
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 7, JULY 2018 2269

A Maximum-Likelihood Sequence Detection
Powered ADC-Based Serial Link

Shiming Song , Student Member, IEEE, Kyojin D. Choo, Member, IEEE, Thomas Chen, Student Member, IEEE,

Sunmin Jang, Student Member, IEEE, Michael P. Flynn, Fellow, IEEE, and Zhengya Zhang , Member, IEEE

Abstract— A 0.88 mm2 65-nm analog-to-digital
converter (ADC)-based serial link transceiver is designed
with a maximum-likelihood sequence detector (MLSD) for
robust equalization. The MLSD is optimized in a pipelined
look-ahead architecture to reach 10 Gb/s at 5.8 pJ/b and
5 Gb/s at 3.9 pJ/b, making it practical for an energy-efficient
ADC-based serial link. Compared with linear equalizer and
decision feedback equalizer, the MLSD provides extra margin
to accommodate timing offsets, ADC nonlinearities, and voltage
noise, which is exploited by co-designing the analog front-end
to reduce its power and area. We present a 2x-oversampled
and 2-way interleaved 5 b stochastic flash ADC architecture.
No front-end analog equalizer, buffer or sample, and hold
amplifier are needed. Tested with a 45-cm FR-4 trace, the serial
link transceiver achieves 5 Gb/s at a bit error rate below 10−11

with a 7% UI margin without any analog front-end equalization,
consuming 54.5 mW in receiver and 16.2 mW in transmitter.

Index Terms— ML detection, Viterbi detector, equalizer, serial
link.

I. INTRODUCTION

THE growing need for data bandwidth is driving the speed
requirements of serial peripheral, serial chip-to-chip and

serial back-plane communication. State-of-the-art serial link
designs are complicated by challenging channel conditions as
well as by the non-idealities of deep-submicron analog front-
end (AFE) circuits, which are exacerbated at high data rates.

Equalizers are commonly used to compensate for
severe channel attenuation and to remove inter-symbol
interference (ISI) [1]–[5]. However, the benefits of conven-
tional feed-forward equalizers (FFE) and continuous-time
linear equalizers (CTLE) are limited as these amplify noise
and degrade the SNR. Decision feedback equalizers (DFE)
do not amplify noise, but discard the information stored in
pre-cursors and post-cursors from the main cursor leading to
suboptimal detection. DFE’s hard decision making also results

Manuscript received June 21, 2017; revised September 19, 2017 and
November 3, 2017; accepted November 5, 2017. Date of publication
December 8, 2017; date of current version May 29, 2018. This work was
supported in part by NSF under Grant CCF-1255702, in part by SRC, and
in part by the NSF Graduate Research Fellowship Program. This paper
was recommended by Associate Editor A. Nagari. (Corresponding author:
Shiming Song.)

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109-2122 USA
(e-mail: shisong@umich.edu; kjchoo@umich.edu; tcchen@umich.edu;
smjang@umich.edu; mpflynn@umich.edu; zhengya@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2017.2775619

in a loss in soft information and error propagation, causing
performance degradation especially when used in conjunction
with forward error correction.

MLSD is known as the optimal equalizer for an ISI channel
that is subject to Gaussian noise [6]. MLSD makes decisions
based on a sequence of symbols and their ISI-induced corre-
lations, rather than symbol-by-symbol decisions. Therefore it
suppresses failures due to error accumulation and propagation,
which hurt conventional DFEs. Moreover, a MLSD does not
enhance noise as conventional FFE and CTLE do, and this
permits a degraded input SNR, thereby accommodating ran-
dom noise and random-data-modulated impairments incurred
by the AFE.

In various applications requiring detection of digital
sequences distorted in a band-limited communication chan-
nel or storage media, MLSD has been widely applied to
provide low error rate while meeting constrained latency
and complexity requirements [7]–[12]. In [7] and [8],
a simplified version of MLSD was implemented and ver-
ified on an emulated channel targeting 100Gb/s Ethernet.
Kermani et al. [9] argued that MLSD is also practical
for 5–10Gb/s links as it offers a competitive error rate at a
reasonable cost of implementation. MLSD and its variants
have also been widely present in recent solutions for wire-
less communications and magnetic storage, e.g., [10]–[12].
However, conventional multi-Gb/s MLSDs consume on the
order of 100pJ/b [13]–[17], therefore they have not been
reported for use in high-speed electrical serial links.

In this work, we design a new high-speed MLSD archi-
tecture for serial links that uses a pipelined look-ahead
approach. The new architecture enables sub-10pJ/b optimal
equalization. The MLSD is integrated in a high-speed serial
link transceiver. The deployment of a full MLSD equalizer
enables a low-power design of the AFE to take advantage of
the extra error margin by trading off accuracy for a lower
cost of power and area. We implement a 5b stochastic flash
analog-to-digital converter (ADC) that reduces both area and
power. An efficient digital clock and timing recovery (CDR)
loop is also designed, including a PLL, a Mueller-Muller
phase detector (MMPD) and a 32-code phase interpolater.
Our key contributions include an efficient, high-speed MLSD
architecture inspired by [18], and the utilization of the extra
SNR margin provided by MLSD to tolerate AFE impairments.

