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Abstract— Untethered Augmented and Virtual Reality
(AR/VR) devices are an emerging compute platform with
unique opportunities and challenges. AR/VR devices use an
array of sensors, including multiple cameras, to understand
their surroundings and provide the user with an immersive
experience. To deliver the functionality and performance, AR/VR
devices rely on state-of-the-art algorithms including Deep Neural
Networks (DNNs). These algorithms must operate in real time,
and it presents a computational challenge for a mobile system.
The emergence of on-sensor compute provides a possible solution
to increase the processing capabilities of an AR/VR platform.
In this work, we explore how to optimally map DNN models
on an AR/VR compute platform that consists of an on-sensor
processor and an edge processor to minimize energy and latency.
We explore properties of popular DNN models, and the ideal net-
work split locations, processor sizes, caching strategies, and the
interactions between these design choices using a new Distributed
Algorithm Simulator (DAS). Based on this study, we develop
the basic principles on network split, parameter caching, and
two-processor balancing to achieve near-optimal system designs.
We show the addition of on-sensor processing to the existing
Quest 2 VR platform can reduce MobileNetV3 inference energy
by 64.6%. Finally, we demonstrate in a representative AR/VR
platform how the minimum-energy configuration changes under
the practical design constraints of memory size and silicon area,
as well as the impact of future memory technologies.

Index Terms— Computer architecture, Augmented Reality,
Virtual Reality, systems architecture, image processing, neural
networks.

I. INTRODUCTION

WEARABLE Augmented Reality and Virtual Reality
(AR/VR) systems present a unique hardware archi-

tectural design challenge. They must process inputs from an
array of sensors, including multiple cameras, microphones,
and inertial measurement units. The data streams coming from
these sensors must be analyzed in real time to provide users
with low-latency human-machine interfaces and immersive
visual experiences [1]. Furthermore, these devices operate
under strict power budgets imposed by thermal and form factor
constraints (e.g. battery size).
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Fig. 1. A typical AR/VR system with three levels of compute representing
on-sensor processing, mobile SoC-based edge processing, and PC- or cloud-
backed off-device processing.

Future AR/VR hardware platforms may be composed of
multiple levels of processing, possibly including an intelli-
gent image sensor with a small, stacked on-sensor proces-
sor,1 a nearby, off-sensor but on-device edge processor, and
off-device processing that can be harnessed through wireless
links on-demand to a nearby PC or remote cloud resources.
This setup creates a distributed computing paradigm as shown
in Fig. 1, where the processing can be spread across three
layers.

One of the largest computational challenges for AR/VR
devices are the image processing pipelines, specifically Deep
Neural Network (DNN) processing [2]. Image sensors can
capture a large amount of data in real time. For example,
four VGA resolution sensors operating at 30fps produce
>4MB/sec. Transferring and processing such large amounts
of data is costly (in terms of system power and energy).
Moving processing closer to the data source (e.g. image
sensor) can yield improvements in overall energy efficiency
of the system [3]. For this reason, the wearable AR/VR
platform is an excellent candidate for on- or near-sensor
processing.

Previous work has shown that it is feasible and advanta-
geous to run small DNN workloads entirely on the sensor in
the context of AR/VR devices [1], [4]. However, the amount
of processing available on a sensor is limited by both the
silicon area available (stacked processor die needs to match
the footprint of the sensor die to some degree), as well as the
sensor’s energy budget. With larger workloads, any processing
not performed on sensor is handled by an edge processor.
The edge processor is also limited by the wearable device’s

1Strictly speaking, a processor die stacked on a sensor to provide processing
is near-sensor processing, but to differentiate it from other types of off-sensor
processing, we call it on-sensor processing as it is stacked “on” the sensor.
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energy envelope, but its size and energy are not as constrained
as the on-sensor processor. On today’s devices, this edge
processor is often a mobile SoC like the Qualcomm Snap-
dragon 865 [5]. Ultimately, the remaining processing will fall
back to an off-device PC or the cloud that are assumed not to
be limited by energy, but data must be sent off-device via a
wireless link, and extra latency will be incurred.

Given the opportunity to distribute processing to three
layers, the problem arises as to how to divide the workload
to best utilize each layer of processing in order to optimize
for the device’s performance and energy consumption. Many
DNN accelerators have been developed in the past, but most
work was focused on a single-processor system [6]–[17] which
is not applicable to this work. Splitting DNN processing
has been considered in the past [18]–[20], but they only
address the split between the edge and the cloud, where
the wireless communication dominates and the latency is at
a much longer time scale than what is considered in this
work. Architecture simulation infrastructure was developed
for analyzing accelerator architectures [21], but it focused on
how fine-grained architecture details impact single-processor
performance, and does not consider system level performance.

In this work, we study the visual system and the associ-
ated DNN workloads which are the toughest bottlenecks in
wearable AR/VR platforms [2]. The majority of visual system
computation must happen in real time, and thus puts a heavy
reliance on the first two levels of processing (on-sensor and
edge processing) to reduce latency. Therefore we focus on the
workload partition, and hardware design and optimization in
the first two levels of processing. The contributions of this
work are as follows.

• Model partition: we show the distinctive features of early
and late layers of popular DNN models in terms of weight
and activation sizes and reuse, and use it to guide the
network partition and workload division between an on-
sensor processor and an edge processor.

• Workload split: we introduce and analyze a method of
splitting a DNN workload across an asymmetric multi-
processor compute platform.

• Simulation tool: we create the Distributed Algorithm Sim-
ulator (DAS) to perform the design space exploration,
extract insights on how to partition a network, and make
system design choices.

• Split processing design principles: we develop the basic
principles in making on-sensor processor and edge
processor design choices to optimize the overall system
performance and efficiency. The key insights are: 1) the
on-sensor processing needs to meet a minimum capacity
to justify an efficient split processing, 2) the optimal
caching strategy should be determined based on maxi-
mizing a size-reuse product metric, and 3) balancing the
latency between the on-sensor and the edge processor
is essential for ensuring high system performance and
efficiency. By following these basic principles, we show
that near-optimal design solutions can be made without
an exhaustive search.

