
1256 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 3, MARCH 2023

ANSA: Adaptive Near-Sensor Architecture for
Dynamic DNN Processing in Compact Form Factors

Reid Pinkham , Member, IEEE, Jack Erhardt , Member, IEEE, Barbara De Salvo, Fellow, IEEE,
Andrew Berkovich , Member, IEEE, and Zhengya Zhang , Senior Member, IEEE

Abstract— Advanced edge sensing/computing devices, such as
AR/VR devices, have a uniquely challenging adaptive baseline
workload and camera sensor structure. These devices must
process images in real-time from multiple sensors, placing a
large burden on a typical centralized mobile SoC processor.
Augmenting the sensors with a package-integrated near-sensor
processor can improve the device’s processing performance as
well as reduce energy consumption. This near-sensor processor
must adapt to the dynamic workloads, fit within a limited silicon
footprint and energy envelope, and satisfy the real-time require-
ment. In this work, we present ANSA, a near-sensor processor
architecture supporting flexible processing schemes and dataflows
to maintain high efficiency for dynamic CNN workloads. ANSA
is scalable to sub-mm2 sizes to match the footprint of advanced
image sensors. ANSA supports module-level power gating to
adapt the compute capacity to dynamic workloads. Finally,
ANSA leverages recent advancements in high-density non-volatile
memory and 3D packaging to support weight storage within the
area constraints of an image sensor. Overall, ANSA achieves
inference energy consumption up to 30× lower than a standard
SIMD baseline. Additionally, our design’s scalability allows it to
achieve up to 2.76× lower average inference energy at 4.5× lower
silicon area compared to competing edge accelerator designs.

Index Terms— Edge computing, low power computing, aug-
mented reality, virtual reality, DNN accelerator.

I. INTRODUCTION

V ISUAL compute constitutes a major contribution to total
power consumption on AR/VR devices [1]. Recent trends

in modern AR/VR devices have seen the inclusion of higher
resolution sensors [2], higher frequency inference, and the
inclusion of more human-machine inference modalities on
a single device [3]. As these trends can result in increased
energy cost for CNN processing on both AR and VR devices
in the near future, techniques to support low-energy real-time
processing on battery-limited devices is of key interest.

Manuscript received 8 August 2022; revised 28 October 2022 and
22 November 2022; accepted 27 November 2022. Date of publication
23 December 2022; date of current version 27 February 2023. This work was
supported in part by Meta. This article was recommended by Associate Editor
M. Martina. (Reid Pinkham and Jack Erhardt contributed equally to this
work.) (Corresponding author: Jack Erhardt.)

Reid Pinkham is with the Department of Electrical Engineering and
Computer Science (EECS), University of Michigan, Ann Arbor, MI 48109,
USA, and also with the Reality Labs—Research, Redmond, WA 98052 USA
(e-mail: pinkhamr@umich.edu).

Jack Erhardt and Zhengya Zhang are with the Department of Electrical
Engineering and Computer Science (EECS), University of Michigan, Ann
Arbor, MI 48109, USA (e-mail: erharj@umich.edu; zhengya@umich.edu).

Barbara De Salvo and Andrew Berkovich are with the Reality Labs—
Research, Redmond, WA 98052 USA (e-mail: barbarads@meta.com;
andrew.berkovich@meta.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2022.3228725.

Digital Object Identifier 10.1109/TCSI.2022.3228725

Recently, advancements in both packaging and imaging
technology have enabled limited processing to be directly
added to an image sensor to create a smart sensor. A smart
sensor typically features a 3D integration of a CMOS image
sensor with a memory die and a processor die. As processing
density increases, it becomes feasible to fit an increasing
amount of processing on the device. By co-locating the
processing with the sensor, data is processed near the source
and even more energy can be saved by cutting the trans-
mission since only the result of computation is relayed to
any off-device processor and compute is orders of magnitude
less expensive than even on-chip communication in modern
devices [3]. This approach also enhances privacy and security
since the images never leave the device. Supporting this low-
energy real-time processing on a silicon-area-limited edge
processor is of key interest.

However, modern CNN models represent challenging work-
loads for near-sensor processing for several reasons. Firstly,
a near-sensor processor needs to be sufficiently flexible to
adapt for dynamic workloads. Secondly, the processor must
support this compute while being limited in silicon area,
so that the processor can be co-packaged with a compact
sensor (on the order of sub-mm2 for an advanced image sen-
sor), and to meet the tight area limitations typical of AR/VR
devices [3]. Finally, the processor must achieve these objec-
tives while maintaining the high energy efficiency required to
meet the stringent energy demands of edge hardware appli-
cations, on the order of sub-mJ per inference demonstrated
in [4], [5].

To meet the tight form factor limitations imposed by
modern sensors, a near-sensor stacked processor needs to fit
the footprint of the sensor, and thus its silicon area and its
cache space are limited. Under a common layer-by-layer CNN
processing scheme, a large cache is needed to store intermedi-
ate activations. Methods of reducing the cache capacity have
been proposed by modifying the layer processing scheme [6],
[7], [8], [9]. However, these methods generally achieve this
reduction at the expense of activation reuse, reducing energy
efficiency by incurring additional data movement between
SRAMs and compute units

To meet versatile image processing needs of different tasks,
a near-sensor processor needs to support different CNN mod-
els of varying computational complexities and the resulting
dynamic workloads [10], [11]. The dynamic workloads are
especially relevant to AR/VR devices, as they need to handle
varied tasks based on input and user interactions. Most of the
CNN processing architectures [12], [13], [14], [15], [16] rely
on a fixed dataflow to simplify the design and improve its peak
efficiency, but a fixed dataflow will not be equally efficient

1549-8328 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6869-0261
https://orcid.org/0000-0001-7217-5481
https://orcid.org/0000-0002-0732-1638
https://orcid.org/0000-0001-5963-9018

PINKHAM et al.: ANSA: ADAPTIVE NEAR-SENSOR ARCHITECTURE FOR DYNAMIC DNN PROCESSING 1257

across all layers of the network or different model structures.
Some [17], [18] considered supporting multiple dataflows, but,
as we will show later, previous flexible dataflow architectures
do not scale when the silicon area and cache size are shrunk to
compact sizes, a key requirement for near-sensor processing.

To meet the real-time processing requirement at high energy
efficiency, a near-sensor processor needs to efficiently handle
the batch size of one. Some common accelerator architectures,
such as the systolic array [14] and large SIMD processors [15],
[19], rely on large batch sizes for efficient computation.
Increased batch sizes often hide inefficiencies in the mapping
but offer an easy method to increase utilization which is not
possible in edge devices. Furthermore, energy efficiency is
not always equivalent to high utilization. Since the external
interfaces represent a significant portion of energy consump-
tion, reducing the external traffic should be prioritized over
increasing utilization for minimizing energy.

We present Adaptive Near-Sensor Architecture (ANSA),
a compute architecture for an advanced image sensor platform
consisting of a 3D stack of a CMOS image sensor, a high-
density NVM, and an ANSA processor. ANSA is specifically
designed with three goals in mind: 1) to adapt to dynamic
workloads, 2) to scale to extreme compact sizes for integration
with an image sensor, and 3) to achieve competitive energy
efficiency while meeting real-time processing latency.

In summary, the contributions of ANSA are:
• Flexible processing schemes and dataflows for dynamic

workloads: ANSA adapts the processing scheme based
on a CNN layer’s or a set of layers’ characteristics to
meet the on-chip storage limitation while minimizing the
processing energy. ANSA also adapts the dataflow for
the optimal mapping of each layer of multiple CNN
workloads onto compute units to reduce on-chip cache
bandwidth and meet the latency requirement while min-
imizing the processing energy.

• Shuffle buffer for depth-wise layers: ANSA uses a shuffle
buffer to streamline the input to the VMM to reduce cache
bandwidth and increase utilization in processing depth-
wise layers.

• Scalability to extreme compact sizes: ANSA’s adaptiv-
ity allows it to be scaled down to extreme compact
design points on the order of sub-mm2 while maintaining
a greater degree of processing efficiency than existing
adaptive NN architectures. We quantify aspects of the
ANSA design that have the largest impact on energy
and performance at different scales, and introduce several
configurations suitable for demanding edge platforms
such as an AR/VR device.

• Agile power control: ANSA utilizes NVM and
module-level power gating of SRAM resources to
adapt to a dynamic CNN workload on a per-input-frame
basis to minimize energy.

Leveraging these features, ANSA can be implemented in
compact form factors and deliver better energy efficiency to
real-time compute systems for both single- and multi-model
CNN workloads. Running a representative dynamic workload,
ANSA is able to reduce the required processor area by 6.4×
and 2.5× compared to NVDLA [19] and architectures
featuring state-of-the-art edge-optimized processing

Fig. 1. AR-Net structure. The algorithm uses a lightweight policy network
to select between multiple resolution/network pairs at run time which reduces
the overall processing load.

schemes [7], respectively. Additionally, the energy is
reduced by 1.66× and 1.97×, respectively.