The rest of the paper is organized as follows. We first
provide a brief overview of the mathematical background of
Viterbi algorithm for MLSD in Section II. The serial nature

1549-8328 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6021-9061
https://orcid.org/0000-0001-5963-9018

2270 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 7, JULY 2018

of the Viterbi algorithm makes it challenging to design a
high-throughput MLSD. We present a reformulation of the
Viterbi algorithm in Section III, based on which efficient
and high-throughput look-ahead MLSD can be designed for
serial links. A low-power stochastic ADC-based AFE, pre-
sented in Section IV, takes advantage of the extra margin
provided by MLSD to reduce the AFE cost. The MLSD and
the AFE are integrated in a prototype 5Gb/s 65nm serial
link transceiver. The design of the transceiver and the test
chip measurements are summarized in Section V before the
conclusion of this paper.

II. MLSD EQUALIZATION THEORY

Channel distortion places bandwidth limitations that show
up as ISI in time domain. With linearity assumptions, which
generally holds for channels consisting of passive components,
one commonly models the channel as (1) [19].

yi =
∞∑

j=−∞
x j ∗ hi− j + ni , (1)

where y is the observed channel output at the i -th time step
from the ADC, x is the modulated transmitter output, i.e., +1’s
and −1’s in the binary case, h is the sampled channel response
to a single pulse [20] and n is the sampled noise process,
usually assumed to be Gaussian. A widely accepted optimal
detection technique is MLSD [6] that directly minimizes the
probability of error. The MLSD under Gaussian noise and
binary transmission assumption takes the form shown in (2).

x̂ = arg min
x∈{+1,−1}N

∞∑

i=−∞
(yi −

∞∑

j=−∞
x j ∗ hi− j)

2 (2)

The above estimation essentially minimizes the Euclidean
distance between the hypothetical channel response and the
actual observation from the ADC. The limits of both sums
become finite in reality where both the block length, N , and
the channel response length become finite or approximately
finite. Direct brute force search for a solution to (2) would
take prohibitive computation cost, on the order of 2N , where
N is the block length.

A. MLSD and the Shortest-Path Problem

Observing that the channel model can be depicted with a
trellis diagram with a fixed and finite number of states and
all candidate sequences can be represented as a path through
the trellis, the Viterbi algorithm offers a substantially simpler
solution that only scales linearly with N .

Fig. 1(a) shows an example single-pulse response for a
3-tap channel with one main cursor tap and two post-cursor
taps. The constraint length v, is defined as the length of
channel memory, e.g., in this case v = 3. For a channel of
constraint length v, the channel response at a given time point
depends on the current bit and also the v − 1 bits that are
transmitted immediately prior to this time point. For example,
the two post-cursor taps shown in Fig. 1(a) indicate that the
channel response at a given time point depends on not only

Fig. 1. Pulse response and its representation in a trellis diagram.
(a) Example of sampled pulse response of the channel. (b) Corresponding
trellis diagram.

the bit transmitted at the time point, but also on the two bits
transmitted immediately prior to this time point.

In binary signaling applications, there are 2v−1 possible
combinations of the post-cursor bits. In a trellis representation,
each combination forms a state. Fig. 1(b) shows the 4-state
trellis diagram corresponding to the 3-tap channel, with the
state number labeled on the left and the time steps on top.
Note that because of the binary nature of the input data, only
two transitions from each state are possible. The temporal
adjacency between the bits enforces that every bit sequence
corresponds to a state sequence through the trellis, and there
exists an explicit one-to-one mapping between the two repre-
sentations as in Def. 1.

Definition 1 (State Sequence): For any binary stream x,
xi ∈ {−1,+1}, modulated on to an ISI channel of constraint
length v, one can define a corresponding state sequence S,
where Si ∈ {−1,+1}v−1 is the state at time step i and
defined as

Si = (xi , xi−1, ..., xi−v+2). (3)

Note that we assume both sequences are infinitely long at
this point for simplicity in indexing. The state at each time step
consists of v−1 elements due to channel memory as explained
previously. A one-to-one mapping can be easily established in
the finite case between S and x with the forward mapping
defined as in (3) and the inverse defined as

xi = Si [1], xi−1 = Si−1[1], . . . , (4)

i.e., xi as the first element of Si , xi−1 as the first element of
Si−1, etc.

With the state sequence defined, detection of the transmitted
bit sequence x can be equivalently solved as detection of a
state sequence S, or a sequence of state transitions. A trellis
diagram can thus be described as a graphical representation of
all possible state sequences, including the one corresponding
to the transmitted sequence. A cost to each state transition,
usually referred to as the branch metric, is defined in Def. 2.

Definition 2 (Branch Metric): For a state transition at
time step i , corresponding to the transition from Si =
(xi , xi−1, ..., xi−v+2) to Si+1 = (xi+1, xi , ..., xi−v+3),
a branch metric γ (Si , Si+1) is defined as

γ (Si , Si+1) = (yi+1 −
∞∑

j=−∞
x j ∗ hi+1− j)

2, (5)

SONG et al.: MLSD POWERED ADC-BASED SERIAL LINK 2271

which is essentially a term in the summation in (2). There-
fore the maximum likelihood (ML) optimization (2) can be
rewritten as

x̂ = arg min
S

∞∑

i=−∞
γ (Si , Si+1). (6)

Observing that each possible state sequence S is also a
path on the trellis diagram, and (6) reduces the original ML
problem (2) to finding the shortest path on the trellis diagram,
with the “length” of each step of the path defined as the
branch metric on each state transition. The Viterbi algorithm
is an efficient way of solving such optimization by utilizing
concepts from dynamical programming.