• AR/VR platform design constraints: we demonstrate prac-
tical memory size and silicon area constraints for an

AR/VR platform and how they affect the design choices.
We show how future improvements in memory tech-
nology can enable even more possibilities for on-sensor
processing in both small resource-constrained and high
performance use cases.

In Section II we give an overview of the common DNN
workloads for the AR/VR visual system. In Section III
we detail the AR/VR system model used for this work.
In Section IV we analyze the trade-offs in the system design,
and develop a strategy to quickly find a low-energy design
given system constraints. In Section V we explore some
practical constraints of an on-sensor system and how they
impact system design. Finally, in Section VI we provide details
of DAS that we used to perform our analysis.

II. REVIEW OF DNN WORKLOAD

A wearable AR/VR device must perform many visual tasks
in real time, including video rendering, Simultaneous Location
And Mapping (SLAM), scene segmentation, eye tracking,
stereo depth estimation, and keypoint detection. This creates
a very large burden on the device’s computational system.
All of these algorithms must run seamlessly in real time for
the device to function properly.

Conventional AR/VR device designs [22]–[24] use an on-
device edge processor to perform the real-time processing
needed. However, the possibility of having some processing
at the sensor level can alleviate some of this burden. Since an
AR/VR device can have many image sensors, even a modest
amount of processing per sensor can dramatically increase the
computational capability of the system.

In addition to distributing processing, moving some com-
putation to a processor that is directly stacked on a sensor can
have the effect of reducing the data movement and possibly
compressing data to reduce the energy required to move data
to the edge processor that is further away. In a modern
computation system, the energy cost associated with moving
data off chip can be orders of magnitude more than processing
that data [25]. Hence it is worthwhile to perform processing
on the sensor to take advantage of the reduced data movement
and a lower energy consumption.

Some applicable AR/VR workloads have a compressing
property, such as object identification and object tracking.
The input to these algorithms is a full image or video, while
the output is a small set of data points. An example is
DNN for object recognition, e.g., popular DNNs such as
ResNet-50 [26], MobileNetV3 [27] and SqueezeNet [28]. It is
common to use pre-trained versions of these networks as the
front-end latent feature extractor to feed to more elaborate
algorithms, such as the Detectron2 framework [29]. Such
common use cases make DNNs good candidates for on-sensor
processing.

However, due to size limitations of on-sensor processing,
it is not feasible to run an entire DNN at the sensor level.
Previous near-sensor processors from the tinyML community,
such as SCAMP-5 [30], rely on extremely lightweight process-
ing algorithms for successful operation. These sensors offer
limited performance and flexibility, and are often limited to
toy-workloads. Consequently, state-of-the-art DNN backbone
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networks need to be split between an on-sensor processor and
an edge processor. AR/VR devices offer a good representative
application to evaluate this split-processing paradigm.

A. DNN Model Characteristics

There are many common DNN architectures which have
shown great success in the field of image recognition.
AlexNet [31] demonstrated that a DNN of relatively few
layers could be used to successfully perform complex image
recognition. Even higher accuracy was achieved with much
larger networks such as VGG16 [32] and deeper networks such
as ResNet [26] and Inception [33]. These networks showed
much higher accuracy than AlexNet, but all three have a larger
parameter size, a higher computational load, or both, which
prevent them from being widely adopted for mobile and power
limited applications. Networks such as MobileNet [34] and
SqueezeNet [28] showed that DNNs could be adapted for use
in mobile and power limited applications with comparative
accuracy to the previous larger DNNs. Since AlexNet, it has
been shown that high precision computation is not needed for
inference. With judicious quantization and retraining, DNNs
can use INT8 for inference computation and maintain all or
nearly all of the original FP32 performance [35].

All of these successful DNNs share some common archi-
tectural features. In general, the number of channels in each
layer increases throughout the network, while the height and
width of the activations decrease. Additionally, many networks
use one or more fully connected layers at the end to produce
the final category-by-category predictions. These common
characteristics are helpful for understanding the challenges and
gaining design insights. In the next three sections, we discuss
some of these common characteristics of the CNNs in greater
detail and how they pertain to a hardware architecture design.
We use ResNet-50 [26] and MobileNetV3 [27] as example
DNN workloads.

B. Activation Size and Network Compression

A general trend for visual system DNNs is that they
compress the intermediate representation size throughout the
network. This can be seen as distilling the redundant informa-
tion contained in the image at each layer until the DNN has
an understanding of the scene to make a prediction.

Fig. 2 shows how initially the size of the intermediate
representation (activation) is expanded from the input image
size before beginning to reduce in size. The consistent spiking
nature of the plot results from the modular block composition
of the network, with each block containing multiple convo-
lutional layers. For both networks, each block expands the
representation before compressing it again.

In a two-processor (an on-sensor processor and an on-device
edge processor) system, the communication between the first
and second parts of the system can consume a significant
amount of energy. A relevant point to look at in these networks
is when the intermediate activation size is compressed to a
point which is smaller than the original image, referred to as
the compression point. Since the energy cost for transmitting

Fig. 2. Intermediate activation size at each layer of the ResNet-50 and
MobileNetV3 networks. Dotted line shows the original size of the input.

Fig. 3. Computational cost at each layer (bars, M-MACs) and proportion of
compute for each processor if split at the particular layer of ResNet-50 and
MobileNetV3 networks.

the intermediate activation is proportional to its size, the com-
pression point shows the minimum amount of computation
needed before energy can be saved for transmission. On sys-
tems with extremely high communication costs, split points at
or below the dotted line in Fig. 2 should be considered.

C. Layer Computation Cost

A trend in modern DNN architectures is an increase in both
the amount of computation and the number of layers. The
amount of computation per layer is dictated by the size of the
input, the size of the filter, and the number of filters. In general,
the size of the activations decreases throughout the network
(Fig. 2), but the number of filters at each layer increases. Both
of these features lead to a comparatively consistent amount of
computation at each layer.

