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ABSTRACT
The use of Light Detection And Ranging (LiDAR) has en-
abled the continued improvement in accuracy and perfor-
mance of autonomous navigation. The latest applications
require LiDAR’s of the highest spatial resolution, which gen-
erate a massive amount of 3D point clouds that need to be
processed in real time. In this work, we investigate the ar-
chitecture design for k-Nearest Neighbor (kNN) search, an
important processing kernel for 3D point clouds. An approx-
imate kNN search based on a k-dimensional (k-d) tree is
employed to improve performance. However, even for to-
day’s moderate-sized problems, this approximate kNN search
is severely hindered by memory bandwidth due to numer-
ous random accesses and minimal data reuse opportunities.
We apply several memory optimization schemes to alleviate
the bandwidth bottleneck: 1) the k-d tree data structure is
partitioned to two sets: tree nodes and point buckets, based
on their distinct characteristics – tree nodes that have high
reuse are cached for their lifetime to facilitate search, while
point buckets with low reuse are organized in regular con-
tiguous segments in external memory to facilitate efficient
burst access; 2) write and read caches are added to gather
random accesses to transform them to sequential accesses;
and 3) tree construction and tree search are interleaved to
cut redundant access streams. With optimized memory band-
width, the kNN search can be further accelerated by two new
processing schemes: 1) parallel tree traversal that utilizes
multiple workers with minimal tree duplication overhead,
and 2) incremental tree building that minimizes the overhead
of tree construction by dynamically updating the tree instead
of building it from scratch every time. We demonstrate the
performance and memory-optimized QuickNN architecture
on FPGA and perform exhaustive benchmarking, showing
that up to a 19× and 7.3× speedup over k-d tree searches
performed on a modern CPU and GPU, respectively, and a
14.5× speedup over a comparable sized architecture perform-
ing an exact search. Finally, we show that QuickNN achieves
two orders of magnitude performance per watt increase over
CPU and GPU methods.

1. INTRODUCTION
A point cloud [1] refers to a collection of data points in

space and is often obtained by 3D scanning, e.g., by a 3D
laser scanner or Light Detection And Ranging (LiDAR) [2,
3]. Autonomous navigation has increasingly relied on point
clouds collected by rotating LiDAR scanning to perceive the

Figure 1: An example point-cloud frame from the KITTI
dataset [9] with bounding boxes of the detected object.

environment and build an internal model of the environment
[4, 5, 6, 7]. A sample point cloud is rendered in Figure 1,
showing the points scattered in the 3D space indicating the
obstacle locations. A typical point cloud for autonomous
navigation consists of upwards of 100k points and a new
frame is generated every 1/10th of a second [8], posing a
significant processing workload. The trend towards even
higher precision in newer generation of applications requires
that the resolution, size, and frame rate of point clouds will
continue to increase.
Performing a k-Nearest Neighbor (kNN) search is a ker-

nel step in point cloud processing, e.g., object detection
[10, 11, 12], localization [13], path planning [14], and hazard
detection [15]. In autonomous navigation tasks perceiving
the dynamics of moving objects in the environment and esti-
mating their relative position are crucial enablers. Iterative
closest point (ICP) [16, 17] is the prevailing method to esti-
mate the motion and surface based on point cloud where kNN
is the key step to identify the closest neighborhood for the
points. A benchmark of an ICP-based method [11] reveals
that 75% of the ICP is spending on kNN search. In these
tasks, each point from a query set must be matched with the
k nearest points in a reference set. Often, the two sets chosen
are two complete 3D point clouds. The kNN search always
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lies in the inner loop and the critical path of the perception
and planning pipeline. It is pertinent that the latency of the
kNN computation is kept minimal since the system is ex-
pected to react to the environment in a fraction of a second.
The need for real time computation is apparent.
The most common solution is to perform the kNN search

on a high-performance multi-core CPU. Unfortunately, be-
cause of the large data size of point clouds and memory-
intensive nature of the kNN algorithm, this solution struggles
to meet the stringent throughput and latency requirement [18].
GPU is another common solution. A high-end GPU provides
the necessary memory bandwidth to meet the latency require-
ment, but the irregularity of point cloud data and the data
structures needed to perform a kNN search pose a challenge
for the efficient use of the memory bandwidth [19]. These
challenges call for a more optimized architecture for kNN
search on 3D point clouds. The architecture can be imple-
mented as a hardware IP to accelerate the kNN search with
the most efficient use of memory bandwidth.
In designing the kNN architecture for point clouds, we

choose the target application of 3D LiDAR processing, and
use the KITTI dataset [9] for evaluation. Additionally, we
use the Ford Campus Vision and Lidar Data Set [20] to ver-
ify results. kNN search is applied to successive frames of
3D point clouds to estimate frame-to-frame movement. This
successive-frame kNN search is used to differentiate the sur-
roundings from moving objects. Since the successive-frame
kNN search demands the largest possible amount of computa-
tion and data, the benchmarking gives the lower bound on the
performance and bandwidth usage for all the other use cases.
A typical LiDAR 3D point cloud frame can contain upwards
of 100k points. Because ground points do not contribute
information in this use case, it is common practice [21] to
remove many of these points using a ground threshold as part
of the pre-processing step, resulting in roughly 30k useful
points. A kNN search is performed on these 30k points for
benchmarking.
In Section 2, we provide an overview of kNN algorithms.