B. Viterbi Algorithm Formulation

There are two principles underlying the operation of the
Viterbi algorithm, namely, the Principle of Optimality and
the Principle of Path Convergence. To use the Principle of
Optimality we need to define path metric, P Mi,T , as the lowest
cost of the state sequence that leads to state T at the time
step i , where T is one of 2v−1 instantiations of Si .

P Mi,T = min
Si=T

i∑

k=−∞
γ (Sk−1, Sk). (7)

Direct computation of the path metrics is costly and is
almost equivalent to the original ML problem. Given the path
metric definition, the Principle of Optimality, as stated in
Theorem 1, can be applied to significantly simplify the path
metrics computation.

Theorem 1 (Principle of Optimality): In the shortest path
problem outlined in the previous section, suppose two paths
represented by state sequences S and S′ intersect at some state
T at time step i , i.e., Si = S′

i = T . If

P Mi−1,Si−1 + γ (Si−1, T) < P Mi−1,S′
i−1 + γ (S′

i−1, T) (8)

then S′ cannot be the sequence corresponding to the shortest
path.

Theorem (Thm). 1 indicates that if we have the path metrics
P Mi−1,Si−1 , at time step i − 1, the path metrics for the next
time step, P Mi,Si can be recursively computed utilizing an
add-compare-select (ACS) operation, i.e., compute P Mi−1,Si−1

+ γ (Si−1, Si) for all possible transitions from Si−1 to Si

and select the shortest as P Mi,Si . The Principle of Optimality
enables the finding of the ML solution in linear time, needing
only an initial set of path metrics to start with.

The Principle of Path Convergence is an empirical obser-
vation that enables further simplifications of VLSI implemen-
tations [15]. The Principle of Path Convergence states that if
we place redundant training vectors of length equal to roughly
6 times the constraint length, v, both at the beginning and at
the end of each detection frame, and start ACS operation at
the beginning of the leading training vector and decode by
tracing back from the end of the trailing training vector, then
the decoded output has high probability of converging to the
ML solution. Classical Viterbi detectors have all relied on this
principle [15].

III. HIGH-THROUGHPUT MLSD ARCHITECTURE

FOR SERIAL LINKS

One significant limitation on high throughput implemen-
tations of Viterbi algorithm is the highly serial nature of
the algorithm, so that streams of bits have to be processed
one by one. The sliding block architecture [14], [15] has
been a popular approach to speeding up the design. However,
it suffers from a pre-training overhead of about 6v on each
side. The overhead also includes both a widened deserializer
block and deep skew buffers.

A. Matrix Formulation of Viterbi Algorithm

To arrive at a more efficient high-throughput architecture,
we look at the matrix formulation of the Viterbi algorithm [18].
From the trellis diagram, we can define a 2v−1 ×1 cost vector
Ci by grouping the path metrics of all the 2v−1 states at time
step i of the trellis. For the edges between time step i − 1 and
i we can define a 2v−1 × 2v−1 transition matrix Mi .

To facilitate the mathematic formulation we also define
operations � and �, both on real numbers as in Def. 3.

Definition 3 (Add and Multiply Operations): On the real
numbers, a, b ∈ R, a pair of add and multiply operations can
be defined as

a � b = min(a, b) (Add) (9)

a � b = a + b (Multi ply). (10)

It can be shown that the set of real numbers together with
these two operations form a semi-ring [18], which essentially
justifies the use of basic matrix manipulations. Now with all
these concepts defined it can be easily shown that the ACS
operations can be seen as

Ci = Mi Ci−1. (11)

The original Viterbi algorithm can be understood as simply
starting with an initial cost vector and sequentially multiplying
the transition matrices with the cost vector. One can invoke the
associative law to group the product of the transition matrices
and rewrite (11) as

CN =
(N∏

i=−∞
Mi

)
C0, (12)

where C0 is the initial condition for the path metrics.
Since the ACS operations are equivalent to the matrix-

vector multiplication based on the foregoing discussion, a gen-
eralized ACS operation is equivalent to the matrix-matrix
multiplication.

Theorem 2 (Generalized Principle of Optimality): Suppose
two state sequences S and S′ intersects at two states, T at
time step i and U at time step j , i.e., Si = S′

i = T , and
S j = S′

j = U , and assuming i < j without loss of generality.
If

j−1∑

k=i

γ (Sk, Sk+1) <

j−1∑

k=i

γ (S′
k, S′

k+1) (13)

then S′ cannot be the ML solution sequence.

2272 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 7, JULY 2018

Fig. 2. MLSD architectures: (a) serial architecture; (b) sliding block architecture; and (c) pipelined look-ahead architecture.

The matrix-matrix multiplication used in (12) is just a
result of the direct application of Thm. 2. This principle can
be viewed as a generalization of the Principle of Optimality
discussed previously as well as a reformulation of the matrix
form of the Viterbi algorithm in (12). In the following section,
we discuss our implementation based on the Generalized
Principle of Optimality.