The rest of the paper is structured as follows. In Section II
we give an overview of the CNN models, NVM technologies,
and advanced sensor platforms for near-sensor processing.
In Section III we conduct a survey of existing flexible accel-
erators and evaluate their suitability for near-sensor process-
ing. In Section IV we detail ANSA’s architectural elements.
In Section V we discuss ANSA’s flexible layer processing
schemes. In Section VI we discuss ANSA’s flexible dataflows.
Finally the results are presented in Section VII.

II. BACKGROUND

We use AR/VR devices as the primary motivation of this
work as they represent the frontier of edge platforms in terms
of computing and sensing capabilities. The characteristics of
AR/VR devices are applicable to other edge platforms.

AR/VR devices use a mixture of traditional and Neural Net-
work (NN) based image processing techniques. Here, we focus
on the NN, and specifically the CNN based techniques since
they usually represent the dominant portion of the processing
workload for modern sensing devices [1]. Many common tasks
for an AR/VR device use CNNs, such as hand tracking [20],
gesture recognition [21], [22], scene recognition and segmen-
tation [23], mapping [24], and more. All these algorithms
must be run in real time, defined as 30 frames per second
(FPS), representing a baseline workload. It is often not feasible
to simultaneously run all of these algorithms in parallel.
However, many applications use a common backbone CNN
to extract a hyper-dimensional feature map as a prepossessing
stage. Sharing this backbone between workloads reduces the
processing and computational diversity required. In this work,
we focus on accelerating this backbone near-sensor. Common
choices for this backbone are ResNet-50 [25], MobileNet [26],
[27], and EfficientNet [28].

A. Dynamic Workloads

Recently, there has been an effort to reduce the complexity
of the backbone network. For example, AR-Net [29] uses an
adaptive resolution backbone to feed a classifier for action
recognition. It employs a lightweight recurrent policy network
to select one of multiple actions at each frame. The actions

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

1258 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 3, MARCH 2023

TABLE I

BACKBONE SPECIFICATIONS FOR AR-NET

can be one of a set of backbone networks operating on full or
reduced resolution input image, listed in TABLE I, or skipping
one or more frames of processing, as illustrated in Fig 1. The
backbones output a latent feature vector of the same size which
is used by a classifier to determine the action in a video clip.

By switching between backbones, AR-Net can reduce the
computation and energy consumption of processing. However,
its setup poses a challenge for a constrained near-sensor
processor for two reasons. First is the large amount of storage
needed for the model weights of all the backbone networks.
Second, the processor must be capable of handling the largest
backbone which requires two orders of magnitude more com-
pute than the smallest backbone. A processor will necessarily
be over-provisioned for small and medium-size workloads,
which is costly for a near-sensor processor where silicon area
and power are a premium.

B. NVM Technologies
In this work, we consider an advanced image sensor plat-

form with stacked compute and memory integrated in one
package. The most common option for on-chip memory is
SRAM which has a good density and high speed, but consumes
high standby power and is volatile. For the amount of weight
storage necessary for this application, modern SRAMs can
draw up to 90mW of static power, which accounts for a power
draw up to 19× higher than the average consumed by compute
resources and exceeding the per-inference energy objective of
our proposed architecture. Many processors also use DRAM
as an off-chip high-capacity storage backed by SRAM. On a
constrained sensor platform, however, this solution costs an
undesirable complexity [30], and also has high standby power
and is volatile.

As image sensor sizes continue to shrink, it is challenging
to fit the required CNN parameters in the stacked memory
die that cannot be shrunk as much as the image sensor. One
possible solution is to use high-density stacked memories such
as HBM [30]. These memories have a higher density than
traditional SRAM, but tend to operate at lower frequencies
and require a significant amount of supporting controllers and
circuits. We consider emerging non-volatitle memory (NVM)
such as Resistive RAM (RRAM) [31] and Magnetoresistive
RAM (MRAM) [32] which retain their contents between
power cycles and are ideal for devices on standby for long
periods. Both of these technologies offer similar latency and
densities at or exceeding that of SRAM for a comparable
technology node [33], [34], with density expected to be
scalable in the same way as SRAM has been in recent years.
Major foundries now support both of these memories in their
existing technology nodes [31], [32].

C. Compact Sensor Platforms

In order to integrate processor, memory, and image sensor,
three dies must be integrated into the same package [5], [35].

Common integration technologies include Through Silicon
Vias (TSV), copper pillars, micro-bumps with an interposer,
and wirebonding. By combining these technologies, it is possi-
ble to integrate more than two dies in the same package. TSVs
and copper pillars allow for multiple dies to be stacked on top
of each other to create a dense 3D multi-die configuration but
are costly to manufacture. A 2.5D integration on a passive
interposer is more cost effective and can increase yield, but it
increases the total package size.

For the advanced packaging options, the area of the sensor,
memory, and compute dies must be closely matched, partic-
ularly for using TSVs. Given a per-pixel area of the sensor,
we can use this requirement to place a lower bound on the
NVM and compute area. Typical state-of-the-art rolling shutter
image sensors can have a pixel size of 1 µm2, with a global
shutter having a pixel size as low as 4.8 µm2 [36], [37]. For the
standard 2242 input image to the largest backbone, this would
correspond to a sensor area of 0.051 mm2 and 0.243 mm2

for rolling and global shutter sensors respectively. The sub-
mm2 image sensors place a stringent limit on the silicon area
allocation for processing.

It is important for a near-sensor processor to store all CNN
weights in near-sensor memories to minimize access latency
and energy. For an algorithm such as AR-Net using multiple
backbones, a weight memory of nearly 40 MB is needed.
If we use a 22nm MRAM [32] to implement weight storage,
the MRAM area exceeds 10 mm2. This disparity in area
between the sensor and memory is a key challenge which must
be overcome. Solutions to bridge this gap include stacking
multiple memory dies, weight compression through sparsity
or tensor decomposition, sharing weights per layer between
networks, or using a more advanced process node [33]. For
this work, we assume a combination of these techniques will
bridge the gap between sensor and memory area in the near
future.

III. RELATED WORK

This work is related to adaptive NN architecture and its
application to near-sensor processing. Near-sensor processing
needs to be compact and energy-efficient, but previous adap-
tive NN architectures are not scalable to extreme compact
design points and they do not offer a low energy advantage
in particular. In the following we briefly review related work
and the challenges that need to addressed.

A. Flexible NN Architectures

Several recent works have proposed flexible processing
schemes to efficiently support inference on a range of CNN
backbones. MAERI [18] supports this compute scheme with
a configurable heterogeneous compute fabric, and a dataflow
graph partitioning algorithm acting as a compiler from ML
algorithms onto this fabric. FlexFlow [17] supports multiple
convolutional loop unroling patterns in a more conventional
systolic array to achieve high data reuse across common CNN
layers. Eyeriss v2 [4] uses an adaptive NoC to achieve adaptive
bandwidth across compute workloads, and exploits compute
sparsity at the PE level. These flexible architectures all follow
a common layer-by-layer processing scheme.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

PINKHAM et al.: ANSA: ADAPTIVE NEAR-SENSOR ARCHITECTURE FOR DYNAMIC DNN PROCESSING 1259

These works achieve high performance and energy effi-
ciency on a variety of workloads, and can be scaled up to
support large workloads, but they suffer significant perfor-
mance and efficiency losses when scaled down in compute
resources due to their reliance on SRAM of a sufficiently large
size to store weights of large neural network models. For a
fixed area budget, layer-by-layer architectures must sacrifice
compute resources to make space for cache, resulting in up to
24× higher energy consumption at small processor sizes than
the ANSA design we will demonstrate in this paper.

B. Multi-Layer NN Architectures

Related works have proposed to reduce the reliance on large
on-chip caches. [6] proposes splitting activations into tiles and
processing this data through multiple layers before moving to
the next tile. [7] further proposes the use of buffering rows
of intermediate activations to support depth-first execution.
This concept is extended in [9] to include redistribution of
receptive field in CNN architectures from earlier to later
layers, reducing redundant computation cost associated with
computing on patches of activations. However, these compute
schemes do not scale in bandwidth, and thus can result in
poor resource utilization and lower energy efficiency for highly
parallel compute resources such as VMMs. Additionally, these
works do not support the flexible dataflows necessary for
adaptive algorithms and multiple backbone networks. Finally,
these compute methods incur substantial data movement,
as weights must be reloaded frequently when switching layers,
and activations are frequently moved in and out of compute
resources. This lack of flexibility results in up to 29× higher
energy consumption at small processor sizes than the ANSA
design we will demonstrate in this paper.

C. On-Sensor Co-Processors

The recent work from Sony [5], [38] has integrated CNN
compute on sensor. However, this design features a megapixel
scale image sensor, while the processing is limited to a single
lightweight CNN model on a downsampled sensor image.
The mismatch between the high sensor resolution and the
low compute capacity demonstrates the difficulty in design-
ing adaptive and compact near-sensor processing to achieve
high efficiency and real-time performance. This serves as the
primary motivation of this work.