Fig. 3 shows the amount of computation across each layer
of ResNet-50 and MobileNetV3. In a system where the
computation is split across two processors, L1 (on-sensor
processor) and L2 (on-device edge processor), the proportion
of computation each performs is dependent on the layer at
which the split is made. We can see in Fig. 3 that the
proportion changes close to linearly with the layer number.
In other words, if the computation is shared equally between
the two processors, the computation should be split at the
middle layer.
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Fig. 4. Weight and activation size at each layer of the ResNet-50 and
MobileNetV3 networks.

Fig. 5. Reuse of weights and activations at each layer of the ResNet-50 and
MobileNetV3 networks. Units are MACs per Byte.

D. Weight Size and Weight Reuse

In general, the size of the weights at each layer increases
throughout the network. This is the opposite trend as the
activations. Both the activation and the weight size at each
layer are shown in Fig. 4. By the end of the network, there
are an order of magnitude more weights than activations.

Since the amount of computation at each layer is nearly
constant, as the number of weights increases in late layers
of the network, the weights are reused less. Fig. 5 shows the
reuse factor at each layer for the activations and the weights.
In early layers of the network, the weights are reused more
since the filters must be scanned over a large input image.
In late layers of the network, the activations are reused more
since more filters are applied to the activations.

From a system designer’s perspective, this shift in reuse
creates three different situations. If a processor is designed for
the first half of the network, the highest reuse of cached data is
achieved by caching weights. Similarly, a processor designed
for the second half of the network has the highest cache reuse
by caching activations. However, there is no clear method for
a processor designed for the entire network where the average
reuse is similar between weights and activations. The better
strategy depends on the exact network structure. However,
choosing one caching strategy will lead to inefficiencies in
processing either the early or late layers of the network.

Fig. 6. The system model for design exploration. The number of L1 proces-
sors can be varied from 1 to n. A DNN is split between the two levels of
processors.

A split processing system can increase the overall efficiency
by using two different caching schemes for the early and late
layers.

III. AR/VR COMPUTE PLATFORM MODEL

We use an abstract model of a typical AR/VR compute
system, similar to that in [1], to evaluate performance and
energy. The model consists of the L1 and L2 levels of the
processing stack (Fig. 1) and is detailed in Fig. 6.

The model consists of n L1 processors representing the
stacked on-sensor processing available at each image sensor.
The L2 processor is a larger on-device mobile processor.
Each processor in the system can have access to both an
on-chip SRAM cache, as well as an off-chip DRAM system.
The interface between processors matches the common MIPI
interface [36] which is used by many popular camera modules.

We define five different processor types which are com-
monly used for DNN processing. The size of each processor
is determined by the number of Functional Units (FUs) it
has. Each FU is capable of performing a single Multiply-
Accumulate (MAC) operation.

The first two types reflect the general-purpose processors:
CPU and GPU. The CPU is modeled as a series of vector
multipliers with a DRAM-backed cache interface. The GPU
processor type uses the streaming friendly memory hierarchy
common in GPUs. A set of FUs share a local SRAM scratch-
pad, and this is backed by a DRAM interface. Most operations
require fetching data from the DRAM.

The final three processor types reflect three common
caching techniques in DNN accelerators. Each type splits the
on-chip SRAM between FUs. The weights and activations are
treated separately. The first type of processor is the Cache-
Weight (CW) processor which keeps weights in SRAM and
relies on the external DRAM to store activations. The second
type is Cache-Activation (CA) which stores activations in
SRAM and weights in DRAM. The final type (CA+CW)
keeps both activations and weights in SRAM. The CA+CW
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TABLE I

ENERGY AND POWER OF THE PROCESSOR AND SYSTEM COMPONENTS

type is the only one of the five types which does not use a
DRAM interface.

The CA+CW processor type is often the only feasible type
for on-sensor processing because it does not require a DRAM
interface. However, with advanced chiplet-based [37]–[39] and
stacked-chip [40], [41] designs putting large DRAM, HBM,
or SRAM arrays on or next to the sensor, processor types
other than CA+CW will be feasible for on-sensor processing
in the near future. Therefore, we consider all these types.

The efficiency of each processor type is variable. It depends
on many factors such as the amount of workload, the ratio of
weights to computation, the available memory bandwidth, and
the size of the processor. We assume that each processor in
our system is optimized for high utilization, and has associated
efficiencies for each type of DNN operation.

Across all five types of processors, the cost of each memory
and MAC operation is standardized. See Table I for the
specific values. The DRAM access is based on a common
DDR4 DRAM chip from Micron [42]. The SRAM values are
based on trends extracted from the a commercial 28nm SRAM
compiler. The cost of the read/write operations depends on
the size of the SRAM array. Additionally, leakage power is
modeled proportional to the size of the SRAM array. The
energy cost of a MAC operation is based on an 8-bit MAC
synthesized in the same 28nm technology.

The energy consumption of the sensor and inter-processor
interface is on a per-byte basis. The image sensor uses a MIPI
interface which reflects what is commonly available in modern
camera modules. The inter-processor interface is modeled to
have the same bandwidth as the sensor interface. There is a
wide range of possible interfaces a system designer could
choose from. We use a conservative estimate for the per-
byte energy consumption to reflect a realistic system given
the bandwidth requirements. The energy per byte for each
interface is shown in Table I.

IV. SYSTEM DESIGN CONSIDERATIONS

In the previous section we discussed how different features
of the network may influence system design choices. Here,
we focus on how, given a network and workload distribution,
design choices impact system energy and performance. We use
the system outlined in Section III with one L1 processor and
one L2 processor. The results were obtained using DAS which
is detailed in Section VI.

A. Minimum Requirements

Not all possible hardware system configurations can support
the expected DNN model for AR/VR processing. For a given
DNN model, some minimum conditions must be met.

• The system must have enough compute capacity
(MACs/s) to process the model in real time.

• The system must have enough memory, commonly
SRAM or DRAM, to store the weights and activations
to support processing.

• The system must have enough bandwidth between proces-
sors to transfer intermediate activations to support real-
time processing.

Checking these minimum requirements is a straightforward
way to rule out some possible hardware system configurations.
However, these requirements alone are not enough to ensure
the system will run in real time. For example, some DNN
layers will have a low processor utilization because of memory
bandwidth limitations. Because these situations are highly
dependent on run time conditions, a simulation tool like DAS
is needed to ensure they can be suitable candidates.