In Section 3, we establish a linear kNN search as the base-
line. In Section 4, we present the memory and performance
optimization techniques in designing a QuickNN architecture
that outperforms the baseline. In Section 6 and 7, QuickNN is
benchmarked in software and prototyped on FPGA for evalu-
ation and comparison with CPU and GPU implementations.
Section 8 concludes this work.

2. KNN SEARCH METHODS
There are two classes of kNN search methods: exact and

approximate. The exact methods find the exact k nearest
neighbors. However, in most of the practical applications,
including object tracking, kNN search is enclosed in an
ICP [22, 23, 24] loop to estimate the transformation between
object model the target frame. Iterations provide error toler-
ance, and an approximate kNN search can be applied [11]. Ta-
ble 1 provides a qualitative overview of popular kNN search
methods. We chose the approximate k-d tree method for
our design due its good trade-off between complexity and
accuracy.

1Accuracy for 30k points, 8 nearest neighbors

Table 1: Comparison of Popular kNN Methods

Accuracy1 Search Complexity Mem Reads

Linear 100% N2 N2

Approx. k-means 99% N logN N logN
Approx. k-d Tree 91% N logN N logN
Approx. LSH 18.4% N logN N

2.1 Exact Linear kNN Search
The linear kNN search [25] is the direct exact search

method. It finds the closest points by calculating and com-
paring the distance between the query point and each point
in the reference frame to find the k closest points. For the
successive-frame use case, assume N points in both the refer-
ence frame and the query frame, the linear method requires
O(N2) distance calculations and comparisons. Since frames
of point clouds are often too large to fit on chip, the points
are stored in external memory, and O(N2) point reads from
external memory are needed for each frame.
It is straightforward to parallelize the linear method. A

query point can be compared with many reference points in
parallel; and multiple query points can be searched in parallel.

2.2 Approximate k-d Tree Search
The linear method performs many unnecessary compar-

isons. In reality, only a modest number of points in a space
local to the query point need to be searched. This is what a
k-d tree method [26, 27] accomplishes.
The k-d tree is a binary tree that subdivides the space of

the reference frame into smaller regions or “buckets” with
approximately equal number of points. These buckets are
attached to the leafs of the binary tree, and each represents a
local region in space. With a k-d tree, searching a query point
involves first traversing the tree to find the nearest region or
bucket; and then searching the bucket that is the most likely
to contain the nearest neighbors.

Building a k-d tree A k-d tree is constructed for a point-
cloud frame in two steps: construct the tree using a subset of
representative points, and insert all the points to the buckets.
An illustration of the tree construction phase is shown in
Figure 2. To begin, a subset of n points from an N-point
frame (n < N) are selected, sorted, and split into two new
groups. The sorting and splitting process is repeated until
either the desired depth of the tree is reached or the leafs
contain a minimum occupancy of points.
Next, the entire frame of N points must be placed into the

buckets. The tree is traversed from the top. At each tree node,
the associated threshold is compared with the point value on
that dimension to determine which branch to traverse to in
the next step. The process continues until the point reaches a
leaf and is placed in the bucket.
If the exact k nearest neighbors are needed, more than the

nearest region may have to be searched, e.g., when the target
point is very close to a region’s boundary. With a so-called
backtracking method, the k-d tree method becomes an exact
method. However, this additional step is not always required
if a small loss in accuracy is tolerable [28, 29, 30]. With
approximate k-d tree search and a probabilistic ICP algorithm,
the end-to-end performance of position and velocity estimates
in object tracking can reach decimeter and decimeter/second,
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Figure 2: Example of the tree construction process.
Eight points are used to construct a tree with 4 leaves.
(a) The original set of 8 points, unsorted. (b) First, sort-
ing occurs across the x dimension. The median is cho-
sen, marked in red. (c) The top node is formed, with the
value of 4 marking the threshold value. The points are
split into two groups based on this threshold value. (d)
The two new groups of points are sorted along the next
dimension, y. Two median points are selected. (e) Two
new nodes are formed with the indicated thresholds. The
final result is 4 leaves each containing two points.

respectively, and 5 degrees for vehicle heading [11].
Complexity The key benefit of the k-d tree method is that

it segments a large 3D space into smaller regions and thus
reduces the search space and memory accesses. Assume a
balanced k-d tree is built to store N points with BN points
per bucket. The depth of the tree is d = log2

N
BN
. A search

requires d comparisons to reach the nearest bucket, and the
BN points in the bucket are searched to find the k nearest
neighbors. For a query frame of N points as in the successive-
frame use case, the complexity of the k-d tree search is NBNd,
or O(N log(N)), and it requires O(NBN) point reads from
external memory for each frame.

Accuracy In simulation, we define accuracy as the like-
lihood the k nearest neighbors are present in the top k+ x
nearest neighbors. Figure 3 shows the accuracy of the k-d
tree search on the KITTI dataset for k = 5, x = 0 to 5, bucket
size BN = 256 to 4K points. How often the top-1 nearest
neighbor is contained in the results is also shown. If we aim
at 75% top-10 accuracy, the minimum bucket size BN is 256.
Clearly, the larger bucket sizes provide the better accuracy.
However, the number of comparisons increases, and so does
the latency of the computation.

2.3 Other Approximate Search Methods
k-means clustering [31] is another way to partition the

search space. Instead of sorting and splitting along each di-
mension, clusters in the 3D space are identified. The process
is repeated to form clusters to subdivide the partitions until
the clusters reach a minimum size.
The k-means tree search has a similar complexity as the

k-d tree search, but building clusters is more complex than
building a k-d tree. The difference between k-d tree search
and k-means tree search is examined using Fast Library for
Approximate Nearest Neighbor (FLANN) [32, 33] on the
KITTI dataset. The k-means tree search provides on average

Figure 3: Accuracy of k-d tree search (k = 5) based on
KITTI dataset.

