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Sparse representation of information provides a powerful means to perform feature extraction on high-dimensional data
and is of broad interest for applications in signal processing, computer vision, object recognition and neurobiology. Sparse
coding is also believed to be a key mechanism by which biological neural systems can efficiently process a large amount of
complex sensory data while consuming very little power. Here, we report the experimental implementation of sparse
coding algorithms in a bio-inspired approach using a 32 × 32 crossbar array of analog memristors. This network enables
efficient implementation of pattern matching and lateral neuron inhibition and allows input data to be sparsely encoded
using neuron activities and stored dictionary elements. Different dictionary sets can be trained and stored in the same
system, depending on the nature of the input signals. Using the sparse coding algorithm, we also perform natural image
processing based on a learned dictionary.

Memristors are two-terminal devices whose resistance values
depend on an internal state variable and can be modulated
by the history of external stimulation1–4. Unlike conven-

tional charge-based electronic devices, a memristor’s state is deter-
mined by the internal ion (either cation or anion) configuration, and
the redistribution of oxygen ions or metal cations inside the device
modulates the local resistivity and overall device resistance2–4.
Memristors have been extensively studied for both digital memory
and analog logic circuit applications3–7. At the device level, memris-
tors have been shown to be able to emulate synaptic functions by
storing the analog synaptic weights and implementing synaptic
learning rules8–12. When constructed into a crossbar form, memris-
tor networks offer the desired density and connectivity that are
required for hardware implementation of neuromorphic computing
systems13–15. Recently, memristor arrays and phase-change memory
devices have been used as artificial neural networks to perform
pattern classification tasks16–18. Other studies have shown memris-
tors can be used in recurrent artificial neural networks for appli-
cations such as analog-to-digital convertors19.

Memristor-based architectures have also been proposed and ana-
lysed for tasks such as sparse coding and dictionary learning20,21.
The ability to sparsely encode data is believed to be a key mechanism
by which biological neural systems can efficiently process large
amounts of complex sensory data22–24 and can enable the
implementation of efficient bio-inspired neuromorphic systems
for data representation and analysis25–28. In this Article, we exper-
imentally demonstrate the implementation of a sparse coding algor-
ithm in a memristor crossbar, and show that this network can be
used to perform applications such as natural image analysis using
learned dictionaries.

Memristor crossbar array and system set-up
The hardware system used in our study is based on a 32 × 32 cross-
bar array of WOx-based analog memristors, formed at each inter-
section in the crossbar (Fig. 1a). The devices were fabricated using
electron-beam lithography following previously developed pro-
cedures29; a completed array is shown in Fig. 1b (see Methods).
After fabrication, the array was wire-bonded and integrated
onto a custom-built testing board (Fig. 1b, lower inset and
Supplementary Fig. 1), enabling random access to single or multiple
memristors simultaneously, for sending and retrieving signals

from the array. The memristors can be programmed into different
conductance states and can be used to modulate signals in
either the forward (the read voltage is applied to the rows and
current is measured at each column) or backward (the read
voltage is applied to the columns and current is measured at each
row) directions.

The original input, such as an image, is fed to the rows of the
memristor crossbar, and the columns of the crossbar are connected
to output neurons. The memristor network performs critical
pattern matching and neuron inhibition operations to obtain a
sparse, optimal representation of the input. Once the memristor
network stabilizes, the re-constructed image can be obtained
based on the (sparse) output neuron activities and the features
stored in the crossbar array30. A fundamental requirement of
sparse coding is the ability to exert inhibition among neurons to
re-construct the input using an optimized set of features (out
of many possible solutions). In our approach, lateral inhibition
is achieved using iterations of forward and backward passes in
the same network in discrete time domain, without having to
physically implement inhibitory synaptic connections between the
output neurons.

To verify the operation of the memristor array, a 32 × 32 grey-
scale image (a chequerboard pattern with 2 × 2 patch size) was
written and read out from the system (Fig. 1c). A single program-
ming pulse was used to program each device without a read-verify
procedure, demonstrating the system’s capability to program and
store analog weights in the memristor array. Details on the program-
ming procedure and more examples of patterns stored in the same
array are provided in Supplementary Figs 2 and 3.

