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Abstract—Belief propagation (BP) is a high-throughput decod-
ing algorithm for polar codes, but it is known to underperform
successive cancellation (SC) decoding and list decoding in error-
correcting performance. In this work, we study the error patterns
of BP decoding of polar codes to uncover the error mechanisms,
as well as the influence of channel condition, code design, and
decoder implementation. Based on the insights, we design new
ways to detect, prevent and overcome BP decoding errors.

I. INTRODUCTION

Polar codes are the first provably capacity-achieving error-
correcting codes for any binary-input discrete memoryless
channels (B-DMC) [1], and the error-correcting capability
of polar code holds high promise. The two main decoding
algorithms are successive cancellation (SC) [1] and belief
propagation (BP) [2]. SC exhibits a better error-correcting
performance than BP [3], and list decoding [4], viewed as
an enhanced SC, further improves the performance but with
an increased complexity. BP on the other hand, provides a
higher throughput and a reduced latency, but it sacrifices error-
correcting performance.

BP is an iterative message passing algorithm operating on
a factor graph. The same BP decoding algorithm has been
widely used in decoding low-density parity-check (LDPC)
codes. Despite the impressive performance seen in decoding
LDPC codes, BP has shown a weakness known as the error
floor phenomenon [5]. Error floors occur at moderate to high
SNR levels, preventing the waterfall-like improvement in error
rate with increasing SNR. In the error floor region, decoding
errors are dominated by a small number of fixed patterns
known as trapping sets [5].

In this work, we analyze the error patterns in the BP
decoding of polar codes. The decoding errors are classified and
the factors affecting decoding, including channel SNR, code
design, decoding algorithm, and implementation, are analyzed.
Based on the insights, we provide preliminary ideas of how
the decoding errors can be mitigated.

II. BACKGROUND

A polar code of block length N = 2n has a generator matrix
G that is the n-th Kronecker power of matrix F =

[
1 0
1 1

]
, i.e.,

GN = F⊗n [1]. Fig. 1 is the factor graph of an N = 8 polar
code, where the plus sign represents XOR, and the equal sign
represents pass-through. To encode, a message u is placed on
the left side of the factor graph, and the codeword x = uG is
obtained on the right side. The subchannel seen by each bit
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Fig. 1. Factor graph of N=8 polar code.

exhibits a polarization phenomenon when the code length is
sufficiently long and decoded using the SC algorithm. Reliable
bits are used to transmit information, and the unreliable ones
are fixed to known values, normally 0. The frozen set A
denotes the set of unreliable bits [1].

In SC decoding, the message bits û0 to ˆuN−1 are obtained
one bit after another based on the channel output y and the
previously decoded bits. If i ∈ A, ûi = 0; otherwise ûi is
decoded by the maximum likelihood decision rule:

ûi =

{
0 if P (y,ûi−1

0 |ui=0)

P (y,ûi−1
0 |ui=1)

> 1

1 otherwise

where P (y, ûi−1
0 |ui = b) refers to the probability that the

received vector is y and the previously decoded bits being û0

through ûi−1, given the current bit being b, where b ∈ {0, 1}
[6]. The SC decoding latency is O(N).

BP decoding operates message passing on the factor graph.
Frozen set information is propagated from left to right on the
factor graph, and channel output y is propagated from right to
left. The estimated message û is obtained on the left side.
The decoding accuracy can be improved by running more
iterations. The BP decoding latency is O(logN).

III. ERROR CLASSIFICATION

To understand how decoding fails, we obtain hard decisions
û at the end of each BP decoding iteration. Due to the lack
of a definitive convergence check in polar decoding, we use
hard decisions from consecutive iterations to decide whether
decoding has converged. If hard decisions over consecutive
iterations agree, we consider it has converged.
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Fig. 2. Soft decisions of an unconverged error in BP decoding of a (256,
128) code.

A. Unconverged Error

If hard decisions fail to agree within a maximum allowed
iteration limit, and there is no defined pattern of error, we call
it an unconverged error. Unconverged errors are most common
at a low SNR level where the channel is noisy and the decoder
is unable to resolve the errors.

Assume an all-zero codeword is transmitted using binary
phase-shift keying (BPSK) modulation; and a bit ui is decoded
correctly if the soft decision of ûi > 0 and incorrectly
otherwise. A plot of the soft decisions of û is shown in Fig. 2,
illustrating an unconverged error for a (256, 128) code. The
decision threshold is 0. The soft decisions keep flipping across
the decision threshold, and incorrect soft decisions hover
around the decision threshold. There is no obvious pattern in
the decisions, and more iterations do not help to find correct
convergence.