IV. ANSA ARCHITECTURE ELEMENTS

ANSA adopts a simple, parameterizable design with the
flexibility to adapt to layers of different shapes and changing
workloads, and to scale to fit a range of area budgets. A key
aspect of our architecture is its flexibility in both processing
schemes, which control how CNN layers are assigned to it,
and dataflows, which control how computation is performed
for each layer. At least one of these two aspects are fixed
in common CNN accelerators to reduce design complexity.
However, here we demonstrate how maintaining this flexibility
allows us to scale to efficiently compute a diverse range of
workloads.

Fig. 2. ANSA’s high-level architecture. The example design has 4 tiles
with 6 PEs per tile. Each PE contains a VMM, local memories, an accumula-
tion buffer, and control logic. Data is transported on the chip via a two-level
NoC driven by global routers in each tile, and local routers within each PE.

A. Top Architecture

ANSA is an inference architecture. The CNN weights are
stored in NVMs that are placed in a read-only mode in
runtime. An overview of ANSA is shown in Fig 2. At the
top level, the architecture shares similarities with previous
work [4], [16], [39], but differences are in how we map
workloads to the architecture. ANSA is comprised at the top
level of a number of tiles connected via a global Network on
Chip (NoC). Each tile has a dedicated interface to an external
NVM, in this case MRAM. Within each tile there are a number
of PEs. Each PE is connected via a local NoC. Together, the
global and local NoCs form a hierarchical-mesh NoC (HM-
NoC), similar to that proposed in [4], [16]. The global NoC
connects the tiles and external NVMs while the local NoC
connects PEs within one tile.

ANSA allows for module-by-module power gating of PEs,
tiles, and MRAM. Combined with support in the CNN map-
ping, powering down unused portions of the processor elim-
inates their static energy consumption. ANSA can efficiently
adapt its compute capacity to meet the requirements for each
step of workload execution.

The number of tiles and MRAM interfaces, the number of
PEs per tile, the shape of the Vector-Matrix-Multiplier (VMM)
inside a PE, and the capacity of the SRAM buffers are the
parameters which specify a particular design. In Section VII,
we explore how each of these parameters affects the perfor-
mance of the accelerator. In the following, we give a brief
overview of key aspects of ANSA.

B. PE

Each PE contains the control logic to perform convolution,
non-linearity, pooling, weighting, and fully-connected opera-
tions. The central element of the PE is the VMM, as shown
in Fig 2. The VMM computes y = Ax , where x is a vector
of length Lvec and A is an Nvec × Lvec matrix. Each PE is
backed with some dedicated vector SRAM and matrix SRAM
for both inputs. All values are 8-bits. In CNN processing,
a vector typically represents a segment along the channel
dimension of a single spatial location. The VMM computes
Nvec sets of Lvec-length inner products in every cycle, i.e.,
one vector-matrix product each clock cycle. The outputs are
summed in accumulation registers, which are then passed to
the local NoC router to other PEs in the tile.

It has been previously shown that compared to
Matrix-Matrix Multiplication (MMM) and Vector-Vector
Multiplication (VVM). VMM represents a good balance
between flexibility and complexity for CNN workloads [40],

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

1260 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 3, MARCH 2023

as they exhibit high data reuse without reliance on batching
like MMM or systolic array structures, which rely on
batch-level parallelism to fully utilize the MAC units
for achieving high throughput and high efficiency [14].
Supporting individual VVM units which do not share a
common input increases the memory bandwidth usage, and
requires complex distribution and accumulation paths. On the
other hand, supporting MMM units decreases the memory
bandwidth, but also reduces flexibility and the hardware
utilization.

C. Flexible Processing Schemes

To meet the size constraint for near-sensor processing
and optimize for energy efficiency, ANSA supports multiple
processing schemes on a per-layer basis. It is common in
CNN accelerators to process a model layer-by-layer. In this
scheme, each layer is processed in full before the next layer’s
processing begins. The alternative is multi-layer or fused-
layer processing, where partial results from one layer are
immediately fed to the next layer processing. Comparing layer-
by-layer and multi-layer processing, layer-by-layer simplifies
the data management during computation since only one set of
input activations, weights, and output activations are required
at any given time, but it takes more activation memory, espe-
cially when an input resolution is high. Multi-layer process-
ing reduces activation memory, but it requires larger weight
memory and/or consumes more NVM bandwidth. A detailed
discussion is given in Section V.

D. Flexible Dataflows

To improve energy efficiency and performance, ANSA
provides multiple dataflow options. The weights and input
activations can be loaded to either the vector SRAM or the
matrix SRAM inside a PE. Mapping can change from layer
to layer to achieve the most energy-efficient computation.
However, the flexibility adds complexity in the accumulation
phase because the order of the output data must be matched
to the order required at the input of the next phase. This
reordering of data results in an overhead which must be
accounted for.

Depending on the dataflow, accumulation of the results
may take place locally, within a tile, or between multiple
tiles. Localized accumulation requires a minimal amount of
NoC communication, but limits the flexibility of the possible
layer mapping. For example, if all channels of the input are
mapped across multiple PEs, intermediate partial sums must
be transmitted across the NoC to a single accumulation unit
for summation, which can saturate the NoC. Alternatively, the
computation for each filter can be localized to a PE, where the
complete computation across channels will occur in rounds,
reducing NoC traffic at the expense of more scratchpad reads
and writes. The dataflows options are discussed in Section VI.

E. Shuffle Buffer

The Depthwise Convolution (DWConv) operation is com-
mon in lightweight networks to reduce the number of MACs
for a 2D convolution. Unlike conventional convolution layers,

Fig. 3. Functional diagram of an example shuffle buffer sized for a 3 × 3
DWConv. (a) A 3 × 3 weight matrix is convolved over the input activations.
(b) The input activations are ordered by column and split into three patches.
A column of 5 inputs are fetched; the column is split to three patches, each
corresponding to a 3×3 region of the input activation; and patches are flattened
to form a 1D vector to each input of the VMM.

the DWConv layer does not sum across the channel dimension,
instead only summing across the width and height of the filter.
Common accelerators rely on summing across the channel
dimension in the vector units and cannot distribute inputs
spatially, resulting in a low hardware utilization for DWConv
layers. For real-time operations, the batch dimension cannot
be utilized to improve utilization.

To address this challenge, each ANSA PE includes a shuffle
buffer between the matrix SRAM and the VMM, which
can distribute inputs to the VMM spatially instead of along
the channel dimension. Fig 3 shows the operation of the
shuffle buffer. In each cycle, the shuffle buffer receives a
column of input activations from the matrix SRAM, and the
shuffle buffer redistributes the saved inputs to form patches
of input activations which are sent to the VMM. In this
manner, the shuffle buffer exploits the reuse of the input
activations between patches to reduce the required bandwidth
and supports a higher VMM utilization for DWConv layers.

F. System Level Integration

The architecture described thus far fills the role of an
on-chip CNN processor. Additional system-level components
exist in the form of the Image Signal Processor (ISP) and
off-chip interfaces. In this work, we assume similar system
level design to that used previously in [5].. We assume
layer-by-layer mappings are assigned offline and stored in a
small instruction SRAM, which are loaded into a controller
at runtime to control the ANSA compute fabric. We also
assume post-ISP images are being used, and a MIPI interface
to communicate backbone results off-chip. The system-level
components, ISP and MIPI interface, contribute a fixed over-
head to support 30 FPS real-time processing of fixed image
sizes, and they do not impact the CNN accelerator design space
which is the focus of this work.

V. FLEXIBLE PROCESSING SCHEMES

A major drawback of the layer-by-layer technique is that the
entire input and output activation must fit in on-chip cache
for the most efficient processing. Typical CNNs for image
processing gradually compress the intermediate representa-
tion throughout the network. For example, Fig 4 shows the
activation size throughout the EfficientNet-B3 network. With
this network, there is a large peak in activation size in the
early layers of over 1.7 MB, assuming 1 B per weight value.
The large on-chip memory can be prohibitive for near-sensor

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

PINKHAM et al.: ANSA: ADAPTIVE NEAR-SENSOR ARCHITECTURE FOR DYNAMIC DNN PROCESSING 1261

Fig. 4. Activation sizes for all layers of the EfficientNet-B3 network at
224 × 224 resolution.

Fig. 5. Intermediate activations between layers are stored in line buffers and
processed immediately after they are produced, reducing on-sensor memory
requirements.

processors. However, throughout the rest of the network, sig-
nificantly less memory is required. While processing layer-by-
layer is desirable for simplicity and efficiency, it can increase
the size of the processor.

Alternative processing schemes have been proposed to
alleviate the memory burden. These include tiling the input
before processing, and fused-layer computation [6]. Recently,
a Line-Buffer (LB) approach to depth-first execution was
proposed [7], as illustrated in Fig 5. With this method, only a
few rows of the input are buffered for each layer, dramatically
reducing the on-processor storage requirement. Inputs can be
further tiled or split along their width to reduce the required
buffering capacity. In the example of EfficientNet-B3, the LB
approach allows the three layers around the largest activations
to be fused to reduce the activation caching by 70% to 600 kB.