Mapping sparse coding onto memristor network
Sparse representation reduces the complexity of the input signals
and enables more efficient processing and storage, as well as
improved feature extraction and pattern recognition functions25,27.
Given a signal x, which may be a vector (for example, representing
the pixel values in an image patch), and a dictionary of features D,
the goal of sparse coding is to represent x as a linear combination of
features fromD using a sparse set of coefficients a, while minimizing
the number of features used. A schematic of sparse coding is shown
in Fig. 1d, where an input (for example, the image of a clock) is
formed by a few features selected from a large dictionary24,27. The
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objective of sparse coding can be summarized mathematically as
minimizing an energy function, defined as

mina(|x − DaT |2 + λ a| |0) (1)

where |·|2 and |·|0 are the L
2- and the L0-norm, respectively. Here,

the first term measures the reconstruction error, which is the differ-
ence between the original signal x and the sparse representation
DaT, while the second term measures the sparsity, which is reflected
by the number of active elements in a used to reconstruct the input.
Unlike many compression algorithms that focus on reconstruction
error only, sparse coding algorithms reduce the complexity by
assuming that real signals lie in only a few dimensions (of a high-
dimensional space) and attempt to find an optimal representation
that also reduces dimensionality. As a result, sparse coding not
only enables more efficient representation of the data, but may
also be more likely to identify the ‘hidden’ constituent features of
the input and thus can lead to improved data analyses such as
pattern recognition24,25,27.

Several sparse coding algorithms have been developed26, and this
work focuses on the ‘locally competitive algorithm’30 for its advan-
tages in encoding spatiotemporal signals, biological plausibility and
compatibility with the crossbar architecture. In this approach, the
membrane potential of an output neuron is determined by the
input, a leakage term, and an inhibition term that helps achieve
sparsity by preventing multiple neurons with similar receptive

fields from firing simultaneously. Mathematically, it can be shown
that lateral neuron inhibition can be achieved through an iterative
approach by removing the reconstructed signal from the input to
the network (see equations (2) and (3) in the Methods).

We experimentally implemented the sparse coding algorithm in
the memristor array-based artificial neural network. Memristor
crossbars are particularly suitable for implementing neuromorphic
algorithms, because the vector-matrix multiplication operations
can be performed through a single read operation in the memristor
array14,17. In this approach, the dictionary D is directly mapped
element-wise onto the memristor crossbar with each memristor at
row i and column j storing the corresponding synaptic weight
element Dij. The input vector x (for example, pixel intensities of
an input image) is implemented with read pulses with a fixed ampli-
tude and variable width proportional to the input data value. As a
result, the total charge Qij passed by a memristor at crosspoint (i,j)
is linearly proportional to the product of the input data xi and the
conductance Dij of the memristor, Qij = xiDij, and the charge
passed by all memristors sharing column j is summed via
Kirchhoff’s current law (Fig. 1a) Qj =

∑
i xiDij = xTDj. In other

words, the total charge accumulated at neuron j is proportional to
the dot product of input x with the neuron’s receptive field Dj.
Because the dot product of vectors measures how close the input
vector is matched with the stored vector, the ability to implement
this operation in a single read process allows the memristor
network to conveniently and efficiently perform this important

a b

c d0
6.4

30.0 μm

5.6

4.8

4.0

3.2

2.4

0.8

1.6

0 5 10 15 20 25 30

5

10

15

20

25

30

0

10

1

11

2

12

3

13

4

14

5

15

6

16

7

17

8

18

9

19
Conductance (μS)

Figure 1 | Memristor crossbar array-based computing hardware system. a, Schematic of a memristor crossbar-based computing system, showing the input
neurons (green), the memristor crossbar array and the leaky integrating output neurons (pink). A memristor is formed at each crosspoint, and can be
programmed to different conductance states (represented in greyscale) by controlling the internal ion redistribution (inset). b, Scanning electron micrograph
(SEM) image of a fabricated memristor array used in this study. Upper right inset: magnified SEM image of the crossbar. Scale bar, 3 µm. Lower left inset:
memristor chip integrated on the test board after wire-bonding. c, A 32 × 32 chequerboard pattern (with 2 × 2 patch size) programmed into the memristor
array and subsequently read back using the hardware system shown in b. Results from a higher-density array are provided in Supplementary Figs 4 and 5.
d, Schematic of the sparse coding concept, where an input (for example, the image of a clock) can be decomposed into and represented with a minimal
number of dictionary elements.
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pattern-matching task. This term (xTDj) is then added to the
neuron’s membrane potential. If the membrane potential is above
threshold λ following equation (2b), the neuron is active for the
next phase.