Figure 4: A Functional Unit that processes one query
point and keeps a running list of k nearest neighbors.

5.6% higher accuracy than the k-d tree search, but the execu-
tion time for the k-means method is over twice that of the k-d
tree method.
Simple Locality Sensitive Hashing (LSH) [34] and Multi-

Probe Locality Sensitive Hashing (MPLSH) [35] are com-
mon hash based algorithms for approximate nearest neighbor
search. These LSH methods use a set of hash tables and hash
functions to partition points. This method was originally de-
signed for kNN search across high-dimensional spaces. LSH
addresses the curse of dimensionality problem by using fixed
space partitioning by the chosen hash functions. Since our
situation only requires partitioning across three dimensions,
this method does not perform nearly as well as the simpler
k-d tree method.

3. LINEAR SEARCH ARCHITECTURE
We present a baseline architecture for the linear search

method as comparison for our k-d tree search architecture.
Since the point clouds are often large and it is assumed that
they are stored in external DRAM. The top level of the linear
architecture contains multiple Function Units (FUs), control,
and DRAM access controller.
An FU performs the distance calculation and keeps a run-

ning list of k nearest neighbor candidates. A diagram of this
FU is shown in Figure 4. To start processing, query points are
loaded to the FUs, one per FU. The points from the reference
frame are streamed in from external memory and broadcasted
to the the FUs. After all points from the reference frame
stream through, an FU possesses the exact k nearest neigh-
bors. Finally, the FUs flush the results to external memory.
This process is repeated until all query points are done.
All external memory access by the linear architecture is

sequential. Reading points from the reference frame follows
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sequential order. Points from the query frame are processed
in sequential order, and the results are written back in se-
quential order. Sequential memory access is highly efficient.
The measured memory bandwidth utilization during RTL
simulation with our DRAM model is at 97%.
Two major pitfalls of this architecture are the amount of

external memory accesses and the high number of operations
required. A large majority of the accesses and operations are
not necessary.

4. K-D TREE SEARCH ARCHITECTURE
A k-d-tree kNN processor is divided into two parts: tree

builder (TBuild), responsible for tree building; and tree searcher
(TSearch) to search query points to find the nearest neigh-
bors. The processor follows three steps: 1) initial sampling:
TBuild requests a subset of points from the reference frame
to construct the tree; 2) point placement: TBuild places all
the points from the reference frame into buckets; and 3) NN
search: TSearch traverses the tree to find the target buckets,
and searches the target bucket for the nearest neighbors.

4.1 Data Structure and Caching Scheme
The primary data structure is the k-d tree. TBuild creates

the k-d tree and TSearch uses it. The k-d tree consists of tree
nodes, and a bucket attached to each leaf node to store points.
Each tree node contains a threshold, a dimension indicator,
and pointers to the parent and the two child nodes. A leaf
node contains a pointer to a bucket containing the points. A
bucket either directly stores the points, or contains pointers
to them. A point contains the {x,y,z} coordinate in the 3D
space. The straightforward way, as employed by popular
software approaches [32], is to store this entire k-d tree data
structure, both the tree nodes and the buckets, in DRAM.

Data Size: Assuming a balanced k-d tree that stores N
points and BN points per bucket, the tree consists of Nt =
2 N

BN
− 1 nodes. For the KITTI data set, N ≈ 30k after re-

moving ground points. As discussed previously, the search
accuracy and search speed both depend on the bucket size.
The larger the bucket, the higher the search accuracy and
the slower the search. If we aim at a minimum 75% top-10
search accuracy, the bucket size, BN ≥ 256. For all practical
purposes, N � Nt , i.e., the buckets take much more storage
space than the tree nodes.

Data Reuse: For the successive-frame use case, each point
in the query frame is searched against the reference frame,
meaning that the tree is traversed N times. If we assume
equal hit rate to each point bucket, a bucket is searched BN
times. For all practical purposes, N � BN , i.e., the tree nodes
are reused many more times than the buckets.

Data Access: With the tree nodes and the buckets stored
in external DRAM, when TBuild traverses the data structure,
it needs log2

N
BN
random DRAM accesses to reach the leaf,

and BN random DRAM accesses to go through one bucket of
points. The random access of points from DRAM constitutes
the most significant delay.
The quick analyses above suggest that the tree nodes and

the buckets are data of distinct characteristics: the tree nodes
take much less storage and they are reused much more of-
ten. Therefore it is advantageous to cache the tree nodes
on chip for its lifetime. Given a limited on-chip cache, the

Figure 5: The tree and bucket block map are stored in
separate on-chip caches. Bucket blocks containing points
are stored in external DRAM. This shows an example
scheme to place a point into a bucket block.