However, the LB approach cannot reduce the weight storage
requirements. While the previous work [7] assumes that weight
sizes are significantly smaller than activation sizes, as is
often true for high-resolutions models. With lower-resolution
backbones the weight size can be as large as or larger than the
activations. In ANSA, weights are located in external NVM
and cached on-chip when used. In the worst case when the
weights are not fully cached on-chip, the weights need to be
streamed into the processor on demand, costing higher energy
and latency to access the NVMs.

A. Processing Scheme Options

Both layer-by-layer and multi-layer LB approaches can be
beneficial depending on the layer and input size. Therefore,
ANSA supports the complete spectrum of layer processing
schemes listed below on a per-layer or set-of-layers basis.

• Full Layer: This is a layer-by-layer scheme that requires
the input activations, output activations, and layer weights
to fit in on-chip caches. This scheme is the most

energy-efficient and performance-optimal since activation
and weight reuse is maximized and the NVM read is
minimized.

• Stream Weights: This is a layer-by-layer scheme for
designs with a smaller on-chip caches. The full weights
of a layer may not fit in the on-chip caches and must be
streamed in as they are used. Only a portion of the layer’s
weights are cached at any given time, requiring a higher
NVM bandwidth.

• Full Line-Buffer (Full LB) : This scheme is most similar
to that proposed in [7]. Here, several consecutive layers
are fused for computation. During inference, rows of the
intermediate activations are buffered, and can be further
split into smaller widths according to some splitting
parameter. Unlike in [7], this scheme will produce a
full row of the output at each step instead of location-
by-location to reduce the cache bandwidth required to
successively read the weights. This scheme requires the
first layer input activations, the buffered lines, final layer
output activations, and weights for all fused layers to fit
in on-chip caches.

• Partial Line-Buffer (Partial LB): Derived from the Full
LB scheme, this scheme does not require all the fused
layers’ weights to fit in on-chip caches. Similar to the
stream weights scheme, weights are streamed from the
NVM when required. Compared to the Full LB scheme,
this scheme uses more NVM read.

• Stream Line-Buffer (Stream LB): This scheme is a
further reduction of the partial LB scheme, and is equiv-
alent to the processing scheme proposed in [7] with
weight streaming. Here, a single spatial location of the
fused-layer output (instead of one row of output) is
computed at each step. This scheme reduces the caching
requirements of the activations at the cost of increasing
the NVM read bandwidth to fetch the weights for each
input location.

B. Processing Scheme Assignment

Before inference, each CNN layer must be assigned one of
these processing schemes for mapping to an ANSA processor.
This assignment will depend on both the layer’s characteristics
and the processor’s memory capacity. When the memory
capacity on the processor is sufficient to support the layer-
by-layer approach, the Full Layer or Stream Weights scheme
is assigned. When the memory capacity is not sufficient to
support the layer-by-layer approach, one of the LB schemes
will be assigned. The choice and number of layers to be
fused must also be considered. For deep CNN models, this
creates a large design space with no straightforward method
to determine which layers to fuse for the most efficient
computation.

We use a greedy assignment beginning from the first layer of
the network, with some provisions for non-greedy assignment
in specific scenarios we demonstrate later in this section. If the
processor has the activation cache capacity to support full
layer inference, that processing scheme is used, either Full
Layer or Stream Weights based on the processor’s available
memory cache, and that layer is marked as complete. If the
processor does not have sufficient activation cache, however,

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

1262 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 3, MARCH 2023

Fig. 6. Scenario in which greedy assignment scheme can produce sub-optimal
mappings. Each layer must fit its inputs and outputs into a 16KB Cache.

an appropriate Line Buffer method is assigned to this layer,
and subsequent layers are fused with this same method until
the output activation of the fused layers is small enough
to fit into the available cache. Note that processing scheme
assignment is based on both activation and weight cache
availability, and that these two conditions are orthogonal.
Beginning with the Full LB without splitting, successively
more layers are fused as long as the input activations, layer
weights, and output activations can fit in on-chip caches.

If there is no length of fused layers which will fit, the input
splitting is applied and the search is repeated. If the splitting
creates chunks that are too small, the splitting is reset and
the next LB scheme is tried. If after this search process no
mapping is found, the mapping is rolled back to the previous
non-fused layer and the LB scheme is repeated from there.
If after rolling back no mapping will fit onto the processor,
the processor is considered insufficient to run the CNN.

We find that the greedy assignment generally produces satis-
factory mappings competitive with hand-optimized mappings
of the layers on a range of EfficientNet [28], MobileNet [26],
and ResNet [25] backbones, which are representative of the
general compute patterns found in feature extractor networks
targeted in this work. However, there are a few scenarios
that can result in sub-optimal configurations. For example,
consider the workload described in Figure 6 , accelerated on
an architecture with 16KB activation SRAM. A greedy assign-
ment will process the first layer in full, and then must fuse
many subsequent layers together while the 15KB activation
cannot yet be discarded. Instead, it can be more efficient to
use a LB scheme starting with the previous layer, reducing
the overall number of fused layers. This scenario can occur
within MobileNet blocks which feature local upsampling and
downsampling, specifically in cases when system activation
cache is slightly greater than the maximum activation size.
Our assignment algorithm checks for such cases by comparing
the assignment to one with slightly more and slightly less
capacity, and flags the assignment for review if the situation is
detected.

Fig 7 shows an example assignment of processing schemes
for each layer of EfficientNet-B3. The early layers use the
LB schemes until intermediate activation sizes decrease suffi-
ciently for layer-by-layer methods to become feasible. There
are a few layers which use the least efficient method, Stream
LB, because the sum of the weight and activation size outgrow
the 400 kB capacity of the processor.

Fig. 7. Processing schemes for all layers of EfficientNet-B3 for an ANSA
processor with 350 kB on-chip matrix cache and 50 kB vector cache.

Fig. 8. Weight Stationary and Input Stationary mapping on a PE.

C. Hardware Support

ANSA treats each of these processing schemes as a special
case of a full layer operation. During processing, the PEs
execute an operation over a specified chunk of data. To switch
between the layer-by-layer and the LB schemes, the shape
of the input data is reduced from the full frame to the
subset of activations corresponding to the LB scheme. In this
way, reconfiguration between different processing schemes is
limited to reconfiguration in address generation and a minimal
number of control MUXes; therefore per-layer reconfiguration
costs are minimized in our design flow. The majority of the
work to coordinate the various schemes is accomplished at
the compilation step when the configurations for each PE
are generated, and baked statically into the instructions used
to accelerate a given backbone. As this reconfiguration is
restricted to a minimal set of MUXes being switched by a
controller, this bandwidth is considered negligible and not
estimated in our evaluations. In this way, ANSA is able to
seamlessly switch processing schemes between layers with
minimal dynamic processing required to resolve data move-
ment. The reconfiguration cost of transitioning between NN
backbones is also minimal, and amortized over many long
frame processing windows.

VI. FLEXIBLE DATAFLOWS

ANSA supports different mappings of the computation onto
the VMMs, which we refer to as computation dataflows. These
dataflows are defined by two aspects: the ordering of the
weight and input activation loops during computation, and how
summing across the channel dimension takes place between
multiple PEs.

A. Dataflow Options

1) Weight Stationary or Input Stationary (WS/IS): The
ordering of the weight and input activation loops correspond
to how data is reused between cycles, as shown in Fig 8. In
the weight stationary (WS) dataflow, weights are held in the
PE’s matrix SRAM between cycles while the input activations
are streamed into the vector SRAM. PE outputs in the WS
dataflow are generated in a channel major order, and can

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

PINKHAM et al.: ANSA: ADAPTIVE NEAR-SENSOR ARCHITECTURE FOR DYNAMIC DNN PROCESSING 1263

Fig. 9. Channel first and channel last mapping across PEs.

be used in subsequent layers without reshaping. Conversely,
in the input stationary (IS) dataflow, input activations are held
in the matrix SRAM. Outputs in the IS dataflow must be
reshaped between layers; ANSA provisions buffering in the
accumulation phase of computation to accommodate this.

2) Channel First or Channel Last (CF/CL): The accumula-
tion of partial sums along the input channel dimension can take
place in two steps. Within the VMM, the inputs are vectors of
Lvec channels at a single spatial location. The VMM computes
the Lvec partial sums and accumulates them as part of the
dot product operation. However, in all but the first layers of
popular CNN backbones, the number of channels Nchannels is
large and we can expect that Nchannels > Lvec for practical
choices of Lvec. As such, the accumulation along the channel
dimension is done in multiple rounds. With multiple PEs this
gives two options for where accumulation can take place,
as depicted in Fig 9.