In the second phase, the input image is reconstructed using the
currently active neurons and compared with the original input. This
is accomplished by performing a ‘backward read’ (Supplementary
Fig. 6): variable-width read pulses, proportional to the neurons’
activities aj, are applied on the columns while the charge is collected
on each row i to obtainQi =

∑
j Dijaj = Dia

T . This backward read has
the effect of performing a weighted sum of the receptive fields of
the active neurons directly through the transpose of the weight
matrix, and the total integrated charge on the rows is proportional
to the intermediate reconstructed signal x̂ = DaT in vector form. The
difference of x and x̂, referred to as the residual, is used as the new
input to the array to obtain an updated membrane potential based
on equation (3). The forward and backward processes are repeated,
alternately updating the neuron activities and then the residual.
Experimentally, after collecting charges from the memristor array
in each step, the neuron activities and membrane potentials are
updated by a field-programmable gate array (FPGA) board in the
measurement set-up. After the network has stabilized, a sparse rep-
resentation of the input, represented by the final output activity
vector a, is obtained. By performing these forward and backward
passes in the same memristor network in discrete time domain,
we can effectively achieve the lateral inhibition required by the
sparse coding algorithm without having to implement physical
inhibitory synaptic connections between all the output neurons.

Sparse coding of simple inputs
Figure 2 shows an example of encoding an image composed of
diagonally oriented stripe features using the algorithm given
above. The dictionary, shown in Fig. 2a, contains 20 stripe features,
with each feature consisting of 25 weights. In this experiment, a
25 × 20 sub-array from the 32 × 32 memristor array was used.
The 20 features were written into the 20 columns (with each

weight represented as a memristor conductance) and the inputs
were fed into the 25 rows. An image consisting of a combination
of four features, shown in Fig. 2b, was used as a test input to
the system. A total of 30 forward–backward iterations, as described
already, were performed to stabilize the sparse-coding network,
and the final reconstructed signal is shown in Fig. 2b. The input
image was correctly reconstructed using neurons 2, 6, 9 and 17,
corresponding to the native features of the input, weighted by
their activities. Additionally, the experimental set-up allows us to
study the network dynamics during the sparse-coding analysis,
as shown in Fig. 2c, which plots the membrane potential values
for all 20 neurons during the iterations. For the first two iterations,
all neurons are charging (at different rates depending on how well
the input is matched with the stored receptive fields), and none is
above threshold. After the fourth iteration, the membrane potentials
of 11 neurons (numbers 1, 2, 4, 5, 6, 9, 10, 13, 14, 16 and 17) have
exceeded the threshold. Of these 11 neurons, the receptive fields of
neurons 2, 6, 9 and 17 match the features in the input, and those
of neurons 1, 4, 5, 10, 13, 14 and 16 are not perfect matches but
still overlap enough with the input image to allow these neurons
to be charged at reasonable rates. In the subsequent backward
read, all the active neurons contribute their receptive fields to
the reconstruction and result in a reduced, or even negative
residual input in the next forward pass following equation (3).
As a result, the charging rates and the neurons’ membrane poten-
tials evolve accordingly. Over the next few iterations, the lateral
inhibition between neurons eventually drives the membrane poten-
tials of neurons 1, 4, 5, 10, 13, 14 and 16 below the threshold in the
10th iteration and keeps these neurons inactive in subsequent
iterations. The inactive neurons’ membrane potentials continue
to decay due to the leakage term, but because they are below
threshold, their values have no impact on the final sparse code.
In the end, a correct and sparse representation of the input is
obtained in Fig. 2b based on the active neurons 2, 6, 9 and 17
after the network stabilizes. This experiment demonstrates an
important feature of the sparse-coding algorithm: lateral neuron
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Figure 2 | Experimental demonstration of sparse coding using memristor network. a, Dictionary elements programmed into the memristor crossbar array.
Each dictionary element is stored in a single column and connected to an output neuron. The different greyscales represent four different levels. The neuron
number is listed above each element. b, The original image to be encoded and the reconstructed image after the memristor network settles. c, Membrane
potentials of the neurons as a function of iteration number during locally competitive algorithm (LCA) analysis. The red dashed horizontal line marks the
threshold parameter λ. d, Additional examples of input images and reconstructed images. The same threshold, λ = 80, is used in all experiments in b–d.
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inhibition drives the system to identify the native features of the
input. Non-idealities in the memristor network may temporarily
lead to incorrect behaviour (as in the case of the fourth iteration
or the eighth iteration when neurons 4, 14 and 16 exceed the
threshold), but inhibition can effectively address these errors and
allow correct features to be identified. Additional sparse-coding
examples of inputs based on stripe features using the memristor
crossbar are provided in Fig. 2d.