buckets can be kept in external DRAM, but they cannot be
scattered in memory due to the significant delay penalty. To
remove this penalty, a bucket can be organized in a contigu-
ous chunk to support an efficient burst access. With caching
of the tree nodes, the external memory access is reduced from
O(N logN) to O(N), because only the buckets need to be
accessed from memory.
We used the KITTI dataset with N = 30k as the starting

point for analysis. As LiDAR resolution continues to increase,
we expect the size of point cloud frames with ground points
removed to grow well above 100k or even 1M in the near
future. As the point density increases, we anticipate that
bucket size to increase proportionally to deliver the benefits
of higher resolution as the search accuracy depends on the
bucket size. In such a scaled-up problem, the same arguments
regarding tree and bucket size, reuse, and access still hold.
Motivated by the data characteristics, our proposed caching

and memory structure is depicted in Figure 5. We use two
small on-chip caches to manage the tree nodes and the bucket
structure. The first cache stores the tree nodes. Each par-
ent/child pointer is to another part of the cache. Leaf nodes
in the cache point to a location in the second cache which
keeps a memory map matching a bucket to a start address in
DRAM. Separating these two caches allows for them to be
accessed in parallel, and simplifies structuring.
A bucket block in memory is a unit of bucket storage. A

block is of a fixed length and contains the points belonging
to the bucket as well as a pointer to the next linked bucket
block, or an end token. The bucket block size is set to be
large enough to accommodate the size of a common bucket.
During tree construction and point placement, if more points
than what can fit in a single block are placed into a single
bucket, more blocks are allocated and linked.

4.2 Memory Bandwidth Management
The kNN processor interacts with external memory through

3 read and 2 write streams, as illustrated in Figure 6. TBuild
reads points from the reference frame in sequential order
(Rd1), places them in buckets and writes them back in ran-
dom order (Wr1). TSearch reads points from the query frame
in sequential order (Rd2), reads the bucket of points in se-
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Figure 6: Five memory streams to and from external
DRAM. Rd1 and Rd2 are combined to reduce overall
memory traffic.

Figure 7: Rounds of computation and sharing of data
frame between TBuild and TSearch.

quential order (Rd3), and writes back the nearest neighbors in
sequential order (Wr2). Due to the large data size, the design
of a kNN processor is easily limited by memory bandwidth.

Data Sharing: The successive-frame use case is the most
demanding use of kNN search for point cloud processing.
The processing is divided to rounds, as illustrated in Figure 7.
In round 1, TBuild builds the tree and places frame 1 into the
buckets. In round 2, TSearch uses frame 1 as the reference
frame and frame 2 as the query frame to find the nearest
neighbors; in the meantime, TBuild builds the next tree and
places frame 2 into the buckets. Notice that frame 2 is used
by both TBuild and TSearch in round 2; similarly, frame 3 is
used by both TBuild and TSearch in round 3. Overlapping
TBuild and TSearch cuts the processing latency, and it allows
the Rd1 and Rd2 streams to be merged. We design TBuild
to drive the requests to data, and allow TSearch to snoop the
data. The Rd2 stream is completely eliminated.

Write-Gather Cache: TBuild reads points from external
memory in sequential order, but the points are placed into a
random order of buckets. Due to the random write addresses,
Wr1 is highly inefficient. Our solution is to add a small write-
gather cache to group points destined for the same bucket
before being sent to external memory. The write-gather cache
is designed to temporarily store wb buckets of up to wn points
each. When a temporary bucket is full, the points are flushed

Figure 8: Speedup of external memory access for various
configurations of the write-gather cache.

to memory. Since a bucket is stored in a contiguous memory
chunk, Wr1 is transformed to sequential access. When the
cache is full, i.e., all wb buckets have been allocated, the
fullest one is flushed to memory to make room.
We simulated the speedup of memory access using the

write-gather cache with a model of the DRAM. The simula-
tion is done for the KITTI dataset with 30k points per frame,
256 points per bucket and 128 buckets. As seen in Figure 8,
the speedup changes dramatically when there are more buck-
ets. The results show that it is more important to prioritize
wb over wn. Even a modest cache which stores 128 buckets
and 4 points per bucket can provide a 3× speedup in external
memory access.

Read-Gather Cache TSearch snoops query points from
TBuild’s read stream Rd1. For each query point, TSearch
traverses the tree to find the reference bucket to perform
NN search over. If multiple query points belong to the same
bucket, the bucket is reused and the Rd3 bandwidth is reduced.
The read-gather cache is designed to temporarily store rb
buckets of up to rn query points each.
The read-gather cache operates in a similar way as the

write-gather cache. When a temporary bucket is full, the
corresponding bucket is read from memory and NN search is
executed. When the cache is full, the fullest bucket is evicted
from cache and the query points distributed to the FUs. The
read-gather cache provides the same speed up as seen in
Figure 8. The only difference is that in order to maximally
utilize all FUs, rn ≥ NFU , where NFU is the number of FUs.

4.3 Parallel Tree Traversal
Tree traversal is a common operation in TBuild and TSearch.

In TBuild, after the tree is constructed, the points of the ref-
erence frame are placed into the buckets. That is, for each
point, the tree is traversed to find the bucket to insert the point
into. In TSearch, for each point in the query frame, the tree is
searched to find the bucket to perform the linear search over.
Each tree traversal requires a worker and a tree cache. For

each point, the worker fetches nodes starting from the root
of the tree, and then compares the point with the threshold
and dimension of each node to decide which of the next child
nodes to fetch. The traversal is complete when a leaf node is
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(a)

(b)

Figure 9: (top) Three cache partition schemes for split-
ting nodes between local storage and banks of the cache.
(bottom) Speedup with multiple workers with the three
cache partition schemes.