B. Efficient and High-Throughput MLSD Architecture

A serial MLSD architecture based on (11) is illustrated
in Fig. 2a. This architecture computes path metrics Ci =
Mi Ci−1, one stage at a time. Due to the recursive nature of
the computation, i.e., each stage requiring the path metrics
from the previous stage, the latency of the serial architecture is
O(N). Since Mi is a 2v−1×2v−1 matrix and Ci−1 is a 2v−1×1
vector, one stage of this architecture requires 2v−1 ACS units.
One major drawback of the conventional serial architecture is
that it is impossible to apply look-ahead to this architecture to
speed up the computation. The path metrics must be computed
one stage at a time due to data dependency, which severely
limits the throughput of this architecture.

A popular approach to breaking the throughput bottleneck of
the serial architecture while still using (11) is shown in Fig. 2b.
By dividing data into blocks and concatenating training frames

at the beginning and end of each block, the data dependency
between blocks becomes approximately negligible. Thus the
data processing can be highly parallelized or deeply pipelined
to speed up the operation [15]. However, the sliding block
architecture requires a long pre-training frame on each side,
and it can become an exessive overhead. In the example shown
in Fig. 2b with a constraint length of v = 3, 36 training stages
are required in total to decode a block.

Inspired by the aforementioned matrix formulation of the
Viterbi algorithm [18], we propose an alternative serial MLSD
architecture based on (12) to overcome the deficiencies of
the serial architecture and the sliding block architecture. This
architecture “combines” transition matrices, Mi Mi+1, one pair
at a time. Compared to the conventional serial architecture
that performs one matrix-vector multiplication at a time,
the alternative serial architecture performs one matrix-matrix
multiplication at a time, which is more expensive. The transi-
tion matrices are 2v−1 × 2v−1, so a stage of this architecture
requires 22(v−1) ACS units. A key feature of this alternative
serial architecture is that it can proceed without requiring the
path metrics, eliminating data dependency.

The lack of data dependency makes it possible to apply
look-ahead by combining transition matrices through par-
allel or pipeline approaches. The combining of transition

SONG et al.: MLSD POWERED ADC-BASED SERIAL LINK 2273

matrices can be done independently without waiting for path
metrics, enabling a significant improvement in throughput.
A P-stage pipelined or P-stage-parallel implementation of this
look-ahead architecture is capable of combining P transition
matrices in every clock cycle after an initial latency of P
clock cycles for the pipelined implementation or log2 P for the
parallel implementation. A 10-stage look-ahead architecture
is illustrated in Fig. 2c. An important difference between the
look-ahead architecture and the sliding block architecture is
that no pre-training frames are needed for the look-ahead
architecture, resulting in a much lower hardware complexity
and thus a much higher efficiency. At our design point, with
P = 10, the pipelined look-ahead approach saves about 20%
on the number of ACS, and 90% on the skew buffering, and
thus resulting in much higher energy efficiency.

Comparing the pipeline and parallel implementation options
of the look-ahead architecture, the parallel look-ahead archi-
tecture has a lower latency if P is relatively large, but it
also requires P to be a power of 2 to fit an ideal binary-
tree structure. The pipelined look-ahead architecture incurs a
higher latency but it imposes no requirements on P .

For a multi-GSample/s (GS/s) serial link application, it is
only feasible for the digital equalizer to run at a fraction of
the sample rate. A P-stage pipelined or P-stage parallel look-
ahead MLSD is capable of combining P stages of transitions
matrices in one clock cycle, allowing the digital equalizer to
run at a clock frequency that is 1/P of the sample rate. For
flexiblity in choosing P and not being bound by the power
of 2 requirement, we use a pipelined look-ahead architecture
in implementing the MLSD.

C. MLSD Implementation for Serial Links

The design of the MLSD is a tradeoff between robustness
and complexity. A detector with more taps, i.e., v, offers a
wider timing margin, but the complexity of the MLSD scales
exponentially with v as discussed in the previous section. Our
simulation shows that a 4-tap MLSD running at 5Gb/s provides
a 24ps timing margin at 10−8 bit error rate (BER) on a channel
with 21dB loss at Nyquist rate; and a 3-tap detector narrows
the margin to 12ps at 10−8 BER under the same setup, but
still sufficient for our application. Therefore the 3-tap MLSD
is chosen for our design. The taps of MLSD can also be
reprogrammed or adapted to accommodate different data rates
and loss.

Given a target 5GS/s serial link application, the samples
need to be deserialized to be processed by the MLSD. In a
65nm technology, the digital MSLD can be designed to run
at a 500MHz to 1GHz clock frequency. Given the sampling
rate and the target clock frequency for the MLSD, we choose
P = 10 and design a 10-stage pipelined MLSD as shown
in Fig. 3. In each clock cycle, the MLSD collects a block
of 10 5b samples to compute 10 branch metrics in parallel.The
branch metric calculation is done using a 5b lookup table to
provide the flexibility in optimally programming the branch
metric. In our design, we programmed the lookup table based
on scaled Euclidean distance combined with correction of
the AFE.

Fig. 3. Pipelined look-ahead MLSD implementation.

The 10-stage pipelined design is further structured in two
5-stage pipeline parts, one part combining transition matrices
forward from stage 1 to 5; and the other part combining
backward from stage 10 to 6. Compared to a standard
10-stage pipelined design, the bi-directional design reduces the
number of skewing buffers. As illustrated in Fig. 3, 10 branch
metrics are fed to two sets of ACS units (one forward and one
backward) to successively compute the transition matrix in a
5-stage pipeline. Forward and backward operations produce
two transition matrices after a latency of 5 clock cycles. A final
combiner combines the two transition matrices and keeps the
survivor path. Each survivor path is buffered and accumulated
for 3 blocks until a path decision is made, which is equivalent
to a 30b trace back in a conventional Viterbi detector.