The reprogrammability of memristors allows the dictionary set to
be readily adapted to the type of signal to be encoded, so the same
memristor hardware system can process different types of inputs
using a single general approach. To demonstrate this point, we
reprogrammed a new dictionary composed of horizontally and ver-
tically oriented bars (Fig. 3a) into the same array used in Fig. 2. By
using this new dictionary, images consisting of bar patterns can be
efficiently analysed using the same algorithm. Additionally, in the
examples shown in Fig. 2, the dictionary is minimally over-complete
(with inputs restricted to be combinations of diagonal stripe features
and corresponds to an input dimensionality of 18, determined from
the linear span of the features). By using the bar patterns in Fig. 3a
and restricting the input images to combinations of horizontal and
vertical bars, the input dimensionality is reduced to 9. With a total
of 20 stored dictionary elements, the system now achieves greater
than 2× over-completeness30, which allows it to better highlight
the capability of sparse coding to find an optimal solution out of
several possible solutions.

An example (input pattern no. 37) using this over-complete
dictionary is shown in Fig. 3b,c. The network not only correctly
reconstructed the input image, but, as expected, it picked the
more efficient solution—a solution based on neurons 8 and 16,
over another solution based on neurons 1, 4 and 8. As can be
seen from Fig. 3c, in the first five iterations, all neurons are charging
and the membrane potentials of neurons 1, 4, 8 and 16 first cross the
threshold at the sixth iteration. Even though the receptive fields of
all four neurons (1, 4, 8 and 16) are correct features in the input,
neurons 8 and 16 (consisting of two bars) represent a more sparse
representation. As a result, inhibition implemented in the system
eventually suppresses the membrane potentials of neurons 1 and 4
to be below the threshold after the 11th iteration and keeps them
below the threshold after the network stabilizes. The activities of
these two neurons are precisely 0 (equation (2b)), and an optimal
solution based only on neurons 8 and 16 is obtained, compared
to other possible, but less-sparse solutions. These features of the
network dynamics have also been confirmed through detailed
simulations of the memristor crossbar-based sparse-coding system
(Supplementary Fig. 10).

Our experimental set-up allows us to directly study the role of the
sparsity coefficient λ on network dynamics and sparse-coding
outcome. We verified that, when changing λ, the network will natu-
rally adapt, and often the same set of active neurons whose receptive
fields optimally represent features in the input will prevail in the end
(Supplementary Fig. 11).
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Figure 3 | Sparse coding of different inputs using a more overcomplete dictionary. a, Dictionary elements based on horizontal and vertical bars
programmed into the memristor crossbar array. b, The original image to be encoded, and the reconstructed image after the memristor network settles.
c, Membrane potentials of the neurons as a function of iteration number during LCA analysis. The red horizontal line marks threshold parameter λ.
d, Additional examples of input images and reconstructed images. The same threshold, λ = 40, is used in all experiments in b–d.
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Additional examples showing the network dynamics in picking a
sparse representation for different input patterns are provided in
Supplementary Figs 7–9. In total, all 50 patterns consisting of two
horizontal bars and one vertical bar were tested using the exper-
imental set-up (Fig. 3d), with a success rate of 94% (measured by
the network’s ability to correctly identify the sparse solutions),
despite variabilities inherent in the memristor devices.