reached.
We propose an efficient parallel tree traversal scheme. The

parallel tree traversal uses multiple workers in parallel, and
each needs a local copy of the tree nodes to prevent access
collision. Replicating workers is relatively inexpensive due
to the simple processing logic, but keeping multiple local
copies of the tree nodes can be costly.
To reduce the cost of this replication, we note that in paral-

lel tree traversal, multiple workers operate on multiple points
in parallel, likely following different paths down the tree.
Assuming equal likelihood of accessing a node at any given
level, at level i of the tree, the probability of accessing a node
by a worker is 2−i. The few nodes in the upper portion of
the tree are more likely to be accessed by multiple workers
simultaneously. Nodes in the lower portion of the tree are in-
creasingly less likely to be accessed, but the number of them
is greater. Therefore, we duplicate only the upper portion of
the tree and provide a local copy to each worker; while only
a single copy of the lower portion of the tree is kept in cache.
After a worker has gone through the upper portion of the

tree, it must request the lower tree nodes from the cache
one layer at a time. As more workers are allocated, the
cache bandwidth must also increase. To increase the cache
bandwidth, the lower portion of the tree is split and stored
in multiple banks. On requesting a node from the cache,
the worker must decide which bank to access and submit a
request. As the worker traverses deeper into the tree, the
competition for cache bandwidth decreases.
We modeled the order of access to the caches in simulation

to understand the best way to partition the tree across the
banks of the cache. Results presented here are for a cache

with 4 banks, though similar conclusions can be made for
more banks. Three partition methods were simulated, as
shown in Figure 9a. The first method is a random assignment
of a node to a cache bank. The rationale is that because
the traversal through the tree is through a random path, on
average workers should be requesting nodes uniformly from
different banks. The second method is a group method where
entire subtrees under some upper-level node are stored in a
single cache bank. The rationale is that since each worker
has an approximately equal likelihood of ending up in each
subtree, the distribution of requests to the cache banks should
be even. The final method is a left/right method. This method
splits nodes in a group into nodes which are left children and
right children, and places them into their own cache bank.
The goal is to help ease contention for a group’s cache bank
if multiple workers are placing points in that group.
As shown in Figure 9b, the speedup obtained is nearly

linear for random and group methods for up to 8 workers with
4 banks. The additional gains from more workers diminishes,
showing that the cache banks are fully utilized. In general,
n cache banks supports up to 2n workers for a 2n increase
in throughput. The group method for cache partition gives
the best performance. Interestingly, the left/right partition
method performs poorly. One reason is that larger buckets
tend to be either a left or right child, and thus more bandwidth
is required for those nodes.

4.4 Incremental Tree Update
To ease the burden of building a k-d tree, it is possible to

reuse portions of a previous tree in a new tree’s construction.
For example, the tree is first constructed based on the initial
reference frame, and remains static for all subsequent frames,
i.e., the tree nodes (thresholds that define the partitions) re-
main static. For all subsequent frames, only the buckets are
updated. For a mostly static scene, this aggressive approach
can save a significant amount of computation in TBuild. The
drawback is that a static tree may poorly fit the point distri-
bution in later frames, causing either too many or too few
partitions of a space. Such an imbalanced tree creates ineffi-
ciencies in the tree’s use, leading to a higher search latency
and a lower search accuracy.
We propose incremental tree update to maintain a balanced

tree without having to do tree construction from scratch for
every frame. The approach applies an upper and a lower
bound to the number of points in each bucket after point
insertion. If the number of points in a bucket dips below the
lower bound, the leaf is absorbed into a higher node; if the
number of points in a bucket rises above the upper bound, the
leaf is split to two or more new leafs.
The incremental tree update can be implemented after point

insertion using two steps: merging and splitting. Starting with
the leaf nodes of the least depth, if the size of a bucket is
below the lower bound, the leaf is marked delinquent. All
the points that lie below the delinquent leaf’s parent node
are merged and the subtree below the parent node is rebuilt.
After merging of delinquent leafs, leafs that contain more
points above the upper bound are marked oversized. For
each oversized leaf, a new subtree is created using the same
method as in tree construction.
The goal of incremental tree update is to maintain a bal-
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Figure 10: Maximum and minimum bucket size with
static and incremental tree update over time.

anced tree. To motivate this, the performance of incremental
tree update over successive frames was studied and compared
to the static approach. For this test, a full tree was prepared
based on the first frame. On new frames, the tree was reused.
As Figure 10 shows, the tree’s balance deteriorates after only
a few frames, as indicated by the divergence of the maximum
and the minimum bucket size. The incremental update main-
tains the tree balance, and the maximum and the minimum
bucket size remain relatively constant at twice and half of the
average, respectively. Similar results were obtained across
all test drives in the KITTI dataset.
The complexity of incremental tree update is low. It in-

volves merging and splitting tree nodes, local sorting, and
partitioning. Merging and splitting tree nodes require small
additional control logic, and sorting and partitioning are al-
ready supported by the sorter and partition modules inside
TBuild without requiring additional hardware. During incre-
mental updates, the collapsed nodes needing to be sorted are
predominantly in the lower levels of the tree involving far
fewer points than N (sort complexity is N logN), the incre-
mental tree update is significantly faster than building a tree
from scratch.
However, at our current operating point of less than 100k

points, the tree building takes less than a quarter of the total
processing time in TBuild. As such, we chose not to apply
incremental tree update in the prototype design. Expanding
the current system to an operating point on the order of 1M
points, the tree construction time will grow to be the more
significant part of TBuild, and incremental tree update will
be essential.

5. COMPLETE ARCHITECTURE
The complete QuickNN architecture is shown in Figure 11,

consisting of two primary parts, TBuild and TSearch that
share an interface to external DRAM.