After an initial latency of 15 cycles, this pipelined look-
ahead architecture is capable to process 10 trellis stages per
clock cycle. Assuming binary signaling, the MLSD outputs
10 bit per clock cycle, i.e., 5Gb/s at a 500MHz clock fre-
quency, or 10Gb/s at 1GHz.

To summarize, we use several methods to improve power
efficiency of the MLSD, as illustrated in Fig. 4. First, mul-
tiplications in calculating branch metrics are replaced by
simple lookup tables with 5b precomputed scaled Euclidean
distances. Second, the pipelined look-ahead architecture elim-
inates redundant training calculations necessitated by fine-
granulated ACS and trace-back blocks in the sliding-block
architecture. Our new approach retains all the confidence
metrics from the past sample blocks instead of relying on
training, and thus conceptually suffers much less from the
well-known edge effects that usually occur in conventional
MLSD designs. A well-known high-speed MLSD design based
on [15] is also shown in Fig. 4 for comparison. To achieve the
same 5Gb/s throughput, our pipelined look-ahead architecture
saves 75% of buffering and computation in ACS, and incurs
75% shorter latency in traceback.

IV. ANALOG FRONTEND IMPLEMENTATION

The robustness of the MLSD facilitates an energy-efficient
AFE architecture, which utilizes an efficient interleaved sto-
chastic flash ADC and a digitally controlled clock recovery
loop. Furthermore, since the MLSD creates more margin for
AFE non-idealities, there is no need for a front-end equal-
izer or input buffer. Our analyses based on [20] show that

2274 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 7, JULY 2018

Fig. 4. Comparison of the pipelined look-ahead architecture (left) and the
sliding block architecture (right).

Fig. 5. Stochastic flash ADC design.

MLSD provides more than 4dB of extra SNR with 10dB loss
at Nyquist rate, which significantly eases both the timing and
offset of the AFE. These approaches all contribute to a higher
power efficiency and a simple AFE design.

A. Stochastic Flash ADC Design

The power, area and input capacitance of the ADCs are
bottlenecks in ADC-based serial-links. In this design, we use
a stochastic flash ADC [21] to keep the power consumption
and input capacitance low compared to conventional flash
ADCs [22], [23]. The 2x-oversampled and 4-way interleaved
ADC shown in Fig. 5 utilizes the random Gaussian input
offset distribution of small comparators to collectively give a
near-uniform distribution of comparator trip voltages across
the input signal range (nominally 200mV differential peak-to-
peak).

Instead of the conventional flash-ADC array of accurate
comparators driven off a power-hungry reference ladder,
we exploit the large, and normally undesired, offsets of small
efficient comparators to set the trip points of the ADC. In our
ADC design, we use StrongArm comparators, which are fast
and give reasonably large random offsets. For the ADC to
cover the full signal range, the comparators are grouped and

Fig. 6. Adder structures used in stochastic ADC. (a) Adder structure for
local summation. (b) Adder structure for final summation.

tied to different coarse reference voltages taken from a low-
power resistor string. This effectively spreads out the individ-
ual random offsets, to evenly distribute the ADC trip points
across the entire signal range. Low threshold voltage devices
are extensively used in the first stage of the comparator,
to make it run at higher speed.

The ADC uses an adder as an encoder because the trip
points are scrambled across the range. The outputs from every
group of comparators (6 or 7 comparators) are summed locally
to yield 3b values, as shown in Fig. 6a. These values are then
summed using structure shown in Fig. 6b to give the overall
5b ADC code. Four interleaved ADCs sampling at 2.5GS/s
deliver an aggregate sampling rate of 10GS/s, oversampling
by a factor of 2 to facilitate timing recovery. Small time-
interleaving errors between the four ADCs, as well as ADC
non-idealities are modulated by random data input, resulting in
random errors that are partially corrected in the branch metric
lookup table while the rest are tolerated by the MLSD’s error
margin.

B. Phase and Timing Control

The extra margin and robustness of the MLSD also permits
the use of a compact and efficient inverter-based digitally
controlled phase rotator, shown in Fig. 7, that generates
32 phases from the 8 phases produced by the on-chip PLL.

The digital clock recovery loop selects the phase that best
represents the center of the unit interval (UI), as shown
in Fig. 8. For better linearity of interpolation, the oscillator
VDD from the rail of PLL VCO sets the supply voltage for the
inverters in the interpolator to adjust the slope of the internal
signals for the clock rate. In this way, the slope of the internal
interpolation signal extends over two adjacent input phases so
that the interpolator operates in a more linear fashion.

The phase detector takes the ADC samples and performs
early/late detection and loops the information back into the
phase rotator via an accumulator. The system is first-order, thus

SONG et al.: MLSD POWERED ADC-BASED SERIAL LINK 2275

Fig. 7. Digital phase rotator design.

Fig. 8. Clock recovery loop with unequalized Mueller-Muller detector.