Sparse coding of natural images
Finally, we applied the prototype memristor network to experimen-
tally process natural images using the sparse-coding algorithm. In
this study, a 16 × 32 sub-array from the 32 × 32 memristor array
was used, corresponding to a 2× over-complete dictionary with 16
inputs and 32 output neurons and dictionary elements. The diction-
ary elements were learned offline using 4 × 4 patches randomly
sampled from a training set consisting of nine natural images
(with sizes of 128 × 128 pixels), using a realistic memristor model
and an algorithm based on the ‘winner-take-all’ (WTA) approach
and Oja’s learning rule14. After training, the obtained dictionary
elements were programmed into the physical 16 × 32 crossbar
array (Supplementary Figs 12–14).

Using the trained dictionary, we successfully performed recon-
struction of greyscale images experimentally using the 16 × 32 mem-
ristor crossbar. During the process, the input image (for example,
Fig. 4a) was divided into 4 × 4 patches and each patch was

experimentally processed using the memristor crossbar based on
the sparse-coding algorithm (Fig. 4b,c). Once the memristor
network stabilized (typically after 80 forward–backward iterations,
Fig. 4d), the patch was reconstructed using the neuron activities
and the corresponding receptive fields, as shown in Fig. 4c. The
complete image was then composed from the individual patches,
shown in Fig. 4e.

To verify the experimental results, we performed detailed simu-
lations of the memristor crossbar network. Effects of device vari-
ations were carefully considered during the initialization of the
matrix and during the weight updates (Supplementary Figs 15
and 16). In the case of Fig. 4e, non-idealities during the dictionary
storage were simulated based on the weight update equation from
our device model29. Image reconstructions were then analysed
using the simulated memristor network, following the same pro-
cedure as the experimental processes. The simulation results con-
sistently reproduced the experimental results (Fig. 4f) for this
image-processing task.

We note the current experimental results are limited by the
network size, so only 4 × 4 patches are processed. Additionally,
sparse-coding analysis works better if the dictionary is also
learned via sparse coding instead of simple WTA. Indeed, analysis
based on larger receptive fields (for example, 8 × 8, corresponding
to a 64 × 128 memristor array with 2× over-completeness) and
using a sparse-coding trained dictionary produces excellent
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gradient descent. h, Simulated reconstructed image by considering realistic device variabilities during online learning. 8 × 8 patches were used during training
and image reconstructions in g and h.
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reconstruction results, as shown in Fig. 4g. Detailed simulations
further show that high-quality image reconstruction can still be
obtained even in the presence of realistic device variations
(Fig. 4h) if the dictionary is learned online using the memristor
crossbar. This effect can be explained from the fact that the learning
algorithm is self-adaptive and adjusts to device variabilities during
the training stage. As a result, online learning can effectively
handle device variations and is particularly suitable for emerging
devices such as memristor-based systems where large device
variations are expected.

Conclusions
In this work, we have successfully demonstrated a sparse-coding
hardware system in a memristor crossbar architecture. This
approach, based on pattern matching and neuron lateral inhibition,
is an important milestone in the development of large-scale, low-
power neuromorphic computing systems. The use of a crossbar
architecture allows matrix operations, including vector-matrix
multiplication and matrix transpose operations, to be performed
directly and efficiently in the analog domain without the need to
read each stored weight. Image reconstruction was also demon-
strated using the memristor system, and online dictionary learning
was shown to be feasible even in the presence of realistic device
variations. Future studies, aimed at integrating (ideally larger)
memristor crossbar arrays with complementary metal–oxide–
semiconductor (CMOS) circuitry that can perform the necessary
periphery functions on chip, should provide significant speed
improvements and enable online learning implementation. Online
learning was found to be able to efficiently tolerate device variations,
even for simple algorithms using WTA (Supplementary Figs 17 and
18). Image pre-processing techniques such as whitening can also be
implemented to further improve the network’s performance
(Supplementary Figs 19–21). Our benchmarking analysis against
an efficient digital approach shows that an integrated memristor
system based on devices similar to the prototype system can
already offer significant energy advantages when performing data-
intensive tasks such as real-time video analysis (Supplementary
Figs 22–25 and Supplementary Tables 1 and 2). Continued optim-
ization of the devices and the architecture can lead to future com-
puting systems that can help eliminate the ‘von Neumann
bottleneck’ that is present in conventional computing designs,
and produce efficient computing hardware with low energy
consumption, small footprint and high throughput.

Methods
Methods and any associated references are available in the online
version of the paper.

