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Abstract—This paper presents an ultra-high-performance 
neural network engine fabricated in a 65nm CMOS technology. 
The 0.9mm2 core relies on an energy-efficient resonant clock 
mesh running at 5.5GHz to achieve 0.76 8-bit TOPS, improving 
throughput by over 4x, area efficiency by over 8x, and energy-
delay-area product by over 1.8x compared to previous state-of-
the-art neural network designs. Achieving a charge recovery rate 
of 63%, the resonant clock mesh enables the deployment of a 
deeply-pipelined stream architecture and high-speed stream 
buffers with a sub-5W power consumption. 

Keywords—Neural Network, Application-Specific Integrated 
Circuits, High-Performance Clocking, Stream Architecture.  

I.  INTRODUCTION 
Large-scale deep learning methods are now being widely 

used in big data analytics. One important factor that has 
enabled the rapid advancement of deep learning is the 
continued improvement in computational performance and 
power efficiency. Deep learning accelerators [1-3] have the 
potential to offer superior performance and power efficiency 
over conventional general-purpose processors. 

Previously reported accelerators deliver high computational 
performance through massive parallelism. Typically, 
parallelism is combined with supply voltage scaling to improve 
power efficiency, albeit at a significant area penalty [1-3]. An 
area-efficient alternative to achieve high computational 
performance is to operate at an increased clock frequency.  
This approach may lead to excessive power densities, however, 
and imposes tight clock jitter/skew constraints.  The focus of 
this work is on maximizing computational performance and 
area efficiency within a sustainable power envelope. 

We present a neural network accelerator test-chip for deep 
learning that relies on a multi-GHz clock to achieve high 
performance and high area efficiency. An ultra-low-skew clock 
is distributed across the entire chip through an optimized clock 
mesh. To attain power efficiency, resonant clocking is used to 
recover the bulk of clock mesh power, which is the largest 
single component of the core’s power consumption.  

Fabricated in a 65nm process, the 0.9mm2 accelerator test-
chip runs at 5.5GHz. It achieves a performance of 0.76TOPS 
and an area efficiency of 0.84TOPS/mm2, outperforming the 
latest deep learning accelerators by at least 4x [1-3] and 
improving on area efficiency by at least 8x, as shown in Fig. 1. 
By taking advantage of energy-efficient resonant clocking, we 
use high-speed resonant stream buffers to provide weights to 
neurons without stalling. The resulting stream architecture with 

multi-GHz resonant clocking demonstrates a new design point 
that optimizes both area efficiency and power efficiency. 
Measured in a combined energy-delay-area (EDA) product, 
i.e., the inverted product of area efficiency and energy 
efficiency, the resulting figure of merit is 0.13TOPS2/W·mm2, 
surpassing state-of-the-art designs by at least 1.8x. 

The test-chip incorporates a number of architecture and 
circuit techniques to overcome the challenges associated with a 
5.5GHz design, including high datapath speed, high memory 
bandwidth, ultra-low clock skew, and high power efficiency. 
First, to enable multi-GHz datapath operation, we adopt a 
stream architecture with gate-level pipelining. By structuring 
the datapath in a wide and shallow fashion, we reduce the cost 
of data alignment and decrease the number of registers by 1.5x 
over typical serial datapath designs. Second, to provide an 
ultra-high memory bandwidth of 5.6Tb/s in support of the 
high-speed parallel datapath, we utilize a resonant stream 
buffer memory. Third, we propose a novel high-speed dual 
single-phase resonant clock mesh for global clock distribution 
to eliminate extra decap overhead, resulting in a worst-case 
clock skew of 2ps and 63% charge-recovery rate. 

II. NEURAL NETWORK ACCELERATOR DESIGN 
The neural network accelerator implements a 128x16 (128 

visible nodes and 16 hidden nodes) fully-connected layer. This 
fully-connected network can implement the connectivity of any 
same-size neural network, for example, any convolutional 
neural network.  Typical uses of such an accelerator include 
mapping of multiple neural network modules, a fully-
connected module (up to 128x16), part of a fully-connected 
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Fig. 1: Design scheme comparison. 
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module, or any of the above followed by a small classifier (up 
to 16x16). The proof-of-concept design can be scaled up in a 
straightforward manner to support much larger networks. 

As shown in Fig. 2, inputs are provided to the visible layer. 
Each visible node value V is multiplied by the weights W 
associated with its hidden layer connections, and the sum of the 
products forms H for each hidden node. Each value H is then 
passed through a nonlinear activation function, and the 
resulting value H’ goes through another multiplication-
summation step to reach the output layer to produce 
classification results.  

III. STREAM ARCHITECTURE 

A. Stream Buffer Memory 
The neural network accelerator is implemented using a 

stream architecture, shown in Fig. 3, along with a 16Kbit 
stream buffer memory. Input data is shifted into the visible 
nodes registers. The stream buffers store the weights and 
continuously rotate them to line up with the corresponding 
inputs for multiplication. The products are passed to an adder 
tree for summation. As the stream buffers provide a new set of 
weights every cycle, the datapath processes input data as they 
arrive, yielding one hidden node output every cycle. In the 
stream buffers, data rotation is performed through local shifting 
to match the speed of the datapath, providing an ultra-high 
bandwidth of 5.6Tb/s. 