B. Converged Error

As SNR increases, unconverged errors start to disappear,
and errors of systematic patterns start to emerge. The ma-
jority of systematic error patterns we found are attributed to
converging to wrong codewords, or falling to local minima
of BP decoding operating on loopy factor graphs. The factor
graphs of polar codes contain loops, so a flooding BP decoder
is not immune to local minima problems.

If hard decisions are stable and agree over consecutive
iterations, but the decoded message is incorrect, i.e., û 6= u, we
call it a converged error. Converged errors are most common
at moderate to high SNR, and it usually takes only a small
number of iterations to reach a steady state, as illustrated in
Fig. 3 for a converged error in the decoding of a (256, 128)
code. In this example, within two or three iterations, the soft
decisions of a small number of bits are found to be trapped
in wrong decisions, and they cannot be recovered using more
iterations.

The particular case illustrated in Fig. 3 represents a local
minimum state in BP decoding. The few incorrect bits rein-
force the wrong decisions among themselves through loops in
the factor graph, making it impossible to make any progress
towards convergence, which is similar to a trapping set found
in the BP decoding of LDPC codes.
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Fig. 3. Soft decisions of a converged error in BP decoding of a (256, 128)
code.
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Fig. 4. Soft decisions of an oscillation error in BP decoding of a (256, 128)
code.

C. Oscillation Error

Loops in the factor graph allow the propagation of incor-
rect messages through BP decoding, causing oscillations. As
incorrect messages travel around a loop, the decisions also go
through a round of changes.

If hard decisions are unstable and change periodically over
iterations, we call it an oscillation error. Although an oscil-
lation error is also an unconverged error, an oscillation error
features a pronounced pattern of periodic changes. An example
of the oscillation error is shown in Fig. 4. The illustrated
error has an oscillation period of 2 iterations. A group of
bits are incorrect in iteration 12; the incorrect bits all turn
correct in iteration 13, but they turn incorrect again in iteration
14. If decoding is terminated in iteration 13, decoding would
be done correctly. However, there is no way for the decoder
to decide when to terminate in the absence of a definitive
convergence detector in polar codes. Relying on checking hard
decisions over consecutive iterations does not help terminate
an oscillation error in the right iteration.

D. Error Distribution

In Fig. 5, we show the statistical breakdown of errors at each
SNR point for the BP decoding of a (256, 128) code. At a low
SNR level, unconverged errors dominate; as SNR increases,
converged errors and oscillation errors become dominant. The
error breakdown demonstrates the importance of fixing the
loopy behavior of BP decoding and of designing polar codes
with a large minimum distance to improve the error-correcting
performance.
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Fig. 5. Error distribution for BP decoding of a (256, 128) code.
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IV. FACTORS AFFECTING DECODING

To gain an insight into decoding errors, we adjust code
and decoder design parameters and analyze the corresponding
changes in error rate and error breakdown.

A. Code Design

Take the rate-0.5 (256, 128) code in Fig. 5 as reference.
We increase the rate of the 256-bit code from 0.5 to 0.53 and
plot the error distribution and error rate of the rate-0.53 code
in Fig. 6. The axes and markers of the distribution in Fig. 6
are identical to those in Fig. 5, so they are omitted in Fig. 6
for simplicity. All the later plots follow the same convention,
unless they are explicitly marked.

The error rate of a higher rate code is worse as expected. The
number of converged errors at a high SNR level is noticeably
higher. More converged errors can be explained by more free
bits in a higher rate code resulting in more codewords, or
a more crowded codeword space, making it more likely to
converge to a wrong codeword.

As we increase the block length from 256 to 1024 while
keeping the code rate of 0.5, the error distribution and error
rate of the (1024, 512) code are shown in Fig. 7. The error rate
of the (1024, 512) code improves over the (256, 128) code, but
it suffers from an error floor at FER below 10−7. Compared to
the (256, 128) code, the (1024, 512) code has fewer converged
errors but more oscillation errors. The (1024, 512) code has a
larger minimum distance and a sparser codeword space, so it
is expected to outperform the (256,128) code. However, with
two more stages in the factor graph, the factor graph of the
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Fig. 8. Error rate for BP decoding of a (256, 128) code and a (1024, 512)
code that are implemented in different quantization schemes.

(1024, 512) code contains more loop configurations than the
(256, 128) code, resulting in more oscillation errors.

We also note that with more processing stages in a larger
factor graph, numerical saturation occurs more easily. When
reliable bits are saturated, they are less pronounced and cannot
effectively prevent incorrect bits from propagating. Allocating
more bits to cover a larger numerical range is expected to
alleviate the problem.