B. Single Variable Impact

First, we consider how a single aspect of the design
influences system energy and performance while keeping all
the other aspects of the design fixed. We focus on single
variables first as a way of simplifying analysis before exploring
the more complex interplays between various aspects of the
design in the next subsection. We consider ResNet-50 and
MobileNetV3 in this study. The network split location is set
to layer 28 and layer 35 for ResNet-50 and MobileNetV3,
respectively, which corresponds to an equal division of com-
putation between L1 and L2. We will allow the split point to
move in later studies.

1) L1 Processor Caching Strategy: In a two-processor sys-
tem for AR/VR, the L1 processor is usually size-limited and
the L2 processor is generally larger than the L1 processor.
Therefore, we intentionally limit the L1 processor to a small
size of 64 FUs, and set the L2 processor to 2,048 FUs based on
the current state-of-the-art Qualcomm Snapdragon 865 mobile
SoC [5]. For analysis purposes, we assume the L2 processor
is equipped with enough SRAM to cache both weights and
activations (CA+CW): 20MB and 5.2MB for ResNet-50 and
MobileNetV3, respectively. The type of L1 processor (CPU,
GPU or accelerator of different caching strategies) is varied
in this study. The inference energy and latency of each
configuration are shown in Fig. 7.

a) Latency analysis: Across the different processor types,
the L1 processor latency is nearly constant. The performance
of the L1 processor is limited by the size instead of the
interface bandwidths. The energy per inference varies with the
type of the L1 processor. There is an increase from the CPU
to GPU energy which is reflective of the increase in DRAM
accesses by the GPU.

b) Energy analysis: For both networks, there is a clear
energy advantage in caching activations (CA) over caching
weights (CW). This result runs counter to the common rea-
soning from Section II that caching weights in early layers
is more advantageous since in early layers there is a higher
reuse of weights. However, the decrease in DRAM energy
indicates that there are overall fewer DRAM accesses when
caching activations, despite the lower reuse. To understand
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Fig. 7. Energy and latency of ResNet-50 and MobileNetV3 inference for a
2-processor system with various L1 processor types.

Fig. 8. Energy and latency of ResNet-50 and MobileNetV3 inference for a
2-processor system with various L1 processor sizes.

why, we refer back to Fig. 4. The activations are one to two
orders of magnitude larger than the weights in the first portion
of both networks. As shown in Fig. 7, moving from CW to
CA results in significant DRAM bandwidth savings, and thus
an energy reduction.

c) Summary: It is important to not only consider the reuse
of what is being cached, but also the size and the associated
opportunity cost with what is being cached. The total access,
i.e., the product of reuse and data size, matters. In the case
of ResNet-50, even for the early layers, the difference in
size between activations and weights is significant and the
difference in reuse is relatively less. The savings are amplified
with MobileNetV3 where the early layers have over two
orders of magnitude difference in weight and activation size.
Therefore it is advantageous to cache activations to save
energy. However, CA requires a larger SRAM and thus it
involves a trade-off between the size of SRAM and the number
of FUs that could be fit on a limited-size L1 processor.

2) L1 Processor Size: We still fix the size of the L2 proces-
sor to 2,048 FUs and use CA+CW. Based on the analysis from
the previous section, we fix the L1 processor to use CA to
reduce DRAM bandwidth. The inference energy and latency
of each L1 processor size are shown in Fig. 8.

a) Latency analysis: The system latency decreases pro-
portionally to the size of the L1 processor. At equal L1 and
L2 processor sizes, the latency from each processor is roughly
the same since we are using an equal division of work.

Fig. 9. Energy and latency of ResNet-50 and MobileNetV3 inference for a
2-processor system with various L2 processor sizes.

b) Energy analysis: Though ResNet-50 and
MobileNetV3 share similar trends in inference energy,
the proportion of energy devoted to communication is much
higher in MobileNetV3, which is due to the much lower
compute workload by MobileNetV3.

A less obvious but important result is that the total inference
energy also decreases with larger L1 processor sizes. For the
L1 processor, the dominant energy component is the DRAM
access. Since the L1 uses CA, all access to weights is done
through the DRAM interface. The total energy consumed by
the L1 processor is nearly constant across L1 processor sizes
due to the dominant DRAM access energy and the fixed
amount of weights that needs to be accessed from DRAM.
On the other hand, the L2 processor uses CA+CW, and its
dominant energy component is SRAM access and leakage.
A small L1 processor stretches the latency of the L2 processor,
resulting in significant SRAM leakage. As the L1 processor
size increases to keep its processing latency more balanced
with the L2 processor, the utilization of the L2 processor
improves and the leakage energy wasted by the large idle
SRAMs is decreased.

c) Summary: It is essential to keep the latency balanced
between the L1 and L2 processor to keep both the latency
and energy low. Balancing the latency requires matching the
L1 and L2 processor workload to their sizes to maximize
utilization and reduce the inefficiency due to static SRAM
energy. Since the L1 processor is often limited in size, the split
location of the network needs to be adjusted accordingly.

3) L2 Processor Size: Now consider the size of the
L2 processor for a fixed L1 processor size. We fix the
L1 processor to 64 FUs2 and use CA. The L2 processor
sues CA+CW. The inference energy and latency for each
L2 processor size are shown in Fig. 9.

a) Latency and energy analysis: The latency decreases
with a larger L2 processor size. However, the minimum energy
is at 128 FUs for the L2 processor, beyond which the energy
increases. As the size of the L2 processor grows while the
L1 processor is fixed in size, the under-utilization of the
L2 processor becomes a problem again, causing increasing
SRAM leakage. To support a large L2 processor, the on-chip

2Even though the L1 processor can reasonably reach sizes above 64 FUs,
we limit it here to better show the L2 performance trends.
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Fig. 10. Energy and latency of inference for a 2-processor system with
various L1/L2 processor size pairs.

SRAM needs to be fragmented to meet the data bandwidth
required by more FUs. In all cases shown in Fig. 9, the total
size of the on-chip SRAM remains constant across the config-
urations, but the number of banks increases to support more
FUs, which is more costly in terms of both leakage and access.

b) Summary: This insight ties back into the importance
of balancing the latency between the L1 and L2 processor.