Received 16 September 2016; accepted 28 March 2017;
published online 22 May 2017

References
1. Chua, L. O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory

18, 507–519 (1971).
2. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing

memristor found. Nature 453, 80–83 (2008).
3. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat.

Mater. 6, 833–840 (2007).
4. Yang, Y., Chang, T. & Lu, W. in Memristors and Memristive Systems 195–221

(Springer, 2014).
5. Kim, K.-H. et al. A functional hybrid memristor crossbar-array/CMOS system

for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2012).
6. Xia, Q. et al. Memristor–CMOS hybrid integrated circuits for reconfigurable

logic. Nano Lett. 9, 3640–3645 (2009).
7. Pershin, Y. V. & Di Ventra, M. Practical approach to programmable analog

circuits with memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 57,
1857–1864 (2010).

8. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems.
Nano Lett. 10, 1297–1301 (2010).

9. Pershin, Y. V. & Di Ventra, M. Experimental demonstration of associative
memory with memristive neural networks. Neural Networks 23, 881–886 (2010).

10. Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic implementation
of synaptic functions with oxide memristors through internal ionic dynamics.
Adv. Funct. Mater. 25, 4290–4299 (2015).

11. Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H.-S. P. Nanoelectronic
programmable synapses based on phase change materials for brain-inspired
computing. Nano Lett. 12, 2179–2186 (2012).

12. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in
single inorganic synapses. Nat. Mater. 10, 591–595 (2011).

13. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing.
Nat. Nanotech. 8, 13–24 (2013).

14. Sheridan, P. M., Du, C. & Lu, W. D. Feature extraction using memristor
networks. IEEE Trans. Neural Networks Learn. Syst. 27, 2327–2336 (2016).

15. Legenstein, R. Computer science: nanoscale connections for brain-like circuits.
Nature 521, 37–38 (2015).

16. Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern classification by memristive
crossbar circuits using ex situ and in situ training. Nat. Commun. 4, 2072 (2013).

17. Prezioso, M. et al. Training and operation of an integrated neuromorphic
network based on metal–oxide memristors. Nature 521, 61–64 (2015).

18. Burr, G. W. et al. in 2014 IEEE International Electron Devices Meeting 29.5.1–
29.5.4 (IEEE, 2014).

19. Guo, X. et al. Modeling and experimental demonstration of a Hopfield network
analog-to-digital converter with hybrid CMOS/memristor circuits. Front.
Neurosci. 9, 488 (2015).

20. Agarwal, S. et al. Energy scaling advantages of resistive memory crossbar based
computation and its application to sparse coding. Front. Neurosci. 9, 484 (2016).

21. Kadetotad, D. et al. in Proceedings of the Biomedical Circuits and Systems
Conference (BioCAS) 536–539 (IEEE, 2014).

22. Földiák, P. & Young, M. P. Sparse coding in the primate cortex. Handb. Brain
Theory Neural Netw. 1, 1064–1068 (1995).

23. Vinje, W. E. Sparse coding and decorrelation in primary visual cortex during
natural vision. Science. 287, 1273–1276 (2000).

24. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381, 607–609 (1996).

25. Wright, J. et al. Sparse representation for computer vision and pattern
recognition. Proc. IEEE 98, 1031–1044 (2010).

26. Lee, H., Battle, A., Raina, R. & Ng, A. Y. in Proceedings of the 19th International
Conference on Neural Information Processing Systems 801–808 (MIT Press, 2006).

27. Olshausen, B. A. & Field, D. J. Sparse coding with an overcomplete basis set: a
strategy employed by V1? Vision Res. 37, 3311–3325 (1997).

28. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix
factorization. Nature 401, 788–791 (1999).

29. Chang, T. et al. Synaptic behaviors and modeling of a metal oxide memristive
device. Appl. Phys. A 102, 857–863 (2011).

30. Rozell, C. J., Johnson, D. H., Baraniuk, R. G. & Olshausen, B. A. Sparse coding
via thresholding and local competition in neural circuits. Neural Comput. 20,
2526–2563 (2008).

31. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

Acknowledgements
The authors thank G. Kenyon, P. Knag, T. Chen, Z. Zhang, Y. Jeong and M. Zidan for
discussions and help. This work was support by the Defense Advanced Research Projects
Agency (DARPA) through award no. HR0011-13-2-0015, by the Air Force Office of
Scientific Research (AFOSR) through MURI grant FA9550-12-1-0038 and by the National
Science Foundation (NSF) through grant CCF-1617315.