Fig. 9. Transceiver architecture.

is unconditionally stable. The un-equalized Mueller-Muller
phase detector (MMPD) implements the standard MMPD
logic, dk−1 yk − dk yk−1, where d’s are decisions from MLSD
and y’s are ADC samples. The CDR takes the derivative of
the input data stream to generate the impulse response and
detects whether the pre-cursor and the post-cursor are balanced
with each other. For successful phase detection, the impulse
response has to extend across multiple sampling intervals,
which has to be guaranteed by the channel.

V. PROTOTYPE DESIGN AND MEASUREMENTS

The overall architecture of our prototype 5Gb/s
ADC-based serial-link transceiver with MLSD is shown
in Fig. 9. The prototype includes transmitter, receiver,
on-chip clock generation and timing recovery and the digital
MLSD. To facilitate testing, the prototype incorporates a
pseudo-random bit sequence (PRBS) data generator and a bit
error counter.

Fig. 10. Chip microphotograph.

Fig. 11. Comparison of multi-Gb/s MLSD implementations.

A. Design Summary

We exploit the robustness of the MLSD to simplify the AFE
and remove the need for a power-hungry analog equalizer.
For energy efficiency, area efficiency and speed, a 10GS/s and
4-way interleaved, 5b stochastic flash ADC 2x oversamples the
input signal. The clock recovery loop is closed by a bang-bang
phase detector which extracts and integrates phase information
from the ISI-corrupted data sampled by the ADCs. A digital
phase-rotator finely adjusts the sampling clock phases.

The ADC outputs are de-serialized to form blocks of 10 to
be processed at 500MHz by the MLSD, which decides the
most probable bit sequence. The prototype also incorporates a
5Gb/s transmitter, a PRBS data generator and a bit error rate
tester.

The prototype 5Gb/s transceiver is fabricated in 65nm
GP CMOS and packaged in a QFN60 package. The chip
microphotograph is shown in Fig. 10. The complete transceiver
system occupies an area of 700μm × 1400μm and the MLSD
takes only 700μm × 300μm.

B. Measurement Results

The MLSD is evaluated at 500MHz to achieve 5Gb/s at
a 750mV supply, dissipating a measured 19.3mW. At 1.0V,
the MLSD is evaluated at 1GHz to achieve 10Gb/s, dissipating
57.9mW. The energy-per-bit FoM, defined by the average
energy consumption for receiving one bit, is compared to the
prior art in Fig. 11. The 5Gb/s MLSD is the smallest among
all the previously published MLSDs for link applications,
and it improves the energy efficiency by more than an order

2276 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 7, JULY 2018

TABLE I

COMPARISON WITH PREVIOUS ADC-BASED LINKS

Fig. 12. Insertion loss of the test FR-4 trace.

Fig. 13. Test setup bathtub curve.

of magnitude. The MLSDs are compared based on 3-tap
configuration.

Transmit and receive operation are verified at 5Gb/s.
The transmitter is implemented with programmable 112 unit
drivers and a pattern generator for full coverage of test
patterns. The chip incorporates built-in self-test to monitor the
BER of the transceiver. For BER testing, a PRBS-31 sequence,

Fig. 14. Test chip power measurements (mW).

encoded by 8b10b, is sent by the transceiver over a 45cm
FR-4 trace. The channel has a measured attenuation of 21dB
at 2.5GHz, as shown in Fig. 12, and testing shows that BER
under this condition is better than 10-11. The measured bathtub
curve is shown in Fig. 13.

The power breakdown is presented in Fig. 14. The total
power consumed by the receiver is 54.5mW (with PLL) at
5Gb/s with a 950mV AFE supply and a 750mV digital back-
end supply. The peripheral power includes front-end BIST,
SPI interface and BER tester. The entire receiver FoM is
10.9mW/Gb/s.

Performance metrics are summarized and compared to state-
of-the-art ADC-based serial link designs [22]–[26] in Table. I.
For similar channel loss and data rate, our design demonstrates
competitive power, area and energy efficiency. Furthermore,
as presented in the sections above, by deploying a MLSD,
our design also enjoys a large margin for compatibility with
different applications and relaxed timing and noise constraints
on the AFE.

VI. CONCLUSION

In this work, we present a new pipelined look-ahead MLSD
architecture for serial links. The architecture provides a high
throughput, up to 10Gb/s, and eliminates the pre-training

SONG et al.: MLSD POWERED ADC-BASED SERIAL LINK 2277

overhead of the conventional sliding block architecture to
achieve an efficiency of 5.79pJ/b in a 65nm test chip design.
The efficiency exeeds the state-of-the-art multi-Gb/s MLSDs
by over an order of mangitude.

Utilizing the extra timing and noise margin provided by
the MLSD, we designed a serial link transceiver using a 5b
stochastic flash ADC and a digitally controlled clock and
timing recovery loop. The complete 65nm transceiver chip was
verified at a BER of 10−11 on a 45cm FR-4 trace, with 21dB
loss at Nyquist frequency. Including all test structures, the chip
occupies only 0.88mm2. The design achieves a competitive
FoM of 10.9mW/Gb/s.

REFERENCES

[1] S. Palermo, CMOS Nanoelectronics: Analog and RF VLSI Cir-
cuits: High-Speed Serial I/O Design for Channel-Limited and Power-
Constrained Systems. New York, NY, USA: McGraw-Hill, 2011, ch. 9.

[2] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos, “High-speed electrical
signaling: Overview and limitations,” IEEE Micro, vol. 18, no. 1,
pp. 12–24, Jan./Feb. 1998.