C. Two Variable Impact

After considering the impact of only changing single vari-
ables, we will examine the interplay of two variables and the
impact on the system energy and performance.

1) Balancing of L1 and L2 Processor Latency: We revisit
the example of L1 and L2 processor size. We use the same
splitting location for both networks as before which balances
L1/L2 computation, and assume that the L1 processor uses
CA and the L2 processors uses CA+CW. Fig. 10 shows the
inference energy and latency for each of the processor size
pairs. We cap the L1 processor at the size of the L2 processor.
The star on the plots indicates the global minimum.

a) Latency analysis: Increasing the size of either proces-
sor will lead to a lower latency with the lowest latency
achieved when both processors have their largest size. In order
for a network to run in real-time, we require the system to
process at least 30 frames per second (FPS). From Fig. 10a
we can see that a very large L1 processor is needed to meet
the threshold of 33 ms per frame. However, Fig. 10b shows
that even the smallest L1/L2 processor combination can finish
the MobileNetV3 computation in real-time, albeit inefficiently.

b) Energy analysis: For each size of the L2 processor,
the energy decreases as the size of the L1 processor increases
to balance the L1 and L2 processing latency. For each size

Fig. 11. Energy and latency for a 2-processor system with various L1 size
and split location pairs.

of L1 processor, a much larger L2 processor generally leads
to a higher energy. For both networks, the minimum energy
configuration is when both processors are of equal size, which
matches the split near the middle of the network.

c) Summary: The above trends are in line with the earlier
conclusions and highlight the need to choose the L1 and L2
processor size to match their workload to balance their
latency.

2) L1 Processor Size and Network Split Location: One key
message from the previous analyses is to choose a processor
size suitable for its workload. The workload for each processor
is adjusted by choosing the network split location. For this
study, we fix the L2 processor at 2,048 FUs, and assume that
the L1 processor uses CA and the L2 processor uses CA+CW.
The inference energy and latency at each splitting location
for ResNet-50 and MobileNetV3 are shown in Fig. 11a and
Fig. 11b, respectively. The star on each plot indicates the
global minimum.

a) Latency analysis: The latency plots for both ResNet-
50 and MobileNetV3 indicate the global optimal network
splitting location is at layer 0. For small L1 processors,
it is generally not worthwhile to assign any L1 workload
and expect the processing latency to be balanced with the
L2 processor to achieve full utilization. As the L1 processor
size increases, there are more possible split locations at or
beyond the compression point.
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b) Energy analysis: The energy plot differs between
the ResNet-50 and MobileNetV3. For ResNet-50, the global
minimum-energy configuration is to skip L1 processing
entirely. As the split location is moved later in the network,
the L1 processor needs to fetch an increasing amount of
weights from DRAM, which makes splitting at later layers
unappealing. However, with a large L1 processor, multiple
nonzero split locations early in the network are very close
to the global minimum energy and latency.

Different from ResNet-50, in MobileNetV3 there are many
suitable split locations throughout the early network lay-
ers. The difference is attributed to the network size and
structure. MobileNetV3 is a smaller network, requiring 74%
less storage and 94% less computation than ResNet-50. The
reduced storage and computation for MobileNetV3 magni-
fies the importance of the communication energy between
the L1 and L2 processor. To reduce the communication
energy, it is beneficial to perform more L1 processing to
decrease the activation size before moving to the L2 processor.
For MobileNetV3, the minimum-energy split location varies
with the L1 processor size. For a very small L1 processor,
the optimal split location is in the first few layers, i.e., at
or near the compression point. With a larger L1 processor,
the minimum-energy split location moves to a later layer.
A larger L1 processor can handle more workload while still
balancing the L1 and L2 processing latency.

c) Summary: The above results highlight a key difference
between larger DNNs like ResNet-50 and smaller mobile-
oriented DNNs like MobileNetV3. Smaller networks can best
leverage the two-processor system to reduce their overall
energy consumption. Large networks may not see an advantage
of splitting computation. For networks even smaller than
MobileNetV3, it is possible that the lowest energy configu-
ration is to shift computation entirely to the L1 processor.
In general, smaller networks shifts the minimum energy split
location to later layers.

D. General Design Principles

Each of the discussed trade-offs provides a trend exhib-
ited by a typical DNN workload on a multi-processor edge
computing system. From these trends, three principles can be
summed up for designing a close to optimal split-processing
system in terms of both inference energy and latency without
an exhaustive search.

Principle 1: A minimum on-sensor (L1) processor size is
required for efficient split processing. The L1 processor must
have the compute capacity to process the layers up to the
crossover point where the activation size falls below the input
image size. This represents the first point in the network where
the communication costs from L1 to L2 are reduced. That is,
the following equation must be satisfied where pcomp is the
proportion of compute before the compression point, RLx is
the average rate of processing for the corresponding processor
in OPS/s, and M ACs is the total number of MAC operations
for the network. RLx can be estimated from processor profiling

and accounts for any utilization inefficiencies.

M ACs ·
(

pcomp

RL1
+ 1 − pcomp

RL2

)
< 33ms (1)

Principle 2: Allocate on-sensor processor cache to maxi-
mize size-reuse product. Often in general-purpose processors
the cached data has the highest reuse which reduces the
number of times the individual data is fetched from off-chip
storage. However, this does not minimize total off-chip band-
width. The energy consumed by the external interfaces is
significant for on-sensor processors. Caching items with the
highest size-reuse product minimizes the total amount of data
fetched from external storage. In our case, this is done by
choosing an architecture with an appropriate caching scheme
(CA, CW, etc.).

Principle 3: Match workload split to on-sensor (L1) and
edge (L2) processor size. To achieve efficient inference, it is
important to match the workload partitioning to the L1 and
L2 compute capacity. In general, this translates to balancing
latency between both processors by choosing an appropriately
located split location. This leads to high processor utilization
with more efficient use of system resources and consequently
more efficient processing. The following equation will gener-
ally hold true for efficient distributions of work.