Author contributions
P.M.S. and W.D.L. conceived and directed the project. P.M.S., F.C., W.M., Z.Z. and W.D.L
analysed the experimental data. P.M.S. and F.C. constructed the circuitry and performed
the networkmeasurements. C.D. andW.M. prepared thememristor arrays. P.M.S., F.C. and
W.D.L. constructed the research frame. All authors discussed the results and implications
and commented on the manuscript at all stages.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Publisher’s note:
Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations. Correspondence and requests for materials should be addressed
to W.D.L.

Competing financial interests
The authors declare no competing financial interests.

NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2017.83 ARTICLES

NATURE NANOTECHNOLOGY | VOL 12 | AUGUST 2017 | www.nature.com/naturenanotechnology 789

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://dx.doi.org/10.1038/nnano.2017.83
http://dx.doi.org/10.1038/nnano.2017.83
http://dx.doi.org/10.1038/nnano.2017.83
http://www.nature.com/reprints
http://dx.doi.org/10.1038/nnano.2017.83
http://www.nature.com/naturenanotechnology


Methods
Locally competitive algorithm. The locally competitive algorithm (LCA) solves
the minimization problem (equation (1)) using a network of leaky-integrator
neurons and connection weights. In this implementation, x is anm-element column
vector, with each element corresponding to an input element (for example, the
intensity of a pixel in an image patch). D is anm × nmatrix, where each column of D
represents an m-element feature vector (that is, a dictionary element) and is
connected to a leaky-integrator output neuron (Fig. 1a). a is an n-element row vector
representing the neuron activity coefficients, where the ith element of a corresponds
to the activity of the ith neuron. After feeding input x to the network and allowing
the network to stabilize through lateral inhibition, a reconstruction of x can be
obtained as DaT, that is, linear combination of the neuron activities and
corresponding neurons’ feature vectors. In a sparse representation, only a few
elements in a are non-zero, and the other neurons’ activities are suppressed to be
precisely zero.

The neuron dynamics during LCA analysis can be summarized by

du
dt

=
1
τ
( − u + xTD − a(DTD − In)) (2a)

ai =
ui if ui > λ
0 otherwise

{
(2b)

where ui is the membrane potential of neuron i, τ is a time constant, and In is the
n × n identity matrix.

During LCA analysis, each neuron i integrates its input xTD, leakage –u and
inhibition a(DTD – In) terms and updates its membrane potential ui (equation (2a)).
If and only if ui exceeds a threshold (set by parameter λ), neuron i will produce an
output ai = ui, otherwise the neuron’s activity ai is kept at 0 (equation (2b)).
Specifically, the input to neuron i originates from the input signal x scaled by weights
Dji connected to the neuron (second term in equation (2a)). In this regard, the
collection of synaptic weights Dji associated with neuron i is also referred to as the
receptive field of neuron i, analogous to the receptive fields of biological neurons in
the visual cortex24,31. A key feature of the LCA is that the neurons also receive
inhibition from other active neurons (the last term in equation (2a)), an important
observation in biological neural systems24. The LCA incorporates this competitive
effect through the inhibition term, which is proportional to the similarity of the
neurons’ receptive fields30 (measured by DTD in equation (2a)). By doing so, it
prevents multiple neurons from representing the same input pattern and allows the
network to dynamically evolve to find an optimal output. Note that when a neuron
becomes active, all other neurons’membrane potentials will be updated through the
inhibition term (to different degrees depending on how similar the neurons’
receptive fields are). As a result, an initially active neuron may become suppressed
and a more optimal representation that better matches the input may be found. In the
end, the network evolves to a steady state where the energy function (equation (1))
is minimized and an optimized sparse representation (out of many possible
solutions) of the input data is obtained, from a combination of the stored features
and the activities of the (sparse) active neurons.