TBuild TBuild makes use of multiple FSM-based modules
coordinated by control logic to orchestrate the construction of
the tree. TBuild contains a scratchpad for sample point stor-
age, a tree cache storing tree nodes, a bucket cache storing the

memory map of bucket blocks, and a write-gather cache. The
total cache size for TBuild is 38.6 kB when sized for frames
with 30k points. To simplify the retrieval and management of
points, a point control module provides a simplified interface.
Similarly, the bucket control module stores and maintains the
bucket mapping to DRAM with the bucket cache. All caches
in QuickNN use a standard word-addressable format.
TBuild operates in 3 phases: 1) points which will be used

to construct the tree are sampled from the reference frame and
brought into the scratchpad, 2) k-d tree is constructed based
on the sample points in the scatchpad, and 3) the remaining
points from the reference frame are streamed in from DRAM,
placed into the buckets, and written back to memory.
One computationally demanding step of the tree construc-

tion process is sorting of the points. Sorting is done with a
dedicated merge sort accelerator similar to that in [36]. It
performs an n-way merge sort in rounds with a complexity
of N logn(N) for N points.

TSearch TSearch performs the nearest neighbor search
using the k-d tree constructed by TBuild. TSearch contains a
tree cache and a bucket cache, identical to those in TBuild,
and a read-gather cache. The total cache size for TSearch
is 33-243 kB for designs with 16-128 FUs sized for frames
with 30k points. The vast majority of the cache in TSearch
is used for the read-gather cache where the query points
are temporarily stored. When enough query points have
accumulated for a bucket in the read-gather cache, they are
distributed to the FUs to perform the search.
TSearch adopts a modified version of the linear search

architecture introduced in Section 3, including identical FUs.
The control for the linear search was modified to read buckets,
rather than the full frame. Because only a bucket is searched,
TSearch consumes a significantly lower external memory
bandwidth than the linear search architecture, resulting in a
much faster speed and a higher energy efficiency.

6. SIMULATION AND PROTOTYPING
Both the linear and the QuickNN architectures were mod-

eled in SystemVerilog. This allowed for simulations to be per-
formed to verify and tune the architectures before they were
placed on FPGA. A Xilinx VCU118 evaluation board [37]
was used for FPGA prototyping. Software simulations and
hardware emulation on FPGA were tested using the KITTI
dataset [9]. To ensure our results were consistent across mul-
tiple situations, key benchmarks were crosschecked with the
Ford Campus Vision and Lidar Data Set [20].

6.1 Modeling and Prototyping Platform
An accurate memory model that reflects the random access

penalty is very important. In simulations, we used a custom
model of the external DRAM. The memory parameters used
in the model were based on a representative DDR4 RAM
chip [38]. A SystemVerilog model was created to reflect
the various latency penalties based on the order of access.
Because the behavior of a kNN processor changes depending
on the exact latency of memory requests, the memory Sys-
temVerilog model is co-simulated with the kNN processor
architecture model.
A Xilinx VCU118 FPGA [37] was used to prototype the

kNN designs. This platform was chosen because it had a
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Figure 11: Complete QuickNN architecture diagram. Blue blocks represent FSM driven components. Green compo-
nents represent on chip storage. (Top, Left) Top level view of architecture. (Top, Right) Tree builder half of architecture.
(Bottom) Tree search half of architecture.

realistic DDR4 memory interface. We utilized the on-board
DDR4 memory through the Xilinx MIG controller [39]. Com-
munication with the board was through a serial interface to
the host PC. This interface allowed transferring of the Li-
DAR frames to the DDR4 memory, reading back results,
and monitoring execution progress. Timing and cycle counts
presented here consider both the time the accelerator was
running and/or accessing external DRAM. The core clock for
the design is 100MHz. Peripheral and wrapper logic run at
300MHz. A 64-bit wide memory interface is used to match
the DDR4 width.
The FPGA resource utilization and the percentage of total

FPGA utilization for both the linear and the QuickNN archi-
tectures with 64 FUs are presented in Table 2 and Table 3,
respectively. Post synthesis utilization for QuickNN is broken
down into TBuild and TSearch. The total includes TBuild,
TSearch, and the wrapper logic needed around the core, in-
cluding the DDR4 controller and the PC interface. The post
place and route utilization reported is higher than what it
needs to be, due to the relaxed space on the FPGA. For exam-
ple, to ease routing, 14 DSP slices were used per FU instead
of the expected 8. Additionally, much of the cache is im-
plemented in register arrays instead of block RAM (BRAM)
explaining the decrease in BRAM post place and route. The
power presented is given by the Xilinx Power Estimator [40].
The performance of the FPGA designs was measured in

terms of core clock cycles and it is interchangeable with wall
time by multiplying the number of cycles by the 10 ns clock
period. While varying one parameter, all others were kept
constant. Results are the average of running 100 consecutive

Table 2: FPGA Resource Utilization for Linear Search
Implementation with 64 FUs

Architecture Linear

Component Post Synthesis Post Place & Route

LUTs 45,458 ( 3.84%) 139,876 (11.83%)

Registers 40,024 (1.69%) 112,371 ( 4.75%)

BRAM 30 (1.39%) 0 (0.00%)

DSPs 512 (7.49%) 896 (13.10%)

Power - 4.44W

Table 3: FPGA Resource Utilization for QuickNN Imple-
mentation with 64 FUs

Architecture QuickNN

Component
Post Synthesis

Post Place & Route
TBuild TSearch Total

LUTs 13,731 74,092 90,754 203,758 (17.23%)

Registers 11,535 45,682 79,002 152,962 ( 6.47%)

BRAM 0 1 31 1 (0.05%)

DSPs 0 512 512 896 (13.10%)

Power - - - 4.73W
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Table 4: Measured performance in FPS on FPGA (Lin-
ear Architecture)

Frame Size w/o ground points

FUs 10k Pts 20k Pts 30k Pts

32 20.5 5.2 2.3

64 40.3 10.3 4.6

128 77.8 20.2 9.1

Figure 12: Number of external memory accesses re-
quired per frame (64 FUs, 30k points, 8 nearest neigh-
bors)

frames on the device.