In the first case, each PE processes Lvec channels of the
entire input, and intermediate results are summed across PEs.
When NP E · Lvec < Nchannels , the computation is spread
between multiple rounds. We refer to this dataflow as Channel
First (CF) as the channel accumulation is completed in one
round if possible. Alternatively, the input activation can be
divided spatially amongst PEs, with each PE responsible for all
channels of its tile. Intermediate results are cached locally and
accumulated over multiple rounds. We refer to this dataflow
as Channel Last (CL) as the channel accumulation is spread
over multiple rounds.

The CF and CL dataflows have different accumulation
patterns. With the CF dataflow, partial results are transmitted
over the NoC and summed at the destination PE. For the
CL dataflow, only overlapping partial results are transmitted
between neighboring PEs, reducing the amount and energy of
the NoC communication. However, the CL dataflow replicates
the weights on each PE, increasing the storage capacity.

B. Dataflow Selections
Combining the WS/IS and CF/CL options yields four

dataflows. How well each layer performs under each dataflow
depends on the layer’s size, computational complexity, the
dimensions and number of PEs, and the processing scheme.

Some properties of the network layer can give clear indi-
cations of the most suitable dataflow. For layers with small
weights relative to the size of the input activations, common
early in networks, WS is the most efficient as it maximizes
weight reuse. Hardware structure also effects dataflow effi-
ciency. For example, for VMM’s with Nvec = 8, a 3 × 3.2D
convolution does not fit evenly onto the VMM, necessitating
either extra rounds or additional complexity in the accumu-
lation step. Similarly, choosing between CF and CL depends

both on layer and hardware properties. For example, to map a
spatially small input onto a large number of PEs, it is infeasible
to evenly tile the input without causing a significant amount
of NoC traffic or redundant computation.

Switching dataflows between layers can cause complexity
during the accumulation phase, as the destination of the out-
puts changes with dataflow. When switching between WS and
IS dataflows, intermediate activations must be moved between
matrix and vector SRAMs within PEs, respectively. Similarly,
when switching from CL to CF dataflows, activations may
need to be distributed across multiple PEs, incurring additional
NoC traffic.

ANSA maintains flexibility by supporting all four dataflows.
Each dataflow can be paired with each of the 5 processing
schemes presented in Section V to create 20 possible com-
binations. At compile time the energy requirements of each
of the combinations is estimated for each layer, including the
latency and bandwidth required to switch methods. Dataflows
are chosen to minimize the total energy consumption while
satisfying the latency requirement.

VII. RESULTS

We first discuss our methodology for evaluating ANSA.
Next we compare the layer processing schemes with flexible
dataflow options, and discuss the impact of key architectural
features on performance and energy. We evaluate ANSA at
a range of design points to compare ANSA to state-of-the-
art accelerators across a range of processor sizes. Finally,
we evaluate ANSA on the dynamic AR-Net workload. Given
a set of hard constraints on the area of the processor and the
distribution of backbone workloads, we discuss the resulting
best configurations.

A. Evaluation Methodology
We estimate ANSA’s area and energy based on a TSMC

28nm CMOS technology. The VMM and shuffle buffer were
designed in RTL, then synthesized and placed and routed
using the Cadence Innovus tool with a 500MHz clock. These
designs were synthesized to support 3 × 3 convolutions, and
designed with VMM vector dimensions of sizes 4, 8, 12,
and 16; and matrix dimensions of sizes 4, 8, 16, 32, and
64. Area was extracted from these post-APR design layouts.
A sample APR layout photo is shown in Figure 10. Power
measurements for these designs were measured at several
fixed input switching rates through back-annotated gate-level
simulation, with and without the shuffle buffer. During sim-
ulation, the actual input switching rate for each VMM is
computed, and power estimates are interpolated between those
measured from these fixed-rate gate-level simulations. An
SRAM compiler in the TSMC28nm HPC+ PDK was used to
estimate the power and area of the matrix and vector SRAMs
within the PE. These compiled SRAMs feature a sleep mode
which is used to implement power gating for these devices.
MRAM area and power estimates are extracted from the 22nm
MRAM macro described in [32]. The NVM interfaces are
16 B wide and operate at 100 MHz, and follow a simple,
SRAM like interface [32]. Weights are fetched to on-chip
cache for processing. The NoC is modeled on a per-hop basis
with a fixed per-hop energy and latency cost extrapolated

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

1264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 3, MARCH 2023

Fig. 10. Layout photo of a VMM supporting 8×8 matrices and 8×1 vectors
with a Shuffle Buffer designed to accelerate 3 × 3 depthwise convolutions.

from [41]. The transfer latency is estimated based on hop count
accounting for congestion.

We wrote a mapping program to determine how each CNN
layer is processed. This program takes the architecture defini-
tion and a CNN definition to assign the optimal layer process-
ing scheme for each layer following the method described
in Section V-B. Dataflows are then chosen to minimize total
energy consumption while keeping total latency below the
real-time threshold as described in Section VI-B.

After choosing processing scheme and dataflow for each
layer, we can determine the total bandwidth for all interfaces
for each layer. This allows the estimate of the computation
time and energy consumption on a per-layer basis. This
estimate includes the data shuffling between layers in the
accumulation phase.

To estimate the effect of power gating on the energy con-
sumption and latency, we first estimate the power consumption
of the entire hardware where only a subset of the tiles or
a subset of VMMs within a single tile is utilized. This first
estimate includes the static power consumed by the unused
portions of the hardware. We then simulate power gating these
unused portions to obtain the final energy estimate.

It is important to note that we measure energy consumed
per inference while running at a fixed frame rate of 30 FPS.
This means that leakage from the device is considered for the
full 33 ms window. Measuring energy in this manner gives a
more accurate estimate of runtime energy consumption.

B. Comparing Processing Schemes
First we analyze the latency bottlenecks of each processing

scheme. Fig 11 shows the computation latency when one
processing scheme is exclusively used as in a common CNN
accelerator. This comparison uses the smallest-size ANSA
processor which supports full layer computation across the
entire EfficientNet-B3. The processor consists of 4 tiles, each
with 2 PEs of size Nvec = 4 and Lvec = 8.

1) Latency Analysis: The latency for each processing
scheme in Fig 11 is broken down by parts attributed to
potential system bottlenecks including external NVM band-
width, on-chip Output Activation (OA) or Input Activation
(IA) bandwidth, and PE utilization. These bottlenecks increase
the processing latency above the ideal latency defined as the
latency when all PEs are fully utilized every cycle. Imperfect

Fig. 11. Normalized latency for each processing scheme when running
EfficientNet-B3. The latency of each method is broken down into portions
attributed to each bottleneck.

mapping across PEs is reflected in the PE utilization bottle-
neck.

The inference latency when using only layer-by-layer
processing schemes (Full Layer and Stream Weights) is close
to ideal. For both the Full Layer scheme and the Stream
Weights (SW) scheme, the only noticeable bottleneck is the
external NVM bandwidth. The two layer-by-layer schemes are
similar because the ANSA processor considered in Fig 11 has
a large enough cache to store a full layer of weights. In a
smaller ANSA design point where the cache size is limited,
the Stream Weights scheme will incur higher latency due to
accessing off-chip weights.

All three multi-layer LB processing schemes incur sig-
nificantly more overhead than the layer-by-layer schemes.
For the Full LB scheme, most of the latency bottleneck
is caused by lower PE utilization. This is because a LB
scheme partitions workloads into smaller chunks, making it
more difficult to fully utilize the hardware. The Partial LB
scheme has additional latency attributed to the increased NVM
accesses. With Partial LB, the weights for a single layer are
re-read from the NVM for each line of the input, saturating
the comparably low-bandwidth NVM interface. Finally, the
Stream LB scheme incurs an order of magnitude higher
overhead compared to the other schemes. Due to the small
number of activations stored on-chip and the higher NVM
access latency, the Stream LB scheme suffers from extremely
low PE utilization. Additionally, weights being reloaded for
computing each output location places further strain on the
NVM interface. This emphasizes that the Stream LB scheme
is a last resort and used only when absolutely necessary.

2) Energy Analysis: A breakdown of the per-inference
energy consumption for each processing scheme is shown
in Fig 12. The same hardware configuration is used as in
Figure 11, and energy is measured at 30 FPS for all schemes
except Stream LB which cannot meet real-time and is mea-
sured at a slower rate.

Both of the layer-by-layer schemes, Full Layer and Stream
Weights, perform nearly identically for this ANSA configura-
tion. The majority of the energy is attributed to the SRAM
bandwidth, SRAM static energy, and NVM bandwidth, with
only 9.9% of the energy used for compute. Comparatively,
The multi-layer LB schemes use significantly more energy.
For the Full LB scheme, SRAM access energy is much higher
due to lower data reuse. The Partial LB scheme uses even more
energy for NVM accesses due to repeatedly reloading weights.
Finally, the Stream LB scheme uses much more energy than

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

PINKHAM et al.: ANSA: ADAPTIVE NEAR-SENSOR ARCHITECTURE FOR DYNAMIC DNN PROCESSING 1265

Fig. 12. Energy breakdown of EfficientNet-B3 inference when using each
processing scheme. The static MRAM energy consumption is too small to be
visible on the charts.