M ACsL1

RL1
≈ M ACsL2

RL2
(2)

In addition to these three principles, we can determine if
the addition of on-sensor processing will reduce inference
energy for a particular algorithm analytically. Without loss
of generality, we assume both processors are using the same
manufacturing node and therefore the energy of each unit
of computation and storage is equal at both the L1 and
L2 processors. In this case, the predominant differences in
inference energy will be from the change in communication
energy and the change in SRAM static energy consumption.
Given that the split location is after the compression point,
we expect the energy from the L1-L2 communication to
decrease. However, adding the L1 processor will increase the
total SRAM capacity of the system and possibly the length of
computation which will increase the total energy lost due to
SRAM leakage.

We can estimate the change in communication cost as
�Ecom in the following equation. Here, the energy per byte of
the communication is Ecom/B , the compression factor at the
split point is C F , and the size of the input is Binput . If we
are compressing (C F < 1), this is expected to be negative.

�Ecom = Ecom/B · Binput · (C F − 1) (3)

The change in SRAM energy, �Esram , is dependent on
both the compute capacity of the L1 and L2 processors in
Ops/s, as well as the previous and new sizes of the SRAM.
If we assume that both processors will use the most efficient
CA+CW approach, the sizes of the SRAMs will need to be
large enough to store the weights and largest activations for
the assigned layers from the network. With this, the following
equation estimates the change in inference energy when adding
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TABLE II

COMPARISON OF BASELINE, HAND-TUNED DESIGNS AND THE GLOBAL MINIMUM-ENERGY DESIGN FOR RESNET-50 AND MOBILENETV3

L1 compute. Here, tin f is the inference time and Bsram is
the total size of the system’s SRAM with the � indicating
the change after adding the L1 compute. It is expected that
�Bsram and �tin f are both positive.

�Esram = tin f · �Bsram + �tin f · (Bsram − �Bsram) (4)

Given these two quantities, the energy saved in communi-
cation must outweigh the energy gained from the additional
SRAM and compute time if we expect to see an energy saving
from splitting the computation:

�Ecom + �Esram < 0 (5)

E. Case Study

To highlight the complexities of the split-processing system
design and how the three principles can be applied, consider
the task of designing a system with the following constraints
that are reflective of a practical AR/VR platform: 1) the
L1 processor is limited in size to 256 FUs; the L2 processor is
limited to 4,096 FUs; and the L1 processor size cannot exceed
the L2 processor size; 2) the DNN model must run at least
in real time at 30 FPS, and a frame is sized 224 × 224 × 3.
The goal is to find the optimal network split location, and
the appropriate size and type of the L1 and L2 processor.
We separately consider a system to run ResNet-50 and another
to run MobileNetV3.

We experimented with three designs for each network.
We begin with a baseline design which uses the conventional
approach choosing the largest processor size affordable and
caching schemes to maximize reuse. The initial split location
is at the compression point. Successively more principles
are employed to find the optimal design. We include the
global minimum-energy configuration that meets the real-time
requirement found by DAS. Results of this case study are
summarized in Table II.

For ResNet-50, none of the designs which support splitting
are able to reduce the energy consumption of the system.
Using Equations 3, 4, 5, adding an L1 processor with 256 PEs
and splitting at the compression point is expected to increase
inference energy by 312μJ . The third hand design using
all three principles is able to improve on this by balancing
latency in the two processors. However, the overall energy
remains higher than performing the compute exclusively on

TABLE III

QUEST 2 PER-INFERENCE ENERGY IMPROVEMENT WITH L1 PROCESSING

the L2 processor. In this situation, a larger L1 processor would
be required to see an energy savings with the L1 processor.

In the case of MobileNetV3, each successive principle
reduces the inference energy of the system. In this case,
the size of the L2 processor is decreased with principle 3 to
balance the compute latencies. For both networks, consid-
ering even the first two design principles reduces the infer-
ence energy substantially. When applying all three principles,
the design is nearly as efficient as the global minimum-energy
point, only 7.5% and 22% more energy for ResNet-50 and
MobileNetV3, respectively.

F. Oculus Quest 2 Optimization

We demonstrate how L1 processing and splitting of DNN
computation can be used to improve inference energy for
an existing VR computing system. The Quest 2 [43] uses a
Snapdragon XR2 platform with an Adreno 650 GPU which
can perform 4,096 FP16 calculations per cycle. We model this
performance with DAS using an L2 processor with 4,096 FUs
and a GPU memory hierarchy. We consider the case of
augmenting the Quest 2 with an L1 processor at each camera
sensor. To maintain a reasonable comparison, we assume the
L1 processors have 1MB of SRAM and 32 FUs, matching
realistic sensor sizes discussed in Section V. Table III shows
that with the addition of L1 processing on the Quest 2, the per-
inference energy savings are 12.3% for ResNet-50 and 64.6%
for MobileNetV3.

V. AR/VR SYSTEM CONSTRAINTS AND OPTIMIZATIONS

Unlike in the previous section which uses the number of
FUs as a proxy for the size of the L1 processor, in this
section we will impose realistic platform and silicon area
constraints. Here we present the results from DAS to capture
and understand trends across the entire design space. We found
that hand designs following the design principles from the
previous section still result in near-optimal designs under these
constraints.
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Fig. 12. Baseline system energy design space running MobileNetV3 with
SRAM and area constraints. Along the y-axis is each possible split location.
Each location on the graph represents the lowest energy achievable for each
configuration (Split location + SRAM/Area pair). Lowest-energy caching
scheme for each region is annotated on plot. White markers indicate the
lowest-energy split location given the SRAM capacity/pixel area upper limit.
Blank areas represent configurations which either do not run in real time
(30 FPS), or are not possible given the L1 SRAM/area constraint.

The first constraint applies to the sensor platform where the
SRAM for the L1 processor can be separated from the com-
pute to create a three-level (sensor-memory-compute) stacked
platform [40]. In this platform, we explore how the size of the
SRAM die limits the design of the L1 processor. The second
constraint is the silicon area available for the L1 processor. For
a three-level stacked platform, the area of the L1 processor
cannot exceed the size of the image sensor. Constraining
the area also implicitly limits the power consumption of
the L1 processor. Both of these constraints reflect a design
which could be realistically accommodated in current AR/VR
platforms. In such platforms, the area of the image sensor is
limited to reduce the overall size of the corresponding optics
on the device. Baseline results for both the SRAM and area
design spaces for running MobileNetV3 are shown in Fig. 12.

