit is reached to prevent excessive
noise. In case Mlimit is reached on a bit and the error is still
trapped in false convergence, the bit is perturbed by applying
a small bias M0 in the opposite direction.

The error breakdown after applying post-processing to false
converged errors is shown in Fig. 5. The post-processing
resolves the majority of the false converged errors by BP de-
coding following perturbation. However, perturbation causes
instability, turning some of the false converged errors into
unconverged errors and oscillation errors.

The iteration-by-iteration plots of the cost function of BP

(a) (b)iteration w/o PP
0

PP1

CRC pass

10 20 30
w/ PP iteration

0 10 20 30

PP1

Fig. 6. Cost functions of BP decoding with and without applying post-
processing Algorithm 1 (PP1): (a) an example of a false converged error
resolved by Algorithm 1, and (b) an example of a false converged error that
is not resolved by Algorithm 1.

decoding resulting in false converged errors are shown in
Fig. 6. In the example illustrated in Fig. 6(a), the cost initially
descends in BP decoding, and then false convergence is
detected and post-processed at iteration 5. The cost first rises
due to perturbation, allowing the decoder to escape false
convergence. The following regular BP decoding cleans up
the errors due to perturbation and converges to the correct
codeword. In the example in Fig. 6(b), false convergence is
detected and post-processed at iteration 14; and again detected
and post-processed at iteration 17. Regular BP decoding
follows each post-processing attempt, but the error turns into
an unconverged error that cannot be solved by Algorithm 1.

B. Post-Processing Oscillation Error

In post-processing false converged errors, we used the
magnitude of soft decisions to guide whether to apply en-
hancement or perturbation. Oscillation errors, on the other
hand, provide direct clues of which bits are reliable and
which ones are not. Unstable bits change their hard decisions
periodically and are considered unreliable, and stable ones
are consistent and considered reliable. To stop oscillations,
stable bits are enhanced and unstable bits are perturbed. The
post-processing method is described in Algorithm 2.

An oscillation error is detected by checking the consistency
of hard decisions over consecutive iterations. Enhancement
and perturbation are applied to the stable and unstable bits
respectively using the similar approaches in Algorithm 1,
starting by biasing the R messages by a small amount M0

and letting regular BP decoding iterations clean up the errors.
If post-processing is unsuccessful after one attempt, another
attempt is used with stronger enhancement and perturbation
until a biasing threshold of Mlimit is reached.

The error breakdown after applying post-processing to both
false converged errors and oscillation errors is shown in Fig. 7,
where the vast majority of these two types of errors are
resolved. Note that an error can evolve from one type to
another in the post-processing procedure. If a false converged
error or an oscillation error turns into an unconverged error,
it cannot be solved by Algorithm 1 or 2.

The plots of the cost function of BP decoding resulting in
oscillation errors are shown in Fig. 8. Fig. 8(a) illustrates an

Algorithm 2: Post-processing oscillation errors

1 for iter count = 1 to iter limit do
2 if oscillation is detected (of period T) then
3 for i ∈ A do
4 if sign(xi) is consistent in T iterations then
5 if Ri == 0 then
6 Ri = sign(xi)×M0

7 else if |Ri| < Mlimit then
8 Ri = sign(xi)× |Ri| × c

9 else
10 if Ri == 0 then
11 Ri = rand(±1)×M0

12 else if |Ri| < Mlimit then
13 Ri = −Ri × c
14 else
15 Ri = −sign(Ri)×M0

40%

20%

0%
3 4 5 6 3 4 5 6

Eb/N0 (dB) unconverged false
converged oscillation Eb/N0 (dB)

(a) (b)undetected

Fig. 7. Error distribution after post-processing oscillation errors and false
converged errors in BP decoding of (a) a (256, 128) CRC-concatenated polar
code and (b) a (1024, 512) CRC-concatenated polar code.

oscillation error. The error is detected and post-processed at
iteration 9 using Algorithm 2. After a few iterations of regular
BP decoding, the error is resolved. Fig. 8(b) illustrates a false
converged error. False convergence is detected at iteration 7
and post-processed by Algorithm 1, and again at iteration
10. Following the second post-processing attempt, the error
evolves to an oscillation error at iteration 16, and it is post-
processed by Algorithm 2. Then it turns to another false con-
verged error at iteration 19. Finally, the error is successfully
resolved following a post-processing by Algorithm 1.

(a) (b)iteration w/o PP
0

PP2

CRC pass

10 20 30
w/ PP iteration

0 10 20 30

PP1 CRC pass

PP2

Fig. 8. Cost functions of BP decoding with and without applying post-
processing Algorithm 1 and 2 (PP1 and PP2): (a) an example of an oscillation
error resolved by Algorithm 2, and (b) an example of a false converged error
evolving to an oscillation error that is resolved by Algorithm 1 and 2.

40%

20%

0%
3 4 5 6 3 4 5 6

Eb/N0 (dB) unconverged false
converged oscillation Eb/N0 (dB)

(a) (b)undetected

Fig. 9. Error distribution after post-processing unconverged errors, oscillation
errors and false converged errors in BP decoding of (a) a (256, 128) CRC-
concatenated polar code and (b) a (1024, 512) CRC-concatenated polar code.