For this ultra-high-speed design, a stream buffer is more 
suitable than conventional memories, including SRAM and 
registers. Specifically, achieving multi-GHz operation with 
standard SRAM arrays poses significant design challenges. To 
achieve fast SRAM operation, significant overheads are 
introduced in the SRAM cell and peripheral circuitry. 
Moreover, SRAM efficiency depends on size. The peripheral 
overhead can be easily amortized if SRAM array size is 
sufficiently large. In our case, however, memory depth is kept 
to 16 rows, so the area and energy overhead introduced by 
peripheral circuitry will be dominating. In the case of 

conventional registers, although it is feasible to provide the 
necessary memory bandwidth, the complexity of the clock 
distribution network to the registers is considerable, and the 
place/route of distributed registers to meet a 5.5GHz timing 
constraint introduces significant challenges. 

B. Stream Datapath 
Gate-level pipelining is used to enable an aggressive 

5.5GHz clock frequency. To keep register overheads at a 
minimum, a wide (parallel) and shallow datapath is designed 
with low pipeline depth, as opposed to a narrow (serial) and 
deep datapath, as the latter incurs disproportionately high 
register overheads to store and align inputs. Wide and shallow 
datapaths feature significantly lower register overheads, as they 
operate on all data simultaneously upon their arrival. This 
insight led to a Ladner-Fischer adder [4] designed with 
maximum fanout of 3 to minimize register count subject to a 
fanout load constraint. Compared to a typical serial adder, this 
structure cuts pipeline depth in half, decreasing register count 
by 1.5x with minimal combinational logic gates overhead. 

IV. RESONANT CLOCK MESH 
To enable 5.5GHz operation, a clock mesh has been 

designed to minimize clock skew. Unlike conventional designs 
[5-6], which use mostly high-layer metal for the clock mesh, 
this test-chip uses both high-layer and layer-3 metal for the 
clock mesh to further minimize skew. Fig. 4 shows the 
simulated clock waveform. In Fig. 5, resonant clock mesh 
simulation results indicate that for every register, clock 
insertion delay from the clock root is between 4.4ps and 6.4ps, 
yielding a worst-case clock skew of 2ps across the entire core.  

 
Fig. 2: Fully-connected neural network. 

Fig. 3: High-speed stream architecture using stream buffers 
and a wide and shallow datapath. 
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A significant portion of the power in this design is 
consumed by the high-speed clock mesh due to its high wire 
loading and large number of registers. To reduce power, we use 
resonant clocking to recycle charge using LC resonance [5]. 
Based on simulation results, the clock distribution charge 
recovery rate is 63%. Moreover, compared to a clock mesh 
driven by conventional drivers which consumes 1.563W based 
on simulation, the resonant clock consumes 710mW based on 
measurements, resulting in at least 54% power savings over 
conventional clock mesh.  

The chip floorplan is shown in Fig. 6. Using 28 on-chip 
center-tapped inductors, clock signals CLKA and CLKB are 
generated with 180 degrees phase difference. Each clock signal 
is supplied to its corresponding half of the core by a separate 
clock mesh. The two meshes have similar capacitance, and 
function as decap to each other.  Thus, unlike conventional 
single-phase resonant clocking [5-6], this novel dual single-
phase design does not require any additional decap, saving area 
and simplifying design. A total of 108 cross-coupled NMOS 

pairs serve as negative resistance to compensate for the energy 
loss of the clock distribution network. The 5.5GHz clock rate 
in this test-chip achieves the same level of speed as the fastest 
resonant clock design in 22nm [6]. 

V. MEASUREMENT RESULTS & CONCLUSION 
The chip has been fabricated in a 65nm CMOS technology, 

and total die area is 0.903mm2, including 0.509mm2 for 
datapath and memory, and 0.394mm2 for the 28 on-chip 
inductors. The die photo is shown in Fig. 7. Measurement 
results are given in Table 1. The chip operates at a maximum 
clock rate of 5.5GHz. With a 1.35V supply, the datapath and 
memory consume 4.21W, while the resonant clock mesh 
consumes 710mW with a 0.75V supply. The engine is capable 
of classifying MNIST digits [7] with 86% accuracy, which is 
comparable to that of a state-of-the-art neural network design 
that used the same benchmark [1]. 

The combination of stream architecture with a resonant 
clock mesh results in a high-performance neural network 

 
Fig. 5: Histogram of simulated clock insertion delay. 

 
Fig. 6: Test-chip floor plan. 

 
Fig. 4: Simulated clock waveform. 
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engine with improved throughput, area efficiency, and EDA 
product. As shown in Table 2, running at 5.5GHz, the test-chip 
achieves 0.76TOPS, 0.84TOPS/mm2, and 0.13TOPS2/W·mm2. 
Compared to the designs published to date [1-3], this design 
improves throughput by over 4x, area efficiency by over 8x, 
and EDA product by over 1.8x.  Given that inductor area 
accounts for approximately half of total area, area efficiency 
and EDA product could be further improved by approximately 
2x through embedding of the inductors in the package, as 
demonstrated in [8].  
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Fig. 7: Die photo. 

Table 2: Comparison with previously published neural network chips. 

 

Table 1: Chip characteristics. 
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