A. L1 SRAM Size Constraint

We vary the available amount of L1 SRAM from 1 KB
to 64 MB in logarithmic steps. The general trend of the
plot and the optimal network split locations are similar. Each
L1 processor must have at least 500 KB of SRAM for a
meaningful on-sensor processing. The optimal configurations
with 1 MB of SRAM use a 256-FU L1 processor and a
2,048-FU L2 processor. These are well matched to existing
on-sensor processors [4], [44] and mobile SoCs [5]. Below
500 KB of L1 SRAM, it is significantly worse to assign any
workload to the L1 processor since only the CW caching
scheme is possible due to capacity limitations. Configurations
with more than 1 MB of SRAM do not see additional energy
savings.

The 500 KB L1 SRAM size corresponds to the point where
the activations for the first few layers can fit in the SRAM
which supports the more efficient CA method. The transition
at 1 MB corresponds to being able to cache the largest layer
activations in the network, and therefore no longer limits possi-
ble split locations. Note that the size of the weights of the early
layers in MobileNetV3 is insignificant compared to the size of
the activations (Fig. 4). If the SRAM is large enough to cache

activations, the incremental capacity to support CA+CW is
relatively minor.

Above 1 MB for the L1 SRAM, there are many near-optimal
configurations, which opens up the possibility to dynamically
shift the configuration based on the L2 compute availability.
With a 6 MB L1 SRAM, a 512-FU L1 processor alone can
perform near-optimal processing up to the full network. For a
system designer, this is a good argument for a slightly larger
than optimal L1 processor to provide run-time flexibility.

B. Pixel Area Constraint

The image sensor area scales proportionally to the image
resolution and so does the L1 processing. Therefore, we can
consider the area constraint in terms of per-pixel area of the
image sensor. We vary the per-pixel area from 0.25 μm2

to 150 μm2. Modern low-power global-shutter image sen-
sors [45] have a per-pixel area in the range of 4.8-9 μm2.
For the L1 processor, we assume a 28nm technology and use
a FU design based on Eyeriss v2 [12].

Similar to the SRAM constraint, there is a minimum per-
pixel area required for a meaningful on-sensor processing
at 4 μm2 which is close to today’s state-of-the-art global
shutter sensors [46], [47]. As the pixel size continues to
scale down, a more advanced processing technology can be
used. Alternatively, a higher-resolution image could be down-
sampled for processing. Above 4 μm2 pixel area, the optimal
network split location for a single sensor system shifts from
layer 14 to layer 25, 46, 56, and finally the full network. These
configurations correspond with progressively more FUs at the
L1 processor.

C. Impact of Improved Memory Technology

Memory systems consistently consume the largest portion
of energy on the L1 processor. Both the external DRAM
access and SRAM leakage can cost orders of magnitude more
energy than the compute itself. Improving the energy effi-
ciency of DRAM access is an industry focus, e.g., the recent
LPDDR5 reduces the per-byte data access energy by 6× over
the previous LPDDR4 generation [48]. Combined with tech-
niques bringing DRAM onto the package [49], [50], we can
expect an order of magnitude energy reduction in DRAM
technology in the near future. Similarly, ultra-low-leakage
SRAM has also been demonstrated [51], [52] to achieve at
least an order of magnitude lower leakage power in the near
future. Hence, without loss of generality, we consider the
impact on the design space given an 8× reduction in DRAM
access energy and SRAM leakage power.

In the baseline shown in Fig. 13(a), if an L1 processor
is only equipped with small amounts of SRAM, CW must
be used and activations need to be fetched from DRAM
presenting an energy bottleneck. With a reduction in DRAM
access energy by 8× as shown in Fig. 13(b), CW becomes
energy-efficient for a small L1 processor. With the reduced
DRAM access cost, only 4 kB of L1 SRAM is needed for
meaningful on-sensor processing. This is a large improvement
from the 500 kB required in the baseline. With only 4 kB,
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Fig. 13. System energy design space running MobileNetV3 with DRAM energy and SRAM leakage power improvements. (a) represents the baseline system
using energies shown in Table I. (b-d) consider an 8× reduction in DRAM communication energy, an 8× reduction in SRAM leakage power, and a combined
8× reduction in both DRAM communication and SRAM leakage, respectively. See Fig. 12 caption for description of plot.

even the smallest sensors are able to support meaningful
L1 processing.

A reduction in SRAM leakage power mostly affects the con-
figurations with a large L1 processor. As shown in Fig. 13(c),
after an 8× SRAM leakage reduction, a late split point
becomes energy-efficient as the workload can be increasingly
shifted to a large L1 processor with large low-leakage SRAMs
to support CA+CW. Now, above 2 MB of L1 SRAM it is
beneficial to process the majority of the network on-sensor.

Considering both the DRAM access energy and SRAM
leakage power improvements, energy consumption is improved
for both small and large L1 processors as shown in Fig. 13(d).
The individual improvements apply to the combined system.
Additionally, with both improved DRAM access energy and
SRAM leakage power, an L1/L2 equal split can be achieved
with 100 kB of L1 SRAM, an order of magnitude reduction
over the baseline.

As discussed in the previous sections, with the current
memory technology the minimum storage requirements for
realistic on-sensor compute are large. However, here we show
that an improvement in DRAM access energy can enable
more resource-constrained on-sensor processing. Additionally,
improved low-leakage SRAM will enable the majority of the
DNN to be processed on-sensor, shifting the load away from
the L2 processor. Future emerging memory technologies such
as RRAM [53], MRAM [54], and 3d-XPoint [55], could fur-
ther reduce energy consumption, making on-sensor processing
feasible for the most energy- and area-constrained systems.