C. Post-Processing Unconverged Error

With the vast majority of the false converged errors and
oscillation errors removed, the only dominant errors left are
unconverged errors. Many of the unconverged errors are
in fact due to the perturbation applied to unreliable bits
during post-processing. To resolve unconverged errors, the
perturbation needs to be “unrolled” to enable convergence.

We can decide stable or unstable bits based on the consis-
tency of the hard decision from one iteration to the next, and
the magnitude of the soft decision. To resolve unconverged
errors, we enhance the stable bits, but weaken the perturbation
to the unstable bits to help convergence. The post-processing
method is formulated in Algorithm 3.

Algorithm 3: Post-processing unconverged errors

1 for iter count = 1 to iter limit do
2 if iter count > iter threshold && no oscillation is

detected then
3 for i ∈ A do
4 if sign(xi) is consistent over iterations &&

|xi| > Mthreshold then
5 if Ri == 0 then
6 Ri = sign(xi)×M0

7 else if |Ri| < Mlimit then
8 Ri = sign(xi)× |Ri| × c

9 else if sign(xi) is inconsistent over
iterations then

10 Ri = Ri/c
11 if |Ri| < Mlimit then
12 Ri = −Ri

An error is marked an unconverged error if BP decoding
fails to converge after a sufficient number of BP iterations,
and no oscillation is detected. The stable bits are enhanced
using the same approach as in Algorithm 2. For the unstable
bits, the perturbation is weakened by gradually reducing the
bias in R messages, essentially undoing the perturbation. If a
bit meets neither stable or unstable conditions, its R message
will remain untouched. Most of the unconverged errors are
resolved after applying Algorithm 3 as shown in Fig. 9.

The plots of the cost function of BP decoding resulting in
unconverged errors are shown in Fig. 10. Fig. 10(a) illustrates
an unconverged error, which is post-processed by Algorithm 3

(a) (b)iteration w/o PP
0

PP2
CRC pass

10 35 45
w/ PP iteration

0 10 30 40

CRC pass

PP2

...

...

PP3

...

...

PP3

Fig. 10. Cost functions of BP decoding with and without applying post-
processing Algorithm 2 and 3 (PP2 and PP3): (a) an example of an
unconverged error resolved by Algorithm 2 and 3, and (b) an example of
an oscillation error resolved by Algorithm 2 and 3.

3
Eb/N0 (dB)

4 5 6

10-1

10
-3

10-5

10-7

10-9

3 4 5 6
Eb/N0 (dB)

(a) (b)
w/o PP FER

w/o PP BER

w/ PP FER

w/ PP BER

10-11
11

10

09

08

07

06

05

04

03

02

01

-11

1E-10

-09

-08

-07

-06

-05

-04

-03

1E-02

-01

B
E

R
/F

E
R

Fig. 11. Error rates of BP decoding with and without post-processing for
(a) a (256, 128) polar code, and (b) a (1024, 512) polar code using 6-bit
quantized decoders.

at iteration 33. The error evolves to an oscillation error at
iteration 35, and is post-processed by Algorithm 2. Finally
the error turns back to an unconverged error. After two post-
processing attempts at iteration 37 and 39 by Algorithm 3,
decoding converges. Fig. 10(b) illustrates an oscillation error,
which is post-processed by Algorithm 2 at iteration 31. The
error evolves to an unconverged error and resolved after post-
processing using Algorithm 2 at iteration 33.

V. RESULTS

The post-processing methods presented above can be effi-
ciently implemented in BP decoding. Error detection is done
by CRC and monitoring iteration-by-iteration hard decisions.
If the decoding does not converge within an iteration limit, or
if the decoding converges but fails CRC, an error is detected.
Post-processing will only be applied to the detected errors.

The error-correcting results of post-processing are demon-
strated in two code examples, a (256, 128) code and a (1024,
512) code, as shown in Fig. 11. Despite the decrease in coding
gain due to CRC concatenation, post-processing easily recoup
the loss, and improve the coding gain of the (256, 128) code
by 0.8 dB at FER of 10-8 and the coding gain of the (1024,
512) code by more than 1 dB at FER of 10-8.

With post-processing, BP decoding overtakes SC decod-
ing in performance as shown in Fig. 12. The decoders are
implemented in the same fixed-point quantization. The BP

1

0

9

8

7

6

5

4

3

2

1

1

0

9

8

7

6

5

4

3

2

1

3
Eb/N0 (dB)

4 5 63 4 5 6
Eb/N0 (dB)

(a) (b)
SC FER

SC BER

PP BP FER

PP BP BER

10-1

10-3

10-5

10-7

10-9

10-11

B
E

R
/F

E
R

Fig. 12. Error rates of SC decoding and BP decoding with post-processing
for (a) a (256, 128) polar code, and (b) a (1024, 512) polar code using 6-bit
quantized decoders.