6.2 Linear Architecture
The performance of a linear search kNN is expected to

grow proportionately with the number of FUs present as
long as there is sufficient memory bandwidth to sustain the
operations. The memory bandwidth utilization is high, due to
the all-sequential access. The processing latency is expected
to grow quadratically with the frame size.
For the linear architecture, the measured latency agrees

with the predicted scaling and the overhead for adding FUs is
negligible. Doubling the number of FUs from 32 to 64 gives
a 1.99× speedup, and quadrupling from 32 to 128 gives a
3.93× speedup at 30k points per frame. Memory bandwidth
utilization is very high, at 98.7%.
The prototype linear kNN runs at a clock speed of 100MHz.

The measured maximum frame rate for various configurations
are shown in Table 4. Most modern LiDAR sensors are ca-
pable of producing over 10 frames per second. Thus, only
the bold configurations in the table would be suitable. Addi-
tionally, many applications require even smaller latency for
the system to react in real time. In these situations, a faster
accelerator is needed.

6.3 QuickNN Architecture
The k-d tree narrows the search space and enables a sig-

nificant reduction in memory access. Figure 12 shows the
QuickNN architecture with our proposed memory optimiza-
tions cuts the external memory access by 36× compared
to the linear architecture, and 13× compared to a Simple
k-d architecture with only a simple cache and no memory

Table 5: Measured performance in FPS on FPGA
(QuickNN)

Frame Size w/o ground points

FUs 10k Pts 20k Pts 30k Pts

16 138.6 74.8 44.2
32 221.5 120.4 73.1
64 325.2 176.3 110.1
128 422.7 224.8 145.6

Figure 13: Measured memory bandwidth utilization for
the QuickNN architecture on FPGA.

optimizations. Since the same amount of computation is per-
formed in both the QuickNN and Simple k-d architectures,
the reduction in external memory access directly translates to
energy and latency savings.
In addition, as Figure 13 shows, the memory bandwidth

utilization for the QuickNN architecture reaches 76% for all
configurations with 32 FUs or more for 30k-point frames.
Memory access reduction, together with a high bandwidth
utilization, ensures more effective acceleration. The process-
ing latency of a 64-FU QuickNN is measured to be 908k
cycles per frame, a 24.1× speedup compared to a 64-FU
linear architecture.

Number of Nearest Neighbors Varying the number of
nearest neighbors, k, primarily affects the buffer required
within each FU, and the number of memory transactions re-
quired to write the results back to memory. Both the buffering
and the additional memory transactions are relatively minor
for small k. Only when the number of FUs is large, the
overhead becomes noticeable, as seen in Figure 14.

Frame Size Performance for different frame sizes and
number of FUs is shown in Figure 15. The latency for the
architecture scales nearly linearly across this range of frame
sizes. Though the tree search latency scales with O(N logN),
since we cache the tree on-chip, the total latency is now dom-
inated by accessing N points from external memory, which
explains the linear dependency of latency on frame size.

Number of FUs Increasing the number of FUs initially
gives a near linear increase in performance and reduction in
latency as shown in Figure 15 and Table 5. However, the gain
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Figure 14: Latency increase with the number of nearest
neighbors for the QuickNN architecture.

Figure 15: Total latency per frame for the QuickNN ar-
chitecture.

Figure 16: Performance per area and per watt scaling
with number of functional units for the QuickNN archi-
tecture on FPGA.

diminishes with more FUs due to the imperfect utilization.
To realize the full gain from more FUs, the read-gather cache
in the TSearch needs to be enlarged accordingly to collect
more query points to keep the FUs busy.
As a design space exploration, Figure 16 shows how the

number of FUs affects the performance per unit area and
power. Here, the area is the FPGA design footprint in terms
of logic and memory (LUT+FF). As the number of FUs in-
creases, the performance per watt increases as the memory
bandwidth utilization improves while the fixed overhead of
the memory interface is amortized. However, the perfor-
mance per area decreases after 32 FUs, suggesting lower uti-
lization of the growing read-gather cache. In the next section,
we use the 16-FU design to represent the low-area low-power
design point and the 128-FU design as the high-performance
design point.

7. COMPARISON WITH OTHER METHODS
Currently, LiDAR data is typically processed on a large

multi-core CPU, so we benchmarked the performance of
both the linear and the k-d tree search on an Intel i7-7700k
CPU using the popular FLANN library [32,33]. Additionally,
an open-source k-d tree search [41] is benchmarked on an
Nvidia GTX 1080 Ti GPU. This CPU and GPU are both good
representations of what is commonly found in an automotive
platform. Identical datasets were used in both CPU and GPU
benchmarking, and FPGA implementation.
Figure 17 shows the performance of the k-d tree search

methods running on CPU and GPU compared to the imple-
mentations on FPGA. The FPGA-based QuickNN implemen-
tations scale the same as the software k-d tree search running
on CPU and GPU, but the FPGA-based implementations run
at least an order of magnitude faster, as it is more straightfor-
ward to parallelize k-d tree search on FPGA. The memory
optimization is essential to ensure that QuickNN does not
become memory-bounded. The linear method is also imple-
mented on FPGA as a baseline to show that k-d tree search
scales more favorably with the number of points.