VI. SIMULATION METHODOLOGY

Current tools allow designers to benchmark individual
processors and interfaces [21], [56]. However, optimizing
per-processor performance does not necessarily optimize the
whole system performance. In order to best map DNN
algorithms to a multi-processor system, the designer must
understand how the various components interact with each
other and the trade-offs. To model these trade-offs, we created
DAS. Unlike previous tools, DAS is focused on partitioned
algorithms which will be distributed across multiple levels of
processors. To speed up the exploration over a vast design
space, DAS uses a series of counters and cycle-wise behavioral

models for each of the system components. Details on the
processor model are in the next section, other component
descriptions were omitted here for brevity.

The system is defined with individual component spec-
ifications and a connection map. DAS takes as input this
system definition and a workload mapping. During simulation,
it records all data movement and computation to create a
simulation trace. After the simulation, this recorded trace is
combined with energy for each operation (see Table I) to
estimate the energy consumed during the computation.

A. Processor Model

We detail the simple processor model the simulator uses
to exemplify the basic design principles behind DAS. For
AR/VR systems, the processor size, type, and performance
can vary widely and thus the model must be flexible. In its
most basic form, the processor takes as input instructions and
data, performs computation, and outputs results. The details
which differentiate the types of processor involve the efficiency
of processing, how on-chip data is handled, and its external
interfaces. For DAS, a basic processor type has four interfaces:
an input and output interface for sharing data to other parts
of the system, an on-chip cache interface, and an external
memory interface. In addition, the processor’s size is defined
by the number of MACs it can perform per cycle.

The processor operates on a basic compiled instruction.
The instruction dictates the number of reads/writes to each of
the interfaces, as well as the computation load in number of
MACs. During simulation, the processor uses this instruction
to approximate how a real processor would perform the
computation. Each portion of the instruction has a correspond-
ing counter which tracks the progression of the simulated
computation. The processor uses rules as to how the processing
can proceed to enforce run-time dependencies.

As computation progresses, the counters are incremented
until they reach the requirement for the instruction. The
processor is finished with the instruction when all counters
are finished. Then, the next instruction is loaded, counters are
reset, and the process restarts. This method of simulating the
computation allows DAS to replicate any processor starving
issues or bandwidth limitations during computation, as well
as any non-trivial interactions between processors.
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TABLE IV

COMPARISON OF MEASURED AND SIMULATED PERFORMANCE METRICS

B. Performance Validation

To ensure the outputs from DAS are reasonable approxi-
mations of the actual hardware performance, we validated the
results against three existing edge platforms: Google’s Edge-
TPU [57], [58], Thinker [59], and STM-SOC [60]. To perform
the validation, we modeled the accelerator systems in DAS
based on publicly available specifications, then compared the
reported performance to the DAS results. For the Edge-TPU,
DAS was not able to model the API latency leading to a
significant difference. The results of the simulation are shown
in TableIV. Overall, DAS tends to slightly underestimate both
energy and latency from the published values.

VII. RELATED WORK

Many domain-specific accelerators have been developed
in recent years targeting DNNs [6]–[17]. Many of these
accelerators focus on performance of a single-processor sys-
tem and are optimized for a combination of low power,
high utilization, high throughput, and low latency. Previous
accelerators for AR/VR [17] focus on challenges of a diverse
workload for AR/VR, but do not consider edge processing
and thus split processing of DNNs. In our multi-processor
system for AR/VR, we care most about the overall energy effi-
ciency. We abstract the general types of accelerators into how
they manage their data during processing. Some accelerators
[15], [16] use a mixture of caching schemes to maintain high
utilization in all layers of the network. We plan to include this
hybrid caching scheme type in our future work.

Previous work attempts to better understand how splitting a
network may affect computation. Neurosurgeon [18] addresses
splitting between a mobile device and the cloud to reduce
energy without compromising latency. Neurosurgeon uses a
round-trip processing latency and also considers non-DNN
workloads. Similar to our ResNet-50 case study, the work
shows that for some networks it is best to offload all processing
to the larger processor which in their case is the cloud.

In [19] and [20], the authors discuss performing image
processing between edge cameras and the cloud and how to
split the DNN computation between the camera and the cloud.
In both pieces of work, it is demonstrated that compression
is needed to reduce the intermediate activation sizes before
computation on the edge is worthwhile. The compression has
the effect of changing the compression point of the network
to overcome the increased data transmission cost.

Previous work has also considered algorithmic modifica-
tions to enable on-sensor and edge compute. Particularly, [61]
introduces multi-exit CNNs for layer fusion applications.
These networks are intended to be split across multiple hier-
archies of compute, similar to the situation presented here.

Here, the processing algorithm is modified to reduce the
common-case communication cost in the system which conse-
quently reduces overall energy requirements and enables edge
processing. The principles we present here are complementary
to the algorithmic approach and could be used to augment
the design of future multi-exit CNNs to be well suited for
on-sensor split processing.

In [21], the authors present a simulation infrastructure to
analyze the performance of various DNN accelerator architec-
tures. The authors take a fine-grained approach to modeling
each architectural feature. It is shown how small design
changes can lead to large performance changes. In this work,
DAS uses a more abstract model of accelerators to focus on
system-level performance trends. As a future direction, a fine-
grained simulator like Timeloop [21] could be incorporated
into DAS to explore specific accelerator architectures and their
impact on a multi-processor system.

VIII. CONCLUSION

We consider the optimization of DNNs running on a mobile
system with on-sensor L1 processors and an edge L2 proces-
sor. To support the study, we developed DAS to model the
system. We demonstrate the general impact the processor
size, type, and network split location have on system energy
and performance. Following these trends, we generalize three
hand-design principles. The first principle defines a minimum
size for the L1 processor based on the network characteristics.
The second principle is to allocate the L1 cache space based
on the size-reuse product to reduce DRAM access. The final
principle is to match the workload split to the L1/L2 size to
balance latency and increase processor utilization. Following
these principles, we show that a near minimum-energy design
can be quickly found. We show the existing Quest 2 VR
platform can significantly reduce DNN inference energy with
the addition of on-sensor processing. Finally, we explore the
design space of an AR/VR system using two sets of real-
world design constraints: stacked SRAM size and pixel area
of image sensors. We show how an improvement in memory
technology can expand feasibility of on-sensor processing to
very resource-constrained image sensors.
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