[3] P. K. Hanumolu, G.-Y. Wei, and U.-K. Moon, “Equalizers for high-
speed serial links,” Int. J. High Speed Electron. Syst., vol. 15, no. 2,
pp. 429–458, Jun. 2005.

[4] J. Liu and X. Lin, “Equalization in high-speed communication systems,”
IEEE Circuits Syst. Mag., vol. 4, no. 2, pp. 4–17, 2004.

[5] S. Gondi and B. Razavi, “Equalization and clock and data recovery
techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State
Circuits, vol. 42, no. 9, pp. 1999–2011, Sep. 2007.

[6] G. D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3,
pp. 268–278, Mar. 1973.

[7] H. Yueksel et al., “A 4.1 pJ/b 25.6 Gb/s 4-PAM reduced-state sliding-
block Viterbi detector in 14 nm CMOS,” in Proc. Eur. Solid-State
Circuits Conf., Sep. 2016, pp. 309–312.

[8] H. Yueksel, G. Cherubini, R. D. Cideciyan, A. Burg, and T. Toifl,
“Design considerations on sliding-block Viterbi detectors for high-
speed data transmission,” in Proc. Int. Conf. Signal Process. Commun.,
Dec. 2016, pp. 1–6.

[9] M. M. Kermani, V. Singh, and R. Azarderakhsh, “Reliable low-latency
Viterbi algorithm architectures benchmarked on ASIC and FPGA,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 1, pp. 208–216,
Jan. 2017.

[10] S. Hu, H. Kröll, Q. Huang, and F. Rusek, “Optimal channel short-
ener design for reduced-state soft-output Viterbi equalizer in single-
carrier systems,” IEEE Trans. Commun., vol. 65, no. 6, pp. 2568–2582,
Jun. 2017.

[11] Y. Wang and B. V. K. Vijaya Kumar, “Improved multitrack detection
with hybrid 2-D equalizer and modified Viterbi detector,” IEEE Trans.
Magn., vol. 53, no. 10, May 2017, Art. no. 3000710.

[12] H. Peng, R. Liu, Y. Hou, and L. Zhao, “A Gb/s parallel block-based
Viterbi decoder for convolutional codes on GPU,” in Proc. Int. Conf.
Wireless Commun. Signal Process., Oct. 2016, pp. 1–6.

[13] S. Elahmadi et al., “An 11.1 Gbps analog PRML receiver for elec-
tronic dispersion compensation of fiber optic communications,” IEEE
J. Solid-State Circuits, vol. 45, no. 7, pp. 1330–1344, Jul. 2010.

[14] H.-M. Bae, J. Ashbrook, J. Park, N. Shanbhag, A. Singer, and S. Chopra,
“An MLSE receiver for electronic-dispersion compensation of
OC-192 fiber links,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2006, pp. 874–883.

[15] P. Black and T.-Y. Meng, “A 1 Gb/s, 4-state, sliding block Viterbi
decoder,” in Proc. Symp. VLSI Circuits, May 1993, pp. 73–74.

[16] M. A. Anders, S. K. Mathew, S. K. Hsu, R. K. Krishnamurthy, and
S. Borkar, “A 1.9 Gb/s 358 mW 16–256 state reconfigurable Viterbi
accelerator in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43,
no. 1, pp. 214–222, Jan. 2008.

[17] T. Veigel, T. Alpert, F. Lang, M. Grözing, and M. Berroth, “A Viterbi
equalizer chip for 40 Gb/s optical communication links,” in Proc. Eur.
Microw. Integr. Circuit Conf., Oct. 2013, pp. 49–52.

[18] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm implementation:
Breaking the ACS-bottleneck,” IEEE Trans. Commun., vol. 37, no. 8,
pp. 785–790, Aug. 1989.

[19] M. Salehi and J. Proakis, Digital Communications. New York, NY,
USA: McGraw-Hill, 2007. [Online]. Available: https://books.google.
com/books?id=HroiQAAACAAJ

[20] S. H. Hall and H. L. Heck, Advanced Signal Integrity for High–Speed
Digital Designs. Hoboken, NJ, USA: Wiley, 2009. [Online]. Available:
https://books.google.com/books?id=AB2DHvhSHpsC

[21] J. Pernillo and M. Flynn, “A 1.5-GS/s flash ADC with 57.7-dB SFDR
and 6.4-bit ENOB in 90 nm digital CMOS,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 58, no. 12, pp. 837–841, Dec. 2011.

[22] J. Cao et al., “A 500 mw ADC-based CMOS AFE with digital calibration
for 10 Gb/s serial links over KR-backplane and multimode fiber,” IEEE
J. Solid-State Circuits, vol. 45, no. 6, pp. 1172–1185, Jun. 2010.

[23] C. Ting, J. Liang, A. Sheikholeslami, M. Kibune, and H. Tamura,
“A blind baud-rate ADC-based CDR,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 122–123.

[24] E.-H. Chen, R. Yousry, and C.-K. K. Yang, “Power optimized ADC-
based serial link receiver,” IEEE J. Solid-State Circuits, vol. 47, no. 4,
pp. 938–951, Apr. 2012.

[25] B. Zhang et al., “A 195 mW/55 mW dual-path receiver AFE for
multistandard 8.5-to-11.5 Gb/s serial links in 40 nm CMOS,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013,
pp. 34–35.