BP decoder

120%

80%

60%

40%

20%

normalized

throughput

/area

normalized

area

100%

0%
+ CRC + PP SC decoder

%

%

%

%

%

%

%

baseline + crc hard check + post-process R sc

Fig. 13. Normalized silicon area and throughput/area ratio of different
designs based on chip synthesis in a 45nm CMOS technology.

performance was obtained by FPGA emulation, while the SC
performance was obtained by simulation. Due to the long
latency in SC decoding and the slower software simulation,
the SC error rate curves only extend to 10-6 in Fig. 12. In
decoding the (256, 128) code and the (1024, 512) code, BP
decoding with post-processing outperforms SC decoding by
0.4 dB and 0.5 dB, respectively, at moderate SNR.

The effectiveness and cost of implementing post-processing
depends on the selection of parameters. Minimal parameter
tuning is preferred as it ensures the compatibility of the three
algorithms. We selected the smallest value for M0 allowed by
fixed-point quantization in the three algorithms to minimize
the initial perturbation. All simulation results presented above
were obtained using the same M0, Mlimit and c values,
and they work effectively for the two codes across different
SNR levels. Although we only presented the results of two
polar codes, their decoding error types and error statistics
are representative. Since the post-processing algorithms were
designed for specific error types, rather than specific codes,
the algorithms are expected to be suitable for any polar code.

To evaluate the implementing overhead, we performed chip
synthesis in a 45nm CMOS technology, and the results are
presented in Fig. 13. The baseline is a stage-parallel BP
decoder [10]. A CRC codec adds a 1.8% area overhead, and
post-processing costs an additional 2.5% area overhead. Since
post-processing is conditionally invoked, it does not affect the
average throughput and latency of BP decoding. A classic SC
decoder uses half of the area as a stage-parallel BP decoder,
but its throughput and latency are significantly worse. The
figure of merit, in terms of throughput over area, of the

BP decoder with post-processing is an order of magnitude
better than an SC decoder as shown in Fig. 13. The better
error-correcting performance, the higher throughput and lower
latency are the key advantages of BP decoding with post-
processing that make it more competitive than SC decoding.

VI. CONCLUSION

In this work, we present post-processing methods targeting
false converged errors, oscillation errors, and unconverged
errors to improve the error-correcting performance of BP
decoding of polar codes. Post-processing is designed based on
BP using modified frozen set information. For false converged
errors, enhancement is applied to the bits of high reliability,
and perturbation is applied to those of low reliability to
escape false convergence. For oscillation errors, enhancement
is applied to the stable bits to further strengthen these bits, and
perturbation is applied to the unstable bits to stop oscillation.
For unconverged errors, enhancement is applied to the stable
bits, and perturbation to the unstable bits is unrolled to
encourage convergence. In all three cases, BP decoding is
used to clean up the errors introduced by perturbation.

Results show that post-processing of BP decoding improves
the error rates by an order of magnitude or more at a moder-
ate to high SNR level, demonstrating better error-correcting
performance than SC decoding. Post-processing can be effi-
ciently implemented in a BP decoder with negligible hardware
overhead, and it does not affect the average throughput and
latency, thereby making BP decoding more competitive than
SC decoding for practical high-performance applications.

ACKNOWLEDGMENT

The authors would like to acknowledge the funding of this
research by Intel and NSF CCF-1054270.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] A. Pamuk, “An FPGA implementation architecture for decoding of polar
codes,” in Int. Symp. Wireless Commun. Syst., Nov 2011, pp. 437–441.

[3] B. Yuan and K. K. Parhi, “Architecture optimizations for BP polar
decoders,” in IEEE Int. Conf. Acoustics, Speech and Signal Process.,
May 2013, pp. 2654–2658.

[4] I. Tal and A. Vardy, “List decoding of polar codes,” in IEEE Int. Symp.
Inf. Theory, July 2011, pp. 1–5.

[5] N. Onizawa, T. Hanyu, and V. C. Gaudet, “Design of high-throughput
fully parallel ldpc decoders based on wire partitioning,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 3, pp. 482–489, March
2010.

[6] T. Richardson, “Error floors of LDPC codes,” in Proc. Annu. Allerton
Conf. Commun. Control and Computing, vol. 41, no. 3, 2003, pp. 1426–
1435.

[7] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. J. Wain-
wright, “Lowering LDPC error floors by postprocessing,” in 2008 IEEE
Global Telecommun. Conf., Nov 2008, pp. 165–168.

[8] S. Sun, S. G. Cho, and Z. Zhang, “Error patterns in belief propagation
decoding of polar codes and their mitigation methods,” in 2016 50th
Asilomar Conf. Signals, Syst. and Comput., Nov 2016, pp. 1199–1203.

[9] Y. Ren, C. Zhang, X. Liu, and X. You, “Efficient early termination
schemes for belief-propagation decoding of polar codes,” in 2015 IEEE
11th Int. Conf. ASIC (ASICON), Nov 2015, pp. 1–4.

[10] S. Sun and Z. Zhang, “Architecture and optimization of high-throughput
belief propagation decoding of polar codes,” in 2016 IEEE Int. Symp.
Circuits and Syst. (ISCAS), May 2016, pp. 165–168.