B. Decoder Implementation

The choice of fixed-point quantization affects the decoding
performance [7]. In the above simulations, the Q7.-1 (6 bits
covering the range of -64 to 62 with a resolution of 2) fixed-
point quantization was used. Keeping the same 6-bit word
length, the Q6.0 quantization covers the range of -32 to 31
with a resolution of 1; and the Q5.1 quantization covers the
range of -16 to 15.5 with a resolution of 0.5. The quantizations
used in Fig. 8, Q5.1, Q6.0, Q7.-1, Q8.-2, all share the same
6-bit wordlength, but they result in different error-correcting
performance.

At a low SNR level, a quantization with a finer resolution
improves numerical accuracy; and at a high SNR level, a
quantization with a larger range prevents clipping and yields
better performance. The comparison between the two codes
in Fig. 8 shows that a longer code requires a higher range
to obtain the expected performance, and a larger range also
alleviates the error floor problem.
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Fig. 10. Illustration of concatenation of polar code with CRC.

Min-sum approximation is often applied to simplifying
the log-likelihood ratio calculations. The associated min-sum
approximation error can be compensated by offset correction.
Offset correction is especially effective at a low SNR level,
as illustrated in Fig. 9. The number of unconverged errors is
reduced, as offset correction reduces approximation errors and
improves the decoding performance.

V. ERROR DETECTION

As discussed above, a BP polar decoder is unaware of
whether decoding has converged. An iteration-by-iteration
hard decision check detects unconverged errors, but it fails
to detect converged errors, which account for 20% to 90%
of the errors. An iteration-by-iteration hard decision check
detects oscillation errors, but it fails to find the right iteration
to terminate decoding and stop oscillations. Therefore, we add
a low-cost error detection scheme to catch the majority of the
undetected errors.

The error detection scheme is based on concatenating polar
code with cyclic redundancy check (CRC) that consumes only
a small number of parity bits but provides a good detection
capability. A CRC codec is added outside the polar codec,
illustrated in Fig. 10. The CRC encoder generates parity bits
for an input message. The message bits along with the parity
bits are remapped to the free bits of the polar code. On the
decoder side, the CRC decoder checks if the hard decisions
obtained by the polar decoder is a valid CRC codeword at the
end of each decoding iteration.
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Fig. 11. Error rate for BP decoding of a (1024, 512) code before and after
CRC concatenation.
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and with CRC-based termination.

A CRC-n code generates n parity bits, which covers up to
2n − 1 − n message bits. We employed CRC-8 in the rate-
0.5 256-bit polar code and CRC-10 in the rate-0.5 1024-bit
polar code. Our simulation shows that more than 99% of the
previously undetected errors are detected by CRC. Note that
CRC concatenation increases the code rate. If the overall code
rate is kept the same, CRC concatenation results in a slight
performance loss.

In the 256-bit code and the 1024-bit code, CRC concate-
nation increases the code rates from 0.5 to 0.53 and 0.5 to
0.51, respectively. The performances are compared in Fig. 6
and Fig. 11. The coding gain of the 256-bit code is reduced
by approximately 0.3 to 0.5 dB, but the loss is much smaller
in the 1024-bit code due to the neglible number of parity bits
relative to the block length.

VI. ERROR MITIGATION

In this study, we make use of CRC to reliably determine
when to terminate decoding, i.e., if CRC passes, the iterative
decoding is terminated. The effect of CRC-based termination
in the BP decoding of a (1024, 522) polar code is shown in
Fig. 12, where the white space above the bars represents the
percentage of errors being resolved with the proper termination
based on CRC. We observe that BP decoding is able to produce
error-free messages in some iterations even if the decoding
itself is not stable, as in the cases of unconverged errors and
oscillation errors. The CRC-based termination helps to lock in
the correct codeword before decoding diverges.

CRC-based termination helps resolve most of the uncon-
verged errors and a portion of oscillation errors. The remain-
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ing errors are dominated by converged errors and oscilla-
tion errors. One approach to fix the remaining errors is via
post-processing by perturbation. Prior work in LDPC post-
processing points out that perturbation is especially beneficial
when a BP decoder is trapped in a local minimum [8]. From
a cost standpoint, post-processing can be implemented as part
of BP decoding with biased messages. We are in the process
of completing a full experimentation and analysis of post-
processing methods.

VII. CONCLUSION

In this work, we classify BP decoding errors into three cat-
egories: unconverged errors, converged errors, and oscillation
errors. We analyze the important factors affecting decoding,
including code design and decoder implementation. While
unconverged errors and oscillation errors are detectable by
checking the hard decisions in each iteration for consistency,
converged errors are undetected. Concatenation of polar codes
with CRC enables the detection of undetected errors and the
proper termination of BP decoding. CRC-based termination
helps to remove a large portion of unconverged errors and
oscillation errors.
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