[26] A. Shafik, E. Z. Tabasy, S. Cai, K. Lee, S. Hoyos, and S. Palermo,
“A 10 Gb/s hybrid ADC-based receiver with embedded analog and per-
symbol dynamically enabled digital equalization,” IEEE J. Solid-State
Circuits, vol. 51, no. 3, pp. 671–685, Mar. 2016.

Shiming Song (S’13) received the B.S. degree
from the University of Michigan, Ann Arbor, where
He is currently pursuing Ph.D. degree in electrical
engineering. In 2015, he did an internship at Texas
Instruments, Santa Clara, where he was involved
in fractional-N PLL system and circuit designs.
His research interests include wireline transceiver
design, channel coding, information theory, DSP,
cryptography, and scientific computing.

Kyojin D. Choo (S’13–M’14) received the B.S.
and M.S. degrees in electrical engineering and com-
puter science from Seoul National University, Seoul,
South Korea, in 2007 and 2009, respectively. He is
currently pursuing the Ph.D. degree in electrical
and computer engineering with the University of
Michigan.

From 2009 to 2013, he was with the Image Sensor
Development Team, Samsung Electronics, Kiheung,
South Korea, where he was involved in develop-
ing analog/mixed-signal readout circuits. He was

involved in high-speed serial links, PLL/DLLs, and precision analog circuits.
His current research interests include low-power sensor design, mm-scale
system integration, and low-noise timing generation circuits.

Thomas Chen (S’15) received the B.S. and M.S.
degrees in electrical engineering from the University
of Michigan, Ann Arbor, MI, USA, in 2013 and
2015, respectively, where he is currently pursuing
the Ph.D. degree in electrical engineering.

He did an internship with the Circuits Research
Lab, Intel Corporation, in 2015. His research inter-
ests are high-speed and low-power VLSI circuits and
systems. He received the Rackham Merit Fellowship
from the University of Michigan in 2013 and the
NSF Graduate Research Fellowship in 2015.

2278 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 7, JULY 2018

Sunmin Jang was born in Seoul, South Korea,
in 1987. He received the B.S. degree in electrical
engineering from Seoul National University, Seoul,
in 2013, and the M.S. degree in electrical engineer-
ing from the University of Michigan in 2015, where
he is currently pursuing the Ph.D. degree with a
focus on digital beamformers. He was a recipient
of the Samsung Scholarship in 2015.

Michael P. Flynn (M’95–SM’98–F’15) received
the Ph.D. degree from Carnegie Mellon University
in 1995. From 1988 to 1991, he was with the
National Microelectronics Research Centre, Cork,
Ireland. He was with National Semiconductor,
Santa Clara, CA, USA, from 1993 to 1995. From
1995 to 1997, he was a member of Technical Staff
with Texas Instruments, Dallas, TX, USA. During
the four-year period from 1997 to 2001, he was with
Parthus Technologies, Cork. He joined the Univer-
sity of Michigan in 2001, where he is currently a

Professor. His technical interests are in RF circuits, data conversion, serial
transceivers and biomedical systems.

Dr. Flynn is a 2008 Guggenheim Fellow. He received the 2016 University
of Michigan Faculty Achievement Award. He received the 2011 Education
Excellence Award and the 2010 College of Engineering Ted Kennedy Family
Team Excellence Award from the College from Engineering at the University
of Michigan. He received the 2005–2006 Outstanding Achievement Award
from the Department of Electrical Engineering and Computer Science at the
University of Michigan. In 2004, he received the NSF Early Career Award.
He was a recipient of the 1992–1993 IEEE Solid-State Circuits Pre-Doctoral
Fellowship.

Dr. Flynn was the Editor-in-Chief of the IEEE JOURNAL OF SOLID STATE
CIRCUITS (JSSC) from 2013 to 2016. He is a former Distinguished Lecturer
of the IEEE Solid-State Circuits Society. He served as Associate Editor of
the IEEE JSSC and the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS.
He serves on the Technical Program Committees of the International Solid
State Circuits Conference and the European Solid State Circuits Conference.
He served on the Technical Program Committees the Asian Solid-State
Circuits Conference and the Symposium on VLSI Circuits.

Zhengya Zhang (S’02–M’09) received the B.A.Sc.
degree in computer engineering from the University
of Waterloo, Waterloo, ON, Canada, in 2003, and
the M.S. and Ph.D. degrees in electrical engineer-
ing from the University of California at Berkeley
(UC Berkeley), Berkeley, CA, USA, in 2005 and
2009, respectively.

He has been a Faculty Member with the Uni-
versity of Michigan, Ann Arbor, MI, USA, since
2009, where he is currently an Associate Professor
with the Department of Electrical Engineering and

Computer Science. His current research interests include low-power and high-
performance VLSI circuits and systems for computing, communications, and
signal processing.

Dr. Zhang was a recipient of the National Science Foundation CAREER
Award in 2011, the Intel Early Career Faculty Award in 2013, the David
J. Sakrison Memorial Prize for Outstanding Doctoral Research in electrical
engineering and computer sciences at UC Berkeley, and the Best Student
Paper Award at the Symposium on VLSI Circuits. He was an Associate
Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I:
REGULAR PAPERS (2013–2015) and the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS—PART II: EXPRESS BRIEFS (2014–2015). He has been an
Associate Editor of the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION SYSTEMS since 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