Fig. 13. Energy breakdown of MobileNetV2 inference on a processor
optimized for EfficientNet-B3 inference, with no power gating and with ideal
power gating enabled. In ideal power gating, static power for unused compute
and SRAM components is assumed to be 0.

the other schemes, the majority of which is attributed to SRAM
bandwidth.

An important assumption of the greedy algorithm for
processing scheme assignment presented in Section V-B is
that there is a fixed preferred order of processing schemes.
With this analysis, we can see empirically that this assumption
holds. Both Fig 11 and Fig 12 show a clear trend that each
successive scheme from the Full Layer scheme to the Stream
LB scheme has higher energy consumption and higher latency
than the previous.

C. Power Gating
We also demonstrate the capability of our design to pow-

ergate unused computational resources and how this impacts
performance on dynamic workloads in Figure 13. In this
analysis, we first optimize an architecture configuration for
minimum inference energy on EfficientNet-B3. We find an
architecture with 1 Tile and 4 PEs/Tile of size Nvec = 32,
Lvec = 16, and 545.4kB of on-chip SRAM to achieve this.
We then evaluate the inference energy of MobileNetV2 on this
architecture, with and without power gating enabled during
compilation.

The takeaway from this analysis is two-fold. We first
observe that enabling power gating can improve per-inference
energy by up to 1.316× in this situation. We further note
that almost all of the energy savings come from reducing the
total SRAM static energy draw during the inference period.
As dynamic workloads are designed to have a large disparity
in size between their largest and smallest models, devices
with compute capacity sufficient for these large networks may
have idle resources and particularly idle SRAM when running
smaller models, as seen here. As these static power draws may
be significant depending on the workload distribution, we find

Fig. 14. Latency difference on select layers of EfficientNet-B3 with and
without the shuffle buffer (SB) enabled.

that power gating is a key technique to enable energy efficient
support for dynamic algorithms.

D. Shuffle Buffer
Here we analyze how the shuffle buffer reduces overall

inference latency by increasing PE utilization on depth-wise
layers. We use the same ANSA configuration as in Figure 11,
but with VMMs of size Nvec = 16, Lvec = 32. Fig 14 shows
the latency of the first 9 depth-wise layers of EfficientNet-
B3 with and without the shuffle buffer. The latency savings
of the shuffle buffer depend on the layer characteristics, with
stage3a saving over 5× latency, while minimal effect on
stage4b and stage4c. Using the shuffle buffer, the total CNN
inference latency is reduced from 17.7 ms to 14.7 ms (17%)
for EfficientNet-B3.

The impact of the shuffle buffer on per-inference energy
consumption is minimal when measured at a fixed frame rate
for EfficientNet-B3. This result is due to two factors. Firstly,
as the depth-wise layers constitute a relatively small portion
of the total compute, the absolute bandwidth reduction is
relatively small. Secondly, because the energy is measured at
a fixed frame rate, the saving in latency does not reduce the
leakage energy consumption. The area impact of the shuffle
buffer is also relatively low, constituting below 6.7% of total
PE area depending on VMM dimensions. However, for large
models, the latency savings from the shuffle buffer can be
significant enough to enable real-time operation.

E. Fixed Workload Analysis

We now demonstrate how each feature of ANSA impacts
overall performance. We will present the effects of each
architectural component at a set of design points defined by
a limit on the processor area. In addition, we also perform
an ablation study to compare our architecture with other
competitive works lacking in specific features; specifically,
we model NVDLA [19] by analyzing only single core, full
layer models with Weight Stationary / Channel Last dataflows;
and [7] by analyzing models with only Line Buffer based
processing schemes and without Input Stationary dataflows or
the shuffle buffer. These architectures were modelled using
the same framework as ANSA to normalize the comparison.
Eyeriss v2 [4] and Sony’s stacked CNN processor [5] are also
included in comparison. We note that while many prior works
have achieved high performance on comparable workloads,
these works were often evaluated at a single, large-area design
point, and would therefore make a poor comparison to this
work, which targets a different design point. For this reason,

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

1266 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 3, MARCH 2023

TABLE II

DESIGN POINTS USED TO COMPARE THE ARCHITECTURE PERFORMANCE
AS IT SCALES IN SIZE. THE AREA OF THE REFERENCED

ACCELERATORS ARE SCALED FOR COMPARISON

TABLE III

LOWEST ENERGY CONFIGURATIONS AT EACH DESIGN POINT

Fig. 15. Inference energy on EfficientNet-B3 for multiple configurations at
each design point (LB: Line Buffer, SW: Stream Weights). Darker shades rep-
resent larger design points. Energy is normalized to ANSA’s full architecture
energy at each size. Note the change in scale.

we focus our comparisons with works that scale in order to
highlight the features of our design.

1) ANSA Design Points: The specified ANSA design points
are shown in TABLE II. Their area ranges from 0.15 mm2,
representing the most constrained near-sensor processor,
to 5.0 mm2 for larger designs comparable to existing popular
CNN accelerators. For each design point, we consider all
configurations of ANSA within 5% of that area by sweeping
over the VMM shape, PE memory capacity, number of PEs per
tile, and number of tiles. Each CNN workload is then mapped
to each of the designs to estimate inference energy and latency.
From the design space exploration, the lowest energy design
that satisfies the real-time latency requirement is chosen as
the best architecture configuration at that design point. The
resulting configurations are shown in TABLE III.

The lowest energy configurations for ANSA at these design
points tend to have one or a few tiles with either many PEs per
tile, or a few PEs with large VMMs. As the number of NVM
interfaces is tied to the number of tiles, this suggests that only
one NVM interface is sufficient to support computation.

2) Architectural Feature Analysis: In order to assess the
impact of each architectural feature on performance, we per-
form the same sweep while disabling that feature. We per-
form the search in this manner in order to not exclude an
architecture configuration which is able to compensate for a
loss of performance due to removing that architectural feature.
Here, we consider disabling support for one processing scheme
or dataflow at a time.

Fig. 16. Minimum energy consumption for processing various backbones on
ANSA and compared works at a range of processor sizes. Top: Comparison
using the MobileNet backbone with other scalable adaptive works [4] and [5].
Bottom: Comparison using the EfficientNet-B3 backbone. Note the change in
vertical range between (a) and (b).

Fig 15 shows the energy consumption of the best config-
uration at each processor size. Energy is normalized to the
full ANSA architecture at each size (see Table III). We can
see that the LB schemes are key to enabling processing at the
smallest design point. At this size there is not enough SRAM
capacity to fit most of model layers, and the LB schemes are
needed to reduce the size of the input activations in memory.
There is a similar case when the Stream Weights scheme is
disabled, though to a lesser extent.

Disabling support for the IS dataflow has minimal impact
on the energy consumption. However, disabling support for
the WS dataflow has a substantial impact across all but the
largest design point. This suggests that without a sufficiently
large on-chip memory, the WS dataflow is very important for
processing efficiency. Similarly, disabling the CL dataflow has
less impact on energy than disabling the CF dataflow, as the
CL dataflow is rarely used due to its redundant weight storage
requirement.

3) Comparisons: In Fig 16, we show a comparison of
ANSA with prior works at a range of processor sizes. We per-
form a design space sweep of the architecture configurations
for each architecture on multiple workloads. We evaluate on
the MobileNetV1 workload in the top half of Fig 16 to enable
fair comparison with other designs, and we also evaluate our
design on EfficientNet-B3 in the bottom half to demonstrate
performance across a range of workload sizes. In general, the
NVDLA architecture performs poorly at most small proces-
sor sizes. This is largely because NVDLA is a single core
architecture, whose utilization is reduced by the limited space
for on-chip caching, resulting in high latency and high energy
consumption. For fairness of comparison, we also evaluate a
Modified NVDLA architecture using multiple NVDLA cores.
We also consider an architecture which closely matches the
design presented in [7], with LB only processing schemes.

As shown in Fig 16, ANSA achieves competitive per-
formance with large processor configurations such as Eye-
riss v2 [4]. ANSA also achieves superior energy efficiency

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

PINKHAM et al.: ANSA: ADAPTIVE NEAR-SENSOR ARCHITECTURE FOR DYNAMIC DNN PROCESSING 1267

to [7] due to the introduction of flexible processing schemes
and dataflows. In particular, ANSA maintains efficient process-
ing even at much tighter area constraints, due to its lesser
reliance on on-chip cache to enable efficient computation. This
scaling is more pronounced with larger and more memory
intensive workloads, as seen in Fig 16 when evaluating with
EfficientNet-B3. The presence of many large intermediate
activations prevents NVDLA architectures from efficiently
processing at small sizes, while the presence of many smaller
layers prevents [7] from operating at high energy efficiency.
The adoption of both techniques in ANSA allows for efficient
processing at smaller scales.