Table 6: Speedup and performance per Watt normalized
to k-d tree search on CPU (30k points, 8 nearest neigh-
bors)

Device CPU GPU FPGA

Design k-d tree k-d tree QuickNN 16 FUs QuickNN 128 FUs

Speedup 1 2.62 6.82 19.0

Perf/Watt 1 3.55 152 334

The speedup of the FPGA-based implementations over the
k-d tree search on CPU and GPU are shown in Table 6. A
relatively small 16-FU QuickNN on FPGA achieves a 6.82×
speedup over the k-d tree search running on CPU, and a
2.6× speedup over k-d tree search on GPU. A larger 128-FU
QuickNN on FPGA has a 19.0× speedup over the k-d tree
search on CPU, and a 7.3× speedup over k-d tree search on
GPU.
The performance per watt of QuickNN on FPGA is com-

pared with the CPU and GPU benchmarks in Table 6. Our
128-FU QuickNN has a measured performance per watt of
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Figure 17: Latency comparison of software implementa-
tions of k-d tree search on CPU and GPU with hardware
implementations of linear search and QuickNN on FPGA
(8 nearest neighbors).

334× higher than the CPU, and 94× higher than the GPU.
QuickNN running on FPGA has a clear advantage over CPU
and GPU methods when it comes to power efficiency.

7.1 Survey of Prior Accelerators
To the best of our knowledge, this work is the first that

focuses on large-size nearest neighbor search for 3D point
clouds. Previous work on kNN acceleration targets pre-
dominately graphics applications [42, 43], physical simula-
tion [19, 44], or matching high dimensional data [45].
A previous kNN design [19] focuses on accelerating the

k-d tree search. The design leaves k-d tree building and main-
tenance to software. An example application is hydrodynamic
fluid simulation of up to 5k points. Directly comparing this to
a 128-FU QuickNN on FPGA operating on 5k-point LiDAR
frames, QuickNN outperforms by 75×. The speedup is at-
tributed to the QuickNN architecture that maintains the entire
k-d tree structure and manages memory access proactively.
The work in [45] focuses on high dimensional queries. It

targets applications such as word embedding where the space
can have hundreds to thousands of dimensions. Additionally,
the search phase of the application consists of only a few
queries, whereas our application involves queries on the same
order as the dataset size. The work [45] reported performance
on the order of hundreds of queries per second, which is still
four orders of magnitude lower than what QuickNN can
deliver.
There has been prior work on accelerating k-d tree con-

struction for graphics applications on GPUs. For example,
the work [42] accelerates k-d tree construction for ray trac-
ing. The work presented an algorithm modification for ray
tracing to enable simpler construction of an approximate tree
on GPU. [43] presents FastTree, an architecture dedicated
to constructing and using k-d trees for ray tracing applica-
tions. Both pieces of work do not consider k-d tree search.
Scaling QuickNN to FastTree’s benchmark of roughly 65k
points, QuickNN performs the k-d tree construction and near-
est neighbor search 13% faster than FastTree which only does

tree construction.

7.2 Scaling for Future Workloads
The trend in autonomous driving is to equip higher res-

olution LiDAR that produces an ever increasing amount of
data for processing. As data size increases, the kNN search
becomes more challenging. Working with one or two orders
of magnitude more points will bring out new bottlenecks in
the system.
Tree construction latency is expected to grow faster than

any other part of the system when moving towards much
larger point clouds. We foresee two techniques to mitigate
this difficulty. The first is by relying on the incremental tree
update that is described in Section 4.4, and the second is to
utilize a high-bandwidth memory.
Currently, the most significant bottleneck in the system is

the limited external memory bandwidth. Multiple parts in the
architecture are limited by the rate at which they can access
external memory. In total, one frame of points are read or
written at least three times, once in reading the points for point
insertion, once in writing the points to their buckets, and the
third time in reading the points for the nearest neighbor search.
One emerging choice to solve this problem is using near-
chip memory such as High Bandwidth Memory (HBM) [46].
Many applications that rely on fast access to large amounts
of data have added HBM to the system such as Nvidia’s
latest Volta GPUs [47], some of Xilinx’s Virtex Ultrascale+
FPGAs [48], and Google’s latest TPU [49]. Using a platform
that can store point clouds near the processor would alleviate
the bottleneck.
The memory bandwidth usage of QuickNN can be adjusted

by adjusting the parallelism of the point placement step. This
involves partial replication of the tree cache, which is rela-
tively small. The number of FUs can be scaled up to allow for
a massively parallel search across the buckets. These mod-
ifications represent natural progressions of the architecture
to make it adaptable to the expected advances in sensor and
memory interface bandwidth.

8. CONCLUSION
This paper presents QuickNN, a new architecture for k-d

tree based approximate nearest neighbor search on 3D point
clouds. The architecture relies on a judicious data structure
caching scheme and proactive reduction and regularization
of memory accesses to reduce the memory bandwidth and
increase the effective utilization. The memory management
enables more speedup by parallel processing. We prototyped
the QuickNN architecture on FPGA, demonstrating up to
19× and 7.3× speedups over k-d tree searches performed
on a modern CPU and GPU, respectively, and a two-order-
of-magnitude increase in performance per watt from both
the CPU and the GPU designs. QuickNN is a parameterized
architecture which can easily be scaled to meet the require-
ments of future workloads.
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