Note, however, that implementing the inhibition effect DTD can be very
computationally intensive. On the other hand, the original equation (2a) can be
rewritten as

du
dt

=
1
τ
( − u + (x − x̂)TD + a) (3)

where x̂ = DaT is the signal estimation (that is, the reconstructed signal).
Equation (3) shows that the inhibition term between neurons can be reinterpreted as
a neuron removing its feature from the input when it becomes active, thus
suppressing the activity of other neurons with similar features. By doing so, the
matrix–matrix multiplication operation DTD in equation (2a) is reduced to two
sequential vector-matrix multiplication operations (one used to calculate x̂ = DaT

and the other used to calculate the contribution from the updated input (x − x̂)TD,
which we show can be efficiently implemented in memristor crossbars in a discrete

time domain without physical inhibitory synaptic connections between all the
output neurons.

WOx memristor array fabrication. To form the crossbar array of WOx devices,
60 nm ofWwas first sputter-deposited on a Si carrier wafer with a 100 nm thermally
grown oxide. The bottom electrodes (BEs, 500 nm width) were patterned by
electron-beam lithography and reactive ion etching (RIE) using Ni as a hard mask.
Afterwards, the Ni hard mask was removed by wet etching. SiO2 (250 nm) was then
deposited by plasma-enhanced chemical vapour deposition followed by etch back to
form a spacer structure along the sidewalls of the BEs. The spacer structure allows
better step coverage of the top electrodes (TEs) at the crosspoints. The resistive
switching WOx layer was formed by rapid thermal annealing of the exposed
W electrode surface with oxygen gas at 425 °C for 60 s. Afterwards, the TEs
(Pd (90 nm)/Au (50 nm)) were patterned by electron-beam lithography,
electron-beam evaporation and liftoff processes. Another RIE process was used
to remove excess WOx between the TEs and to expose the BEs for electrical contacts.
Finally, photolithography, electron-beam evaporation and liftoff processes
were performed to deposit 150 nm of Au as wire-bonding pads. The completedWOx

memristor crossbar chip was then wire-bonded to an 80-pin chip carrier and
integrated on the test board.

Memristor array test board and software set-up. A custom board was designed to
test memristor arrays for neuromorphic computing applications including the
sparse-coding tasks. The board can apply timed voltage pulses and measure currents
at both row and column terminals, with an integrated controller system to perform
these tasks in an automated manner. It can measure arrays of up to 32 rows and
32 columns. There are four digital-to-analog converters (DACs) capable of
independently producing voltage pulses with amplitude ranges from −5 to 5 V.
Typically, two voltage sources are connected to the rows through the matrix switches
and two to the columns. The matrix switches are connected in such a way as to
perform 2 × 32 routing, with a 32-bit binary word used to configure which of the
rows (columns) is connected to DAC0 (DAC2) while the remaining rows (columns)
are connected to DAC1 (DAC3). The board can perform an array of tests to
characterize memristor devices including d.c. sweeps, pulse measurements and,
importantly, random read and write procedures for memristor crossbar arrays.
A virtual ground with negative feedback is used to convert the current flowing to
an output electrode to a voltage that can be read by analog-to-digital converters.
A variable resistor in the path is used to control the amplification of the current
signal. A multiplexer is included in the signal path to allow connection of either
the virtual ground or the DAC. All control and data signals are passed through
logic-level shifters so that the signals can be communicated between the board
(at 5 V level) and off-board (at 3.3 V) (Supplementary Fig. 1).

The algorithm is programmed onto the board with a mixture of Python and C
code. The Python functions direct the pre-processing and compilation of C routines
and download the compiled binaries to the board. The generated data are received
using Python functions and displayed with the Matplotlib library. Algorithm
execution is directed by the Python code to reduce the processing load on the soft
microcontroller, while board control C routines benefit the real-time execution of
the microcontroller.

Low-level board tasks such as setting the output voltages and configuring the
matrix switches were written exclusively in C using memory-mapped control
registers, while higher-level functions such as reading an array or programming a
pattern were written in a mixture of C and Python. C code templates were developed
to execute generic tasks. The Python code acted as a preprocessor for these templates,
filling in parameters such as hexadecimal values corresponding to a voltage or 32-bit
configurations for the matrices. A soft microprocessor was implemented on the
Opal Kelly XEM6010 FPGA on the test board using the AltOR32 OpenRISC
architecture. The SConstruct build tools were used to control compilation and linking
C codes into binaries, which was performed by the or1knd-toolchain developed
for AltOR32. The binaries were then downloaded onto the board and executed.

Data availability. The data that support the findings of this study are available from
the corresponding author upon request.
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