F. Dynamic Workload Analysis

In this section we consider ANSA’s performance across
multiple workloads, a situation common in AR/VR applica-
tions where the CNN workload can vary between frames.
AR-Net has four backbone networks1 (TABLE I) which oper-
ate on different image resolutions. AR-Net can choose to skip
some frames’ computation. The smallest backbone, in this
case MobileNetV2, is also run for all non-skipped frames.
We include this inference energy in the total for the three
EfficientNet backbones.

Our goal is to minimize the average runtime inference
energy for these dynamic workloads. This will be dependent
on the frequency each backbone is used. We consider two
representative usage frequency distributions. In the equal dis-
tribution, each of the four backbones has equal chance of
being used and no frames are skipped. In the light distribution,
EfficientNet-B3, EfficientNet-B1, EfficientNet-B0, MobileNet,
and frame skips are used in 1%, 5%, 15%, 70%, and 9% of
frames, respectively.

We perform a design space sweep of the architecture
configurations for each of the backbones and each workload.
In this sweep, only configurations which can run all backbones
are considered. Each Pareto curve of energy versus area was
extracted, as shown in Fig 17. This curve provides insight into
how the energy consumption changes with area. Overall, the
curves have a bathtub shape with a region in the center along
which the energy consumption is nearly constant. For large
designs, energy consumption is dominated by static power
draw of the SRAMs. For small designs, energy consumption
is dominated by NVM access energy due to limited on-chip
cache and decreased data reuse.

For each workload distribution, the lowest-energy configu-
ration was found. The energy consumption for each backbone
with this minimum configuration is annotated in Fig 17 by
each vertical set of four points. Note that some workloads
may be computed above the Pareto minimum for each distri-
bution, as the architecture must optimize for each workload
simultaneously according to their useage frequency. Points
for ANSA are shown alongside three other architectures:
LB only processing scheme from [7], the modified NVDLA
architecture, and DepFiN [49].

1We analyzed both versions of AR-Net with ResNet and EfficientNet
backbones, however we focus here on the results from the EfficientNet
backbones since they are better suited for edge computing. The results and
takeaways from the ResNet are similar.

Fig. 17. Pareto curves for the energy consumption of processing each network
to meet 30 FPS performance versus area. The black x on each curve shows
the minimum energy for that backbone.

TABLE IV

OPTIMAL ANSA CONFIGURATIONS FOR EACH

WORKLOAD DISTRIBUTION

TABLE V

COMPARISON OF ANSA AND OTHER ARCHITECTURES

For the equal workload, the lowest-energy ANSA processor
size is close to that of the medium design point in TABLE II
at 0.78 mm2. For this configuration, all operating points are
very close to the Pareto minimum. For the light workload,
the lowest-energy processor size is reduced to 0.38 mm2. All
but the heaviest backbone can be run at a point near the
Pareto minimum. For this configuration, sacrificing inefficient
compute on the heaviest backbone is acceptable due to its low
usage frequency. The specific architecture configurations for
the two workloads are shown in TABLE IV.

All compared architectures have higher area and aver-
age inference energy compared with ANSA as shown in
TABLE V. ANSA achieves a 42% lower energy consumption
with a 84% reduction in area over to the modified NVDLA
architecture for the equal workload. ANSA uses the flexibility
in processing schemes and dataflows to vastly reduce the
required area of the processor while maintaining efficiency.
The addition of power gating moves the operating points even
closer to the Pareto minimum, reducing energy by 11.3% and
10.2% for the equal and light workloads, respectively.

TABLE IV details the ANSA configuration optimized for
the equal and light workloads. As expected, the light workload
yields a smaller processor in terms of SRAM capacity and
overall chip area. The equal workload design features higher
compute in the form of a few large PEs, while the light
workload uses many smaller PEs. Both designs cluster all their
PEs in a single tile, suggesting only one NVM interface is
sufficient to support real-time computation in both cases. For

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

1268 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 3, MARCH 2023

both configurations, the vast majority of the on-chip SRAM
is dedicated to the vector SRAM. This is likely because the
Stream Weights processing scheme with WS dataflow is used
for the largest layers which allows for a single filter to be
cached on the chip at a time.

VIII. CONCLUSION

This work presents ANSA, a near-sensor processor for
AR/VR devices. ANSA targets stacked-chip integration with
the sensor and NVMs to achieve efficient computation over
a range of dynamic workloads and at compact processor
size constraints. We present ANSA’s tile-based architecture
alongside the processing schemes and computational dataflows
it supports. We demonstrate how when combined with layer-
by-layer methods the multi-layer LB technique can enable
efficient CNN computation on memory-constrained proces-
sors. Many of the presented techniques have the potential
to improve the performance of existing architectures with
small adjustments to support multiple processing schemes
and dataflows. Our architecture demonstrates the benefits
of dynamically switching between processing schemes and
dataflows on a per-layer basis to support efficient CNN
processing on resource-constrained systems, as well as the
ability to maintain processing efficiency through these schemes
for very small area constraints, achieving 2.76× greater energy
efficiency than [7] at 4.5× smaller area. We also demonstrate
how combined with power gating this enables our architecture
to adapt to the dynamic workloads at runtime, demonstrating a
40% and 55% reduction in energy consumption, respectively,
on two AR-Net dynamic workloads.

REFERENCES

[1] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining
our glass: An energy and heat characterization of Google glass,” in Proc.
5th Asia–Pacific Workshop Syst., New York, NY, USA, 2014, pp. 1–7,
doi: 10.1145/2637166.2637230.

[2] Introducing Meta Quest Pro, An Advanced VR Device for Collabo-
ration and Creation. Accessed: Oct. 28, 2022. [Online]. Available:
https://www.oculus.com/blog/meta-quest-pro-price-release-date/

[3] C. Liu, A. Berkovich, S. Chen, H. Reyserhove, S. S. Sarwar, and
T.-H. Tsai, “Intelligent vision systems—Bringing human-machine inter-
face to AR/VR,” in IEDM Tech. Dig., Dec. 2019, pp. 10.5.1–10.5.4.

[4] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
IEEE J. Emerging Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308,
Jun. 2019.

[5] R. Eki et al., “A 1/2.3 inch 12.3 Mpixel with on-chip 4.97 TOPS/W CNN
processor back-illuminated stacked CMOS image sensor,” in IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021,
pp. 154–156.

[6] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture (MICRO), Oct. 2016, pp. 1–12.

[7] K. Goetschalckx and M. Verhelst, “Breaking high-resolution CNN
bandwidth barriers with enhanced depth-first execution,” IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 323–331, Jun. 2019.

[8] W. Hua, Y. Zhou, C. De Sa, Z. Zhang, and G. E. Suh, “Boosting the
performance of CNN accelerators with dynamic fine-grained channel
gating,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture,
Oct. 2019, pp. 139–150.

[9] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “MCUNetV2:
Memory-efficient patch-based inference for tiny deep learning,” 2021,
arXiv:2110.15352.

[10] H. Wu, Q. Liu, and X. Liu, “A review on deep learning approaches to
image classification and object segmentation,” Comput. Mater. Contin,
vol. 1, no. 1, pp. 1–5, 2018.

[11] C. Kawatsu et al., “Gesture recognition for robotic control using deep
learning,” in Proc. NDIA Ground Vehicle Syst. Eng. Technol. Symp.,
2017, pp. 1–7.

[12] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 367–379.

[13] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural net-
works,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2016, pp. 1–12.

[14] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2017, pp. 1–12.

[15] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision:
A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28 nm
FDSOI,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2017, pp. 246–247.

[16] Y. S. Shao et al., “Simba: Scaling deep-learning inference with multi-
chip-module-based architecture,” in Proc. 52nd Annu. IEEE/ACM Int.
Symp. Microarchitecture, Oct. 2019, pp. 14–27.

[17] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A flexible
dataflow accelerator architecture for convolutional neural networks,”
in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2017, pp. 553–564.

[18] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable intercon-
nects,” in Proc. ACM SIGPLAN Notices. New York, NY, USA, 2018,
pp. 461–475, doi: 10.1145/3173162.3173176.

[19] NVIDIA. (2018). NVIDIA Deep Learning Accelerator (NVDLA).
[Online]. Available: http://nvdla.org/

[20] F. Zhang et al., “Mediapipe hands: On-device real-time hand tracking,”
2020, arXiv:2006.10214.

[21] S. Choi, J. Lee, K. Lee, and H.-J. Yoo, “A 9.02 mW CNN-stereo-
based real-time 3D hand-gesture recognition processor for smart mobile
devices,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2018, pp. 220–222.

[22] J. Chen, J. Meng, X. Wang, and J. Yuan, “Dynamic graph CNN for
event-camera based gesture recognition,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[23] C. Choy, J. Gwak, and S. Savarese, “4D spatio–temporal ConvNets:
Minkowski convolutional neural networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 3075–3084.

[24] K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: Real-time
dense monocular SLAM with learned depth prediction,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6243–6252.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015, arXiv:1512.03385.

[26] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

[27] A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1314–1324.

[28] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[29] Y. Meng et al., “AR-Net: Adaptive frame resolution for efficient action
recognition,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 86–104.

[30] D. U. Lee et al., “A 1.2 V 8 Gb 8-channel 128 GB/s high-bandwidth
memory (HBM) stacked DRAM with effective microbump I/O test
methods using 29 nm process and TSV,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 432–433.

[31] C. C. Chou et al., “A 22 nm 96KX144 RRAM macro with a self-tracking
reference and a low ripple charge pump to achieve a configurable read
window and a wide operating voltage range,” in Proc. IEEE Symp. VLSI
Circuits, Jun. 2020, pp. 1–2.

[32] W. J. Gallagher et al., “22 nm STT-MRAM for reflow and automotive
uses with high yield, reliability, and magnetic immunity and with
performance and shielding options,” in IEDM Tech. Dig., Dec. 2019,
pp. 2.7.1–2.7.4.

[33] Y. Shih et al., “A reflow-capable, embedded 8 Mb STT-MRAM macro
with 9 ns read access time in 16 nm FinFET logic CMOS process,” in
IEDM Tech. Dig., Dec. 2020, pp. 11–14.

[34] Y.-H. Chen et al., “A 16 nm 128 Mb SRAM in high-k metal-gate FinFET
technology with write-assist circuitry for low-VMIN applications,” IEEE
J. Solid-State Circuits, vol. 50, no. 1, pp. 170–177, Sep. 2015.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2637166.2637230
http://dx.doi.org/10.1145/3173162.3173176

PINKHAM et al.: ANSA: ADAPTIVE NEAR-SENSOR ARCHITECTURE FOR DYNAMIC DNN PROCESSING 1269

[35] H. Tsugawa et al., “Pixel/DRAM/logic 3-layer stacked CMOS image
sensor technology,” in IEDM Tech. Dig., Dec. 2017, pp. 3.2.1–3.2.4.

[36] Omnivision. 1 Megapixel and Below. Accessed: Nov. 23, 2021. [Online].
Available: https://www.ovt.com/image-sensors/1-megapixel-and-below

[37] G. Park et al., “A 2.2 µm stacked back side illuminated voltage domain
global shutter CMOS image sensor,” in IEDM Tech. Dig., Dec. 2019,
pp. 16.4.1–16.4.4.

[38] Sony. Sony to Release World’s First Intelligent Vision Sensors With AI
Processing Functionality. Accessed: Nov. 23, 2021. [Online]. Available:
https://www.sony.net/SonyInfo/News/Press/202005/20-037E/

[39] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ACM SIGARCH Comput. Archit.
News, vol. 42, no. 1, pp. 269–284, 2014.

[40] J. Fowers et al., “A configurable cloud-scale DNN processor for real-
time AI,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2018, pp. 1–14.

[41] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis, “An analysis of
on-chip interconnection networks for large-scale chip multiprocessors,”
ACM Trans. Archit. Code Optim., vol. 7, no. 1, pp. 1–28, May 2010,
doi: 10.1145/1736065.1736069.

[42] J. Yan, S. Yin, F. Tu, L. Liu, and S. Wei, “GNA: Reconfigurable
and efficient architecture for generative network acceleration,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2519–2529, Nov. 2018.

[43] D. Im, D. Han, S. Choi, S. Kang, and H.-J. Yoo, “DT-CNN: An energy-
efficient dilated and transposed convolutional neural network processor
for region of interest based image segmentation,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 67, no. 10, pp. 3471–3483, Oct. 2020.

[44] H. Mo et al., “A 28 nm 12.1 TOPS/W dual-mode CNN processor
using effective-weight-based convolution and error-compensation-based
prediction,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, vol. 64, Feb. 2021, pp. 146–148.

[45] Z. Yuan et al., “Sticker: A 0.41–62.1 TOPS/W 8 bit neural network
processor with multi-sparsity compatible convolution arrays and online
tuning acceleration for fully connected layers,” in Proc. IEEE Symp.
VLSI Circuits, Jun. 2018, pp. 33–34.

[46] J.-F. Zhang, C.-E. Lee, C. Liu, Y. S. Shao, S. W. Keckler, and Z. Zhang,
“SNAP: A 1.67–21.55 TOPS/W sparse neural acceleration processor for
unstructured sparse deep neural network inference in 16 nm CMOS,” in
Proc. Symp. VLSI Circuits, Jun. 2019, pp. C306–C307.

[47] I. Miro-Panades et al., “SamurAI: A 1.7 MOPS-36 GOPS adaptive
versatile IoT node with 15,000× peak-to-idle power reduction, 207 ns
wake-up time and 1.3 TOPS/W ML efficiency,” in Proc. IEEE Symp.
VLSI Circuits, Jun. 2020, pp. 1–2.

[48] N. Shah, L. I. G. Olascoaga, S. Zhao, W. Meert, and M. Verhelst,
“PIU: A 248 GOPS/W stream-based processor for irregular probabilistic
inference networks using precision-scalable posit arithmetic in 28 nm,”
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2021, pp. 150–152.

[49] K. Goetschalckx and M. Verhelst, “DepFiN: A 12 nm, 3.8 TOPs depth-
first CNN processor for high res. Image processing,” in Proc. Symp.
VLSI Circuits, Jun. 2021, pp. 1–2.

Reid Pinkham (Member, IEEE) received the B.S.
degree in physics, and the B.S.E., M.S.E., and Ph.D.
degrees in electrical engineering from the Univer-
sity of Michigan, Ann Arbor, MI, USA, in 2017,
2017, 2019, and 2021, respectively. After receiving
his Ph.D., he joined Meta Reality Labs, Redmond,
WA, in late 2021, as a Research Scientist working
on intelligent vision systems. His research interests
include high performance edge compute systems,
computer architecture, real-time machine learning,
and emerging processing techniques.

Jack Erhardt (Member, IEEE) received the B.S.
degree in electrical engineering from the University
of Minnesota, Minneapolis, MN, USA, in 2020, and
the M.S.E. degree in electrical engineering from
the University of Michigan, Ann Arbor, MI, USA,
in 2022, where he is currently pursuing the Ph.D.
degree. His current research interests include edge
compute systems and hardware-software codesign
for low power applications.

Barbara De Salvo (Fellow, IEEE) is currently
the Director of Research with the Meta Reality
Labs Research, responsible for Silicon Strategy and
Foundry Engineering. Before joining Meta, she was
a Chief Scientist and the Deputy Director of CEA-
LETI, driving the path-finding strategy, in 2019.
From 2013 to 2015, she was the Manager and a
Visiting Scholar at IBM-Albany-NY in the frame
of the sub-10 nm CMOS International Technology
Alliance, where several of her research works have
led to product technologies for novel logic ICs

(as silicon-on-insulator, finfet, and stacked nanowire technology platforms).
In CEA-LETI, she founded and led the advanced memory technology division
(2008–2013), where she promoted the introduction of disruptive memory
technologies, such as phase-change memories, resistive oxide-based and
conductive-bridge memories. She pioneered neuromorphic hardware solutions
based on emerging technologies for ultra-low-power cognitive systems. She
has authored more than 350 referred articles, ten book chapters, a monography
on silicon non-volatile memories edited by Wiley and Sons. She is an Active
Member of the IEEE Women in Engineering network. She is currently serving
as the General Chair for IEEE IEDM 2022, as well as the Chair of the IEEE
Corporation Award Committee.

Andrew Berkovich (Member, IEEE) received the
B.Sc., M.Sc., and Ph.D. degrees in electrical and
computer engineering from the University of Mary-
land, College Park, MD, USA, in 2011, 2015,
and 2017, respectively. During his Ph.D. studies,
he developed biologically-inspired low-light image
sensors. Since August 2017, he has been with the
Meta Reality Labs, Redmond, WA, USA, where he
is currently a Research Scientist developing intelli-
gent image sensors and systems.

Zhengya Zhang (Senior Member, IEEE) received
the B.A.Sc. degree in computer engineering from
the University of Waterloo in 2003, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of California, Berkeley (UC Berkeley), in
2005 and 2009, respectively.

He has been a Faculty Member with the Univer-
sity of Michigan, Ann Arbor, since 2009, where
he is currently a Professor with the Department
of Electrical Engineering and Computer Science.
His research interests include low-power and high-

performance VLSI circuits and systems for computing, communications,
and signal processing. He was a recipient of the University of Michigan
College of Engineering Neil Van Eenam Memorial Award in 2019, the
Intel Early Career Faculty Award in 2013, the National Science Foundation
CAREER Award in 2011, and the David J. Sakrison Memorial Prize from
UC Berkeley in 2009. He serves on the Technical Program Committees
of IEEE VLSI Symposium on Technology and Circuits and IEEE Custom
Integrated Circuits Conference (CICC) since 2018. He was an Associate Editor
of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR

PAPERS (2013–2015) and the IEEE IEEE RANSACTIONS ON CIRCUITS AND
SYSTEMS—II: EXPRESS BRIEFS (2014–2015). Since 2015, he has been an
Associate Editor of the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16,2023 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/1736065.1736069

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

